--- a/hotspot/src/share/vm/opto/divnode.cpp Tue Apr 29 06:52:16 2008 -0700
+++ b/hotspot/src/share/vm/opto/divnode.cpp Tue Apr 29 19:40:51 2008 -0700
@@ -421,7 +421,7 @@
// x/x == 1, we ignore 0/0.
// Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
- // does not work for variables because of NaN's
+ // Does not work for variables because of NaN's
if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN
return TypeF::ONE;
@@ -491,7 +491,7 @@
//=============================================================================
//------------------------------Value------------------------------------------
// An DivDNode divides its inputs. The third input is a Control input, used to
-// prvent hoisting the divide above an unsafe test.
+// prevent hoisting the divide above an unsafe test.
const Type *DivDNode::Value( PhaseTransform *phase ) const {
// Either input is TOP ==> the result is TOP
const Type *t1 = phase->type( in(1) );
@@ -872,56 +872,32 @@
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
return bot;
- // If either is a NaN, return an input NaN
- if( g_isnan(t1->getf()) ) return t1;
- if( g_isnan(t2->getf()) ) return t2;
-
- // It is not worth trying to constant fold this stuff!
- return Type::FLOAT;
-
- /*
- // If dividend is infinity or divisor is zero, or both, the result is NaN
- if( !g_isfinite(t1->getf()) || ((t2->getf() == 0.0) || (jint_cast(t2->getf()) == 0x80000000)) )
+ // If either number is not a constant, we know nothing.
+ if ((t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon)) {
+ return Type::FLOAT; // note: x%x can be either NaN or 0
+ }
- // X MOD infinity = X
- if( !g_isfinite(t2->getf()) && !g_isnan(t2->getf()) ) return t1;
- // 0 MOD finite = dividend (positive or negative zero)
- // Not valid for: NaN MOD any; any MOD nan; 0 MOD 0; or for 0 MOD NaN
- // NaNs are handled previously.
- if( !(t2->getf() == 0.0) && !((int)t2->getf() == 0x80000000)) {
- if (((t1->getf() == 0.0) || ((int)t1->getf() == 0x80000000)) && g_isfinite(t2->getf()) ) {
- return t1;
- }
- }
- // X MOD X is 0
- // Does not work for variables because of NaN's
- if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
- if (!g_isnan(t1->getf()) && (t1->getf() != 0.0) && ((int)t1->getf() != 0x80000000)) {
- if(t1->getf() < 0.0) {
- float result = jfloat_cast(0x80000000);
- return TypeF::make( result );
- }
- else
- return TypeF::ZERO;
- }
+ float f1 = t1->getf();
+ float f2 = t2->getf();
+ jint x1 = jint_cast(f1); // note: *(int*)&f1, not just (int)f1
+ jint x2 = jint_cast(f2);
- // If both numbers are not constants, we know nothing.
- if( (t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon) )
+ // If either is a NaN, return an input NaN
+ if (g_isnan(f1)) return t1;
+ if (g_isnan(f2)) return t2;
+
+ // If an operand is infinity or the divisor is +/- zero, punt.
+ if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jint)
return Type::FLOAT;
// We must be modulo'ing 2 float constants.
// Make sure that the sign of the fmod is equal to the sign of the dividend
- float result = (float)fmod( t1->getf(), t2->getf() );
- float dividend = t1->getf();
- if( (dividend < 0.0) || ((int)dividend == 0x80000000) ) {
- if( result > 0.0 )
- result = 0.0 - result;
- else if( result == 0.0 ) {
- result = jfloat_cast(0x80000000);
- }
+ jint xr = jint_cast(fmod(f1, f2));
+ if ((x1 ^ xr) < 0) {
+ xr ^= min_jint;
}
- return TypeF::make( result );
- */
+
+ return TypeF::make(jfloat_cast(xr));
}
@@ -940,33 +916,32 @@
(t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
return bot;
- // If either is a NaN, return an input NaN
- if( g_isnan(t1->getd()) ) return t1;
- if( g_isnan(t2->getd()) ) return t2;
- // X MOD infinity = X
- if( !g_isfinite(t2->getd())) return t1;
- // 0 MOD finite = dividend (positive or negative zero)
- // Not valid for: NaN MOD any; any MOD nan; 0 MOD 0; or for 0 MOD NaN
- // NaNs are handled previously.
- if( !(t2->getd() == 0.0) ) {
- if( t1->getd() == 0.0 && g_isfinite(t2->getd()) ) {
- return t1;
- }
+ // If either number is not a constant, we know nothing.
+ if ((t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon)) {
+ return Type::DOUBLE; // note: x%x can be either NaN or 0
}
- // X MOD X is 0
- // does not work for variables because of NaN's
- if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon )
- if (!g_isnan(t1->getd()) && t1->getd() != 0.0)
- return TypeD::ZERO;
+ double f1 = t1->getd();
+ double f2 = t2->getd();
+ jlong x1 = jlong_cast(f1); // note: *(long*)&f1, not just (long)f1
+ jlong x2 = jlong_cast(f2);
+ // If either is a NaN, return an input NaN
+ if (g_isnan(f1)) return t1;
+ if (g_isnan(f2)) return t2;
- // If both numbers are not constants, we know nothing.
- if( (t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon) )
+ // If an operand is infinity or the divisor is +/- zero, punt.
+ if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jlong)
return Type::DOUBLE;
// We must be modulo'ing 2 double constants.
- return TypeD::make( fmod( t1->getd(), t2->getd() ) );
+ // Make sure that the sign of the fmod is equal to the sign of the dividend
+ jlong xr = jlong_cast(fmod(f1, f2));
+ if ((x1 ^ xr) < 0) {
+ xr ^= min_jlong;
+ }
+
+ return TypeD::make(jdouble_cast(xr));
}
//=============================================================================