jdk/test/java/lang/Math/CubeRootTests.java
changeset 1826 39d505a353e8
child 5506 202f599c92aa
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/test/java/lang/Math/CubeRootTests.java	Mon Jan 26 19:49:26 2009 -0800
@@ -0,0 +1,336 @@
+/*
+ * Copyright 2003 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ */
+
+/*
+ * @test
+ * @bug 4347132 4939441
+ * @summary Tests for {Math, StrictMath}.cbrt
+ * @author Joseph D. Darcy
+ */
+
+import sun.misc.FpUtils;
+import sun.misc.DoubleConsts;
+
+public class CubeRootTests {
+    private CubeRootTests(){}
+
+    static final double infinityD = Double.POSITIVE_INFINITY;
+    static final double NaNd = Double.NaN;
+
+    // Initialize shared random number generator
+    static java.util.Random rand = new java.util.Random();
+
+    static int testCubeRootCase(double input, double expected) {
+        int failures=0;
+
+        double minus_input = -input;
+        double minus_expected = -expected;
+
+        failures+=Tests.test("Math.cbrt(double)", input,
+                             Math.cbrt(input), expected);
+        failures+=Tests.test("Math.cbrt(double)", minus_input,
+                             Math.cbrt(minus_input), minus_expected);
+        failures+=Tests.test("StrictMath.cbrt(double)", input,
+                             StrictMath.cbrt(input), expected);
+        failures+=Tests.test("StrictMath.cbrt(double)", minus_input,
+                             StrictMath.cbrt(minus_input), minus_expected);
+
+        return failures;
+    }
+
+    static int testCubeRoot() {
+        int failures = 0;
+        double [][] testCases = {
+            {NaNd,                      NaNd},
+            {Double.longBitsToDouble(0x7FF0000000000001L),      NaNd},
+            {Double.longBitsToDouble(0xFFF0000000000001L),      NaNd},
+            {Double.longBitsToDouble(0x7FF8555555555555L),      NaNd},
+            {Double.longBitsToDouble(0xFFF8555555555555L),      NaNd},
+            {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),      NaNd},
+            {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),      NaNd},
+            {Double.longBitsToDouble(0x7FFDeadBeef00000L),      NaNd},
+            {Double.longBitsToDouble(0xFFFDeadBeef00000L),      NaNd},
+            {Double.longBitsToDouble(0x7FFCafeBabe00000L),      NaNd},
+            {Double.longBitsToDouble(0xFFFCafeBabe00000L),      NaNd},
+            {Double.POSITIVE_INFINITY,  Double.POSITIVE_INFINITY},
+            {Double.NEGATIVE_INFINITY,  Double.NEGATIVE_INFINITY},
+            {+0.0,                      +0.0},
+            {-0.0,                      -0.0},
+            {+1.0,                      +1.0},
+            {-1.0,                      -1.0},
+            {+8.0,                      +2.0},
+            {-8.0,                      -2.0}
+        };
+
+        for(int i = 0; i < testCases.length; i++) {
+            failures += testCubeRootCase(testCases[i][0],
+                                         testCases[i][1]);
+        }
+
+        // Test integer perfect cubes less than 2^53.
+        for(int i = 0; i <= 208063; i++) {
+            double d = i;
+            failures += testCubeRootCase(d*d*d, (double)i);
+        }
+
+        // Test cbrt(2^(3n)) = 2^n.
+        for(int i = 18; i <= DoubleConsts.MAX_EXPONENT/3; i++) {
+            failures += testCubeRootCase(FpUtils.scalb(1.0, 3*i),
+                                         FpUtils.scalb(1.0, i) );
+        }
+
+        // Test cbrt(2^(-3n)) = 2^-n.
+        for(int i = -1; i >= FpUtils.ilogb(Double.MIN_VALUE)/3; i--) {
+            failures += testCubeRootCase(FpUtils.scalb(1.0, 3*i),
+                                         FpUtils.scalb(1.0, i) );
+        }
+
+        // Test random perfect cubes.  Create double values with
+        // modest exponents but only have at most the 17 most
+        // significant bits in the significand set; 17*3 = 51, which
+        // is less than the number of bits in a double's significand.
