hotspot/src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp
changeset 1 489c9b5090e2
child 202 dc13bf0e5d5d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,3210 @@
+/*
+ * Copyright 2000-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+# include "incls/_precompiled.incl"
+# include "incls/_c1_LIRAssembler_sparc.cpp.incl"
+
+#define __ _masm->
+
+
+//------------------------------------------------------------
+
+
+bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
+  if (opr->is_constant()) {
+    LIR_Const* constant = opr->as_constant_ptr();
+    switch (constant->type()) {
+      case T_INT: {
+        jint value = constant->as_jint();
+        return Assembler::is_simm13(value);
+      }
+
+      default:
+        return false;
+    }
+  }
+  return false;
+}
+
+
+bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
+  switch (op->code()) {
+    case lir_null_check:
+    return true;
+
+
+    case lir_add:
+    case lir_ushr:
+    case lir_shr:
+    case lir_shl:
+      // integer shifts and adds are always one instruction
+      return op->result_opr()->is_single_cpu();
+
+
+    case lir_move: {
+      LIR_Op1* op1 = op->as_Op1();
+      LIR_Opr src = op1->in_opr();
+      LIR_Opr dst = op1->result_opr();
+
+      if (src == dst) {
+        NEEDS_CLEANUP;
+        // this works around a problem where moves with the same src and dst
+        // end up in the delay slot and then the assembler swallows the mov
+        // since it has no effect and then it complains because the delay slot
+        // is empty.  returning false stops the optimizer from putting this in
+        // the delay slot
+        return false;
+      }
+
+      // don't put moves involving oops into the delay slot since the VerifyOops code
+      // will make it much larger than a single instruction.
+      if (VerifyOops) {
+        return false;
+      }
+
+      if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
+          ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
+        return false;
+      }
+
+      if (dst->is_register()) {
+        if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
+          return !PatchALot;
+        } else if (src->is_single_stack()) {
+          return true;
+        }
+      }
+
+      if (src->is_register()) {
+        if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
+          return !PatchALot;
+        } else if (dst->is_single_stack()) {
+          return true;
+        }
+      }
+
+      if (dst->is_register() &&
+          ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
+           (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
+        return true;
+      }
+
+      return false;
+    }
+
+    default:
+      return false;
+  }
+  ShouldNotReachHere();
+}
+
+
+LIR_Opr LIR_Assembler::receiverOpr() {
+  return FrameMap::O0_oop_opr;
+}
+
+
+LIR_Opr LIR_Assembler::incomingReceiverOpr() {
+  return FrameMap::I0_oop_opr;
+}
+
+
+LIR_Opr LIR_Assembler::osrBufferPointer() {
+  return FrameMap::I0_opr;
+}
+
+
+int LIR_Assembler::initial_frame_size_in_bytes() {
+  return in_bytes(frame_map()->framesize_in_bytes());
+}
+
+
+// inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
+// we fetch the class of the receiver (O0) and compare it with the cached class.
+// If they do not match we jump to slow case.
+int LIR_Assembler::check_icache() {
+  int offset = __ offset();
+  __ inline_cache_check(O0, G5_inline_cache_reg);
+  return offset;
+}
+
+
+void LIR_Assembler::osr_entry() {
+  // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
+  //
+  //   1. Create a new compiled activation.
+  //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
+  //      at the osr_bci; it is not initialized.
+  //   3. Jump to the continuation address in compiled code to resume execution.
+
+  // OSR entry point
+  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
+  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
+  ValueStack* entry_state = osr_entry->end()->state();
+  int number_of_locks = entry_state->locks_size();
+
+  // Create a frame for the compiled activation.
+  __ build_frame(initial_frame_size_in_bytes());
+
+  // OSR buffer is
+  //
+  // locals[nlocals-1..0]
+  // monitors[number_of_locks-1..0]
+  //
+  // locals is a direct copy of the interpreter frame so in the osr buffer
+  // so first slot in the local array is the last local from the interpreter
+  // and last slot is local[0] (receiver) from the interpreter
+  //
+  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
+  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
+  // in the interpreter frame (the method lock if a sync method)
+
+  // Initialize monitors in the compiled activation.
+  //   I0: pointer to osr buffer
+  //
+  // All other registers are dead at this point and the locals will be
+  // copied into place by code emitted in the IR.
+
+  Register OSR_buf = osrBufferPointer()->as_register();
+  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
+    int monitor_offset = BytesPerWord * method()->max_locals() +
+      (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
+    for (int i = 0; i < number_of_locks; i++) {
+      int slot_offset = monitor_offset - ((i * BasicObjectLock::size()) * BytesPerWord);
+#ifdef ASSERT
+      // verify the interpreter's monitor has a non-null object
+      {
+        Label L;
+        __ ld_ptr(Address(OSR_buf, 0, slot_offset + BasicObjectLock::obj_offset_in_bytes()), O7);
+        __ cmp(G0, O7);
+        __ br(Assembler::notEqual, false, Assembler::pt, L);
+        __ delayed()->nop();
+        __ stop("locked object is NULL");
+        __ bind(L);
+      }
+#endif // ASSERT
+      // Copy the lock field into the compiled activation.
+      __ ld_ptr(Address(OSR_buf, 0, slot_offset + BasicObjectLock::lock_offset_in_bytes()), O7);
+      __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
+      __ ld_ptr(Address(OSR_buf, 0, slot_offset + BasicObjectLock::obj_offset_in_bytes()), O7);
+      __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
+    }
+  }
+}
+
+
+// Optimized Library calls
+// This is the fast version of java.lang.String.compare; it has not
+// OSR-entry and therefore, we generate a slow version for OSR's
+void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
+  Register str0 = left->as_register();
+  Register str1 = right->as_register();
+
+  Label Ldone;
+
+  Register result = dst->as_register();
+  {
+    // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
+    // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
+    // Also, get string0.count-string1.count in o7 and get the condition code set
+    // Note: some instructions have been hoisted for better instruction scheduling
+
+    Register tmp0 = L0;
+    Register tmp1 = L1;
+    Register tmp2 = L2;
+
+    int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
+    int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
+    int  count_offset = java_lang_String:: count_offset_in_bytes();
+
+    __ ld_ptr(Address(str0, 0,  value_offset), tmp0);
+    __ ld(Address(str0, 0, offset_offset), tmp2);
+    __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
+    __ ld(Address(str0, 0, count_offset), str0);
+    __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
+
+    // str1 may be null
+    add_debug_info_for_null_check_here(info);
+
+    __ ld_ptr(Address(str1, 0,  value_offset), tmp1);
+    __ add(tmp0, tmp2, tmp0);
+
+    __ ld(Address(str1, 0, offset_offset), tmp2);
+    __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
+    __ ld(Address(str1, 0, count_offset), str1);
+    __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
+    __ subcc(str0, str1, O7);
+    __ add(tmp1, tmp2, tmp1);
+  }
+
+  {
+    // Compute the minimum of the string lengths, scale it and store it in limit
+    Register count0 = I0;
+    Register count1 = I1;
+    Register limit  = L3;
+
+    Label Lskip;
+    __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
+    __ br(Assembler::greater, true, Assembler::pt, Lskip);
+    __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
+    __ bind(Lskip);
+
+    // If either string is empty (or both of them) the result is the difference in lengths
+    __ cmp(limit, 0);
+    __ br(Assembler::equal, true, Assembler::pn, Ldone);
+    __ delayed()->mov(O7, result);  // result is difference in lengths
+  }
+
+  {
+    // Neither string is empty
+    Label Lloop;
+
+    Register base0 = L0;
+    Register base1 = L1;
+    Register chr0  = I0;
+    Register chr1  = I1;
+    Register limit = L3;
+
+    // Shift base0 and base1 to the end of the arrays, negate limit
+    __ add(base0, limit, base0);
+    __ add(base1, limit, base1);
+    __ neg(limit);  // limit = -min{string0.count, strin1.count}
+
+    __ lduh(base0, limit, chr0);
+    __ bind(Lloop);
+    __ lduh(base1, limit, chr1);
+    __ subcc(chr0, chr1, chr0);
+    __ br(Assembler::notZero, false, Assembler::pn, Ldone);
+    assert(chr0 == result, "result must be pre-placed");
+    __ delayed()->inccc(limit, sizeof(jchar));
+    __ br(Assembler::notZero, true, Assembler::pt, Lloop);
+    __ delayed()->lduh(base0, limit, chr0);
+  }
+
+  // If strings are equal up to min length, return the length difference.
+  __ mov(O7, result);
+
+  // Otherwise, return the difference between the first mismatched chars.
+  __ bind(Ldone);
+}
+
+
+// --------------------------------------------------------------------------------------------
+
+void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
+  if (!GenerateSynchronizationCode) return;
+
+  Register obj_reg = obj_opr->as_register();
+  Register lock_reg = lock_opr->as_register();
+
+  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
+  Register reg = mon_addr.base();
+  int offset = mon_addr.disp();
+  // compute pointer to BasicLock
+  if (mon_addr.is_simm13()) {
+    __ add(reg, offset, lock_reg);
+  }
+  else {
+    __ set(offset, lock_reg);
+    __ add(reg, lock_reg, lock_reg);
+  }
+  // unlock object
+  MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
+  // _slow_case_stubs->append(slow_case);
+  // temporary fix: must be created after exceptionhandler, therefore as call stub
+  _slow_case_stubs->append(slow_case);
+  if (UseFastLocking) {
+    // try inlined fast unlocking first, revert to slow locking if it fails
+    // note: lock_reg points to the displaced header since the displaced header offset is 0!
