jdk/test/java/math/BigDecimal/DivideTests.java
changeset 1826 39d505a353e8
child 2922 dd6d609861f0
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/test/java/math/BigDecimal/DivideTests.java	Mon Jan 26 19:49:26 2009 -0800
@@ -0,0 +1,340 @@
+/*
+ * Copyright 2003-2005 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ */
+
+/*
+ * @test
+ * @bug 4851776 4907265 6177836
+ * @summary Some tests for the divide methods.
+ * @author Joseph D. Darcy
+ * @compile -source 1.5 DivideTests.java
+ * @run main DivideTests
+ */
+
+import java.math.*;
+import static java.math.BigDecimal.*;
+
+public class DivideTests {
+
+    // Preliminary exact divide method; could be used for comparison
+    // purposes.
+    BigDecimal anotherDivide(BigDecimal dividend, BigDecimal divisor) {
+        /*
+         * Handle zero cases first.
+         */
+        if (divisor.signum() == 0) {   // x/0
+            if (dividend.signum() == 0)    // 0/0
+                throw new ArithmeticException("Division undefined");  // NaN
+            throw new ArithmeticException("Division by zero");
+        }
+        if (dividend.signum() == 0)        // 0/y
+            return BigDecimal.ZERO;
+        else {
+            /*
+             * Determine if there is a result with a terminating
+             * decimal expansion.  Putting aside overflow and
+             * underflow considerations, the existance of an exact
+             * result only depends on the ratio of the intVal's of the
+             * dividend (i.e. this) and and divisor since the scales
+             * of the argument just affect where the decimal point
+             * lies.
+             *
+             * For the ratio of (a = this.intVal) and (b =
+             * divisor.intVal) to have a finite decimal expansion,
+             * once a/b is put in lowest terms, b must be equal to
+             * (2^i)*(5^j) for some integer i,j >= 0.  Therefore, we
+             * first compute to see if b_prime =(b/gcd(a,b)) is equal
+             * to (2^i)*(5^j).
+             */
+            BigInteger TWO  = BigInteger.valueOf(2);
+            BigInteger FIVE = BigInteger.valueOf(5);
+            BigInteger TEN  = BigInteger.valueOf(10);
+
+            BigInteger divisorIntvalue  = divisor.scaleByPowerOfTen(divisor.scale()).toBigInteger().abs();
+            BigInteger dividendIntvalue = dividend.scaleByPowerOfTen(dividend.scale()).toBigInteger().abs();
+
+            BigInteger b_prime = divisorIntvalue.divide(dividendIntvalue.gcd(divisorIntvalue));
+
+            boolean goodDivisor = false;
+            int i=0, j=0;
+
+            badDivisor: {
+                while(! b_prime.equals(BigInteger.ONE) ) {
+                    int b_primeModTen = b_prime.mod(TEN).intValue() ;
+
+                    switch(b_primeModTen) {
+                    case 0:
+                        // b_prime divisible by 10=2*5, increment i and j
+                        i++;
+                        j++;
+                        b_prime = b_prime.divide(TEN);
+                        break;
+
+                    case 5:
+                        // b_prime divisible by 5, increment j
+                        j++;
+                        b_prime = b_prime.divide(FIVE);
+                        break;
+
+                    case 2:
+                    case 4:
+                    case 6:
+                    case 8:
+                        // b_prime divisible by 2, increment i
+                        i++;
+                        b_prime = b_prime.divide(TWO);
+                        break;
+
+                    default: // hit something we shouldn't have
+                        b_prime = BigInteger.ONE; // terminate loop
+                        break badDivisor;
+                    }
+                }
+
+                goodDivisor = true;
+            }
+
+            if( ! goodDivisor ) {
+                throw new ArithmeticException("Non terminating decimal expansion");
+            }
+            else {
+                // What is a rule for determining how many digits are
+                // needed?  Once that is determined, cons up a new
+                // MathContext object and pass it on to the divide(bd,
+                // mc) method; precision == ?, roundingMode is unnecessary.
+
+                // Are we sure this is the right scale to use?  Should
+                // also determine a precision-based method.
+                MathContext mc = new MathContext(dividend.precision() +
+                                                 (int)Math.ceil(
+                                                      10.0*divisor.precision()/3.0),
+                                                 RoundingMode.UNNECESSARY);
+                // Should do some more work here to rescale, etc.
