jdk/src/java.desktop/share/classes/java/awt/AlphaComposite.java
changeset 25859 3317bb8137f4
parent 25162 c388078278d4
child 26749 b6598aa90114
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/java/awt/AlphaComposite.java	Sun Aug 17 15:54:13 2014 +0100
@@ -0,0 +1,803 @@
+/*
+ * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.awt;
+
+import java.awt.image.ColorModel;
+import java.lang.annotation.Native;
+import sun.java2d.SunCompositeContext;
+
+/**
+ * The <code>AlphaComposite</code> class implements basic alpha
+ * compositing rules for combining source and destination colors
+ * to achieve blending and transparency effects with graphics and
+ * images.
+ * The specific rules implemented by this class are the basic set
+ * of 12 rules described in
+ * T. Porter and T. Duff, "Compositing Digital Images", SIGGRAPH 84,
+ * 253-259.
+ * The rest of this documentation assumes some familiarity with the
+ * definitions and concepts outlined in that paper.
+ *
+ * <p>
+ * This class extends the standard equations defined by Porter and
+ * Duff to include one additional factor.
+ * An instance of the <code>AlphaComposite</code> class can contain
+ * an alpha value that is used to modify the opacity or coverage of
+ * every source pixel before it is used in the blending equations.
+ *
+ * <p>
+ * It is important to note that the equations defined by the Porter
+ * and Duff paper are all defined to operate on color components
+ * that are premultiplied by their corresponding alpha components.
+ * Since the <code>ColorModel</code> and <code>Raster</code> classes
+ * allow the storage of pixel data in either premultiplied or
+ * non-premultiplied form, all input data must be normalized into
+ * premultiplied form before applying the equations and all results
+ * might need to be adjusted back to the form required by the destination
+ * before the pixel values are stored.
+ *
+ * <p>
+ * Also note that this class defines only the equations
+ * for combining color and alpha values in a purely mathematical
+ * sense. The accurate application of its equations depends
+ * on the way the data is retrieved from its sources and stored
+ * in its destinations.
+ * See <a href="#caveats">Implementation Caveats</a>
+ * for further information.
+ *
+ * <p>
+ * The following factors are used in the description of the blending
+ * equation in the Porter and Duff paper:
+ *
+ * <blockquote>
+ * <table summary="layout">
+ * <tr><th align=left>Factor&nbsp;&nbsp;<th align=left>Definition
+ * <tr><td><em>A<sub>s</sub></em><td>the alpha component of the source pixel
+ * <tr><td><em>C<sub>s</sub></em><td>a color component of the source pixel in premultiplied form
+ * <tr><td><em>A<sub>d</sub></em><td>the alpha component of the destination pixel
+ * <tr><td><em>C<sub>d</sub></em><td>a color component of the destination pixel in premultiplied form
+ * <tr><td><em>F<sub>s</sub></em><td>the fraction of the source pixel that contributes to the output
+ * <tr><td><em>F<sub>d</sub></em><td>the fraction of the destination pixel that contributes
+ * to the output
+ * <tr><td><em>A<sub>r</sub></em><td>the alpha component of the result
+ * <tr><td><em>C<sub>r</sub></em><td>a color component of the result in premultiplied form
+ * </table>
+ * </blockquote>
+ *
+ * <p>
+ * Using these factors, Porter and Duff define 12 ways of choosing
+ * the blending factors <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em> to
+ * produce each of 12 desirable visual effects.
+ * The equations for determining <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em>
+ * are given in the descriptions of the 12 static fields
+ * that specify visual effects.
+ * For example,
+ * the description for
+ * <a href="#SRC_OVER"><code>SRC_OVER</code></a>
+ * specifies that <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>).