+    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
+    __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
+  } else {
+    // always do slow unlocking
+    // note: the slow unlocking code could be inlined here, however if we use
+    //       slow unlocking, speed doesn't matter anyway and this solution is
+    //       simpler and requires less duplicated code - additionally, the
+    //       slow unlocking code is the same in either case which simplifies
+    //       debugging
+    __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
+    __ delayed()->nop();
+  }
+  // done
+  __ bind(*slow_case->continuation());
+}
+
+
+void LIR_Assembler::emit_exception_handler() {
+  // if the last instruction is a call (typically to do a throw which
+  // is coming at the end after block reordering) the return address
+  // must still point into the code area in order to avoid assertion
+  // failures when searching for the corresponding bci => add a nop
+  // (was bug 5/14/1999 - gri)
+  __ nop();
+
+  // generate code for exception handler
+  ciMethod* method = compilation()->method();
+
+  address handler_base = __ start_a_stub(exception_handler_size);
+
+  if (handler_base == NULL) {
+    // not enough space left for the handler
+    bailout("exception handler overflow");
+    return;
+  }
+#ifdef ASSERT
+  int offset = code_offset();
+#endif // ASSERT
+  compilation()->offsets()->set_value(CodeOffsets::Exceptions, code_offset());
+
+
+  if (compilation()->has_exception_handlers() || JvmtiExport::can_post_exceptions()) {
+    __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
+    __ delayed()->nop();
+  }
+
+  __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
+  __ delayed()->nop();
+  debug_only(__ stop("should have gone to the caller");)
+  assert(code_offset() - offset <= exception_handler_size, "overflow");
+
+  __ end_a_stub();
+}
+
+void LIR_Assembler::emit_deopt_handler() {
+  // if the last instruction is a call (typically to do a throw which
+  // is coming at the end after block reordering) the return address
+  // must still point into the code area in order to avoid assertion
+  // failures when searching for the corresponding bci => add a nop
+  // (was bug 5/14/1999 - gri)
+  __ nop();
+
+  // generate code for deopt handler
+  ciMethod* method = compilation()->method();
+  address handler_base = __ start_a_stub(deopt_handler_size);
+  if (handler_base == NULL) {
+    // not enough space left for the handler
+    bailout("deopt handler overflow");
+    return;
+  }
+#ifdef ASSERT
+  int offset = code_offset();
+#endif // ASSERT
+  compilation()->offsets()->set_value(CodeOffsets::Deopt, code_offset());
+
+  Address deopt_blob(G3_scratch, SharedRuntime::deopt_blob()->unpack());
+
+  __ JUMP(deopt_blob, 0); // sethi;jmp
+  __ delayed()->nop();
+
+  assert(code_offset() - offset <= deopt_handler_size, "overflow");
+
+  debug_only(__ stop("should have gone to the caller");)
+
+  __ end_a_stub();
+}
+
+
+void LIR_Assembler::jobject2reg(jobject o, Register reg) {
+  if (o == NULL) {
+    __ set(NULL_WORD, reg);
+  } else {
+    int oop_index = __ oop_recorder()->find_index(o);
+    RelocationHolder rspec = oop_Relocation::spec(oop_index);
+    __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
+  }
+}
+
+
+void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
+  // Allocate a new index in oop table to hold the oop once it's been patched
+  int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
+  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
+
+  Address addr = Address(reg, address(NULL), oop_Relocation::spec(oop_index));
+  assert(addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
+  // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
+  // NULL will be dynamically patched later and the patched value may be large.  We must
+  // therefore generate the sethi/add as a placeholders
+  __ sethi(addr, true);
+  __ add(addr, reg, 0);
+
+  patching_epilog(patch, lir_patch_normal, reg, info);
+}
+
+
+void LIR_Assembler::emit_op3(LIR_Op3* op) {
+  Register Rdividend = op->in_opr1()->as_register();
+  Register Rdivisor  = noreg;
+  Register Rscratch  = op->in_opr3()->as_register();
+  Register Rresult   = op->result_opr()->as_register();
+  int divisor = -1;
+
+  if (op->in_opr2()->is_register()) {
+    Rdivisor = op->in_opr2()->as_register();
+  } else {
+    divisor = op->in_opr2()->as_constant_ptr()->as_jint();
+    assert(Assembler::is_simm13(divisor), "can only handle simm13");
+  }
+
+  assert(Rdividend != Rscratch, "");
+  assert(Rdivisor  != Rscratch, "");
+  assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
+
+  if (Rdivisor == noreg && is_power_of_2(divisor)) {
+    // convert division by a power of two into some shifts and logical operations
+    if (op->code() == lir_idiv) {
+      if (divisor == 2) {
+        __ srl(Rdividend, 31, Rscratch);
+      } else {
+        __ sra(Rdividend, 31, Rscratch);
+        __ and3(Rscratch, divisor - 1, Rscratch);
+      }
+      __ add(Rdividend, Rscratch, Rscratch);
+      __ sra(Rscratch, log2_intptr(divisor), Rresult);
+      return;
+    } else {
+      if (divisor == 2) {
+        __ srl(Rdividend, 31, Rscratch);
+      } else {
+        __ sra(Rdividend, 31, Rscratch);
+        __ and3(Rscratch, divisor - 1,Rscratch);
+      }
+      __ add(Rdividend, Rscratch, Rscratch);
+      __ andn(Rscratch, divisor - 1,Rscratch);
+      __ sub(Rdividend, Rscratch, Rresult);
+      return;
+    }
+  }
+
+  __ sra(Rdividend, 31, Rscratch);
+  __ wry(Rscratch);
+  if (!VM_Version::v9_instructions_work()) {
+    // v9 doesn't require these nops
+    __ nop();
+    __ nop();
+    __ nop();
+    __ nop();
+  }
+
+  add_debug_info_for_div0_here(op->info());
+
+  if (Rdivisor != noreg) {
+    __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
+  } else {
+    assert(Assembler::is_simm13(divisor), "can only handle simm13");
+    __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
+  }
+
+  Label skip;
+  __ br(Assembler::overflowSet, true, Assembler::pn, skip);
+  __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
+  __ bind(skip);
+
+  if (op->code() == lir_irem) {
+    if (Rdivisor != noreg) {
+      __ smul(Rscratch, Rdivisor, Rscratch);
+    } else {
+      __ smul(Rscratch, divisor, Rscratch);
+    }
+    __ sub(Rdividend, Rscratch, Rresult);
+  }
+}
+
+
+void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
+#ifdef ASSERT
+  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
+  if (op->block() != NULL)  _branch_target_blocks.append(op->block());
+  if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
+#endif
+  assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
+
+  if (op->cond() == lir_cond_always) {
+    __ br(Assembler::always, false, Assembler::pt, *(op->label()));
+  } else if (op->code() == lir_cond_float_branch) {
+    assert(op->ublock() != NULL, "must have unordered successor");
+    bool is_unordered = (op->ublock() == op->block());
+    Assembler::Condition acond;
+    switch (op->cond()) {
+      case lir_cond_equal:         acond = Assembler::f_equal;    break;
+      case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
+      case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
+      case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
+      case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
+      case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
+      default :                         ShouldNotReachHere();
+    };
+
+    if (!VM_Version::v9_instructions_work()) {
+      __ nop();
+    }
+    __ fb( acond, false, Assembler::pn, *(op->label()));
+  } else {
+    assert (op->code() == lir_branch, "just checking");
+
+    Assembler::Condition acond;
+    switch (op->cond()) {
+      case lir_cond_equal:        acond = Assembler::equal;                break;
+      case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
+      case lir_cond_less:         acond = Assembler::less;                 break;
+      case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
+      case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
+      case lir_cond_greater:      acond = Assembler::greater;              break;
+      case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
+      case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
+      default:                         ShouldNotReachHere();
+    };
+
+    // sparc has different condition codes for testing 32-bit
+    // vs. 64-bit values.  We could always test xcc is we could
+    // guarantee that 32-bit loads always sign extended but that isn't
+    // true and since sign extension isn't free, it would impose a
+    // slight cost.
+#ifdef _LP64
+    if  (op->type() == T_INT) {
+      __ br(acond, false, Assembler::pn, *(op->label()));
+    } else
+#endif
+      __ brx(acond, false, Assembler::pn, *(op->label()));
+  }
+  // The peephole pass fills the delay slot
+}
+
+
+void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
+  Bytecodes::Code code = op->bytecode();
+  LIR_Opr dst = op->result_opr();
+
+  switch(code) {
+    case Bytecodes::_i2l: {
+      Register rlo  = dst->as_register_lo();
+      Register rhi  = dst->as_register_hi();
+      Register rval = op->in_opr()->as_register();
+#ifdef _LP64
+      __ sra(rval, 0, rlo);
+#else
+      __ mov(rval, rlo);
+      __ sra(rval, BitsPerInt-1, rhi);
+#endif
+      break;
+    }
+    case Bytecodes::_i2d:
+    case Bytecodes::_i2f: {
+      bool is_double = (code == Bytecodes::_i2d);
+      FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
+      FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
+      FloatRegister rsrc = op->in_opr()->as_float_reg();
+      if (rsrc != rdst) {
+        __ fmov(FloatRegisterImpl::S, rsrc, rdst);
+      }
+      __ fitof(w, rdst, rdst);
+      break;
+    }
+    case Bytecodes::_f2i:{
+      FloatRegister rsrc = op->in_opr()->as_float_reg();
+      Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
+      Label L;
+      // result must be 0 if value is NaN; test by comparing value to itself
+      __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
+      if (!VM_Version::v9_instructions_work()) {
+        __ nop();
+      }
+      __ fb(Assembler::f_unordered, true, Assembler::pn, L);
+      __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
+      __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
+      // move integer result from float register to int register
+      __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
+      __ bind (L);
+      break;
+    }
+    case Bytecodes::_l2i: {
+      Register rlo  = op->in_opr()->as_register_lo();
+      Register rhi  = op->in_opr()->as_register_hi();
+      Register rdst = dst->as_register();
+#ifdef _LP64
+      __ sra(rlo, 0, rdst);
+#else
+      __ mov(rlo, rdst);
+#endif
+      break;
+    }
+    case Bytecodes::_d2f:
+    case Bytecodes::_f2d: {
+      bool is_double = (code == Bytecodes::_f2d);
+      assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
+      LIR_Opr val = op->in_opr();
+      FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
+      FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
+      FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
+      FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
+      __ ftof(vw, dw, rval, rdst);
+      break;
+    }
+    case Bytecodes::_i2s:
+    case Bytecodes::_i2b: {
+      Register rval = op->in_opr()->as_register();
+      Register rdst = dst->as_register();
+      int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
+      __ sll (rval, shift, rdst);
+      __ sra (rdst, shift, rdst);
+      break;
+    }
+    case Bytecodes::_i2c: {
+      Register rval = op->in_opr()->as_register();
+      Register rdst = dst->as_register();
+      int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
+      __ sll (rval, shift, rdst);
+      __ srl (rdst, shift, rdst);
+      break;
+    }
+
+    default: ShouldNotReachHere();
+  }
+}
+
+
+void LIR_Assembler::align_call(LIR_Code) {
+  // do nothing since all instructions are word aligned on sparc
+}
+
+
+void LIR_Assembler::call(address entry, relocInfo::relocType rtype, CodeEmitInfo* info) {
+  __ call(entry, rtype);
+  // the peephole pass fills the delay slot
+}
+
+
+void LIR_Assembler::ic_call(address entry, CodeEmitInfo* info) {
+  RelocationHolder rspec = virtual_call_Relocation::spec(pc());
+  __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
+  __ relocate(rspec);
+  __ call(entry, relocInfo::none);
+  // the peephole pass fills the delay slot
+}
+
+
+void LIR_Assembler::vtable_call(int vtable_offset, CodeEmitInfo* info) {
+  add_debug_info_for_null_check_here(info);
+  __ ld_ptr(Address(O0, 0,  oopDesc::klass_offset_in_bytes()), G3_scratch);
+  if (__ is_simm13(vtable_offset) ) {
+    __ ld_ptr(G3_scratch, vtable_offset, G5_method);
+  } else {
+    // This will generate 2 instructions
+    __ set(vtable_offset, G5_method);
+    // ld_ptr, set_hi, set
+    __ ld_ptr(G3_scratch, G5_method, G5_method);
+  }
+  __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
+  __ callr(G3_scratch, G0);
+  // the peephole pass fills the delay slot
+}
+
+
+// load with 32-bit displacement
+int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
+  int load_offset = code_offset();
+  if (Assembler::is_simm13(disp)) {
+    if (info != NULL) add_debug_info_for_null_check_here(info);
+    switch(ld_type) {
+      case T_BOOLEAN: // fall through
+      case T_BYTE  : __ ldsb(s, disp, d); break;
+      case T_CHAR  : __ lduh(s, disp, d); break;
+      case T_SHORT : __ ldsh(s, disp, d); break;
+      case T_INT   : __ ld(s, disp, d); break;
+      case T_ADDRESS:// fall through
+      case T_ARRAY : // fall through
+      case T_OBJECT: __ ld_ptr(s, disp, d); break;
+      default      : ShouldNotReachHere();
+    }
+  } else {
+    __ sethi(disp & ~0x3ff, O7, true);
+    __ add(O7, disp & 0x3ff, O7);
+    if (info != NULL) add_debug_info_for_null_check_here(info);
+    load_offset = code_offset();
+    switch(ld_type) {
+      case T_BOOLEAN: // fall through
+      case T_BYTE  : __ ldsb(s, O7, d); break;
+      case T_CHAR  : __ lduh(s, O7, d); break;
+      case T_SHORT : __ ldsh(s, O7, d); break;
+      case T_INT   : __ ld(s, O7, d); break;
+      case T_ADDRESS:// fall through
+      case T_ARRAY : // fall through
+      case T_OBJECT: __ ld_ptr(s, O7, d); break;
+      default      : ShouldNotReachHere();
+    }
+  }
+  if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
+  return load_offset;
+}
+
+
+// store with 32-bit displacement
+void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
+  if (Assembler::is_simm13(offset)) {
+    if (info != NULL)  add_debug_info_for_null_check_here(info);
+    switch (type) {
+      case T_BOOLEAN: // fall through
+      case T_BYTE  : __ stb(value, base, offset); break;
+      case T_CHAR  : __ sth(value, base, offset); break;
+      case T_SHORT : __ sth(value, base, offset); break;
+      case T_INT   : __ stw(value, base, offset); break;
+      case T_ADDRESS:// fall through
+      case T_ARRAY : // fall through
+      case T_OBJECT: __ st_ptr(value, base, offset); break;
+      default      : ShouldNotReachHere();
+    }
+  } else {
+    __ sethi(offset & ~0x3ff, O7, true);
+    __ add(O7, offset & 0x3ff, O7);
+    if (info != NULL) add_debug_info_for_null_check_here(info);
+    switch (type) {
+      case T_BOOLEAN: // fall through
+      case T_BYTE  : __ stb(value, base, O7); break;
+      case T_CHAR  : __ sth(value, base, O7); break;
+      case T_SHORT : __ sth(value, base, O7); break;
+      case T_INT   : __ stw(value, base, O7); break;
+      case T_ADDRESS:// fall through
+      case T_ARRAY : //fall through
+      case T_OBJECT: __ st_ptr(value, base, O7); break;
+      default      : ShouldNotReachHere();
+    }
+  }
+  // Note: Do the store before verification as the code might be patched!
