--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/jdk.crypto.ec/share/native/libsunec/impl/ec2.h Sun Aug 17 15:54:13 2014 +0100
@@ -0,0 +1,125 @@
+/*
+ * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
+ * Use is subject to license terms.
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this library; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+/* *********************************************************************
+ *
+ * The Original Code is the elliptic curve math library for binary polynomial field curves.
+ *
+ * The Initial Developer of the Original Code is
+ * Sun Microsystems, Inc.
+ * Portions created by the Initial Developer are Copyright (C) 2003
+ * the Initial Developer. All Rights Reserved.
+ *
+ * Contributor(s):
+ * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
+ *
+ *********************************************************************** */
+
+#ifndef _EC2_H
+#define _EC2_H
+
+#include "ecl-priv.h"
+
+/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
+mp_err ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py);
+
+/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
+mp_err ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py);
+
+/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
+ * qy). Uses affine coordinates. */
+mp_err ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py,
+ const mp_int *qx, const mp_int *qy, mp_int *rx,
+ mp_int *ry, const ECGroup *group);
+
+/* Computes R = P - Q. Uses affine coordinates. */
+mp_err ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py,
+ const mp_int *qx, const mp_int *qy, mp_int *rx,
+ mp_int *ry, const ECGroup *group);
+
+/* Computes R = 2P. Uses affine coordinates. */
+mp_err ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
+ mp_int *ry, const ECGroup *group);
+
+/* Validates a point on a GF2m curve. */
+mp_err ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
+
+/* by default, this routine is unused and thus doesn't need to be compiled */
+#ifdef ECL_ENABLE_GF2M_PT_MUL_AFF
+/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
+ * a, b and p are the elliptic curve coefficients and the irreducible that
+ * determines the field GF2m. Uses affine coordinates. */
+mp_err ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px,
+ const mp_int *py, mp_int *rx, mp_int *ry,
+ const ECGroup *group);
+#endif
+
+/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
+ * a, b and p are the elliptic curve coefficients and the irreducible that
+ * determines the field GF2m. Uses Montgomery projective coordinates. */
+mp_err ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px,
+ const mp_int *py, mp_int *rx, mp_int *ry,
+ const ECGroup *group);
+
+#ifdef ECL_ENABLE_GF2M_PROJ
+/* Converts a point P(px, py) from affine coordinates to projective
+ * coordinates R(rx, ry, rz). */
+mp_err ec_GF2m_pt_aff2proj(const mp_int *px, const mp_int *py, mp_int *rx,
+ mp_int *ry, mp_int *rz, const ECGroup *group);
+
+/* Converts a point P(px, py, pz) from projective coordinates to affine
+ * coordinates R(rx, ry). */
+mp_err ec_GF2m_pt_proj2aff(const mp_int *px, const mp_int *py,
+ const mp_int *pz, mp_int *rx, mp_int *ry,
+ const ECGroup *group);
+
+/* Checks if point P(px, py, pz) is at infinity. Uses projective
+ * coordinates. */
+mp_err ec_GF2m_pt_is_inf_proj(const mp_int *px, const mp_int *py,
+ const mp_int *pz);
+
+/* Sets P(px, py, pz) to be the point at infinity. Uses projective
+ * coordinates. */
+mp_err ec_GF2m_pt_set_inf_proj(mp_int *px, mp_int *py, mp_int *pz);
+
+/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
+ * (qx, qy, qz). Uses projective coordinates. */
+mp_err ec_GF2m_pt_add_proj(const mp_int *px, const mp_int *py,
+ const mp_int *pz, const mp_int *qx,
+ const mp_int *qy, mp_int *rx, mp_int *ry,
+ mp_int *rz, const ECGroup *group);
+
+/* Computes R = 2P. Uses projective coordinates. */
+mp_err ec_GF2m_pt_dbl_proj(const mp_int *px, const mp_int *py,
+ const mp_int *pz, mp_int *rx, mp_int *ry,
+ mp_int *rz, const ECGroup *group);
+
+/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
+ * a, b and p are the elliptic curve coefficients and the prime that
+ * determines the field GF2m. Uses projective coordinates. */
+mp_err ec_GF2m_pt_mul_proj(const mp_int *n, const mp_int *px,
+ const mp_int *py, mp_int *rx, mp_int *ry,
+ const ECGroup *group);
+#endif
+
+#endif /* _EC2_H */