jdk/src/java.base/share/classes/java/util/concurrent/ArrayBlockingQueue.java
changeset 25859 3317bb8137f4
parent 21278 ef8a3a2a72f2
child 32991 b27c76b82713
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.base/share/classes/java/util/concurrent/ArrayBlockingQueue.java	Sun Aug 17 15:54:13 2014 +0100
@@ -0,0 +1,1417 @@
+/*
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+/*
+ * This file is available under and governed by the GNU General Public
+ * License version 2 only, as published by the Free Software Foundation.
+ * However, the following notice accompanied the original version of this
+ * file:
+ *
+ * Written by Doug Lea with assistance from members of JCP JSR-166
+ * Expert Group and released to the public domain, as explained at
+ * http://creativecommons.org/publicdomain/zero/1.0/
+ */
+
+package java.util.concurrent;
+import java.util.concurrent.locks.Condition;
+import java.util.concurrent.locks.ReentrantLock;
+import java.util.AbstractQueue;
+import java.util.Collection;
+import java.util.Iterator;
+import java.util.NoSuchElementException;
+import java.lang.ref.WeakReference;
+import java.util.Spliterators;
+import java.util.Spliterator;
+
+/**
+ * A bounded {@linkplain BlockingQueue blocking queue} backed by an
+ * array.  This queue orders elements FIFO (first-in-first-out).  The
+ * <em>head</em> of the queue is that element that has been on the
+ * queue the longest time.  The <em>tail</em> of the queue is that
+ * element that has been on the queue the shortest time. New elements
+ * are inserted at the tail of the queue, and the queue retrieval
+ * operations obtain elements at the head of the queue.
+ *
+ * <p>This is a classic &quot;bounded buffer&quot;, in which a
+ * fixed-sized array holds elements inserted by producers and
+ * extracted by consumers.  Once created, the capacity cannot be
+ * changed.  Attempts to {@code put} an element into a full queue
+ * will result in the operation blocking; attempts to {@code take} an
+ * element from an empty queue will similarly block.
+ *
+ * <p>This class supports an optional fairness policy for ordering
+ * waiting producer and consumer threads.  By default, this ordering
+ * is not guaranteed. However, a queue constructed with fairness set
+ * to {@code true} grants threads access in FIFO order. Fairness
+ * generally decreases throughput but reduces variability and avoids
+ * starvation.
+ *
+ * <p>This class and its iterator implement all of the
+ * <em>optional</em> methods of the {@link Collection} and {@link
+ * Iterator} interfaces.
+ *
+ * <p>This class is a member of the
+ * <a href="{@docRoot}/../technotes/guides/collections/index.html">
+ * Java Collections Framework</a>.
+ *
+ * @since 1.5
+ * @author Doug Lea
+ * @param <E> the type of elements held in this collection
+ */
+public class ArrayBlockingQueue<E> extends AbstractQueue<E>
+        implements BlockingQueue<E>, java.io.Serializable {
+
+    /**
+     * Serialization ID. This class relies on default serialization
+     * even for the items array, which is default-serialized, even if
+     * it is empty. Otherwise it could not be declared final, which is
+     * necessary here.
+     */
+    private static final long serialVersionUID = -817911632652898426L;
+
+    /** The queued items */
+    final Object[] items;
+
+    /** items index for next take, poll, peek or remove */
+    int takeIndex;
+
+    /** items index for next put, offer, or add */
+    int putIndex;
+
+    /** Number of elements in the queue */
+    int count;
+
+    /*
+     * Concurrency control uses the classic two-condition algorithm
+     * found in any textbook.
+     */
+
+    /** Main lock guarding all access */
+    final ReentrantLock lock;
+
+    /** Condition for waiting takes */
+    private final Condition notEmpty;
+
+    /** Condition for waiting puts */
+    private final Condition notFull;
+
+    /**
+     * Shared state for currently active iterators, or null if there
+     * are known not to be any.  Allows queue operations to update
+     * iterator state.
+     */
+    transient Itrs itrs = null;
+
+    // Internal helper methods
+
+    /**
+     * Circularly decrement i.
+     */
+    final int dec(int i) {
+        return ((i == 0) ? items.length : i) - 1;
+    }
+
+    /**
+     * Returns item at index i.
+     */
+    @SuppressWarnings("unchecked")
+    final E itemAt(int i) {
+        return (E) items[i];
+    }
+
+    /**
+     * Throws NullPointerException if argument is null.
+     *
+     * @param v the element
+     */
+    private static void checkNotNull(Object v) {
+        if (v == null)
+            throw new NullPointerException();
+    }
+
+    /**
+     * Inserts element at current put position, advances, and signals.
+     * Call only when holding lock.
+     */
+    private void enqueue(E x) {
+        // assert lock.getHoldCount() == 1;
+        // assert items[putIndex] == null;
+        final Object[] items = this.items;
+        items[putIndex] = x;
+        if (++putIndex == items.length)
+            putIndex = 0;
+        count++;
+        notEmpty.signal();
+    }
+
+    /**
+     * Extracts element at current take position, advances, and signals.
+     * Call only when holding lock.
+     */
+    private E dequeue() {
+        // assert lock.getHoldCount() == 1;
+        // assert items[takeIndex] != null;
+        final Object[] items = this.items;
+        @SuppressWarnings("unchecked")
+        E x = (E) items[takeIndex];
+        items[takeIndex] = null;
+        if (++takeIndex == items.length)
+            takeIndex = 0;
+        count--;
+        if (itrs != null)
+            itrs.elementDequeued();
+        notFull.signal();
+        return x;
+    }
+
+    /**
+     * Deletes item at array index removeIndex.