+ * Once a set of equations for determining the blending factors is
+ * known they can then be applied to each pixel to produce a result
+ * using the following set of equations:
+ *
+ * <pre>
+ *      <em>F<sub>s</sub></em> = <em>f</em>(<em>A<sub>d</sub></em>)
+ *      <em>F<sub>d</sub></em> = <em>f</em>(<em>A<sub>s</sub></em>)
+ *      <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>F<sub>s</sub></em> + <em>A<sub>d</sub></em>*<em>F<sub>d</sub></em>
+ *      <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>F<sub>s</sub></em> + <em>C<sub>d</sub></em>*<em>F<sub>d</sub></em></pre>
+ *
+ * <p>
+ * The following factors will be used to discuss our extensions to
+ * the blending equation in the Porter and Duff paper:
+ *
+ * <blockquote>
+ * <table summary="layout">
+ * <tr><th align=left>Factor&nbsp;&nbsp;<th align=left>Definition
+ * <tr><td><em>C<sub>sr</sub></em> <td>one of the raw color components of the source pixel
+ * <tr><td><em>C<sub>dr</sub></em> <td>one of the raw color components of the destination pixel
+ * <tr><td><em>A<sub>ac</sub></em>  <td>the "extra" alpha component from the AlphaComposite instance
+ * <tr><td><em>A<sub>sr</sub></em> <td>the raw alpha component of the source pixel
+ * <tr><td><em>A<sub>dr</sub></em><td>the raw alpha component of the destination pixel
+ * <tr><td><em>A<sub>df</sub></em> <td>the final alpha component stored in the destination
+ * <tr><td><em>C<sub>df</sub></em> <td>the final raw color component stored in the destination
+ * </table>
+ *</blockquote>
+ *
+ * <h3>Preparing Inputs</h3>
+ *
+ * <p>
+ * The <code>AlphaComposite</code> class defines an additional alpha
+ * value that is applied to the source alpha.
+ * This value is applied as if an implicit SRC_IN rule were first
+ * applied to the source pixel against a pixel with the indicated
+ * alpha by multiplying both the raw source alpha and the raw
+ * source colors by the alpha in the <code>AlphaComposite</code>.
+ * This leads to the following equation for producing the alpha
+ * used in the Porter and Duff blending equation:
+ *
+ * <pre>
+ *      <em>A<sub>s</sub></em> = <em>A<sub>sr</sub></em> * <em>A<sub>ac</sub></em> </pre>
+ *
+ * All of the raw source color components need to be multiplied
+ * by the alpha in the <code>AlphaComposite</code> instance.
+ * Additionally, if the source was not in premultiplied form
+ * then the color components also need to be multiplied by the
+ * source alpha.
+ * Thus, the equation for producing the source color components
+ * for the Porter and Duff equation depends on whether the source
+ * pixels are premultiplied or not:
+ *
+ * <pre>
+ *      <em>C<sub>s</sub></em> = <em>C<sub>sr</sub></em> * <em>A<sub>sr</sub></em> * <em>A<sub>ac</sub></em>     (if source is not premultiplied)
+ *      <em>C<sub>s</sub></em> = <em>C<sub>sr</sub></em> * <em>A<sub>ac</sub></em>           (if source is premultiplied) </pre>
+ *
+ * No adjustment needs to be made to the destination alpha:
+ *
+ * <pre>
+ *      <em>A<sub>d</sub></em> = <em>A<sub>dr</sub></em> </pre>
+ *
+ * <p>
+ * The destination color components need to be adjusted only if
+ * they are not in premultiplied form:
+ *
+ * <pre>
+ *      <em>C<sub>d</sub></em> = <em>C<sub>dr</sub></em> * <em>A<sub>d</sub></em>    (if destination is not premultiplied)
+ *      <em>C<sub>d</sub></em> = <em>C<sub>dr</sub></em>         (if destination is premultiplied) </pre>
+ *
+ * <h3>Applying the Blending Equation</h3>
+ *
+ * <p>
+ * The adjusted <em>A<sub>s</sub></em>, <em>A<sub>d</sub></em>,
+ * <em>C<sub>s</sub></em>, and <em>C<sub>d</sub></em> are used in the standard
+ * Porter and Duff equations to calculate the blending factors
+ * <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em> and then the resulting
+ * premultiplied components <em>A<sub>r</sub></em> and <em>C<sub>r</sub></em>.
+ *
+ * <h3>Preparing Results</h3>
+ *
+ * <p>
+ * The results only need to be adjusted if they are to be stored
+ * back into a destination buffer that holds data that is not
+ * premultiplied, using the following equations:
+ *
+ * <pre>
+ *      <em>A<sub>df</sub></em> = <em>A<sub>r</sub></em>
+ *      <em>C<sub>df</sub></em> = <em>C<sub>r</sub></em>                 (if dest is premultiplied)
+ *      <em>C<sub>df</sub></em> = <em>C<sub>r</sub></em> / <em>A<sub>r</sub></em>            (if dest is not premultiplied) </pre>
+ *
+ * Note that since the division is undefined if the resulting alpha
+ * is zero, the division in that case is omitted to avoid the "divide
+ * by zero" and the color components are left as
+ * all zeros.