+        long exponentBits1 =
+            Double.doubleToLongBits(FpUtils.scalb(1.0, 55)) &
+            DoubleConsts.EXP_BIT_MASK;
+        long exponentBits2=
+            Double.doubleToLongBits(FpUtils.scalb(1.0, -55)) &
+            DoubleConsts.EXP_BIT_MASK;
+        for(int i = 0; i < 100; i++) {
+            // Take 16 bits since the 17th bit is implicit in the
+            // exponent
+           double input1 =
+               Double.longBitsToDouble(exponentBits1 |
+                                       // Significand bits
+                                       ((long) (rand.nextInt() & 0xFFFF))<<
+                                       (DoubleConsts.SIGNIFICAND_WIDTH-1-16));
+           failures += testCubeRootCase(input1*input1*input1, input1);
+
+           double input2 =
+               Double.longBitsToDouble(exponentBits2 |
+                                       // Significand bits
+                                       ((long) (rand.nextInt() & 0xFFFF))<<
+                                       (DoubleConsts.SIGNIFICAND_WIDTH-1-16));
+           failures += testCubeRootCase(input2*input2*input2, input2);
+        }
+
+        // Directly test quality of implementation properties of cbrt
+        // for values that aren't perfect cubes.  Verify returned
+        // result meets the 1 ulp test.  That is, we want to verify
+        // that for positive x > 1,
+        // y = cbrt(x),
+        //
+        // if (err1=x - y^3 ) < 0, abs((y_pp^3 -x )) < err1
+        // if (err1=x - y^3 ) > 0, abs((y_mm^3 -x )) < err1
+        //
+        // where y_mm and y_pp are the next smaller and next larger
+        // floating-point value to y.  In other words, if y^3 is too
+        // big, making y larger does not improve the result; likewise,
+        // if y^3 is too small, making y smaller does not improve the
+        // result.
+        //
+        // ...-----|--?--|--?--|-----... Where is the true result?
+        //         y_mm  y     y_pp
+        //
+        // The returned value y should be one of the floating-point
+        // values braketing the true result.  However, given y, a
+        // priori we don't know if the true result falls in [y_mm, y]
+        // or [y, y_pp].  The above test looks at the error in x-y^3
+        // to determine which region the true result is in; e.g. if
+        // y^3 is smaller than x, the true result should be in [y,
+        // y_pp].  Therefore, it would be an error for y_mm to be a
+        // closer approximation to x^(1/3).  In this case, it is
+        // permissible, although not ideal, for y_pp^3 to be a closer
+        // approximation to x^(1/3) than y^3.
+        //
+        // We will use pow(y,3) to compute y^3.  Although pow is not
+        // correctly rounded, StrictMath.pow should have at most 1 ulp
+        // error.  For y > 1, pow(y_mm,3) and pow(y_pp,3) will differ
+        // from pow(y,3) by more than one ulp so the comparision of
+        // errors should still be valid.
+
+        for(int i = 0; i < 1000; i++) {
+            double d = 1.0 + rand.nextDouble();
+            double err, err_adjacent;
+
+            double y1 = Math.cbrt(d);
+            double y2 = StrictMath.cbrt(d);
+
+            err = d - StrictMath.pow(y1, 3);
+            if (err != 0.0) {
+                if(FpUtils.isNaN(err)) {
+                    failures++;
+                    System.err.println("Encountered unexpected NaN value: d = " + d +
+                                       "\tcbrt(d) = " + y1);
+                } else {
+                    if (err < 0.0) {
+                        err_adjacent = StrictMath.pow(FpUtils.nextUp(y1), 3) - d;
+                    }
+                    else  { // (err > 0.0)
+                        err_adjacent = StrictMath.pow(FpUtils.nextAfter(y1,0.0), 3) - d;
+                    }
+
+                    if (Math.abs(err) > Math.abs(err_adjacent)) {
+                        failures++;
+                        System.err.println("For Math.cbrt(" + d + "), returned result " +
+                                           y1 + "is not as good as adjacent value.");
+                    }
+                }
+            }
+
+
+            err = d - StrictMath.pow(y2, 3);
+            if (err != 0.0) {
+                if(FpUtils.isNaN(err)) {
+                    failures++;
+                    System.err.println("Encountered unexpected NaN value: d = " + d +
+                                       "\tcbrt(d) = " + y2);
+                } else {
+                    if (err < 0.0) {
+                        err_adjacent = StrictMath.pow(FpUtils.nextUp(y2), 3) - d;
+                    }
+                    else  { // (err > 0.0)
+                        err_adjacent = StrictMath.pow(FpUtils.nextAfter(y2,0.0), 3) - d;
+                    }
+
+                    if (Math.abs(err) > Math.abs(err_adjacent)) {
+                        failures++;
+                        System.err.println("For StrictMath.cbrt(" + d + "), returned result " +
+                                           y2 + "is not as good as adjacent value.");
+                    }
+                }
+            }
+
+
+        }
+
+        // Test monotonicity properites near perfect cubes; test two
+        // numbers before and two numbers after; i.e. for
+        //
+        // pcNeighbors[] =
+        // {nextDown(nextDown(pc)),
+        // nextDown(pc),
+        // pc,
+        // nextUp(pc),
+        // nextUp(nextUp(pc))}
+        //
+        // test that cbrt(pcNeighbors[i]) <= cbrt(pcNeighbors[i+1])
+        {
+
+            double pcNeighbors[] = new double[5];
+            double pcNeighborsCbrt[] = new double[5];
+            double pcNeighborsStrictCbrt[] = new double[5];
+
+            // Test near cbrt(2^(3n)) = 2^n.