+     * Utility for remove(Object) and iterator.remove.
+     * Call only when holding lock.
+     */
+    void removeAt(final int removeIndex) {
+        // assert lock.getHoldCount() == 1;
+        // assert items[removeIndex] != null;
+        // assert removeIndex >= 0 && removeIndex < items.length;
+        final Object[] items = this.items;
+        if (removeIndex == takeIndex) {
+            // removing front item; just advance
+            items[takeIndex] = null;
+            if (++takeIndex == items.length)
+                takeIndex = 0;
+            count--;
+            if (itrs != null)
+                itrs.elementDequeued();
+        } else {
+            // an "interior" remove
+
+            // slide over all others up through putIndex.
+            final int putIndex = this.putIndex;
+            for (int i = removeIndex;;) {
+                int next = i + 1;
+                if (next == items.length)
+                    next = 0;
+                if (next != putIndex) {
+                    items[i] = items[next];
+                    i = next;
+                } else {
+                    items[i] = null;
+                    this.putIndex = i;
+                    break;
+                }
+            }
+            count--;
+            if (itrs != null)
+                itrs.removedAt(removeIndex);
+        }
+        notFull.signal();
+    }
+
+    /**
+     * Creates an {@code ArrayBlockingQueue} with the given (fixed)
+     * capacity and default access policy.
+     *
+     * @param capacity the capacity of this queue
+     * @throws IllegalArgumentException if {@code capacity < 1}
+     */
+    public ArrayBlockingQueue(int capacity) {
+        this(capacity, false);
+    }
+
+    /**
+     * Creates an {@code ArrayBlockingQueue} with the given (fixed)
+     * capacity and the specified access policy.
+     *
+     * @param capacity the capacity of this queue
+     * @param fair if {@code true} then queue accesses for threads blocked
+     *        on insertion or removal, are processed in FIFO order;
+     *        if {@code false} the access order is unspecified.
+     * @throws IllegalArgumentException if {@code capacity < 1}
+     */
+    public ArrayBlockingQueue(int capacity, boolean fair) {
+        if (capacity <= 0)
+            throw new IllegalArgumentException();
+        this.items = new Object[capacity];
+        lock = new ReentrantLock(fair);
+        notEmpty = lock.newCondition();
+        notFull =  lock.newCondition();
+    }
+
+    /**
+     * Creates an {@code ArrayBlockingQueue} with the given (fixed)
+     * capacity, the specified access policy and initially containing the
+     * elements of the given collection,
+     * added in traversal order of the collection's iterator.
+     *
+     * @param capacity the capacity of this queue
+     * @param fair if {@code true} then queue accesses for threads blocked
+     *        on insertion or removal, are processed in FIFO order;
+     *        if {@code false} the access order is unspecified.
+     * @param c the collection of elements to initially contain
+     * @throws IllegalArgumentException if {@code capacity} is less than
+     *         {@code c.size()}, or less than 1.
+     * @throws NullPointerException if the specified collection or any
+     *         of its elements are null
+     */
+    public ArrayBlockingQueue(int capacity, boolean fair,
+                              Collection<? extends E> c) {
+        this(capacity, fair);
+
+        final ReentrantLock lock = this.lock;
+        lock.lock(); // Lock only for visibility, not mutual exclusion
+        try {
+            int i = 0;
+            try {
+                for (E e : c) {
+                    checkNotNull(e);
+                    items[i++] = e;
+                }
+            } catch (ArrayIndexOutOfBoundsException ex) {
+                throw new IllegalArgumentException();
+            }
+            count = i;
+            putIndex = (i == capacity) ? 0 : i;
+        } finally {
+            lock.unlock();
+        }
+    }
+
+    /**
+     * Inserts the specified element at the tail of this queue if it is
+     * possible to do so immediately without exceeding the queue's capacity,
+     * returning {@code true} upon success and throwing an
+     * {@code IllegalStateException} if this queue is full.
+     *
+     * @param e the element to add
+     * @return {@code true} (as specified by {@link Collection#add})
+     * @throws IllegalStateException if this queue is full
+     * @throws NullPointerException if the specified element is null
+     */
+    public boolean add(E e) {
+        return super.add(e);
+    }
+
+    /**
+     * Inserts the specified element at the tail of this queue if it is
+     * possible to do so immediately without exceeding the queue's capacity,
+     * returning {@code true} upon success and {@code false} if this queue
+     * is full.  This method is generally preferable to method {@link #add},
+     * which can fail to insert an element only by throwing an exception.
+     *
+     * @throws NullPointerException if the specified element is null
+     */
+    public boolean offer(E e) {
+        checkNotNull(e);
+        final ReentrantLock lock = this.lock;
+        lock.lock();
+        try {
+            if (count == items.length)
+                return false;
+            else {
+                enqueue(e);
+                return true;
+            }
+        } finally {
+            lock.unlock();
+        }
+    }
+
+    /**
+     * Inserts the specified element at the tail of this queue, waiting
+     * for space to become available if the queue is full.
+     *
+     * @throws InterruptedException {@inheritDoc}
+     * @throws NullPointerException {@inheritDoc}
+     */
+    public void put(E e) throws InterruptedException {
+        checkNotNull(e);
+        final ReentrantLock lock = this.lock;
+        lock.lockInterruptibly();
+        try {
+            while (count == items.length)
+                notFull.await();
+            enqueue(e);
+        } finally {
+            lock.unlock();
+        }
+    }
+
+    /**
+     * Inserts the specified element at the tail of this queue, waiting
+     * up to the specified wait time for space to become available if
+     * the queue is full.