+  if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
+}
+
+
+// load float with 32-bit displacement
+void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
+  FloatRegisterImpl::Width w;
+  switch(ld_type) {
+    case T_FLOAT : w = FloatRegisterImpl::S; break;
+    case T_DOUBLE: w = FloatRegisterImpl::D; break;
+    default      : ShouldNotReachHere();
+  }
+
+  if (Assembler::is_simm13(disp)) {
+    if (info != NULL) add_debug_info_for_null_check_here(info);
+    if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
+      __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
+      __ ldf(FloatRegisterImpl::S, s, disp               , d);
+    } else {
+      __ ldf(w, s, disp, d);
+    }
+  } else {
+    __ sethi(disp & ~0x3ff, O7, true);
+    __ add(O7, disp & 0x3ff, O7);
+    if (info != NULL) add_debug_info_for_null_check_here(info);
+    __ ldf(w, s, O7, d);
+  }
+}
+
+
+// store float with 32-bit displacement
+void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
+  FloatRegisterImpl::Width w;
+  switch(type) {
+    case T_FLOAT : w = FloatRegisterImpl::S; break;
+    case T_DOUBLE: w = FloatRegisterImpl::D; break;
+    default      : ShouldNotReachHere();
+  }
+
+  if (Assembler::is_simm13(offset)) {
+    if (info != NULL) add_debug_info_for_null_check_here(info);
+    if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
+      __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
+      __ stf(FloatRegisterImpl::S, value             , base, offset);
+    } else {
+      __ stf(w, value, base, offset);
+    }
+  } else {
+    __ sethi(offset & ~0x3ff, O7, true);
+    __ add(O7, offset & 0x3ff, O7);
+    if (info != NULL) add_debug_info_for_null_check_here(info);
+    __ stf(w, value, O7, base);
+  }
+}
+
+
+int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
+  int store_offset;
+  if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
+    assert(!unaligned, "can't handle this");
+    // for offsets larger than a simm13 we setup the offset in O7
+    __ sethi(offset & ~0x3ff, O7, true);
+    __ add(O7, offset & 0x3ff, O7);
+    store_offset = store(from_reg, base, O7, type);
+  } else {
+    if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
+    store_offset = code_offset();
+    switch (type) {
+      case T_BOOLEAN: // fall through
+      case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
+      case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
+      case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
+      case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
+      case T_LONG  :
+#ifdef _LP64
+        if (unaligned || PatchALot) {
+          __ srax(from_reg->as_register_lo(), 32, O7);
+          __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
+          __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
+        } else {
+          __ stx(from_reg->as_register_lo(), base, offset);
+        }
+#else
+        assert(Assembler::is_simm13(offset + 4), "must be");
+        __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
+        __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
+#endif
+        break;
+      case T_ADDRESS:// fall through
+      case T_ARRAY : // fall through
+      case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
+      case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
+      case T_DOUBLE:
+        {
+          FloatRegister reg = from_reg->as_double_reg();
+          // split unaligned stores
+          if (unaligned || PatchALot) {
+            assert(Assembler::is_simm13(offset + 4), "must be");
+            __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
+            __ stf(FloatRegisterImpl::S, reg,              base, offset);
+          } else {
+            __ stf(FloatRegisterImpl::D, reg, base, offset);
+          }
+          break;
+        }
+      default      : ShouldNotReachHere();
+    }
+  }
+  return store_offset;
+}
+
+
+int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
+  if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
+  int store_offset = code_offset();
+  switch (type) {
+    case T_BOOLEAN: // fall through
+    case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
+    case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
+    case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
+    case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
+    case T_LONG  :
+#ifdef _LP64
+      __ stx(from_reg->as_register_lo(), base, disp);
+#else
+      assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
+      __ std(from_reg->as_register_hi(), base, disp);
+#endif
+      break;
+    case T_ADDRESS:// fall through
+    case T_ARRAY : // fall through
+    case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
+    case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
+    case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
+    default      : ShouldNotReachHere();
+  }
+  return store_offset;
+}
+
+
+int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
+  int load_offset;
+  if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
+    assert(base != O7, "destroying register");
+    assert(!unaligned, "can't handle this");
+    // for offsets larger than a simm13 we setup the offset in O7
+    __ sethi(offset & ~0x3ff, O7, true);
+    __ add(O7, offset & 0x3ff, O7);
+    load_offset = load(base, O7, to_reg, type);
+  } else {
+    load_offset = code_offset();
+    switch(type) {
+      case T_BOOLEAN: // fall through
+      case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
+      case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
+      case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
+      case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
+      case T_LONG  :
+        if (!unaligned) {
+#ifdef _LP64
+          __ ldx(base, offset, to_reg->as_register_lo());
+#else
+          assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
+                 "must be sequential");
+          __ ldd(base, offset, to_reg->as_register_hi());
+#endif
+        } else {
+#ifdef _LP64
+          assert(base != to_reg->as_register_lo(), "can't handle this");
+          __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
+          __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
+          __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
+#else
+          if (base == to_reg->as_register_lo()) {
+            __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
+            __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
+          } else {
+            __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
+            __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
+          }
+#endif
+        }
+        break;
+      case T_ADDRESS:// fall through
+      case T_ARRAY : // fall through
+      case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
+      case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
+      case T_DOUBLE:
+        {
+          FloatRegister reg = to_reg->as_double_reg();
+          // split unaligned loads
+          if (unaligned || PatchALot) {
+            __ ldf(FloatRegisterImpl::S, base, offset + BytesPerWord, reg->successor());
+            __ ldf(FloatRegisterImpl::S, base, offset,                reg);
+          } else {
+            __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
+          }
+          break;
+        }
+      default      : ShouldNotReachHere();
+    }
+    if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
+  }
+  return load_offset;
+}
+
+
+int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
+  int load_offset = code_offset();
+  switch(type) {
+    case T_BOOLEAN: // fall through
+    case T_BYTE  : __ ldsb(base, disp, to_reg->as_register()); break;
+    case T_CHAR  : __ lduh(base, disp, to_reg->as_register()); break;
+    case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
+    case T_INT   : __ ld(base, disp, to_reg->as_register()); break;
+    case T_ADDRESS:// fall through
+    case T_ARRAY : // fall through
+    case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
+    case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
+    case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
+    case T_LONG  :
+#ifdef _LP64
+      __ ldx(base, disp, to_reg->as_register_lo());
+#else
+      assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
+             "must be sequential");
+      __ ldd(base, disp, to_reg->as_register_hi());
+#endif
+      break;
+    default      : ShouldNotReachHere();
+  }
+  if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
+  return load_offset;
+}
+
+
+// load/store with an Address
+void LIR_Assembler::load(const Address& a, Register d,  BasicType ld_type, CodeEmitInfo *info, int offset) {
+  load(a.base(), a.disp() + offset, d, ld_type, info);
+}
+
+
+void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
+  store(value, dest.base(), dest.disp() + offset, type, info);
+}
+
+
+// loadf/storef with an Address
+void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
+  load(a.base(), a.disp() + offset, d, ld_type, info);
+}
+
+
+void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
+  store(value, dest.base(), dest.disp() + offset, type, info);
+}
+
+
+// load/store with an Address
+void LIR_Assembler::load(LIR_Address* a, Register d,  BasicType ld_type, CodeEmitInfo *info) {
+  load(as_Address(a), d, ld_type, info);
+}
+
+
+void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
+  store(value, as_Address(dest), type, info);
+}
+
+
+// loadf/storef with an Address
+void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
+  load(as_Address(a), d, ld_type, info);
+}
+
+
+void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
+  store(value, as_Address(dest), type, info);
+}
+
+
+void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
+  LIR_Const* c = src->as_constant_ptr();
+  switch (c->type()) {
+    case T_INT:
+    case T_FLOAT: {
+      Register src_reg = O7;
+      int value = c->as_jint_bits();
+      if (value == 0) {
+        src_reg = G0;
+      } else {
+        __ set(value, O7);
+      }
+      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
+      __ stw(src_reg, addr.base(), addr.disp());
+      break;
+    }
+    case T_OBJECT: {
+      Register src_reg = O7;
+      jobject2reg(c->as_jobject(), src_reg);
+      Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
+      __ st_ptr(src_reg, addr.base(), addr.disp());
+      break;
+    }
+    case T_LONG:
+    case T_DOUBLE: {
+      Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
+
+      Register tmp = O7;
+      int value_lo = c->as_jint_lo_bits();
+      if (value_lo == 0) {
+        tmp = G0;
+      } else {
+        __ set(value_lo, O7);
+      }
+      __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
+      int value_hi = c->as_jint_hi_bits();
+      if (value_hi == 0) {
+        tmp = G0;
+      } else {
+        __ set(value_hi, O7);
+      }
+      __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
+      break;
+    }
+    default:
+      Unimplemented();
+  }
+}
+
+
+void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
+  LIR_Const* c = src->as_constant_ptr();
+  LIR_Address* addr     = dest->as_address_ptr();
+  Register base = addr->base()->as_pointer_register();
+
+  if (info != NULL) {
+    add_debug_info_for_null_check_here(info);
+  }
+  switch (c->type()) {
+    case T_INT:
+    case T_FLOAT: {
+      LIR_Opr tmp = FrameMap::O7_opr;
+      int value = c->as_jint_bits();
+      if (value == 0) {
+        tmp = FrameMap::G0_opr;
+      } else if (Assembler::is_simm13(value)) {
+        __ set(value, O7);
+      }
+      if (addr->index()->is_valid()) {
+        assert(addr->disp() == 0, "must be zero");
+        store(tmp, base, addr->index()->as_pointer_register(), type);
+      } else {
+        assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
+        store(tmp, base, addr->disp(), type);
+      }
+      break;
+    }
+    case T_LONG:
+    case T_DOUBLE: {
+      assert(!addr->index()->is_valid(), "can't handle reg reg address here");
+      assert(Assembler::is_simm13(addr->disp()) &&
+             Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
+
+      Register tmp = O7;
+      int value_lo = c->as_jint_lo_bits();
+      if (value_lo == 0) {
+        tmp = G0;
+      } else {
+        __ set(value_lo, O7);