+            for(int i = 18; i <= DoubleConsts.MAX_EXPONENT/3; i++) {
+                double pc = FpUtils.scalb(1.0, 3*i);
+
+                pcNeighbors[2] = pc;
+                pcNeighbors[1] = FpUtils.nextDown(pc);
+                pcNeighbors[0] = FpUtils.nextDown(pcNeighbors[1]);
+                pcNeighbors[3] = FpUtils.nextUp(pc);
+                pcNeighbors[4] = FpUtils.nextUp(pcNeighbors[3]);
+
+                for(int j = 0; j < pcNeighbors.length; j++) {
+                    pcNeighborsCbrt[j] =           Math.cbrt(pcNeighbors[j]);
+                    pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
+                }
+
+                for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
+                    if(pcNeighborsCbrt[j] >  pcNeighborsCbrt[j+1] ) {
+                        failures++;
+                        System.err.println("Monotonicity failure for Math.cbrt on " +
+                                          pcNeighbors[j] + " and "  +
+                                          pcNeighbors[j+1] + "\n\treturned " +
+                                          pcNeighborsCbrt[j] + " and " +
+                                          pcNeighborsCbrt[j+1] );
+                    }
+
+                    if(pcNeighborsStrictCbrt[j] >  pcNeighborsStrictCbrt[j+1] ) {
+                        failures++;
+                        System.err.println("Monotonicity failure for StrictMath.cbrt on " +
+                                          pcNeighbors[j] + " and "  +
+                                          pcNeighbors[j+1] + "\n\treturned " +
+                                          pcNeighborsStrictCbrt[j] + " and " +
+                                          pcNeighborsStrictCbrt[j+1] );
+                    }
+
+
+                }
+
+            }
+
+            // Test near cbrt(2^(-3n)) = 2^-n.
+            for(int i = -1; i >= FpUtils.ilogb(Double.MIN_VALUE)/3; i--) {
+                double pc = FpUtils.scalb(1.0, 3*i);
+
+                pcNeighbors[2] = pc;
+                pcNeighbors[1] = FpUtils.nextDown(pc);
+                pcNeighbors[0] = FpUtils.nextDown(pcNeighbors[1]);
+                pcNeighbors[3] = FpUtils.nextUp(pc);
+                pcNeighbors[4] = FpUtils.nextUp(pcNeighbors[3]);
+
+                for(int j = 0; j < pcNeighbors.length; j++) {
+                    pcNeighborsCbrt[j] =           Math.cbrt(pcNeighbors[j]);
+                    pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
+                }
+
+                for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
+                    if(pcNeighborsCbrt[j] >  pcNeighborsCbrt[j+1] ) {
+                        failures++;
+                        System.err.println("Monotonicity failure for Math.cbrt on " +
+                                          pcNeighbors[j] + " and "  +
+                                          pcNeighbors[j+1] + "\n\treturned " +
+                                          pcNeighborsCbrt[j] + " and " +
+                                          pcNeighborsCbrt[j+1] );
+                    }
+
+                    if(pcNeighborsStrictCbrt[j] >  pcNeighborsStrictCbrt[j+1] ) {
+                        failures++;
+                        System.err.println("Monotonicity failure for StrictMath.cbrt on " +
+                                          pcNeighbors[j] + " and "  +
+                                          pcNeighbors[j+1] + "\n\treturned " +
+                                          pcNeighborsStrictCbrt[j] + " and " +
+                                          pcNeighborsStrictCbrt[j+1] );
+                    }
+
+
+                }
+            }
+        }
+
+        return failures;
+    }
+
+    public static void main(String argv[]) {
+        int failures = 0;
+
+        failures += testCubeRoot();
+
+        if (failures > 0) {
+            System.err.println("Testing cbrt incurred "
+                               + failures + " failures.");
+            throw new RuntimeException();
+        }
+    }
+
+}