+     *
+     * @throws InterruptedException {@inheritDoc}
+     * @throws NullPointerException {@inheritDoc}
+     */
+    public boolean offer(E e, long timeout, TimeUnit unit)
+        throws InterruptedException {
+
+        checkNotNull(e);
+        long nanos = unit.toNanos(timeout);
+        final ReentrantLock lock = this.lock;
+        lock.lockInterruptibly();
+        try {
+            while (count == items.length) {
+                if (nanos <= 0)
+                    return false;
+                nanos = notFull.awaitNanos(nanos);
+            }
+            enqueue(e);
+            return true;
+        } finally {
+            lock.unlock();
+        }
+    }
+
+    public E poll() {
+        final ReentrantLock lock = this.lock;
+        lock.lock();
+        try {
+            return (count == 0) ? null : dequeue();
+        } finally {
+            lock.unlock();
+        }
+    }
+
+    public E take() throws InterruptedException {
+        final ReentrantLock lock = this.lock;
+        lock.lockInterruptibly();
+        try {
+            while (count == 0)
+                notEmpty.await();
+            return dequeue();
+        } finally {
+            lock.unlock();
+        }
+    }
+
+    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
+        long nanos = unit.toNanos(timeout);
+        final ReentrantLock lock = this.lock;
+        lock.lockInterruptibly();
+        try {
+            while (count == 0) {
+                if (nanos <= 0)
+                    return null;
+                nanos = notEmpty.awaitNanos(nanos);
+            }
+            return dequeue();
+        } finally {
+            lock.unlock();
+        }
+    }
+
+    public E peek() {
+        final ReentrantLock lock = this.lock;
+        lock.lock();
+        try {
+            return itemAt(takeIndex); // null when queue is empty
+        } finally {
+            lock.unlock();
+        }
+    }
+
+    // this doc comment is overridden to remove the reference to collections
+    // greater in size than Integer.MAX_VALUE
+    /**
+     * Returns the number of elements in this queue.
+     *
+     * @return the number of elements in this queue
+     */
+    public int size() {
+        final ReentrantLock lock = this.lock;
+        lock.lock();
+        try {
+            return count;
+        } finally {
+            lock.unlock();
+        }
+    }
+
+    // this doc comment is a modified copy of the inherited doc comment,
+    // without the reference to unlimited queues.
+    /**
+     * Returns the number of additional elements that this queue can ideally
+     * (in the absence of memory or resource constraints) accept without
+     * blocking. This is always equal to the initial capacity of this queue
+     * less the current {@code size} of this queue.
+     *
+     * <p>Note that you <em>cannot</em> always tell if an attempt to insert
+     * an element will succeed by inspecting {@code remainingCapacity}
+     * because it may be the case that another thread is about to
+     * insert or remove an element.
+     */
+    public int remainingCapacity() {
+        final ReentrantLock lock = this.lock;
+        lock.lock();
+        try {
+            return items.length - count;
+        } finally {
+            lock.unlock();
+        }
+    }
+
+    /**
+     * Removes a single instance of the specified element from this queue,
+     * if it is present.  More formally, removes an element {@code e} such
+     * that {@code o.equals(e)}, if this queue contains one or more such
+     * elements.
+     * Returns {@code true} if this queue contained the specified element
+     * (or equivalently, if this queue changed as a result of the call).
+     *
+     * <p>Removal of interior elements in circular array based queues
+     * is an intrinsically slow and disruptive operation, so should
+     * be undertaken only in exceptional circumstances, ideally
+     * only when the queue is known not to be accessible by other
+     * threads.
+     *
+     * @param o element to be removed from this queue, if present
+     * @return {@code true} if this queue changed as a result of the call
+     */
+    public boolean remove(Object o) {
+        if (o == null) return false;
+        final Object[] items = this.items;
+        final ReentrantLock lock = this.lock;
+        lock.lock();
+        try {
+            if (count > 0) {
+                final int putIndex = this.putIndex;
+                int i = takeIndex;
+                do {
+                    if (o.equals(items[i])) {
+                        removeAt(i);
+                        return true;
+                    }
+                    if (++i == items.length)
+                        i = 0;
+                } while (i != putIndex);
+            }
+            return false;
+        } finally {
+            lock.unlock();
+        }
+    }
+
+    /**
+     * Returns {@code true} if this queue contains the specified element.
+     * More formally, returns {@code true} if and only if this queue contains
+     * at least one element {@code e} such that {@code o.equals(e)}.
+     *
+     * @param o object to be checked for containment in this queue
+     * @return {@code true} if this queue contains the specified element
+     */
+    public boolean contains(Object o) {
+        if (o == null) return false;
+        final Object[] items = this.items;
+        final ReentrantLock lock = this.lock;
+        lock.lock();
+        try {
+            if (count > 0) {
+                final int putIndex = this.putIndex;
+                int i = takeIndex;
+                do {
+                    if (o.equals(items[i]))
+                        return true;
+                    if (++i == items.length)
+                        i = 0;
+                } while (i != putIndex);
+            }
+            return false;
+        } finally {
+            lock.unlock();
+        }
+    }
+
+    /**
+     * Returns an array containing all of the elements in this queue, in
+     * proper sequence.
+     *
+     * <p>The returned array will be "safe" in that no references to it are
+     * maintained by this queue.  (In other words, this method must allocate
+     * a new array).  The caller is thus free to modify the returned array.
+     *
+     * <p>This method acts as bridge between array-based and collection-based
+     * APIs.