+ *
+ * <h3>Performance Considerations</h3>
+ *
+ * <p>
+ * For performance reasons, it is preferable that
+ * <code>Raster</code> objects passed to the <code>compose</code>
+ * method of a {@link CompositeContext} object created by the
+ * <code>AlphaComposite</code> class have premultiplied data.
+ * If either the source <code>Raster</code>
+ * or the destination <code>Raster</code>
+ * is not premultiplied, however,
+ * appropriate conversions are performed before and after the compositing
+ * operation.
+ *
+ * <h3><a name="caveats">Implementation Caveats</a></h3>
+ *
+ * <ul>
+ * <li>
+ * Many sources, such as some of the opaque image types listed
+ * in the <code>BufferedImage</code> class, do not store alpha values
+ * for their pixels.  Such sources supply an alpha of 1.0 for
+ * all of their pixels.
+ *
+ * <li>
+ * Many destinations also have no place to store the alpha values
+ * that result from the blending calculations performed by this class.
+ * Such destinations thus implicitly discard the resulting
+ * alpha values that this class produces.
+ * It is recommended that such destinations should treat their stored
+ * color values as non-premultiplied and divide the resulting color
+ * values by the resulting alpha value before storing the color
+ * values and discarding the alpha value.
+ *
+ * <li>
+ * The accuracy of the results depends on the manner in which pixels
+ * are stored in the destination.
+ * An image format that provides at least 8 bits of storage per color
+ * and alpha component is at least adequate for use as a destination
+ * for a sequence of a few to a dozen compositing operations.
+ * An image format with fewer than 8 bits of storage per component
+ * is of limited use for just one or two compositing operations
+ * before the rounding errors dominate the results.
+ * An image format
+ * that does not separately store
+ * color components is not a
+ * good candidate for any type of translucent blending.
+ * For example, <code>BufferedImage.TYPE_BYTE_INDEXED</code>
+ * should not be used as a destination for a blending operation
+ * because every operation
+ * can introduce large errors, due to
+ * the need to choose a pixel from a limited palette to match the
+ * results of the blending equations.
+ *
+ * <li>
+ * Nearly all formats store pixels as discrete integers rather than
+ * the floating point values used in the reference equations above.
+ * The implementation can either scale the integer pixel
+ * values into floating point values in the range 0.0 to 1.0 or
+ * use slightly modified versions of the equations
+ * that operate entirely in the integer domain and yet produce
+ * analogous results to the reference equations.
+ *
+ * <p>
+ * Typically the integer values are related to the floating point
+ * values in such a way that the integer 0 is equated
+ * to the floating point value 0.0 and the integer
+ * 2^<em>n</em>-1 (where <em>n</em> is the number of bits
+ * in the representation) is equated to 1.0.
+ * For 8-bit representations, this means that 0x00
+ * represents 0.0 and 0xff represents
+ * 1.0.
+ *
+ * <li>
+ * The internal implementation can approximate some of the equations
+ * and it can also eliminate some steps to avoid unnecessary operations.
+ * For example, consider a discrete integer image with non-premultiplied
+ * alpha values that uses 8 bits per component for storage.
+ * The stored values for a
+ * nearly transparent darkened red might be:
+ *
+ * <pre>
+ *    (A, R, G, B) = (0x01, 0xb0, 0x00, 0x00)</pre>
+ *
+ * <p>
+ * If integer math were being used and this value were being
+ * composited in
+ * <a href="#SRC"><code>SRC</code></a>
+ * mode with no extra alpha, then the math would
+ * indicate that the results were (in integer format):
+ *
+ * <pre>
+ *    (A, R, G, B) = (0x01, 0x01, 0x00, 0x00)</pre>
+ *
+ * <p>
+ * Note that the intermediate values, which are always in premultiplied
+ * form, would only allow the integer red component to be either 0x00
+ * or 0x01.  When we try to store this result back into a destination
+ * that is not premultiplied, dividing out the alpha will give us
+ * very few choices for the non-premultiplied red value.