+      }
+      store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
+      int value_hi = c->as_jint_hi_bits();
+      if (value_hi == 0) {
+        tmp = G0;
+      } else {
+        __ set(value_hi, O7);
+      }
+      store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
+      break;
+    }
+    case T_OBJECT: {
+      jobject obj = c->as_jobject();
+      LIR_Opr tmp;
+      if (obj == NULL) {
+        tmp = FrameMap::G0_opr;
+      } else {
+        tmp = FrameMap::O7_opr;
+        jobject2reg(c->as_jobject(), O7);
+      }
+      // handle either reg+reg or reg+disp address
+      if (addr->index()->is_valid()) {
+        assert(addr->disp() == 0, "must be zero");
+        store(tmp, base, addr->index()->as_pointer_register(), type);
+      } else {
+        assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
+        store(tmp, base, addr->disp(), type);
+      }
+
+      break;
+    }
+    default:
+      Unimplemented();
+  }
+}
+
+
+void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
+  LIR_Const* c = src->as_constant_ptr();
+  LIR_Opr to_reg = dest;
+
+  switch (c->type()) {
+    case T_INT:
+      {
+        jint con = c->as_jint();
+        if (to_reg->is_single_cpu()) {
+          assert(patch_code == lir_patch_none, "no patching handled here");
+          __ set(con, to_reg->as_register());
+        } else {
+          ShouldNotReachHere();
+          assert(to_reg->is_single_fpu(), "wrong register kind");
+
+          __ set(con, O7);
+          Address temp_slot(SP, 0, (frame::register_save_words * wordSize) + STACK_BIAS);
+          __ st(O7, temp_slot);
+          __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
+        }
+      }
+      break;
+
+    case T_LONG:
+      {
+        jlong con = c->as_jlong();
+
+        if (to_reg->is_double_cpu()) {
+#ifdef _LP64
+          __ set(con,  to_reg->as_register_lo());
+#else
+          __ set(low(con),  to_reg->as_register_lo());
+          __ set(high(con), to_reg->as_register_hi());
+#endif
+#ifdef _LP64
+        } else if (to_reg->is_single_cpu()) {
+          __ set(con, to_reg->as_register());
+#endif
+        } else {
+          ShouldNotReachHere();
+          assert(to_reg->is_double_fpu(), "wrong register kind");
+          Address temp_slot_lo(SP, 0, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
+          Address temp_slot_hi(SP, 0, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
+          __ set(low(con),  O7);
+          __ st(O7, temp_slot_lo);
+          __ set(high(con), O7);
+          __ st(O7, temp_slot_hi);
+          __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
+        }
+      }
+      break;
+
+    case T_OBJECT:
+      {
+        if (patch_code == lir_patch_none) {
+          jobject2reg(c->as_jobject(), to_reg->as_register());
+        } else {
+          jobject2reg_with_patching(to_reg->as_register(), info);
+        }
+      }
+      break;
+
+    case T_FLOAT:
+      {
+        address const_addr = __ float_constant(c->as_jfloat());
+        if (const_addr == NULL) {
+          bailout("const section overflow");
+          break;
+        }
+        RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
+        if (to_reg->is_single_fpu()) {
+          __ sethi(  (intx)const_addr & ~0x3ff, O7, true, rspec);
+          __ relocate(rspec);
+
+          int offset = (intx)const_addr & 0x3ff;
+          __ ldf (FloatRegisterImpl::S, O7, offset, to_reg->as_float_reg());
+
+        } else {
+          assert(to_reg->is_single_cpu(), "Must be a cpu register.");
+
+          __ set((intx)const_addr, O7, rspec);
+          load(O7, 0, to_reg->as_register(), T_INT);
+        }
+      }
+      break;
+
+    case T_DOUBLE:
+      {
+        address const_addr = __ double_constant(c->as_jdouble());
+        if (const_addr == NULL) {
+          bailout("const section overflow");
+          break;
+        }
+        RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
+
+        if (to_reg->is_double_fpu()) {
+          __ sethi(  (intx)const_addr & ~0x3ff, O7, true, rspec);
+          int offset = (intx)const_addr & 0x3ff;
+          __ relocate(rspec);
+          __ ldf (FloatRegisterImpl::D, O7, offset, to_reg->as_double_reg());
+        } else {
+          assert(to_reg->is_double_cpu(), "Must be a long register.");
+#ifdef _LP64
+          __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
+#else
+          __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
+          __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
+#endif
+        }
+
+      }
+      break;
+
+    default:
+      ShouldNotReachHere();
+  }
+}
+
+Address LIR_Assembler::as_Address(LIR_Address* addr) {
+  Register reg = addr->base()->as_register();
+  return Address(reg, 0, addr->disp());
+}
+
+
+void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
+  switch (type) {
+    case T_INT:
+    case T_FLOAT: {
+      Register tmp = O7;
+      Address from = frame_map()->address_for_slot(src->single_stack_ix());
+      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
+      __ lduw(from.base(), from.disp(), tmp);
+      __ stw(tmp, to.base(), to.disp());
+      break;
+    }
+    case T_OBJECT: {
+      Register tmp = O7;
+      Address from = frame_map()->address_for_slot(src->single_stack_ix());
+      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
+      __ ld_ptr(from.base(), from.disp(), tmp);
+      __ st_ptr(tmp, to.base(), to.disp());
+      break;
+    }
+    case T_LONG:
+    case T_DOUBLE: {
+      Register tmp = O7;
+      Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
+      Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
+      __ lduw(from.base(), from.disp(), tmp);
+      __ stw(tmp, to.base(), to.disp());
+      __ lduw(from.base(), from.disp() + 4, tmp);
+      __ stw(tmp, to.base(), to.disp() + 4);
+      break;
+    }
+
+    default:
+      ShouldNotReachHere();
+  }
+}
+
+
+Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
+  Address base = as_Address(addr);
+  return Address(base.base(), 0, base.disp() + hi_word_offset_in_bytes);
+}
+
+
+Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
+  Address base = as_Address(addr);
+  return Address(base.base(), 0, base.disp() + lo_word_offset_in_bytes);
+}
+
+
+void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
+                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
+
+  LIR_Address* addr = src_opr->as_address_ptr();
+  LIR_Opr to_reg = dest;
+
+  Register src = addr->base()->as_pointer_register();
+  Register disp_reg = noreg;
+  int disp_value = addr->disp();
+  bool needs_patching = (patch_code != lir_patch_none);
+
+  if (addr->base()->type() == T_OBJECT) {
+    __ verify_oop(src);
+  }
+
+  PatchingStub* patch = NULL;
+  if (needs_patching) {
+    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
+    assert(!to_reg->is_double_cpu() ||
+           patch_code == lir_patch_none ||
+           patch_code == lir_patch_normal, "patching doesn't match register");
+  }
+
+  if (addr->index()->is_illegal()) {
+    if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
+      if (needs_patching) {
+        __ sethi(0, O7, true);
+        __ add(O7, 0, O7);
+      } else {
+        __ set(disp_value, O7);
+      }
+      disp_reg = O7;
+    }
+  } else if (unaligned || PatchALot) {
+    __ add(src, addr->index()->as_register(), O7);
+    src = O7;
+  } else {
+    disp_reg = addr->index()->as_pointer_register();
+    assert(disp_value == 0, "can't handle 3 operand addresses");
+  }
+
+  // remember the offset of the load.  The patching_epilog must be done
+  // before the call to add_debug_info, otherwise the PcDescs don't get
+  // entered in increasing order.
+  int offset = code_offset();
+
+  assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
+  if (disp_reg == noreg) {
+    offset = load(src, disp_value, to_reg, type, unaligned);
+  } else {
+    assert(!unaligned, "can't handle this");
+    offset = load(src, disp_reg, to_reg, type);
+  }
+
+  if (patch != NULL) {
+    patching_epilog(patch, patch_code, src, info);
+  }
+
+  if (info != NULL) add_debug_info_for_null_check(offset, info);
+}
+
+
+void LIR_Assembler::prefetchr(LIR_Opr src) {
+  LIR_Address* addr = src->as_address_ptr();
+  Address from_addr = as_Address(addr);
+
+  if (VM_Version::has_v9()) {
+    __ prefetch(from_addr, Assembler::severalReads);
+  }
+}
+
+
+void LIR_Assembler::prefetchw(LIR_Opr src) {
+  LIR_Address* addr = src->as_address_ptr();
+  Address from_addr = as_Address(addr);
+
+  if (VM_Version::has_v9()) {
+    __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
+  }
+}
+
+
+void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
+  Address addr;
+  if (src->is_single_word()) {
+    addr = frame_map()->address_for_slot(src->single_stack_ix());
+  } else if (src->is_double_word())  {
+    addr = frame_map()->address_for_double_slot(src->double_stack_ix());
+  }
+
+  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
+  load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
+}
+
+
+void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
+  Address addr;
+  if (dest->is_single_word()) {
+    addr = frame_map()->address_for_slot(dest->single_stack_ix());
+  } else if (dest->is_double_word())  {
+    addr = frame_map()->address_for_slot(dest->double_stack_ix());
+  }
+  bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
+  store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
+}
+
+
+void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
+  if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
+    if (from_reg->is_double_fpu()) {
+      // double to double moves
+      assert(to_reg->is_double_fpu(), "should match");
+      __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
+    } else {
+      // float to float moves
+      assert(to_reg->is_single_fpu(), "should match");
+      __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
+    }
+  } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
+    if (from_reg->is_double_cpu()) {
+#ifdef _LP64
+      __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
+#else
+      assert(to_reg->is_double_cpu() &&
+             from_reg->as_register_hi() != to_reg->as_register_lo() &&
+             from_reg->as_register_lo() != to_reg->as_register_hi(),
+             "should both be long and not overlap");
+      // long to long moves
+      __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
+      __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
+#endif
+#ifdef _LP64
+    } else if (to_reg->is_double_cpu()) {
+      // int to int moves
+      __ mov(from_reg->as_register(), to_reg->as_register_lo());
+#endif
+    } else {
+      // int to int moves
+      __ mov(from_reg->as_register(), to_reg->as_register());
+    }
+  } else {
+    ShouldNotReachHere();
+  }
+  if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
+    __ verify_oop(to_reg->as_register());
+  }
+}
+
+
+void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
+                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
+                            bool unaligned) {
+  LIR_Address* addr = dest->as_address_ptr();
+
+  Register src = addr->base()->as_pointer_register();
+  Register disp_reg = noreg;
+  int disp_value = addr->disp();
+  bool needs_patching = (patch_code != lir_patch_none);
+
+  if (addr->base()->is_oop_register()) {
+    __ verify_oop(src);
+  }
+
+  PatchingStub* patch = NULL;
+  if (needs_patching) {
+    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
+    assert(!from_reg->is_double_cpu() ||
+           patch_code == lir_patch_none ||
+           patch_code == lir_patch_normal, "patching doesn't match register");
+  }
+
+  if (addr->index()->is_illegal()) {
+    if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
+      if (needs_patching) {
+        __ sethi(0, O7, true);
+        __ add(O7, 0, O7);
+      } else {
+        __ set(disp_value, O7);
+      }
+      disp_reg = O7;
+    }
+  } else if (unaligned || PatchALot) {
+    __ add(src, addr->index()->as_register(), O7);
+    src = O7;
+  } else {
+    disp_reg = addr->index()->as_pointer_register();
+    assert(disp_value == 0, "can't handle 3 operand addresses");
+  }
+
+  // remember the offset of the store.  The patching_epilog must be done
+  // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
+  // entered in increasing order.