+                return dividend.divide(divisor, mc);
+            }
+        }
+    }
+
+    public static int powersOf2and5() {
+        int failures = 0;
+
+        for(int i = 0; i < 6; i++) {
+            int powerOf2 = (int)StrictMath.pow(2.0, i);
+
+            for(int j = 0; j < 6; j++) {
+                int powerOf5 = (int)StrictMath.pow(5.0, j);
+                int product;
+
+                BigDecimal bd;
+
+                try {
+                    bd = BigDecimal.ONE.divide(new BigDecimal(product=powerOf2*powerOf5));
+                } catch (ArithmeticException e) {
+                    failures++;
+                    System.err.println((new BigDecimal(powerOf2)).toString() + " / " +
+                                       (new BigDecimal(powerOf5)).toString() + " threw an exception.");
+                    e.printStackTrace();
+                }
+
+                try {
+                    bd = new BigDecimal(powerOf2).divide(new BigDecimal(powerOf5));
+                } catch (ArithmeticException e) {
+                    failures++;
+                    System.err.println((new BigDecimal(powerOf2)).toString() + " / " +
+                                       (new BigDecimal(powerOf5)).toString() + " threw an exception.");
+                    e.printStackTrace();
+                }
+
+                try {
+                    bd = new BigDecimal(powerOf5).divide(new BigDecimal(powerOf2));
+                } catch (ArithmeticException e) {
+                    failures++;
+                    System.err.println((new BigDecimal(powerOf5)).toString() + " / " +
+                                       (new BigDecimal(powerOf2)).toString() + " threw an exception.");
+
+                    e.printStackTrace();
+                }
+
+            }
+        }
+        return failures;
+    }
+
+    public static int nonTerminating() {
+        int failures = 0;
+        int[] primes = {1, 3, 7, 13, 17};
+
+        // For each pair of prime products, verify the ratio of
+        // non-equal products has a non-terminating expansion.
+
+        for(int i = 0; i < primes.length; i++) {
+            for(int j = i+1; j < primes.length; j++) {
+
+                for(int m = 0; m < primes.length; m++) {
+                    for(int n = m+1; n < primes.length; n++) {
+                        int dividend = primes[i] * primes[j];
+                        int divisor  = primes[m] * primes[n];
+
+                        if ( ((dividend/divisor) * divisor) != dividend ) {
+                            try {
+                                BigDecimal quotient = (new BigDecimal(dividend).
+                                                       divide(new BigDecimal(divisor)));
+                                failures++;
+                                System.err.println("Exact quotient " + quotient.toString() +
+                                                   " returned for non-terminating fraction " +
+                                                   dividend + " / " + divisor + ".");
+                            }
+                            catch (ArithmeticException e) {
+                                ; // Correct result
+                            }
+                        }
+
+                    }
+                }
+            }
+        }
+
+        return failures;
+    }
+
+    public static int properScaleTests(){
+        int failures = 0;
+
+        BigDecimal[][] testCases = {
+            {new BigDecimal("1"),       new BigDecimal("5"),            new BigDecimal("2e-1")},
+            {new BigDecimal("1"),       new BigDecimal("50e-1"),        new BigDecimal("2e-1")},
+            {new BigDecimal("10e-1"),   new BigDecimal("5"),            new BigDecimal("2e-1")},
+            {new BigDecimal("1"),       new BigDecimal("500e-2"),       new BigDecimal("2e-1")},
+            {new BigDecimal("100e-2"),  new BigDecimal("5"),            new BigDecimal("20e-2")},
+            {new BigDecimal("1"),       new BigDecimal("32"),           new BigDecimal("3125e-5")},
+            {new BigDecimal("1"),       new BigDecimal("64"),           new BigDecimal("15625e-6")},
+            {new BigDecimal("1.0000000"),       new BigDecimal("64"),   new BigDecimal("156250e-7")},
+        };
+
+
+        for(BigDecimal[] tc : testCases) {
+            BigDecimal quotient;
+            if (! (quotient = tc[0].divide(tc[1])).equals(tc[2]) ) {
+                failures++;
+                System.err.println("Unexpected quotient from " + tc[0] + " / " + tc[1] +
+                                   "; expected " + tc[2] + " got " + quotient);
+            }
+        }
+
+        return failures;
+    }
+
+    public static int trailingZeroTests() {
+        int failures = 0;
+
+        MathContext mc = new MathContext(3, RoundingMode.FLOOR);
+        BigDecimal[][] testCases = {
+            {new BigDecimal("19"),      new BigDecimal("100"),          new BigDecimal("0.19")},
+            {new BigDecimal("21"),      new BigDecimal("110"),          new BigDecimal("0.190")},
+        };
+
+        for(BigDecimal[] tc : testCases) {
+            BigDecimal quotient;
+            if (! (quotient = tc[0].divide(tc[1], mc)).equals(tc[2]) ) {
+                failures++;
+                System.err.println("Unexpected quotient from " + tc[0] + " / " + tc[1] +
+                                   "; expected " + tc[2] + " got " + quotient);
+            }
+        }
+
+        return failures;
+    }
+
+    public static int scaledRoundedDivideTests() {
+        int failures = 0;
+        // Tests of the traditional scaled divide under different
+        // rounding modes.