+ * In this case an implementation that performs the math in integer
+ * space without shortcuts is likely to end up with the final pixel
+ * values of:
+ *
+ * <pre>
+ *    (A, R, G, B) = (0x01, 0xff, 0x00, 0x00)</pre>
+ *
+ * <p>
+ * (Note that 0x01 divided by 0x01 gives you 1.0, which is equivalent
+ * to the value 0xff in an 8-bit storage format.)
+ *
+ * <p>
+ * Alternately, an implementation that uses floating point math
+ * might produce more accurate results and end up returning to the
+ * original pixel value with little, if any, roundoff error.
+ * Or, an implementation using integer math might decide that since
+ * the equations boil down to a virtual NOP on the color values
+ * if performed in a floating point space, it can transfer the
+ * pixel untouched to the destination and avoid all the math entirely.
+ *
+ * <p>
+ * These implementations all attempt to honor the
+ * same equations, but use different tradeoffs of integer and
+ * floating point math and reduced or full equations.
+ * To account for such differences, it is probably best to
+ * expect only that the premultiplied form of the results to
+ * match between implementations and image formats.  In this
+ * case both answers, expressed in premultiplied form would
+ * equate to:
+ *
+ * <pre>
+ *    (A, R, G, B) = (0x01, 0x01, 0x00, 0x00)</pre>
+ *
+ * <p>
+ * and thus they would all match.
+ *
+ * <li>
+ * Because of the technique of simplifying the equations for
+ * calculation efficiency, some implementations might perform
+ * differently when encountering result alpha values of 0.0
+ * on a non-premultiplied destination.
+ * Note that the simplification of removing the divide by alpha
+ * in the case of the SRC rule is technically not valid if the
+ * denominator (alpha) is 0.
+ * But, since the results should only be expected to be accurate
+ * when viewed in premultiplied form, a resulting alpha of 0
+ * essentially renders the resulting color components irrelevant
+ * and so exact behavior in this case should not be expected.
+ * </ul>
+ * @see Composite
+ * @see CompositeContext
+ */
+
+public final class AlphaComposite implements Composite {
+    /**
+     * Both the color and the alpha of the destination are cleared
+     * (Porter-Duff Clear rule).
+     * Neither the source nor the destination is used as input.
+     *<p>
+     * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = 0, thus:
+     *<pre>
+     *  <em>A<sub>r</sub></em> = 0
+     *  <em>C<sub>r</sub></em> = 0
+     *</pre>
+     */
+    @Native public static final int     CLEAR           = 1;
+
+    /**
+     * The source is copied to the destination
+     * (Porter-Duff Source rule).
+     * The destination is not used as input.
+     *<p>
+     * <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = 0, thus:
+     *<pre>
+     *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>
+     *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>
+     *</pre>
+     */
+    @Native public static final int     SRC             = 2;
+
+    /**
+     * The destination is left untouched
+     * (Porter-Duff Destination rule).
+     *<p>
+     * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = 1, thus:
+     *<pre>
+     *  <em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>
+     *  <em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>
+     *</pre>
+     * @since 1.4
+     */
+    @Native public static final int     DST             = 9;
+    // Note that DST was added in 1.4 so it is numbered out of order...
+
+    /**
+     * The source is composited over the destination
+     * (Porter-Duff Source Over Destination rule).
+     *<p>
+     * <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
+     *<pre>
+     *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em> + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
+     *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em> + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
+     *</pre>
+     */
+    @Native public static final int     SRC_OVER        = 3;
+
+    /**
+     * The destination is composited over the source and
+     * the result replaces the destination
+     * (Porter-Duff Destination Over Source rule).
+     *<p>
+     * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = 1, thus:
+     *<pre>
+     *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>
+     *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>
+     *</pre>
+     */
+    @Native public static final int     DST_OVER        = 4;
+
+    /**
+     * The part of the source lying inside of the destination replaces
+     * the destination
+     * (Porter-Duff Source In Destination rule).
+     *<p>
+     * <em>F<sub>s</sub></em> = <em>A<sub>d</sub></em> and <em>F<sub>d</sub></em> = 0, thus:
+     *<pre>
+     *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>A<sub>d</sub></em>
+     *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>A<sub>d</sub></em>
+     *</pre>
+     */
+    @Native public static final int     SRC_IN          = 5;
+
+    /**
+     * The part of the destination lying inside of the source
+     * replaces the destination
+     * (Porter-Duff Destination In Source rule).