+  int offset;
+
+  assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
+  if (disp_reg == noreg) {
+    offset = store(from_reg, src, disp_value, type, unaligned);
+  } else {
+    assert(!unaligned, "can't handle this");
+    offset = store(from_reg, src, disp_reg, type);
+  }
+
+  if (patch != NULL) {
+    patching_epilog(patch, patch_code, src, info);
+  }
+
+  if (info != NULL) add_debug_info_for_null_check(offset, info);
+}
+
+
+void LIR_Assembler::return_op(LIR_Opr result) {
+  // the poll may need a register so just pick one that isn't the return register
+#ifdef TIERED
+  if (result->type_field() == LIR_OprDesc::long_type) {
+    // Must move the result to G1
+    // Must leave proper result in O0,O1 and G1 (TIERED only)
+    __ sllx(I0, 32, G1);          // Shift bits into high G1
+    __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
+    __ or3 (I1, G1, G1);          // OR 64 bits into G1
+  }
+#endif // TIERED
+  __ set((intptr_t)os::get_polling_page(), L0);
+  __ relocate(relocInfo::poll_return_type);
+  __ ld_ptr(L0, 0, G0);
+  __ ret();
+  __ delayed()->restore();
+}
+
+
+int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
+  __ set((intptr_t)os::get_polling_page(), tmp->as_register());
+  if (info != NULL) {
+    add_debug_info_for_branch(info);
+  } else {
+    __ relocate(relocInfo::poll_type);
+  }
+
+  int offset = __ offset();
+  __ ld_ptr(tmp->as_register(), 0, G0);
+
+  return offset;
+}
+
+
+void LIR_Assembler::emit_static_call_stub() {
+  address call_pc = __ pc();
+  address stub = __ start_a_stub(call_stub_size);
+  if (stub == NULL) {
+    bailout("static call stub overflow");
+    return;
+  }
+
+  int start = __ offset();
+  __ relocate(static_stub_Relocation::spec(call_pc));
+
+  __ set_oop(NULL, G5);
+  // must be set to -1 at code generation time
+  Address a(G3, (address)-1);
+  __ jump_to(a, 0);
+  __ delayed()->nop();
+
+  assert(__ offset() - start <= call_stub_size, "stub too big");
+  __ end_a_stub();
+}
+
+
+void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
+  if (opr1->is_single_fpu()) {
+    __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
+  } else if (opr1->is_double_fpu()) {
+    __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
+  } else if (opr1->is_single_cpu()) {
+    if (opr2->is_constant()) {
+      switch (opr2->as_constant_ptr()->type()) {
+        case T_INT:
+          { jint con = opr2->as_constant_ptr()->as_jint();
+            if (Assembler::is_simm13(con)) {
+              __ cmp(opr1->as_register(), con);
+            } else {
+              __ set(con, O7);
+              __ cmp(opr1->as_register(), O7);
+            }
+          }
+          break;
+
+        case T_OBJECT:
+          // there are only equal/notequal comparisions on objects
+          { jobject con = opr2->as_constant_ptr()->as_jobject();
+            if (con == NULL) {
+              __ cmp(opr1->as_register(), 0);
+            } else {
+              jobject2reg(con, O7);
+              __ cmp(opr1->as_register(), O7);
+            }
+          }
+          break;
+
+        default:
+          ShouldNotReachHere();
+          break;
+      }
+    } else {
+      if (opr2->is_address()) {
+        LIR_Address * addr = opr2->as_address_ptr();
+        BasicType type = addr->type();
+        if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
+        else                    __ ld(as_Address(addr), O7);
+        __ cmp(opr1->as_register(), O7);
+      } else {
+        __ cmp(opr1->as_register(), opr2->as_register());
+      }
+    }
+  } else if (opr1->is_double_cpu()) {
+    Register xlo = opr1->as_register_lo();
+    Register xhi = opr1->as_register_hi();
+    if (opr2->is_constant() && opr2->as_jlong() == 0) {
+      assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
+#ifdef _LP64
+      __ orcc(xhi, G0, G0);
+#else
+      __ orcc(xhi, xlo, G0);
+#endif
+    } else if (opr2->is_register()) {
+      Register ylo = opr2->as_register_lo();
+      Register yhi = opr2->as_register_hi();
+#ifdef _LP64
+      __ cmp(xlo, ylo);
+#else
+      __ subcc(xlo, ylo, xlo);
+      __ subccc(xhi, yhi, xhi);
+      if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
+        __ orcc(xhi, xlo, G0);
+      }
+#endif
+    } else {
+      ShouldNotReachHere();
+    }
+  } else if (opr1->is_address()) {
+    LIR_Address * addr = opr1->as_address_ptr();
+    BasicType type = addr->type();
+    assert (opr2->is_constant(), "Checking");
+    if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
+    else                    __ ld(as_Address(addr), O7);
+    __ cmp(O7, opr2->as_constant_ptr()->as_jint());
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+
+void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
+  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
+    bool is_unordered_less = (code == lir_ucmp_fd2i);
+    if (left->is_single_fpu()) {
+      __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
+    } else if (left->is_double_fpu()) {
+      __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
+    } else {
+      ShouldNotReachHere();
+    }
+  } else if (code == lir_cmp_l2i) {
+    __ lcmp(left->as_register_hi(),  left->as_register_lo(),
+            right->as_register_hi(), right->as_register_lo(),
+            dst->as_register());
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+
+void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
+
+  Assembler::Condition acond;
+  switch (condition) {
+    case lir_cond_equal:        acond = Assembler::equal;        break;
+    case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
+    case lir_cond_less:         acond = Assembler::less;         break;
+    case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
+    case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
+    case lir_cond_greater:      acond = Assembler::greater;      break;
+    case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
+    case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
+    default:                         ShouldNotReachHere();
+  };
+
+  if (opr1->is_constant() && opr1->type() == T_INT) {
+    Register dest = result->as_register();
+    // load up first part of constant before branch
+    // and do the rest in the delay slot.
+    if (!Assembler::is_simm13(opr1->as_jint())) {
+      __ sethi(opr1->as_jint(), dest);
+    }
+  } else if (opr1->is_constant()) {
+    const2reg(opr1, result, lir_patch_none, NULL);
+  } else if (opr1->is_register()) {
+    reg2reg(opr1, result);
+  } else if (opr1->is_stack()) {
+    stack2reg(opr1, result, result->type());
+  } else {
+    ShouldNotReachHere();
+  }
+  Label skip;
+  __ br(acond, false, Assembler::pt, skip);
+  if (opr1->is_constant() && opr1->type() == T_INT) {
+    Register dest = result->as_register();
+    if (Assembler::is_simm13(opr1->as_jint())) {
+      __ delayed()->or3(G0, opr1->as_jint(), dest);
+    } else {
+      // the sethi has been done above, so just put in the low 10 bits
+      __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
+    }
+  } else {
+    // can't do anything useful in the delay slot
+    __ delayed()->nop();
+  }
+  if (opr2->is_constant()) {
+    const2reg(opr2, result, lir_patch_none, NULL);
+  } else if (opr2->is_register()) {
+    reg2reg(opr2, result);
+  } else if (opr2->is_stack()) {
+    stack2reg(opr2, result, result->type());
+  } else {
+    ShouldNotReachHere();
+  }
+  __ bind(skip);
+}
+
+
+void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
+  assert(info == NULL, "unused on this code path");
+  assert(left->is_register(), "wrong items state");
+  assert(dest->is_register(), "wrong items state");
+
+  if (right->is_register()) {
+    if (dest->is_float_kind()) {
+
+      FloatRegister lreg, rreg, res;
+      FloatRegisterImpl::Width w;
+      if (right->is_single_fpu()) {
+        w = FloatRegisterImpl::S;
+        lreg = left->as_float_reg();
+        rreg = right->as_float_reg();
+        res  = dest->as_float_reg();
+      } else {
+        w = FloatRegisterImpl::D;
+        lreg = left->as_double_reg();
+        rreg = right->as_double_reg();
+        res  = dest->as_double_reg();
+      }
+
+      switch (code) {
+        case lir_add: __ fadd(w, lreg, rreg, res); break;
+        case lir_sub: __ fsub(w, lreg, rreg, res); break;
+        case lir_mul: // fall through
+        case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
+        case lir_div: // fall through
+        case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
+        default: ShouldNotReachHere();
+      }
+
+    } else if (dest->is_double_cpu()) {
+#ifdef _LP64
+      Register dst_lo = dest->as_register_lo();
+      Register op1_lo = left->as_pointer_register();
+      Register op2_lo = right->as_pointer_register();
+
+      switch (code) {
+        case lir_add:
+          __ add(op1_lo, op2_lo, dst_lo);
+          break;
+
+        case lir_sub:
+          __ sub(op1_lo, op2_lo, dst_lo);
+          break;
+
+        default: ShouldNotReachHere();
+      }
+#else
+      Register op1_lo = left->as_register_lo();
+      Register op1_hi = left->as_register_hi();
+      Register op2_lo = right->as_register_lo();
+      Register op2_hi = right->as_register_hi();
+      Register dst_lo = dest->as_register_lo();
+      Register dst_hi = dest->as_register_hi();
+
+      switch (code) {
+        case lir_add:
+          __ addcc(op1_lo, op2_lo, dst_lo);
+          __ addc (op1_hi, op2_hi, dst_hi);
+          break;
+
+        case lir_sub:
+          __ subcc(op1_lo, op2_lo, dst_lo);
+          __ subc (op1_hi, op2_hi, dst_hi);
+          break;
+
+        default: ShouldNotReachHere();
+      }
+#endif
+    } else {
+      assert (right->is_single_cpu(), "Just Checking");
+
+      Register lreg = left->as_register();
+      Register res  = dest->as_register();
+      Register rreg = right->as_register();
+      switch (code) {
+        case lir_add:  __ add  (lreg, rreg, res); break;
+        case lir_sub:  __ sub  (lreg, rreg, res); break;
+        case lir_mul:  __ mult (lreg, rreg, res); break;
+        default: ShouldNotReachHere();
+      }
+    }
+  } else {
+    assert (right->is_constant(), "must be constant");
+
+    if (dest->is_single_cpu()) {
+      Register lreg = left->as_register();
+      Register res  = dest->as_register();
+      int    simm13 = right->as_constant_ptr()->as_jint();
+
+      switch (code) {
+        case lir_add:  __ add  (lreg, simm13, res); break;
+        case lir_sub:  __ sub  (lreg, simm13, res); break;
+        case lir_mul:  __ mult (lreg, simm13, res); break;
+        default: ShouldNotReachHere();
+      }
+    } else {
+      Register lreg = left->as_pointer_register();
+      Register res  = dest->as_register_lo();
+      long con = right->as_constant_ptr()->as_jlong();
+      assert(Assembler::is_simm13(con), "must be simm13");
+
+      switch (code) {
+        case lir_add:  __ add  (lreg, (int)con, res); break;
+        case lir_sub:  __ sub  (lreg, (int)con, res); break;
+        case lir_mul:  __ mult (lreg, (int)con, res); break;
+        default: ShouldNotReachHere();
+      }
+    }
+  }
+}
+
+
+void LIR_Assembler::fpop() {
+  // do nothing
+}
+
+
+void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
+  switch (code) {
+    case lir_sin:
+    case lir_tan:
+    case lir_cos: {
+      assert(thread->is_valid(), "preserve the thread object for performance reasons");
+      assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
+      break;
+    }
+    case lir_sqrt: {
+      assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
+      FloatRegister src_reg = value->as_double_reg();
+      FloatRegister dst_reg = dest->as_double_reg();
+      __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
+      break;
+    }
+    case lir_abs: {
+      assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
+      FloatRegister src_reg = value->as_double_reg();
+      FloatRegister dst_reg = dest->as_double_reg();
+      __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
+      break;
+    }
+    default: {
+      ShouldNotReachHere();
+      break;
+    }
+  }
+}
+
+
+void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
+  if (right->is_constant()) {
+    if (dest->is_single_cpu()) {
+      int simm13 = right->as_constant_ptr()->as_jint();
+      switch (code) {
+        case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
+        case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
+        case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
+        default: ShouldNotReachHere();
+      }
+    } else {
+      long c = right->as_constant_ptr()->as_jlong();
+      assert(c == (int)c && Assembler::is_simm13(c), "out of range");
+      int simm13 = (int)c;
+      switch (code) {
+        case lir_logic_and:
+#ifndef _LP64
+          __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
+#endif
+          __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
+          break;
+
+        case lir_logic_or:
+#ifndef _LP64
+          __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
+#endif
+          __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
+          break;
+
+        case lir_logic_xor:
+#ifndef _LP64
+          __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
+#endif
+          __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
+          break;
+
+        default: ShouldNotReachHere();
+      }
+    }
+  } else {
+    assert(right->is_register(), "right should be in register");
+
+    if (dest->is_single_cpu()) {
+      switch (code) {
+        case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
+        case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
+        case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
+        default: ShouldNotReachHere();
+      }
+    } else {
+#ifdef _LP64
+      Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
+                                                                        left->as_register_lo();
+      Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
+                                                                          right->as_register_lo();
+
+      switch (code) {
+        case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
+        case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
+        case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
+        default: ShouldNotReachHere();
+      }
+#else
+      switch (code) {
+        case lir_logic_and:
+          __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
+          __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
+          break;
+
+        case lir_logic_or:
+          __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
+          __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
+          break;
+
+        case lir_logic_xor:
+          __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
+          __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
+          break;
+
+        default: ShouldNotReachHere();
+      }
+#endif
+    }
+  }
+}
+
+
+int LIR_Assembler::shift_amount(BasicType t) {
+  int elem_size = type2aelembytes[t];
+  switch (elem_size) {
+    case 1 : return 0;
+    case 2 : return 1;
+    case 4 : return 2;
+    case 8 : return 3;
+  }
+  ShouldNotReachHere();
+  return -1;
+}
+
+
+void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
+  assert(exceptionOop->as_register() == Oexception, "should match");
+  assert(unwind || exceptionPC->as_register() == Oissuing_pc, "should match");
+
+  info->add_register_oop(exceptionOop);
+
+  if (unwind) {
+    __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
+    __ delayed()->nop();
+  } else {
+    // reuse the debug info from the safepoint poll for the throw op itself
+    address pc_for_athrow  = __ pc();
+    int pc_for_athrow_offset = __ offset();
+    RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
+    __ set((intptr_t)pc_for_athrow, Oissuing_pc, rspec);
+    add_call_info(pc_for_athrow_offset, info); // for exception handler
+
+    __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
+    __ delayed()->nop();
+  }
+}
+
+
+void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
+  Register src = op->src()->as_register();
+  Register dst = op->dst()->as_register();
+  Register src_pos = op->src_pos()->as_register();
+  Register dst_pos = op->dst_pos()->as_register();
+  Register length  = op->length()->as_register();
+  Register tmp = op->tmp()->as_register();
+  Register tmp2 = O7;
+
+  int flags = op->flags();
+  ciArrayKlass* default_type = op->expected_type();
+  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
+  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
+
+  // set up the arraycopy stub information
+  ArrayCopyStub* stub = op->stub();
+
+  // always do stub if no type information is available.  it's ok if
+  // the known type isn't loaded since the code sanity checks
+  // in debug mode and the type isn't required when we know the exact type
+  // also check that the type is an array type.