+     *
+     * @return an array containing all of the elements in this queue
+     */
+    public Object[] toArray() {
+        Object[] a;
+        final ReentrantLock lock = this.lock;
+        lock.lock();
+        try {
+            final int count = this.count;
+            a = new Object[count];
+            int n = items.length - takeIndex;
+            if (count <= n)
+                System.arraycopy(items, takeIndex, a, 0, count);
+            else {
+                System.arraycopy(items, takeIndex, a, 0, n);
+                System.arraycopy(items, 0, a, n, count - n);
+            }
+        } finally {
+            lock.unlock();
+        }
+        return a;
+    }
+
+    /**
+     * Returns an array containing all of the elements in this queue, in
+     * proper sequence; the runtime type of the returned array is that of
+     * the specified array.  If the queue fits in the specified array, it
+     * is returned therein.  Otherwise, a new array is allocated with the
+     * runtime type of the specified array and the size of this queue.
+     *
+     * <p>If this queue fits in the specified array with room to spare
+     * (i.e., the array has more elements than this queue), the element in
+     * the array immediately following the end of the queue is set to
+     * {@code null}.
+     *
+     * <p>Like the {@link #toArray()} method, this method acts as bridge between
+     * array-based and collection-based APIs.  Further, this method allows
+     * precise control over the runtime type of the output array, and may,
+     * under certain circumstances, be used to save allocation costs.
+     *
+     * <p>Suppose {@code x} is a queue known to contain only strings.
+     * The following code can be used to dump the queue into a newly
+     * allocated array of {@code String}:
+     *
+     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
+     *
+     * Note that {@code toArray(new Object[0])} is identical in function to
+     * {@code toArray()}.
+     *
+     * @param a the array into which the elements of the queue are to
+     *          be stored, if it is big enough; otherwise, a new array of the
+     *          same runtime type is allocated for this purpose
+     * @return an array containing all of the elements in this queue
+     * @throws ArrayStoreException if the runtime type of the specified array
+     *         is not a supertype of the runtime type of every element in
+     *         this queue
+     * @throws NullPointerException if the specified array is null
+     */
+    @SuppressWarnings("unchecked")
+    public <T> T[] toArray(T[] a) {
+        final Object[] items = this.items;
+        final ReentrantLock lock = this.lock;
+        lock.lock();
+        try {
+            final int count = this.count;
+            final int len = a.length;
+            if (len < count)
+                a = (T[])java.lang.reflect.Array.newInstance(
+                    a.getClass().getComponentType(), count);
+            int n = items.length - takeIndex;
+            if (count <= n)
+                System.arraycopy(items, takeIndex, a, 0, count);
+            else {
+                System.arraycopy(items, takeIndex, a, 0, n);
+                System.arraycopy(items, 0, a, n, count - n);
+            }
+            if (len > count)
+                a[count] = null;
+        } finally {
+            lock.unlock();
+        }
+        return a;
+    }
+
+    public String toString() {
+        final ReentrantLock lock = this.lock;
+        lock.lock();
+        try {
+            int k = count;
+            if (k == 0)
+                return "[]";
+
+            final Object[] items = this.items;
+            StringBuilder sb = new StringBuilder();
+            sb.append('[');
+            for (int i = takeIndex; ; ) {
+                Object e = items[i];
+                sb.append(e == this ? "(this Collection)" : e);
+                if (--k == 0)
+                    return sb.append(']').toString();
+                sb.append(',').append(' ');
+                if (++i == items.length)
+                    i = 0;
+            }
+        } finally {
+            lock.unlock();
+        }
+    }
+
+    /**
+     * Atomically removes all of the elements from this queue.
+     * The queue will be empty after this call returns.
+     */
+    public void clear() {
+        final Object[] items = this.items;
+        final ReentrantLock lock = this.lock;
+        lock.lock();
+        try {
+            int k = count;
+            if (k > 0) {
+                final int putIndex = this.putIndex;
+                int i = takeIndex;
+                do {
+                    items[i] = null;
+                    if (++i == items.length)
+                        i = 0;
+                } while (i != putIndex);
+                takeIndex = putIndex;
+                count = 0;
+                if (itrs != null)
+                    itrs.queueIsEmpty();
+                for (; k > 0 && lock.hasWaiters(notFull); k--)
+                    notFull.signal();
+            }
+        } finally {
+            lock.unlock();
+        }
+    }
+
+    /**
+     * @throws UnsupportedOperationException {@inheritDoc}
+     * @throws ClassCastException            {@inheritDoc}
+     * @throws NullPointerException          {@inheritDoc}
+     * @throws IllegalArgumentException      {@inheritDoc}
+     */
+    public int drainTo(Collection<? super E> c) {
+        return drainTo(c, Integer.MAX_VALUE);
+    }
+
+    /**
+     * @throws UnsupportedOperationException {@inheritDoc}
+     * @throws ClassCastException            {@inheritDoc}
+     * @throws NullPointerException          {@inheritDoc}
+     * @throws IllegalArgumentException      {@inheritDoc}
+     */
+    public int drainTo(Collection<? super E> c, int maxElements) {
+        checkNotNull(c);
+        if (c == this)
+            throw new IllegalArgumentException();
+        if (maxElements <= 0)
+            return 0;
+        final Object[] items = this.items;
+        final ReentrantLock lock = this.lock;
+        lock.lock();
+        try {
+            int n = Math.min(maxElements, count);
+            int take = takeIndex;
+            int i = 0;
+            try {
+                while (i < n) {
+                    @SuppressWarnings("unchecked")
+                    E x = (E) items[take];
+                    c.add(x);
+                    items[take] = null;
+                    if (++take == items.length)
+                        take = 0;
+                    i++;
+                }
+                return n;
+            } finally {
+                // Restore invariants even if c.add() threw
+                if (i > 0) {
+                    count -= i;
+                    takeIndex = take;
+                    if (itrs != null) {
+                        if (count == 0)
+                            itrs.queueIsEmpty();
+                        else if (i > take)
+                            itrs.takeIndexWrapped();
+                    }
+                    for (; i > 0 && lock.hasWaiters(notFull); i--)
+                        notFull.signal();
+                }
+            }
+        } finally {
+            lock.unlock();
+        }
+    }
+
+    /**
+     * Returns an iterator over the elements in this queue in proper sequence.