+     *<p>
+     * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = <em>A<sub>s</sub></em>, thus:
+     *<pre>
+     *  <em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>*<em>A<sub>s</sub></em>
+     *  <em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>*<em>A<sub>s</sub></em>
+     *</pre>
+     */
+    @Native public static final int     DST_IN          = 6;
+
+    /**
+     * The part of the source lying outside of the destination
+     * replaces the destination
+     * (Porter-Duff Source Held Out By Destination rule).
+     *<p>
+     * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = 0, thus:
+     *<pre>
+     *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>)
+     *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>)
+     *</pre>
+     */
+    @Native public static final int     SRC_OUT         = 7;
+
+    /**
+     * The part of the destination lying outside of the source
+     * replaces the destination
+     * (Porter-Duff Destination Held Out By Source rule).
+     *<p>
+     * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
+     *<pre>
+     *  <em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
+     *  <em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
+     *</pre>
+     */
+    @Native public static final int     DST_OUT         = 8;
+
+    // Rule 9 is DST which is defined above where it fits into the
+    // list logically, rather than numerically
+    //
+    // public static final int  DST             = 9;
+
+    /**
+     * The part of the source lying inside of the destination
+     * is composited onto the destination
+     * (Porter-Duff Source Atop Destination rule).
+     *<p>
+     * <em>F<sub>s</sub></em> = <em>A<sub>d</sub></em> and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
+     *<pre>
+     *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>A<sub>d</sub></em> + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>) = <em>A<sub>d</sub></em>
+     *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>A<sub>d</sub></em> + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
+     *</pre>
+     * @since 1.4
+     */
+    @Native public static final int     SRC_ATOP        = 10;
+
+    /**
+     * The part of the destination lying inside of the source
+     * is composited over the source and replaces the destination
+     * (Porter-Duff Destination Atop Source rule).
+     *<p>
+     * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = <em>A<sub>s</sub></em>, thus:
+     *<pre>
+     *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>*<em>A<sub>s</sub></em> = <em>A<sub>s</sub></em>
+     *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>*<em>A<sub>s</sub></em>
+     *</pre>
+     * @since 1.4
+     */
+    @Native public static final int     DST_ATOP        = 11;
+
+    /**
+     * The part of the source that lies outside of the destination
+     * is combined with the part of the destination that lies outside
+     * of the source
+     * (Porter-Duff Source Xor Destination rule).
+     *<p>
+     * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
+     *<pre>
+     *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
+     *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
+     *</pre>
+     * @since 1.4
+     */
+    @Native public static final int     XOR             = 12;
+
+    /**
+     * <code>AlphaComposite</code> object that implements the opaque CLEAR rule
+     * with an alpha of 1.0f.
+     * @see #CLEAR
+     */
+    public static final AlphaComposite Clear    = new AlphaComposite(CLEAR);
+
+    /**
+     * <code>AlphaComposite</code> object that implements the opaque SRC rule
+     * with an alpha of 1.0f.
+     * @see #SRC
+     */
+    public static final AlphaComposite Src      = new AlphaComposite(SRC);
+
+    /**
+     * <code>AlphaComposite</code> object that implements the opaque DST rule
+     * with an alpha of 1.0f.
+     * @see #DST
+     * @since 1.4
+     */
+    public static final AlphaComposite Dst      = new AlphaComposite(DST);
+
+    /**
+     * <code>AlphaComposite</code> object that implements the opaque SRC_OVER rule
+     * with an alpha of 1.0f.
+     * @see #SRC_OVER
+     */
+    public static final AlphaComposite SrcOver  = new AlphaComposite(SRC_OVER);
+
+    /**
+     * <code>AlphaComposite</code> object that implements the opaque DST_OVER rule
+     * with an alpha of 1.0f.
+     * @see #DST_OVER
+     */
+    public static final AlphaComposite DstOver  = new AlphaComposite(DST_OVER);
+
+    /**
+     * <code>AlphaComposite</code> object that implements the opaque SRC_IN rule
+     * with an alpha of 1.0f.