+  if (op->expected_type() == NULL) {
+    __ mov(src,     O0);
+    __ mov(src_pos, O1);
+    __ mov(dst,     O2);
+    __ mov(dst_pos, O3);
+    __ mov(length,  O4);
+    __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
+
+    __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
+    __ delayed()->nop();
+    __ bind(*stub->continuation());
+    return;
+  }
+
+  assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
+
+  // make sure src and dst are non-null and load array length
+  if (flags & LIR_OpArrayCopy::src_null_check) {
+    __ tst(src);
+    __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
+    __ delayed()->nop();
+  }
+
+  if (flags & LIR_OpArrayCopy::dst_null_check) {
+    __ tst(dst);
+    __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
+    __ delayed()->nop();
+  }
+
+  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
+    // test src_pos register
+    __ tst(src_pos);
+    __ br(Assembler::less, false, Assembler::pn, *stub->entry());
+    __ delayed()->nop();
+  }
+
+  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
+    // test dst_pos register
+    __ tst(dst_pos);
+    __ br(Assembler::less, false, Assembler::pn, *stub->entry());
+    __ delayed()->nop();
+  }
+
+  if (flags & LIR_OpArrayCopy::length_positive_check) {
+    // make sure length isn't negative
+    __ tst(length);
+    __ br(Assembler::less, false, Assembler::pn, *stub->entry());
+    __ delayed()->nop();
+  }
+
+  if (flags & LIR_OpArrayCopy::src_range_check) {
+    __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
+    __ add(length, src_pos, tmp);
+    __ cmp(tmp2, tmp);
+    __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
+    __ delayed()->nop();
+  }
+
+  if (flags & LIR_OpArrayCopy::dst_range_check) {
+    __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
+    __ add(length, dst_pos, tmp);
+    __ cmp(tmp2, tmp);
+    __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
+    __ delayed()->nop();
+  }
+
+  if (flags & LIR_OpArrayCopy::type_check) {
+    __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
+    __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
+    __ cmp(tmp, tmp2);
+    __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
+    __ delayed()->nop();
+  }
+
+#ifdef ASSERT
+  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
+    // Sanity check the known type with the incoming class.  For the
+    // primitive case the types must match exactly with src.klass and
+    // dst.klass each exactly matching the default type.  For the
+    // object array case, if no type check is needed then either the
+    // dst type is exactly the expected type and the src type is a
+    // subtype which we can't check or src is the same array as dst
+    // but not necessarily exactly of type default_type.
+    Label known_ok, halt;
+    jobject2reg(op->expected_type()->encoding(), tmp);
+    __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
+    if (basic_type != T_OBJECT) {
+      __ cmp(tmp, tmp2);
+      __ br(Assembler::notEqual, false, Assembler::pn, halt);
+      __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
+      __ cmp(tmp, tmp2);
+      __ br(Assembler::equal, false, Assembler::pn, known_ok);
+      __ delayed()->nop();
+    } else {
+      __ cmp(tmp, tmp2);
+      __ br(Assembler::equal, false, Assembler::pn, known_ok);
+      __ delayed()->cmp(src, dst);
+      __ br(Assembler::equal, false, Assembler::pn, known_ok);
+      __ delayed()->nop();
+    }
+    __ bind(halt);
+    __ stop("incorrect type information in arraycopy");
+    __ bind(known_ok);
+  }
+#endif
+
+  int shift = shift_amount(basic_type);
+
+  Register src_ptr = O0;
+  Register dst_ptr = O1;
+  Register len     = O2;
+
+  __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
+  if (shift == 0) {
+    __ add(src_ptr, src_pos, src_ptr);
+  } else {
+    __ sll(src_pos, shift, tmp);
+    __ add(src_ptr, tmp, src_ptr);
+  }
+
+  __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
+  if (shift == 0) {
+    __ add(dst_ptr, dst_pos, dst_ptr);
+  } else {
+    __ sll(dst_pos, shift, tmp);
+    __ add(dst_ptr, tmp, dst_ptr);
+  }
+
+  if (basic_type != T_OBJECT) {
+    if (shift == 0) {
+      __ mov(length, len);
+    } else {
+      __ sll(length, shift, len);
+    }
+    __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
+  } else {
+    // oop_arraycopy takes a length in number of elements, so don't scale it.
+    __ mov(length, len);
+    __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
+  }
+
+  __ bind(*stub->continuation());
+}
+
+
+void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
+  if (dest->is_single_cpu()) {
+#ifdef _LP64
+    if (left->type() == T_OBJECT) {
+      switch (code) {
+        case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
+        case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
+        case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
+        default: ShouldNotReachHere();
+      }
+    } else
+#endif
+      switch (code) {
+        case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
+        case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
+        case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
+        default: ShouldNotReachHere();
+      }
+  } else {
+#ifdef _LP64
+    switch (code) {
+      case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
+      case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
+      case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
+      default: ShouldNotReachHere();
+    }
+#else
+    switch (code) {
+      case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
+      case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
+      case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
+      default: ShouldNotReachHere();
+    }
+#endif
+  }
+}
+
+
+void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
+#ifdef _LP64
+  if (left->type() == T_OBJECT) {
+    count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
+    Register l = left->as_register();
+    Register d = dest->as_register_lo();
+    switch (code) {
+      case lir_shl:  __ sllx  (l, count, d); break;
+      case lir_shr:  __ srax  (l, count, d); break;
+      case lir_ushr: __ srlx  (l, count, d); break;
+      default: ShouldNotReachHere();
+    }
+    return;
+  }
+#endif
+
+  if (dest->is_single_cpu()) {
+    count = count & 0x1F; // Java spec
+    switch (code) {
+      case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
+      case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
+      case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
+      default: ShouldNotReachHere();
+    }
+  } else if (dest->is_double_cpu()) {
+    count = count & 63; // Java spec
+    switch (code) {
+      case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
+      case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
+      case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
+      default: ShouldNotReachHere();
+    }
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+
+void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
+  assert(op->tmp1()->as_register()  == G1 &&
+         op->tmp2()->as_register()  == G3 &&
+         op->tmp3()->as_register()  == G4 &&
+         op->obj()->as_register()   == O0 &&
+         op->klass()->as_register() == G5, "must be");
+  if (op->init_check()) {
+    __ ld(op->klass()->as_register(),
+          instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
+          op->tmp1()->as_register());
+    add_debug_info_for_null_check_here(op->stub()->info());
+    __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
+    __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
+    __ delayed()->nop();
+  }
+  __ allocate_object(op->obj()->as_register(),
+                     op->tmp1()->as_register(),
+                     op->tmp2()->as_register(),
+                     op->tmp3()->as_register(),
+                     op->header_size(),
+                     op->object_size(),
+                     op->klass()->as_register(),
+                     *op->stub()->entry());
+  __ bind(*op->stub()->continuation());
+  __ verify_oop(op->obj()->as_register());
+}
+
+
+void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
+  assert(op->tmp1()->as_register()  == G1 &&
+         op->tmp2()->as_register()  == G3 &&
+         op->tmp3()->as_register()  == G4 &&
+         op->tmp4()->as_register()  == O1 &&
+         op->klass()->as_register() == G5, "must be");
+  if (UseSlowPath ||
+      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
+      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
+    __ br(Assembler::always, false, Assembler::pn, *op->stub()->entry());
+    __ delayed()->nop();
+  } else {
+    __ allocate_array(op->obj()->as_register(),
+                      op->len()->as_register(),
+                      op->tmp1()->as_register(),
+                      op->tmp2()->as_register(),
+                      op->tmp3()->as_register(),
+                      arrayOopDesc::header_size(op->type()),
+                      type2aelembytes[op->type()],
+                      op->klass()->as_register(),
+                      *op->stub()->entry());
+  }
+  __ bind(*op->stub()->continuation());
+}
+
+
+void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
+  LIR_Code code = op->code();
+  if (code == lir_store_check) {
+    Register value = op->object()->as_register();
+    Register array = op->array()->as_register();
+    Register k_RInfo = op->tmp1()->as_register();
+    Register klass_RInfo = op->tmp2()->as_register();
+    Register Rtmp1 = op->tmp3()->as_register();
+
+    __ verify_oop(value);
+
+    CodeStub* stub = op->stub();
+    Label done;
+    __ cmp(value, 0);
+    __ br(Assembler::equal, false, Assembler::pn, done);
+    __ delayed()->nop();
+    load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
+    load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
+
+    // get instance klass
+    load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
+    // get super_check_offset
+    load(k_RInfo, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes(), Rtmp1, T_INT, NULL);
+    // See if we get an immediate positive hit
+    __ ld_ptr(klass_RInfo, Rtmp1, FrameMap::O7_oop_opr->as_register());
+    __ cmp(k_RInfo, O7);
+    __ br(Assembler::equal, false, Assembler::pn, done);
+    __ delayed()->nop();
+    // check for immediate negative hit
+    __ cmp(Rtmp1, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
+    __ br(Assembler::notEqual, false, Assembler::pn, *stub->entry());
+    __ delayed()->nop();
+    // check for self
+    __ cmp(klass_RInfo, k_RInfo);
+    __ br(Assembler::equal, false, Assembler::pn, done);
+    __ delayed()->nop();
+
+    // assert(sub.is_same(FrameMap::G3_RInfo) && super.is_same(FrameMap::G1_RInfo), "incorrect call setup");
+    __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
+    __ delayed()->nop();
+    __ cmp(G3, 0);
+    __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
+    __ delayed()->nop();
+    __ bind(done);
+  } else if (op->code() == lir_checkcast) {
+    // we always need a stub for the failure case.