+     * The elements will be returned in order from first (head) to last (tail).
+     *
+     * <p>The returned iterator is
+     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
+     *
+     * @return an iterator over the elements in this queue in proper sequence
+     */
+    public Iterator<E> iterator() {
+        return new Itr();
+    }
+
+    /**
+     * Shared data between iterators and their queue, allowing queue
+     * modifications to update iterators when elements are removed.
+     *
+     * This adds a lot of complexity for the sake of correctly
+     * handling some uncommon operations, but the combination of
+     * circular-arrays and supporting interior removes (i.e., those
+     * not at head) would cause iterators to sometimes lose their
+     * places and/or (re)report elements they shouldn't.  To avoid
+     * this, when a queue has one or more iterators, it keeps iterator
+     * state consistent by:
+     *
+     * (1) keeping track of the number of "cycles", that is, the
+     *     number of times takeIndex has wrapped around to 0.
+     * (2) notifying all iterators via the callback removedAt whenever
+     *     an interior element is removed (and thus other elements may
+     *     be shifted).
+     *
+     * These suffice to eliminate iterator inconsistencies, but
+     * unfortunately add the secondary responsibility of maintaining
+     * the list of iterators.  We track all active iterators in a
+     * simple linked list (accessed only when the queue's lock is
+     * held) of weak references to Itr.  The list is cleaned up using
+     * 3 different mechanisms:
+     *
+     * (1) Whenever a new iterator is created, do some O(1) checking for
+     *     stale list elements.
+     *
+     * (2) Whenever takeIndex wraps around to 0, check for iterators
+     *     that have been unused for more than one wrap-around cycle.
+     *
+     * (3) Whenever the queue becomes empty, all iterators are notified
+     *     and this entire data structure is discarded.
+     *
+     * So in addition to the removedAt callback that is necessary for
+     * correctness, iterators have the shutdown and takeIndexWrapped
+     * callbacks that help remove stale iterators from the list.
+     *
+     * Whenever a list element is examined, it is expunged if either
+     * the GC has determined that the iterator is discarded, or if the
+     * iterator reports that it is "detached" (does not need any
+     * further state updates).  Overhead is maximal when takeIndex
+     * never advances, iterators are discarded before they are
+     * exhausted, and all removals are interior removes, in which case
+     * all stale iterators are discovered by the GC.  But even in this
+     * case we don't increase the amortized complexity.
+     *
+     * Care must be taken to keep list sweeping methods from
+     * reentrantly invoking another such method, causing subtle
+     * corruption bugs.
+     */
+    class Itrs {
+
+        /**
+         * Node in a linked list of weak iterator references.
+         */
+        private class Node extends WeakReference<Itr> {
+            Node next;
+
+            Node(Itr iterator, Node next) {
+                super(iterator);
+                this.next = next;
+            }
+        }
+
+        /** Incremented whenever takeIndex wraps around to 0 */
+        int cycles = 0;
+
+        /** Linked list of weak iterator references */
+        private Node head;
+
+        /** Used to expunge stale iterators */
+        private Node sweeper = null;
+
+        private static final int SHORT_SWEEP_PROBES = 4;
+        private static final int LONG_SWEEP_PROBES = 16;
+
+        Itrs(Itr initial) {
+            register(initial);
+        }
+
+        /**
+         * Sweeps itrs, looking for and expunging stale iterators.
+         * If at least one was found, tries harder to find more.
+         * Called only from iterating thread.
+         *
+         * @param tryHarder whether to start in try-harder mode, because
+         * there is known to be at least one iterator to collect
+         */
+        void doSomeSweeping(boolean tryHarder) {
+            // assert lock.getHoldCount() == 1;
+            // assert head != null;
+            int probes = tryHarder ? LONG_SWEEP_PROBES : SHORT_SWEEP_PROBES;
+            Node o, p;
+            final Node sweeper = this.sweeper;
+            boolean passedGo;   // to limit search to one full sweep
+
+            if (sweeper == null) {
+                o = null;
+                p = head;
+                passedGo = true;
+            } else {
+                o = sweeper;
+                p = o.next;
+                passedGo = false;
+            }
+
+            for (; probes > 0; probes--) {
+                if (p == null) {
+                    if (passedGo)
+                        break;
+                    o = null;
+                    p = head;
+                    passedGo = true;
+                }
+                final Itr it = p.get();
+                final Node next = p.next;
+                if (it == null || it.isDetached()) {
+                    // found a discarded/exhausted iterator
+                    probes = LONG_SWEEP_PROBES; // "try harder"
+                    // unlink p
+                    p.clear();
+                    p.next = null;
+                    if (o == null) {
+                        head = next;
+                        if (next == null) {
+                            // We've run out of iterators to track; retire
+                            itrs = null;
+                            return;
+                        }
+                    }
+                    else
+                        o.next = next;
+                } else {
+                    o = p;
+                }
+                p = next;
+            }
+
+            this.sweeper = (p == null) ? null : o;
+        }
+
+        /**
+         * Adds a new iterator to the linked list of tracked iterators.