+     * @see #SRC_IN
+     */
+    public static final AlphaComposite SrcIn    = new AlphaComposite(SRC_IN);
+
+    /**
+     * <code>AlphaComposite</code> object that implements the opaque DST_IN rule
+     * with an alpha of 1.0f.
+     * @see #DST_IN
+     */
+    public static final AlphaComposite DstIn    = new AlphaComposite(DST_IN);
+
+    /**
+     * <code>AlphaComposite</code> object that implements the opaque SRC_OUT rule
+     * with an alpha of 1.0f.
+     * @see #SRC_OUT
+     */
+    public static final AlphaComposite SrcOut   = new AlphaComposite(SRC_OUT);
+
+    /**
+     * <code>AlphaComposite</code> object that implements the opaque DST_OUT rule
+     * with an alpha of 1.0f.
+     * @see #DST_OUT
+     */
+    public static final AlphaComposite DstOut   = new AlphaComposite(DST_OUT);
+
+    /**
+     * <code>AlphaComposite</code> object that implements the opaque SRC_ATOP rule
+     * with an alpha of 1.0f.
+     * @see #SRC_ATOP
+     * @since 1.4
+     */
+    public static final AlphaComposite SrcAtop  = new AlphaComposite(SRC_ATOP);
+
+    /**
+     * <code>AlphaComposite</code> object that implements the opaque DST_ATOP rule
+     * with an alpha of 1.0f.
+     * @see #DST_ATOP
+     * @since 1.4
+     */
+    public static final AlphaComposite DstAtop  = new AlphaComposite(DST_ATOP);
+
+    /**
+     * <code>AlphaComposite</code> object that implements the opaque XOR rule
+     * with an alpha of 1.0f.
+     * @see #XOR
+     * @since 1.4
+     */
+    public static final AlphaComposite Xor      = new AlphaComposite(XOR);
+
+    @Native private static final int MIN_RULE = CLEAR;
+    @Native private static final int MAX_RULE = XOR;
+
+    float extraAlpha;
+    int rule;
+
+    private AlphaComposite(int rule) {
+        this(rule, 1.0f);
+    }
+
+    private AlphaComposite(int rule, float alpha) {
+        if (rule < MIN_RULE || rule > MAX_RULE) {
+            throw new IllegalArgumentException("unknown composite rule");
+        }
+        if (alpha >= 0.0f && alpha <= 1.0f) {
+            this.rule = rule;
+            this.extraAlpha = alpha;
+        } else {
+            throw new IllegalArgumentException("alpha value out of range");
+        }
+    }
+
+    /**
+     * Creates an <code>AlphaComposite</code> object with the specified rule.
+     *
+     * @param rule the compositing rule
+     * @return the {@code AlphaComposite} object created
+     * @throws IllegalArgumentException if <code>rule</code> is not one of
+     *         the following:  {@link #CLEAR}, {@link #SRC}, {@link #DST},
+     *         {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN},
+     *         {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT},
+     *         {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR}
+     */
+    public static AlphaComposite getInstance(int rule) {
+        switch (rule) {
+        case CLEAR:
+            return Clear;
+        case SRC:
+            return Src;
+        case DST:
+            return Dst;
+        case SRC_OVER:
+            return SrcOver;
+        case DST_OVER:
+            return DstOver;
+        case SRC_IN:
+            return SrcIn;
+        case DST_IN:
+            return DstIn;
+        case SRC_OUT:
+            return SrcOut;
+        case DST_OUT:
+            return DstOut;
+        case SRC_ATOP:
+            return SrcAtop;
+        case DST_ATOP:
+            return DstAtop;
+        case XOR:
+            return Xor;
+        default:
+            throw new IllegalArgumentException("unknown composite rule");
+        }
+    }
+
+    /**
+     * Creates an <code>AlphaComposite</code> object with the specified rule and
+     * the constant alpha to multiply with the alpha of the source.
+     * The source is multiplied with the specified alpha before being composited
+     * with the destination.
+     *
+     * @param rule the compositing rule
+     * @param alpha the constant alpha to be multiplied with the alpha of
+     * the source. <code>alpha</code> must be a floating point number in the
+     * inclusive range [0.0,&nbsp;1.0].
