src/java.desktop/share/classes/sun/java2d/pisces/PiscesRenderingEngine.java
changeset 48128 2d91c9a4f409
parent 48127 efc459cf351e
parent 48125 4e5124dacf91
child 48129 c134a8bee21a
--- a/src/java.desktop/share/classes/sun/java2d/pisces/PiscesRenderingEngine.java	Fri Nov 24 17:19:47 2017 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,656 +0,0 @@
-/*
- * Copyright (c) 2007, 2014, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-package sun.java2d.pisces;
-
-import java.awt.Shape;
-import java.awt.BasicStroke;
-import java.awt.geom.Path2D;
-import java.awt.geom.AffineTransform;
-import java.awt.geom.PathIterator;
-
-import sun.awt.geom.PathConsumer2D;
-import sun.java2d.pipe.Region;
-import sun.java2d.pipe.RenderingEngine;
-import sun.java2d.pipe.AATileGenerator;
-
-public class PiscesRenderingEngine extends RenderingEngine {
-    private static enum NormMode {OFF, ON_NO_AA, ON_WITH_AA}
-
-    /**
-     * Create a widened path as specified by the parameters.
-     * <p>
-     * The specified {@code src} {@link Shape} is widened according
-     * to the specified attribute parameters as per the
-     * {@link BasicStroke} specification.
-     *
-     * @param src the source path to be widened
-     * @param width the width of the widened path as per {@code BasicStroke}
-     * @param caps the end cap decorations as per {@code BasicStroke}
-     * @param join the segment join decorations as per {@code BasicStroke}
-     * @param miterlimit the miter limit as per {@code BasicStroke}
-     * @param dashes the dash length array as per {@code BasicStroke}
-     * @param dashphase the initial dash phase as per {@code BasicStroke}
-     * @return the widened path stored in a new {@code Shape} object
-     * @since 1.7
-     */
-    public Shape createStrokedShape(Shape src,
-                                    float width,
-                                    int caps,
-                                    int join,
-                                    float miterlimit,
-                                    float dashes[],
-                                    float dashphase)
-    {
-        final Path2D p2d = new Path2D.Float();
-
-        strokeTo(src,
-                 null,
-                 width,
-                 NormMode.OFF,
-                 caps,
-                 join,
-                 miterlimit,
-                 dashes,
-                 dashphase,
-                 new PathConsumer2D() {
-                     public void moveTo(float x0, float y0) {
-                         p2d.moveTo(x0, y0);
-                     }
-                     public void lineTo(float x1, float y1) {
-                         p2d.lineTo(x1, y1);
-                     }
-                     public void closePath() {
-                         p2d.closePath();
-                     }
-                     public void pathDone() {}
-                     public void curveTo(float x1, float y1,
-                                         float x2, float y2,
-                                         float x3, float y3) {
-                         p2d.curveTo(x1, y1, x2, y2, x3, y3);
-                     }
-                     public void quadTo(float x1, float y1, float x2, float y2) {
-                         p2d.quadTo(x1, y1, x2, y2);
-                     }
-                     public long getNativeConsumer() {
-                         throw new InternalError("Not using a native peer");
-                     }
-                 });
-        return p2d;
-    }
-
-    /**
-     * Sends the geometry for a widened path as specified by the parameters
-     * to the specified consumer.
-     * <p>
-     * The specified {@code src} {@link Shape} is widened according
-     * to the parameters specified by the {@link BasicStroke} object.
-     * Adjustments are made to the path as appropriate for the
-     * {@link java.awt.RenderingHints#VALUE_STROKE_NORMALIZE} hint if the
-     * {@code normalize} boolean parameter is true.
-     * Adjustments are made to the path as appropriate for the
-     * {@link java.awt.RenderingHints#VALUE_ANTIALIAS_ON} hint if the
-     * {@code antialias} boolean parameter is true.
-     * <p>
-     * The geometry of the widened path is forwarded to the indicated
-     * {@link PathConsumer2D} object as it is calculated.
-     *
-     * @param src the source path to be widened
-     * @param bs the {@code BasicSroke} object specifying the
-     *           decorations to be applied to the widened path
-     * @param normalize indicates whether stroke normalization should
-     *                  be applied
-     * @param antialias indicates whether or not adjustments appropriate
-     *                  to antialiased rendering should be applied
-     * @param consumer the {@code PathConsumer2D} instance to forward
-     *                 the widened geometry to
-     * @since 1.7
-     */
-    public void strokeTo(Shape src,
-                         AffineTransform at,
-                         BasicStroke bs,
-                         boolean thin,
-                         boolean normalize,
-                         boolean antialias,
-                         final PathConsumer2D consumer)
-    {
-        NormMode norm = (normalize) ?