+
+        // Encode rounding mode and scale for the divide in a
+        // BigDecimal with the significand equal to the rounding mode
+        // and the scale equal to the number's scale.
+
+        // {dividend, dividisor, rounding, quotient}
+        BigDecimal a = new BigDecimal("31415");
+        BigDecimal a_minus = a.negate();
+        BigDecimal b = new BigDecimal("10000");
+
+        BigDecimal c = new BigDecimal("31425");
+        BigDecimal c_minus = c.negate();
+
+        BigDecimal[][] testCases = {
+            {a,         b,      BigDecimal.valueOf(ROUND_UP, 3),        new BigDecimal("3.142")},
+            {a_minus,   b,      BigDecimal.valueOf(ROUND_UP, 3),        new BigDecimal("-3.142")},
+
+            {a,         b,      BigDecimal.valueOf(ROUND_DOWN, 3),      new BigDecimal("3.141")},
+            {a_minus,   b,      BigDecimal.valueOf(ROUND_DOWN, 3),      new BigDecimal("-3.141")},
+
+            {a,         b,      BigDecimal.valueOf(ROUND_CEILING, 3),   new BigDecimal("3.142")},
+            {a_minus,   b,      BigDecimal.valueOf(ROUND_CEILING, 3),   new BigDecimal("-3.141")},
+
+            {a,         b,      BigDecimal.valueOf(ROUND_FLOOR, 3),     new BigDecimal("3.141")},
+            {a_minus,   b,      BigDecimal.valueOf(ROUND_FLOOR, 3),     new BigDecimal("-3.142")},
+
+            {a,         b,      BigDecimal.valueOf(ROUND_HALF_UP, 3),   new BigDecimal("3.142")},
+            {a_minus,   b,      BigDecimal.valueOf(ROUND_HALF_UP, 3),   new BigDecimal("-3.142")},
+
+            {a,         b,      BigDecimal.valueOf(ROUND_DOWN, 3),      new BigDecimal("3.141")},
+            {a_minus,   b,      BigDecimal.valueOf(ROUND_DOWN, 3),      new BigDecimal("-3.141")},
+
+            {a,         b,      BigDecimal.valueOf(ROUND_HALF_EVEN, 3), new BigDecimal("3.142")},
+            {a_minus,   b,      BigDecimal.valueOf(ROUND_HALF_EVEN, 3), new BigDecimal("-3.142")},
+
+            {c,         b,      BigDecimal.valueOf(ROUND_HALF_EVEN, 3), new BigDecimal("3.142")},
+            {c_minus,   b,      BigDecimal.valueOf(ROUND_HALF_EVEN, 3), new BigDecimal("-3.142")},
+        };
+
+        for(BigDecimal tc[] : testCases) {
+            int scale = tc[2].scale();
+            int rm = tc[2].unscaledValue().intValue();
+
+            BigDecimal quotient = tc[0].divide(tc[1], scale, rm);
+            if (!quotient.equals(tc[3])) {
+                failures++;
+                System.err.println("Unexpected quotient from " + tc[0] + " / " + tc[1] +
+                                   " scale " + scale + " rounding mode " + RoundingMode.valueOf(rm) +
+                                   "; expected " + tc[3] + " got " + quotient);
+            }
+        }
+
+        return failures;
+    }
+
+    public static void main(String argv[]) {
+        int failures = 0;
+
+        failures += powersOf2and5();
+        failures += nonTerminating();
+        failures += properScaleTests();
+        failures += trailingZeroTests();
+        failures += scaledRoundedDivideTests();
+
+        if (failures > 0) {
+            throw new RuntimeException("Incurred " + failures +
+                                       " failures while testing exact divide.");
+        }
+    }
+}