+         */
+        void register(Itr itr) {
+            // assert lock.getHoldCount() == 1;
+            head = new Node(itr, head);
+        }
+
+        /**
+         * Called whenever takeIndex wraps around to 0.
+         *
+         * Notifies all iterators, and expunges any that are now stale.
+         */
+        void takeIndexWrapped() {
+            // assert lock.getHoldCount() == 1;
+            cycles++;
+            for (Node o = null, p = head; p != null;) {
+                final Itr it = p.get();
+                final Node next = p.next;
+                if (it == null || it.takeIndexWrapped()) {
+                    // unlink p
+                    // assert it == null || it.isDetached();
+                    p.clear();
+                    p.next = null;
+                    if (o == null)
+                        head = next;
+                    else
+                        o.next = next;
+                } else {
+                    o = p;
+                }
+                p = next;
+            }
+            if (head == null)   // no more iterators to track
+                itrs = null;
+        }
+
+        /**
+         * Called whenever an interior remove (not at takeIndex) occurred.
+         *
+         * Notifies all iterators, and expunges any that are now stale.
+         */
+        void removedAt(int removedIndex) {
+            for (Node o = null, p = head; p != null;) {
+                final Itr it = p.get();
+                final Node next = p.next;
+                if (it == null || it.removedAt(removedIndex)) {
+                    // unlink p
+                    // assert it == null || it.isDetached();
+                    p.clear();
+                    p.next = null;
+                    if (o == null)
+                        head = next;
+                    else
+                        o.next = next;
+                } else {
+                    o = p;
+                }
+                p = next;
+            }
+            if (head == null)   // no more iterators to track
+                itrs = null;
+        }
+
+        /**
+         * Called whenever the queue becomes empty.
+         *
+         * Notifies all active iterators that the queue is empty,
+         * clears all weak refs, and unlinks the itrs datastructure.
+         */
+        void queueIsEmpty() {
+            // assert lock.getHoldCount() == 1;
+            for (Node p = head; p != null; p = p.next) {
+                Itr it = p.get();
+                if (it != null) {
+                    p.clear();
+                    it.shutdown();
+                }
+            }
+            head = null;
+            itrs = null;
+        }
+
+        /**
+         * Called whenever an element has been dequeued (at takeIndex).
+         */
+        void elementDequeued() {
+            // assert lock.getHoldCount() == 1;
+            if (count == 0)
+                queueIsEmpty();
+            else if (takeIndex == 0)
+                takeIndexWrapped();
+        }
+    }
+
+    /**
+     * Iterator for ArrayBlockingQueue.
+     *
+     * To maintain weak consistency with respect to puts and takes, we
+     * read ahead one slot, so as to not report hasNext true but then
+     * not have an element to return.
+     *
+     * We switch into "detached" mode (allowing prompt unlinking from
+     * itrs without help from the GC) when all indices are negative, or
+     * when hasNext returns false for the first time.  This allows the
+     * iterator to track concurrent updates completely accurately,
+     * except for the corner case of the user calling Iterator.remove()
+     * after hasNext() returned false.  Even in this case, we ensure
+     * that we don't remove the wrong element by keeping track of the
+     * expected element to remove, in lastItem.  Yes, we may fail to
+     * remove lastItem from the queue if it moved due to an interleaved
+     * interior remove while in detached mode.
+     */
+    private class Itr implements Iterator<E> {
+        /** Index to look for new nextItem; NONE at end */
+        private int cursor;
+
+        /** Element to be returned by next call to next(); null if none */
+        private E nextItem;
+
+        /** Index of nextItem; NONE if none, REMOVED if removed elsewhere */
+        private int nextIndex;
+
+        /** Last element returned; null if none or not detached. */
+        private E lastItem;
+
+        /** Index of lastItem, NONE if none, REMOVED if removed elsewhere */
+        private int lastRet;
+
+        /** Previous value of takeIndex, or DETACHED when detached */
+        private int prevTakeIndex;
+
+        /** Previous value of iters.cycles */
+        private int prevCycles;
+
+        /** Special index value indicating "not available" or "undefined" */
+        private static final int NONE = -1;
+
+        /**
+         * Special index value indicating "removed elsewhere", that is,
+         * removed by some operation other than a call to this.remove().
+         */
+        private static final int REMOVED = -2;
+
+        /** Special value for prevTakeIndex indicating "detached mode" */
+        private static final int DETACHED = -3;
+
+        Itr() {
+            // assert lock.getHoldCount() == 0;
+            lastRet = NONE;
+            final ReentrantLock lock = ArrayBlockingQueue.this.lock;
+            lock.lock();
+            try {
+                if (count == 0) {
+                    // assert itrs == null;
+                    cursor = NONE;
+                    nextIndex = NONE;
+                    prevTakeIndex = DETACHED;
+                } else {
+                    final int takeIndex = ArrayBlockingQueue.this.takeIndex;
+                    prevTakeIndex = takeIndex;
+                    nextItem = itemAt(nextIndex = takeIndex);
+                    cursor = incCursor(takeIndex);
+                    if (itrs == null) {
+                        itrs = new Itrs(this);
+                    } else {
+                        itrs.register(this); // in this order
+                        itrs.doSomeSweeping(false);
+                    }
+                    prevCycles = itrs.cycles;
+                    // assert takeIndex >= 0;
+                    // assert prevTakeIndex == takeIndex;
+                    // assert nextIndex >= 0;
+                    // assert nextItem != null;
+                }
+            } finally {
+                lock.unlock();
+            }
+        }
+
+        boolean isDetached() {
+            // assert lock.getHoldCount() == 1;
+            return prevTakeIndex < 0;
+        }
+
+        private int incCursor(int index) {
+            // assert lock.getHoldCount() == 1;
+            if (++index == items.length)
+                index = 0;
+            if (index == putIndex)
+                index = NONE;
+            return index;
+        }
+
+        /**
+         * Returns true if index is invalidated by the given number of
+         * dequeues, starting from prevTakeIndex.