+    CodeStub* stub = op->stub();
+    Register obj = op->object()->as_register();
+    Register k_RInfo = op->tmp1()->as_register();
+    Register klass_RInfo = op->tmp2()->as_register();
+    Register dst = op->result_opr()->as_register();
+    Register Rtmp1 = op->tmp3()->as_register();
+    ciKlass* k = op->klass();
+
+    if (obj == k_RInfo) {
+      k_RInfo = klass_RInfo;
+      klass_RInfo = obj;
+    }
+    if (op->profiled_method() != NULL) {
+      ciMethod* method = op->profiled_method();
+      int bci          = op->profiled_bci();
+
+      // We need two temporaries to perform this operation on SPARC,
+      // so to keep things simple we perform a redundant test here
+      Label profile_done;
+      __ cmp(obj, 0);
+      __ br(Assembler::notEqual, false, Assembler::pn, profile_done);
+      __ delayed()->nop();
+      // Object is null; update methodDataOop
+      ciMethodData* md = method->method_data();
+      if (md == NULL) {
+        bailout("out of memory building methodDataOop");
+        return;
+      }
+      ciProfileData* data = md->bci_to_data(bci);
+      assert(data != NULL,       "need data for checkcast");
+      assert(data->is_BitData(), "need BitData for checkcast");
+      Register mdo      = k_RInfo;
+      Register data_val = Rtmp1;
+      jobject2reg(md->encoding(), mdo);
+
+      int mdo_offset_bias = 0;
+      if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
+        // The offset is large so bias the mdo by the base of the slot so
+        // that the ld can use simm13s to reference the slots of the data
+        mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
+        __ set(mdo_offset_bias, data_val);
+        __ add(mdo, data_val, mdo);
+      }
+
+
+      Address flags_addr(mdo, 0, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
+      __ ldub(flags_addr, data_val);
+      __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
+      __ stb(data_val, flags_addr);
+      __ bind(profile_done);
+    }
+
+    Label done;
+    // patching may screw with our temporaries on sparc,
+    // so let's do it before loading the class
+    if (k->is_loaded()) {
+      jobject2reg(k->encoding(), k_RInfo);
+    } else {
+      jobject2reg_with_patching(k_RInfo, op->info_for_patch());
+    }
+    assert(obj != k_RInfo, "must be different");
+    __ cmp(obj, 0);
+    __ br(Assembler::equal, false, Assembler::pn, done);
+    __ delayed()->nop();
+
+    // get object class
+    // not a safepoint as obj null check happens earlier
+    load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
+    if (op->fast_check()) {
+      assert_different_registers(klass_RInfo, k_RInfo);
+      __ cmp(k_RInfo, klass_RInfo);
+      __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
+      __ delayed()->nop();
+      __ bind(done);
+    } else {
+      if (k->is_loaded()) {
+        load(klass_RInfo, k->super_check_offset(), Rtmp1, T_OBJECT, NULL);
+
+        if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
+          // See if we get an immediate positive hit
+          __ cmp(Rtmp1, k_RInfo );
+          __ br(Assembler::notEqual, false, Assembler::pn, *stub->entry());
+          __ delayed()->nop();
+        } else {
+          // See if we get an immediate positive hit
+          assert_different_registers(Rtmp1, k_RInfo, klass_RInfo);
+          __ cmp(Rtmp1, k_RInfo );
+          __ br(Assembler::equal, false, Assembler::pn, done);
+          // check for self
+          __ delayed()->cmp(klass_RInfo, k_RInfo);
+          __ br(Assembler::equal, false, Assembler::pn, done);
+          __ delayed()->nop();
+
+          // assert(sub.is_same(FrameMap::G3_RInfo) && super.is_same(FrameMap::G1_RInfo), "incorrect call setup");
+          __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
+          __ delayed()->nop();
+          __ cmp(G3, 0);
+          __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
+          __ delayed()->nop();
+        }
+        __ bind(done);
+      } else {
+        assert_different_registers(Rtmp1, klass_RInfo, k_RInfo);
+
+        load(k_RInfo, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes(), Rtmp1, T_INT, NULL);
+        // See if we get an immediate positive hit
+        load(klass_RInfo, Rtmp1, FrameMap::O7_oop_opr, T_OBJECT);
+        __ cmp(k_RInfo, O7);
+        __ br(Assembler::equal, false, Assembler::pn, done);
+        __ delayed()->nop();
+        // check for immediate negative hit
+        __ cmp(Rtmp1, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
+        __ br(Assembler::notEqual, false, Assembler::pn, *stub->entry());
+        // check for self
+        __ delayed()->cmp(klass_RInfo, k_RInfo);
+        __ br(Assembler::equal, false, Assembler::pn, done);
+        __ delayed()->nop();
+
+        // assert(sub.is_same(FrameMap::G3_RInfo) && super.is_same(FrameMap::G1_RInfo), "incorrect call setup");
+        __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
+        __ delayed()->nop();
+        __ cmp(G3, 0);
+        __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
+        __ delayed()->nop();
+        __ bind(done);
+      }
+
+    }
+    __ mov(obj, dst);
+  } else if (code == lir_instanceof) {
+    Register obj = op->object()->as_register();
+    Register k_RInfo = op->tmp1()->as_register();
+    Register klass_RInfo = op->tmp2()->as_register();
+    Register dst = op->result_opr()->as_register();
+    Register Rtmp1 = op->tmp3()->as_register();
+    ciKlass* k = op->klass();
+
+    Label done;
+    if (obj == k_RInfo) {
+      k_RInfo = klass_RInfo;
+      klass_RInfo = obj;
+    }
+    // patching may screw with our temporaries on sparc,
+    // so let's do it before loading the class
+    if (k->is_loaded()) {
+      jobject2reg(k->encoding(), k_RInfo);
+    } else {
+      jobject2reg_with_patching(k_RInfo, op->info_for_patch());
+    }
+    assert(obj != k_RInfo, "must be different");
+    __ cmp(obj, 0);
+    __ br(Assembler::equal, true, Assembler::pn, done);
+    __ delayed()->set(0, dst);
+
+    // get object class
+    // not a safepoint as obj null check happens earlier
+    load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
+    if (op->fast_check()) {
+      __ cmp(k_RInfo, klass_RInfo);
+      __ br(Assembler::equal, true, Assembler::pt, done);
+      __ delayed()->set(1, dst);
+      __ set(0, dst);
+      __ bind(done);
+    } else {
+      if (k->is_loaded()) {
+        assert_different_registers(Rtmp1, klass_RInfo, k_RInfo);
+        load(klass_RInfo, k->super_check_offset(), Rtmp1, T_OBJECT, NULL);
+
+        if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
+          // See if we get an immediate positive hit
+          __ cmp(Rtmp1, k_RInfo );
+          __ br(Assembler::equal, true, Assembler::pt, done);
+          __ delayed()->set(1, dst);
+          __ set(0, dst);
+          __ bind(done);
+        } else {
+          // See if we get an immediate positive hit
+          assert_different_registers(Rtmp1, k_RInfo, klass_RInfo);
+          __ cmp(Rtmp1, k_RInfo );
+          __ br(Assembler::equal, true, Assembler::pt, done);
+          __ delayed()->set(1, dst);
+          // check for self
+          __ cmp(klass_RInfo, k_RInfo);
+          __ br(Assembler::equal, true, Assembler::pt, done);
+          __ delayed()->set(1, dst);
+
+          // assert(sub.is_same(FrameMap::G3_RInfo) && super.is_same(FrameMap::G1_RInfo), "incorrect call setup");
+          __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
+          __ delayed()->nop();
+          __ mov(G3, dst);
+          __ bind(done);
+        }
+      } else {
+        assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
+
+        load(k_RInfo, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes(), dst, T_INT, NULL);
+        // See if we get an immediate positive hit
+        load(klass_RInfo, dst, FrameMap::O7_oop_opr, T_OBJECT);
+        __ cmp(k_RInfo, O7);
+        __ br(Assembler::equal, true, Assembler::pt, done);
+        __ delayed()->set(1, dst);
+        // check for immediate negative hit
+        __ cmp(dst, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
+        __ br(Assembler::notEqual, true, Assembler::pt, done);
+        __ delayed()->set(0, dst);
+        // check for self
+        __ cmp(klass_RInfo, k_RInfo);
+        __ br(Assembler::equal, true, Assembler::pt, done);
+        __ delayed()->set(1, dst);
+
+        // assert(sub.is_same(FrameMap::G3_RInfo) && super.is_same(FrameMap::G1_RInfo), "incorrect call setup");
+        __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
+        __ delayed()->nop();
+        __ mov(G3, dst);
+        __ bind(done);
+      }
+    }
+  } else {
+    ShouldNotReachHere();
+  }
+
+}
+
+
+void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
+  if (op->code() == lir_cas_long) {
+    assert(VM_Version::supports_cx8(), "wrong machine");
+    Register addr = op->addr()->as_pointer_register();
+    Register cmp_value_lo = op->cmp_value()->as_register_lo();
+    Register cmp_value_hi = op->cmp_value()->as_register_hi();
+    Register new_value_lo = op->new_value()->as_register_lo();
+    Register new_value_hi = op->new_value()->as_register_hi();
+    Register t1 = op->tmp1()->as_register();
+    Register t2 = op->tmp2()->as_register();
+#ifdef _LP64
+    __ mov(cmp_value_lo, t1);
+    __ mov(new_value_lo, t2);
+#else
+    // move high and low halves of long values into single registers
+    __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
+    __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
+    __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
+    __ sllx(new_value_hi, 32, t2);
+    __ srl(new_value_lo, 0, new_value_lo);
+    __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
+#endif
+    // perform the compare and swap operation
+    __ casx(addr, t1, t2);
+    // generate condition code - if the swap succeeded, t2 ("new value" reg) was
+    // overwritten with the original value in "addr" and will be equal to t1.
+    __ cmp(t1, t2);
+
+  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
+    Register addr = op->addr()->as_pointer_register();
+    Register cmp_value = op->cmp_value()->as_register();
+    Register new_value = op->new_value()->as_register();
+    Register t1 = op->tmp1()->as_register();
+    Register t2 = op->tmp2()->as_register();
+    __ mov(cmp_value, t1);
+    __ mov(new_value, t2);
+#ifdef _LP64
+    if (op->code() == lir_cas_obj) {
+      __ casx(addr, t1, t2);
+    } else
+#endif
+      {
+        __ cas(addr, t1, t2);
+      }
+    __ cmp(t1, t2);
+  } else {
+    Unimplemented();
+  }
+}
+
+void LIR_Assembler::set_24bit_FPU() {
+  Unimplemented();
+}
+
+
+void LIR_Assembler::reset_FPU() {
+  Unimplemented();
+}
+
+
+void LIR_Assembler::breakpoint() {
+  __ breakpoint_trap();
+}
+
+
+void LIR_Assembler::push(LIR_Opr opr) {
+  Unimplemented();
+}
+
+
+void LIR_Assembler::pop(LIR_Opr opr) {
+  Unimplemented();
+}
+
+
+void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
+  Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
+  Register dst = dst_opr->as_register();
+  Register reg = mon_addr.base();
+  int offset = mon_addr.disp();
+  // compute pointer to BasicLock
+  if (mon_addr.is_simm13()) {
+    __ add(reg, offset, dst);
+  } else {
+    __ set(offset, dst);
+    __ add(dst, reg, dst);
+  }
+}
+
+
+void LIR_Assembler::emit_lock(LIR_OpLock* op) {
+  Register obj = op->obj_opr()->as_register();
+  Register hdr = op->hdr_opr()->as_register();
+  Register lock = op->lock_opr()->as_register();
+
+  // obj may not be an oop
+  if (op->code() == lir_lock) {
+    MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
+    if (UseFastLocking) {
+      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
+      // add debug info for NullPointerException only if one is possible
+      if (op->info() != NULL) {
+        add_debug_info_for_null_check_here(op->info());
+      }
+      __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
+    } else {
+      // always do slow locking
+      // note: the slow locking code could be inlined here, however if we use
+      //       slow locking, speed doesn't matter anyway and this solution is
+      //       simpler and requires less duplicated code - additionally, the
+      //       slow locking code is the same in either case which simplifies
+      //       debugging
+      __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
+      __ delayed()->nop();
+    }
+  } else {
+    assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
+    if (UseFastLocking) {
+      assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
+      __ unlock_object(hdr, obj, lock, *op->stub()->entry());
+    } else {
+      // always do slow unlocking
+      // note: the slow unlocking code could be inlined here, however if we use
+      //       slow unlocking, speed doesn't matter anyway and this solution is
+      //       simpler and requires less duplicated code - additionally, the
+      //       slow unlocking code is the same in either case which simplifies
+      //       debugging
+      __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
+      __ delayed()->nop();
+    }
+  }
+  __ bind(*op->stub()->continuation());
+}
+
+
+void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
+  ciMethod* method = op->profiled_method();
+  int bci          = op->profiled_bci();
+
+  // Update counter for all call types
+  ciMethodData* md = method->method_data();
+  if (md == NULL) {
+    bailout("out of memory building methodDataOop");
+    return;
+  }
+  ciProfileData* data = md->bci_to_data(bci);
+  assert(data->is_CounterData(), "need CounterData for calls");
+  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
+  assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
+  Register mdo  = op->mdo()->as_register();
+  Register tmp1 = op->tmp1()->as_register();
+  jobject2reg(md->encoding(), mdo);
+  int mdo_offset_bias = 0;
+  if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
+                            data->size_in_bytes())) {
+    // The offset is large so bias the mdo by the base of the slot so
+    // that the ld can use simm13s to reference the slots of the data
+    mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
+    __ set(mdo_offset_bias, O7);
+    __ add(mdo, O7, mdo);
+  }
+
+  Address counter_addr(mdo, 0, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
+  __ lduw(counter_addr, tmp1);
+  __ add(tmp1, DataLayout::counter_increment, tmp1);
+  __ stw(tmp1, counter_addr);
+  Bytecodes::Code bc = method->java_code_at_bci(bci);
+  // Perform additional virtual call profiling for invokevirtual and
+  // invokeinterface bytecodes
+  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
+      Tier1ProfileVirtualCalls) {
+    assert(op->recv()->is_single_cpu(), "recv must be allocated");
+    Register recv = op->recv()->as_register();
+    assert_different_registers(mdo, tmp1, recv);
+    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
+    ciKlass* known_klass = op->known_holder();
+    if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
+      // We know the type that will be seen at this call site; we can
+      // statically update the methodDataOop rather than needing to do
+      // dynamic tests on the receiver type
+
+      // NOTE: we should probably put a lock around this search to
+      // avoid collisions by concurrent compilations
+      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
+      uint i;
+      for (i = 0; i < VirtualCallData::row_limit(); i++) {
+        ciKlass* receiver = vc_data->receiver(i);
+        if (known_klass->equals(receiver)) {
+          Address data_addr(mdo, 0, md->byte_offset_of_slot(data,
+                                                            VirtualCallData::receiver_count_offset(i)) -
+                            mdo_offset_bias);
+          __ lduw(data_addr, tmp1);
+          __ add(tmp1, DataLayout::counter_increment, tmp1);
+          __ stw(tmp1, data_addr);
+          return;
+        }
+      }
+
+      // Receiver type not found in profile data; select an empty slot
+
+      // Note that this is less efficient than it should be because it
+      // always does a write to the receiver part of the
+      // VirtualCallData rather than just the first time
+      for (i = 0; i < VirtualCallData::row_limit(); i++) {
+        ciKlass* receiver = vc_data->receiver(i);
+        if (receiver == NULL) {
+          Address recv_addr(mdo, 0, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
+                            mdo_offset_bias);
+          jobject2reg(known_klass->encoding(), tmp1);
+          __ st_ptr(tmp1, recv_addr);
+          Address data_addr(mdo, 0, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
+                            mdo_offset_bias);
+          __ lduw(data_addr, tmp1);
+          __ add(tmp1, DataLayout::counter_increment, tmp1);
+          __ stw(tmp1, data_addr);
+          return;
+        }
+      }
+    } else {
+      load(Address(recv, 0, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
+      Label update_done;
+      uint i;
+      for (i = 0; i < VirtualCallData::row_limit(); i++) {
+        Label next_test;
+        // See if the receiver is receiver[n].