+     * @return the {@code AlphaComposite} object created
+     * @throws IllegalArgumentException if
+     *         <code>alpha</code> is less than 0.0 or greater than 1.0, or if
+     *         <code>rule</code> is not one of
+     *         the following:  {@link #CLEAR}, {@link #SRC}, {@link #DST},
+     *         {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN},
+     *         {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT},
+     *         {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR}
+     */
+    public static AlphaComposite getInstance(int rule, float alpha) {
+        if (alpha == 1.0f) {
+            return getInstance(rule);
+        }
+        return new AlphaComposite(rule, alpha);
+    }
+
+    /**
+     * Creates a context for the compositing operation.
+     * The context contains state that is used in performing
+     * the compositing operation.
+     * @param srcColorModel  the {@link ColorModel} of the source
+     * @param dstColorModel  the <code>ColorModel</code> of the destination
+     * @return the <code>CompositeContext</code> object to be used to perform
+     * compositing operations.
+     */
+    public CompositeContext createContext(ColorModel srcColorModel,
+                                          ColorModel dstColorModel,
+                                          RenderingHints hints) {
+        return new SunCompositeContext(this, srcColorModel, dstColorModel);
+    }
+
+    /**
+     * Returns the alpha value of this <code>AlphaComposite</code>.  If this
+     * <code>AlphaComposite</code> does not have an alpha value, 1.0 is returned.
+     * @return the alpha value of this <code>AlphaComposite</code>.
+     */
+    public float getAlpha() {
+        return extraAlpha;
+    }
+
+    /**
+     * Returns the compositing rule of this <code>AlphaComposite</code>.
+     * @return the compositing rule of this <code>AlphaComposite</code>.
+     */
+    public int getRule() {
+        return rule;
+    }
+
+    /**
+     * Returns a similar <code>AlphaComposite</code> object that uses
+     * the specified compositing rule.
+     * If this object already uses the specified compositing rule,
+     * this object is returned.
+     * @return an <code>AlphaComposite</code> object derived from
+     * this object that uses the specified compositing rule.
+     * @param rule the compositing rule
+     * @throws IllegalArgumentException if
+     *         <code>rule</code> is not one of
+     *         the following:  {@link #CLEAR}, {@link #SRC}, {@link #DST},
+     *         {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN},
+     *         {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT},
+     *         {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR}
+     * @since 1.6
+     */
+    public AlphaComposite derive(int rule) {
+        return (this.rule == rule)
+            ? this
+            : getInstance(rule, this.extraAlpha);
+    }
+
+    /**
+     * Returns a similar <code>AlphaComposite</code> object that uses
+     * the specified alpha value.
+     * If this object already has the specified alpha value,
+     * this object is returned.
+     * @return an <code>AlphaComposite</code> object derived from
+     * this object that uses the specified alpha value.
+     * @param alpha the constant alpha to be multiplied with the alpha of
+     * the source. <code>alpha</code> must be a floating point number in the
+     * inclusive range [0.0,&nbsp;1.0].
+     * @throws IllegalArgumentException if
+     *         <code>alpha</code> is less than 0.0 or greater than 1.0
+     * @since 1.6
+     */
+    public AlphaComposite derive(float alpha) {
+        return (this.extraAlpha == alpha)
+            ? this
+            : getInstance(this.rule, alpha);
+    }
+
+    /**
+     * Returns the hashcode for this composite.
+     * @return      a hash code for this composite.
+     */
+    public int hashCode() {
+        return (Float.floatToIntBits(extraAlpha) * 31 + rule);
+    }
+
+    /**
+     * Determines whether the specified object is equal to this
+     * <code>AlphaComposite</code>.
+     * <p>
+     * The result is <code>true</code> if and only if
+     * the argument is not <code>null</code> and is an
+     * <code>AlphaComposite</code> object that has the same
+     * compositing rule and alpha value as this object.
+     *
+     * @param obj the <code>Object</code> to test for equality
+     * @return <code>true</code> if <code>obj</code> equals this
+     * <code>AlphaComposite</code>; <code>false</code> otherwise.
+     */
+    public boolean equals(Object obj) {
+        if (!(obj instanceof AlphaComposite)) {
+            return false;
+        }
+
+        AlphaComposite ac = (AlphaComposite) obj;
+
+        if (rule != ac.rule) {
+            return false;
+        }
+
+        if (extraAlpha != ac.extraAlpha) {
+            return false;
+        }
+
+        return true;
+    }
+
+}