+         */
+        private boolean invalidated(int index, int prevTakeIndex,
+                                    long dequeues, int length) {
+            if (index < 0)
+                return false;
+            int distance = index - prevTakeIndex;
+            if (distance < 0)
+                distance += length;
+            return dequeues > distance;
+        }
+
+        /**
+         * Adjusts indices to incorporate all dequeues since the last
+         * operation on this iterator.  Call only from iterating thread.
+         */
+        private void incorporateDequeues() {
+            // assert lock.getHoldCount() == 1;
+            // assert itrs != null;
+            // assert !isDetached();
+            // assert count > 0;
+
+            final int cycles = itrs.cycles;
+            final int takeIndex = ArrayBlockingQueue.this.takeIndex;
+            final int prevCycles = this.prevCycles;
+            final int prevTakeIndex = this.prevTakeIndex;
+
+            if (cycles != prevCycles || takeIndex != prevTakeIndex) {
+                final int len = items.length;
+                // how far takeIndex has advanced since the previous
+                // operation of this iterator
+                long dequeues = (cycles - prevCycles) * len
+                    + (takeIndex - prevTakeIndex);
+
+                // Check indices for invalidation
+                if (invalidated(lastRet, prevTakeIndex, dequeues, len))
+                    lastRet = REMOVED;
+                if (invalidated(nextIndex, prevTakeIndex, dequeues, len))
+                    nextIndex = REMOVED;
+                if (invalidated(cursor, prevTakeIndex, dequeues, len))
+                    cursor = takeIndex;
+
+                if (cursor < 0 && nextIndex < 0 && lastRet < 0)
+                    detach();
+                else {
+                    this.prevCycles = cycles;
+                    this.prevTakeIndex = takeIndex;
+                }
+            }
+        }
+
+        /**
+         * Called when itrs should stop tracking this iterator, either
+         * because there are no more indices to update (cursor < 0 &&
+         * nextIndex < 0 && lastRet < 0) or as a special exception, when
+         * lastRet >= 0, because hasNext() is about to return false for the
+         * first time.  Call only from iterating thread.
+         */
+        private void detach() {
+            // Switch to detached mode
+            // assert lock.getHoldCount() == 1;
+            // assert cursor == NONE;
+            // assert nextIndex < 0;
+            // assert lastRet < 0 || nextItem == null;
+            // assert lastRet < 0 ^ lastItem != null;
+            if (prevTakeIndex >= 0) {
+                // assert itrs != null;
+                prevTakeIndex = DETACHED;
+                // try to unlink from itrs (but not too hard)
+                itrs.doSomeSweeping(true);
+            }
+        }
+
+        /**
+         * For performance reasons, we would like not to acquire a lock in
+         * hasNext in the common case.  To allow for this, we only access
+         * fields (i.e. nextItem) that are not modified by update operations
+         * triggered by queue modifications.
+         */
+        public boolean hasNext() {
+            // assert lock.getHoldCount() == 0;
+            if (nextItem != null)
+                return true;
+            noNext();
+            return false;
+        }
+
+        private void noNext() {
+            final ReentrantLock lock = ArrayBlockingQueue.this.lock;
+            lock.lock();
+            try {
+                // assert cursor == NONE;
+                // assert nextIndex == NONE;
+                if (!isDetached()) {
+                    // assert lastRet >= 0;
+                    incorporateDequeues(); // might update lastRet
+                    if (lastRet >= 0) {
+                        lastItem = itemAt(lastRet);
+                        // assert lastItem != null;
+                        detach();
+                    }
+                }
+                // assert isDetached();
+                // assert lastRet < 0 ^ lastItem != null;
+            } finally {
+                lock.unlock();
+            }
+        }
+
+        public E next() {
+            // assert lock.getHoldCount() == 0;
+            final E x = nextItem;
+            if (x == null)
+                throw new NoSuchElementException();
+            final ReentrantLock lock = ArrayBlockingQueue.this.lock;
+            lock.lock();
+            try {
+                if (!isDetached())
+                    incorporateDequeues();
+                // assert nextIndex != NONE;
+                // assert lastItem == null;
+                lastRet = nextIndex;
+                final int cursor = this.cursor;
+                if (cursor >= 0) {
+                    nextItem = itemAt(nextIndex = cursor);
+                    // assert nextItem != null;
+                    this.cursor = incCursor(cursor);
+                } else {
+                    nextIndex = NONE;
+                    nextItem = null;
+                }
+            } finally {
+                lock.unlock();
+            }
+            return x;
+        }
+
+        public void remove() {
+            // assert lock.getHoldCount() == 0;
+            final ReentrantLock lock = ArrayBlockingQueue.this.lock;
+            lock.lock();
+            try {
+                if (!isDetached())
+                    incorporateDequeues(); // might update lastRet or detach
+                final int lastRet = this.lastRet;
+                this.lastRet = NONE;
+                if (lastRet >= 0) {
+                    if (!isDetached())
+                        removeAt(lastRet);
+                    else {
+                        final E lastItem = this.lastItem;
+                        // assert lastItem != null;
+                        this.lastItem = null;
+                        if (itemAt(lastRet) == lastItem)
+                            removeAt(lastRet);
+                    }
+                } else if (lastRet == NONE)
+                    throw new IllegalStateException();
+                // else lastRet == REMOVED and the last returned element was
+                // previously asynchronously removed via an operation other
+                // than this.remove(), so nothing to do.