+        Address receiver_addr(mdo, 0, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
+                              mdo_offset_bias);
+        __ ld_ptr(receiver_addr, tmp1);
+        __ verify_oop(tmp1);
+        __ cmp(recv, tmp1);
+        __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
+        __ delayed()->nop();
+        Address data_addr(mdo, 0, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
+                          mdo_offset_bias);
+        __ lduw(data_addr, tmp1);
+        __ add(tmp1, DataLayout::counter_increment, tmp1);
+        __ stw(tmp1, data_addr);
+        __ br(Assembler::always, false, Assembler::pt, update_done);
+        __ delayed()->nop();
+        __ bind(next_test);
+      }
+
+      // Didn't find receiver; find next empty slot and fill it in
+      for (i = 0; i < VirtualCallData::row_limit(); i++) {
+        Label next_test;
+        Address recv_addr(mdo, 0, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
+                          mdo_offset_bias);
+        load(recv_addr, tmp1, T_OBJECT);
+        __ tst(tmp1);
+        __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
+        __ delayed()->nop();
+        __ st_ptr(recv, recv_addr);
+        __ set(DataLayout::counter_increment, tmp1);
+        __ st_ptr(tmp1, Address(mdo, 0, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
+                                mdo_offset_bias));
+        if (i < (VirtualCallData::row_limit() - 1)) {
+          __ br(Assembler::always, false, Assembler::pt, update_done);
+          __ delayed()->nop();
+        }
+        __ bind(next_test);
+      }
+
+      __ bind(update_done);
+    }
+  }
+}
+
+
+void LIR_Assembler::align_backward_branch_target() {
+  __ align(16);
+}
+
+
+void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
+  // make sure we are expecting a delay
+  // this has the side effect of clearing the delay state
+  // so we can use _masm instead of _masm->delayed() to do the
+  // code generation.
+  __ delayed();
+
+  // make sure we only emit one instruction
+  int offset = code_offset();
+  op->delay_op()->emit_code(this);
+#ifdef ASSERT
+  if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
+    op->delay_op()->print();
+  }
+  assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
+         "only one instruction can go in a delay slot");
+#endif
+
+  // we may also be emitting the call info for the instruction
+  // which we are the delay slot of.
+  CodeEmitInfo * call_info = op->call_info();
+  if (call_info) {
+    add_call_info(code_offset(), call_info);
+  }
+
+  if (VerifyStackAtCalls) {
+    _masm->sub(FP, SP, O7);
+    _masm->cmp(O7, initial_frame_size_in_bytes());
+    _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
+  }
+}
+
+
+void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
+  assert(left->is_register(), "can only handle registers");
+
+  if (left->is_single_cpu()) {
+    __ neg(left->as_register(), dest->as_register());
+  } else if (left->is_single_fpu()) {
+    __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
+  } else if (left->is_double_fpu()) {
+    __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
+  } else {
+    assert (left->is_double_cpu(), "Must be a long");
+    Register Rlow = left->as_register_lo();
+    Register Rhi = left->as_register_hi();
+#ifdef _LP64
+    __ sub(G0, Rlow, dest->as_register_lo());
+#else
+    __ subcc(G0, Rlow, dest->as_register_lo());
+    __ subc (G0, Rhi,  dest->as_register_hi());
+#endif
+  }
+}
+
+
+void LIR_Assembler::fxch(int i) {
+  Unimplemented();
+}
+
+void LIR_Assembler::fld(int i) {
+  Unimplemented();
+}
+
+void LIR_Assembler::ffree(int i) {
+  Unimplemented();
+}
+
+void LIR_Assembler::rt_call(LIR_Opr result, address dest,
+                            const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
+
+  // if tmp is invalid, then the function being called doesn't destroy the thread
+  if (tmp->is_valid()) {
+    __ save_thread(tmp->as_register());
+  }
+  __ call(dest, relocInfo::runtime_call_type);
+  __ delayed()->nop();
+  if (info != NULL) {
+    add_call_info_here(info);
+  }
+  if (tmp->is_valid()) {
+    __ restore_thread(tmp->as_register());
+  }
+
+#ifdef ASSERT
+  __ verify_thread();
+#endif // ASSERT
+}
+
+
+void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
+#ifdef _LP64
+  ShouldNotReachHere();
+#endif
+
+  NEEDS_CLEANUP;
+  if (type == T_LONG) {
+    LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
+
+    // (extended to allow indexed as well as constant displaced for JSR-166)
+    Register idx = noreg; // contains either constant offset or index
+
+    int disp = mem_addr->disp();
+    if (mem_addr->index() == LIR_OprFact::illegalOpr) {
+      if (!Assembler::is_simm13(disp)) {
+        idx = O7;
+        __ set(disp, idx);
+      }
+    } else {
+      assert(disp == 0, "not both indexed and disp");
+      idx = mem_addr->index()->as_register();
+    }
+
+    int null_check_offset = -1;
+
+    Register base = mem_addr->base()->as_register();
+    if (src->is_register() && dest->is_address()) {
+      // G4 is high half, G5 is low half
+      if (VM_Version::v9_instructions_work()) {
+        // clear the top bits of G5, and scale up G4
+        __ srl (src->as_register_lo(),  0, G5);
+        __ sllx(src->as_register_hi(), 32, G4);
+        // combine the two halves into the 64 bits of G4
+        __ or3(G4, G5, G4);
+        null_check_offset = __ offset();
+        if (idx == noreg) {
+          __ stx(G4, base, disp);
+        } else {
+          __ stx(G4, base, idx);
+        }
+      } else {
+        __ mov (src->as_register_hi(), G4);
+        __ mov (src->as_register_lo(), G5);
+        null_check_offset = __ offset();
+        if (idx == noreg) {
+          __ std(G4, base, disp);
+        } else {
+          __ std(G4, base, idx);
+        }
+      }
+    } else if (src->is_address() && dest->is_register()) {
+      null_check_offset = __ offset();
+      if (VM_Version::v9_instructions_work()) {
+        if (idx == noreg) {
+          __ ldx(base, disp, G5);
+        } else {
+          __ ldx(base, idx, G5);
+        }
+        __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
+        __ mov (G5, dest->as_register_lo());     // copy low half into lo
+      } else {
+        if (idx == noreg) {
+          __ ldd(base, disp, G4);
+        } else {
+          __ ldd(base, idx, G4);
+        }
+        // G4 is high half, G5 is low half
+        __ mov (G4, dest->as_register_hi());
+        __ mov (G5, dest->as_register_lo());
+      }
+    } else {
+      Unimplemented();
+    }
+    if (info != NULL) {
+      add_debug_info_for_null_check(null_check_offset, info);
+    }
+
+  } else {
+    // use normal move for all other volatiles since they don't need
+    // special handling to remain atomic.
+    move_op(src, dest, type, lir_patch_none, info, false, false);
+  }
+}
+
+void LIR_Assembler::membar() {
+  // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
+  __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
+}
+
+void LIR_Assembler::membar_acquire() {
+  // no-op on TSO
+}
+
+void LIR_Assembler::membar_release() {
+  // no-op on TSO
+}
+
+// Macro to Pack two sequential registers containing 32 bit values
+// into a single 64 bit register.
+// rs and rs->successor() are packed into rd
+// rd and rs may be the same register.
+// Note: rs and rs->successor() are destroyed.
+void LIR_Assembler::pack64( Register rs, Register rd ) {
+  __ sllx(rs, 32, rs);
+  __ srl(rs->successor(), 0, rs->successor());
+  __ or3(rs, rs->successor(), rd);
+}
+
+// Macro to unpack a 64 bit value in a register into
+// two sequential registers.
+// rd is unpacked into rd and rd->successor()
+void LIR_Assembler::unpack64( Register rd ) {
+  __ mov(rd, rd->successor());
+  __ srax(rd, 32, rd);
+  __ sra(rd->successor(), 0, rd->successor());
+}
+
+
+void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
+  LIR_Address* addr = addr_opr->as_address_ptr();
+  assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
+  __ add(addr->base()->as_register(), addr->disp(), dest->as_register());
+}
+
+
+void LIR_Assembler::get_thread(LIR_Opr result_reg) {
+  assert(result_reg->is_register(), "check");
+  __ mov(G2_thread, result_reg->as_register());
+}
+
+
+void LIR_Assembler::peephole(LIR_List* lir) {
+  LIR_OpList* inst = lir->instructions_list();
+  for (int i = 0; i < inst->length(); i++) {
+    LIR_Op* op = inst->at(i);
+    switch (op->code()) {
+      case lir_cond_float_branch:
+      case lir_branch: {
+        LIR_OpBranch* branch = op->as_OpBranch();
+        assert(branch->info() == NULL, "shouldn't be state on branches anymore");
+        LIR_Op* delay_op = NULL;
+        // we'd like to be able to pull following instructions into
+        // this slot but we don't know enough to do it safely yet so
+        // only optimize block to block control flow.
+        if (LIRFillDelaySlots && branch->block()) {
+          LIR_Op* prev = inst->at(i - 1);
+          if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
+            // swap previous instruction into delay slot
+            inst->at_put(i - 1, op);
+            inst->at_put(i, new LIR_OpDelay(prev, op->info()));
+#ifndef PRODUCT
+            if (LIRTracePeephole) {
+              tty->print_cr("delayed");
+              inst->at(i - 1)->print();
+              inst->at(i)->print();
+            }
+#endif
+            continue;
+          }
+        }
+
+        if (!delay_op) {
+          delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
+        }
+        inst->insert_before(i + 1, delay_op);
+        break;
+      }
+      case lir_static_call:
+      case lir_virtual_call:
+      case lir_icvirtual_call:
+      case lir_optvirtual_call: {
+        LIR_Op* delay_op = NULL;
+        LIR_Op* prev = inst->at(i - 1);
+        if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
+            (op->code() != lir_virtual_call ||
+             !prev->result_opr()->is_single_cpu() ||
+             prev->result_opr()->as_register() != O0) &&
+            LIR_Assembler::is_single_instruction(prev)) {
+          // Only moves without info can be put into the delay slot.
+          // Also don't allow the setup of the receiver in the delay
+          // slot for vtable calls.
+          inst->at_put(i - 1, op);
+          inst->at_put(i, new LIR_OpDelay(prev, op->info()));
+#ifndef PRODUCT
+          if (LIRTracePeephole) {
+            tty->print_cr("delayed");
+            inst->at(i - 1)->print();
+            inst->at(i)->print();
+          }
+#endif
+          continue;
+        }
+
+        if (!delay_op) {
+          delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
+          inst->insert_before(i + 1, delay_op);
+        }
+        break;
+      }
+    }
+  }
+}
+
+
+
+
+#undef __