+
+                if (cursor < 0 && nextIndex < 0)
+                    detach();
+            } finally {
+                lock.unlock();
+                // assert lastRet == NONE;
+                // assert lastItem == null;
+            }
+        }
+
+        /**
+         * Called to notify the iterator that the queue is empty, or that it
+         * has fallen hopelessly behind, so that it should abandon any
+         * further iteration, except possibly to return one more element
+         * from next(), as promised by returning true from hasNext().
+         */
+        void shutdown() {
+            // assert lock.getHoldCount() == 1;
+            cursor = NONE;
+            if (nextIndex >= 0)
+                nextIndex = REMOVED;
+            if (lastRet >= 0) {
+                lastRet = REMOVED;
+                lastItem = null;
+            }
+            prevTakeIndex = DETACHED;
+            // Don't set nextItem to null because we must continue to be
+            // able to return it on next().
+            //
+            // Caller will unlink from itrs when convenient.
+        }
+
+        private int distance(int index, int prevTakeIndex, int length) {
+            int distance = index - prevTakeIndex;
+            if (distance < 0)
+                distance += length;
+            return distance;
+        }
+
+        /**
+         * Called whenever an interior remove (not at takeIndex) occurred.
+         *
+         * @return true if this iterator should be unlinked from itrs
+         */
+        boolean removedAt(int removedIndex) {
+            // assert lock.getHoldCount() == 1;
+            if (isDetached())
+                return true;
+
+            final int cycles = itrs.cycles;
+            final int takeIndex = ArrayBlockingQueue.this.takeIndex;
+            final int prevCycles = this.prevCycles;
+            final int prevTakeIndex = this.prevTakeIndex;
+            final int len = items.length;
+            int cycleDiff = cycles - prevCycles;
+            if (removedIndex < takeIndex)
+                cycleDiff++;
+            final int removedDistance =
+                (cycleDiff * len) + (removedIndex - prevTakeIndex);
+            // assert removedDistance >= 0;
+            int cursor = this.cursor;
+            if (cursor >= 0) {
+                int x = distance(cursor, prevTakeIndex, len);
+                if (x == removedDistance) {
+                    if (cursor == putIndex)
+                        this.cursor = cursor = NONE;
+                }
+                else if (x > removedDistance) {
+                    // assert cursor != prevTakeIndex;
+                    this.cursor = cursor = dec(cursor);
+                }
+            }
+            int lastRet = this.lastRet;
+            if (lastRet >= 0) {
+                int x = distance(lastRet, prevTakeIndex, len);
+                if (x == removedDistance)
+                    this.lastRet = lastRet = REMOVED;
+                else if (x > removedDistance)
+                    this.lastRet = lastRet = dec(lastRet);
+            }
+            int nextIndex = this.nextIndex;
+            if (nextIndex >= 0) {
+                int x = distance(nextIndex, prevTakeIndex, len);
+                if (x == removedDistance)
+                    this.nextIndex = nextIndex = REMOVED;
+                else if (x > removedDistance)
+                    this.nextIndex = nextIndex = dec(nextIndex);
+            }
+            else if (cursor < 0 && nextIndex < 0 && lastRet < 0) {
+                this.prevTakeIndex = DETACHED;
+                return true;
+            }
+            return false;
+        }
+
+        /**
+         * Called whenever takeIndex wraps around to zero.
+         *
+         * @return true if this iterator should be unlinked from itrs
+         */
+        boolean takeIndexWrapped() {
+            // assert lock.getHoldCount() == 1;
+            if (isDetached())
+                return true;
+            if (itrs.cycles - prevCycles > 1) {
+                // All the elements that existed at the time of the last
+                // operation are gone, so abandon further iteration.
+                shutdown();
+                return true;
+            }
+            return false;
+        }
+
+//         /** Uncomment for debugging. */
+//         public String toString() {
+//             return ("cursor=" + cursor + " " +
+//                     "nextIndex=" + nextIndex + " " +
+//                     "lastRet=" + lastRet + " " +
+//                     "nextItem=" + nextItem + " " +
+//                     "lastItem=" + lastItem + " " +
+//                     "prevCycles=" + prevCycles + " " +
+//                     "prevTakeIndex=" + prevTakeIndex + " " +
+//                     "size()=" + size() + " " +
+//                     "remainingCapacity()=" + remainingCapacity());
+//         }
+    }
+
+    /**
+     * Returns a {@link Spliterator} over the elements in this queue.
+     *
+     * <p>The returned spliterator is
+     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
+     *
+     * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
+     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
+     *
+     * @implNote
+     * The {@code Spliterator} implements {@code trySplit} to permit limited
+     * parallelism.
+     *
+     * @return a {@code Spliterator} over the elements in this queue
+     * @since 1.8
+     */
+    public Spliterator<E> spliterator() {
+        return Spliterators.spliterator
+            (this, Spliterator.ORDERED | Spliterator.NONNULL |
+             Spliterator.CONCURRENT);
+    }
+
+}