-                ((antialias) ? NormMode.ON_WITH_AA : NormMode.ON_NO_AA)
-                : NormMode.OFF;
-        strokeTo(src, at, bs, thin, norm, antialias, consumer);
-    }
-
-    void strokeTo(Shape src,
-                  AffineTransform at,
-                  BasicStroke bs,
-                  boolean thin,
-                  NormMode normalize,
-                  boolean antialias,
-                  PathConsumer2D pc2d)
-    {
-        float lw;
-        if (thin) {
-            if (antialias) {
-                lw = userSpaceLineWidth(at, 0.5f);
-            } else {
-                lw = userSpaceLineWidth(at, 1.0f);
-            }
-        } else {
-            lw = bs.getLineWidth();
-        }
-        strokeTo(src,
-                 at,
-                 lw,
-                 normalize,
-                 bs.getEndCap(),
-                 bs.getLineJoin(),
-                 bs.getMiterLimit(),
-                 bs.getDashArray(),
-                 bs.getDashPhase(),
-                 pc2d);
-    }
-
-    private float userSpaceLineWidth(AffineTransform at, float lw) {
-
-        double widthScale;
-
-        if ((at.getType() & (AffineTransform.TYPE_GENERAL_TRANSFORM |
-                            AffineTransform.TYPE_GENERAL_SCALE)) != 0) {
-            widthScale = Math.sqrt(at.getDeterminant());
-        } else {
-            /* First calculate the "maximum scale" of this transform. */
-            double A = at.getScaleX();       // m00
-            double C = at.getShearX();       // m01
-            double B = at.getShearY();       // m10
-            double D = at.getScaleY();       // m11
-
-            /*
-             * Given a 2 x 2 affine matrix [ A B ] such that
-             *                             [ C D ]
-             * v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to
-             * find the maximum magnitude (norm) of the vector v'
-             * with the constraint (x^2 + y^2 = 1).
-             * The equation to maximize is
-             *     |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2)
-             * or  |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2).
-             * Since sqrt is monotonic we can maximize |v'|^2
-             * instead and plug in the substitution y = sqrt(1 - x^2).
-             * Trigonometric equalities can then be used to get
-             * rid of most of the sqrt terms.
-             */
-
-            double EA = A*A + B*B;          // x^2 coefficient
-            double EB = 2*(A*C + B*D);      // xy coefficient
-            double EC = C*C + D*D;          // y^2 coefficient
-
-            /*
-             * There is a lot of calculus omitted here.
-             *
-             * Conceptually, in the interests of understanding the
-             * terms that the calculus produced we can consider
-             * that EA and EC end up providing the lengths along
-             * the major axes and the hypot term ends up being an
-             * adjustment for the additional length along the off-axis
-             * angle of rotated or sheared ellipses as well as an
-             * adjustment for the fact that the equation below
-             * averages the two major axis lengths.  (Notice that
-             * the hypot term contains a part which resolves to the
-             * difference of these two axis lengths in the absence
-             * of rotation.)
-             *
-             * In the calculus, the ratio of the EB and (EA-EC) terms
-             * ends up being the tangent of 2*theta where theta is
-             * the angle that the long axis of the ellipse makes
-             * with the horizontal axis.  Thus, this equation is
-             * calculating the length of the hypotenuse of a triangle
-             * along that axis.
-             */
-
-            double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
-            /* sqrt omitted, compare to squared limits below. */
-            double widthsquared = ((EA + EC + hypot)/2.0);
-
-            widthScale = Math.sqrt(widthsquared);
-        }
-
-        return (float) (lw / widthScale);
-    }
-
-    void strokeTo(Shape src,
-                  AffineTransform at,
-                  float width,
-                  NormMode normalize,
-                  int caps,
-                  int join,
-                  float miterlimit,
-                  float dashes[],
-                  float dashphase,
-                  PathConsumer2D pc2d)
-    {
-        // We use strokerat and outat so that in Stroker and Dasher we can work only
-        // with the pre-transformation coordinates. This will repeat a lot of
-        // computations done in the path iterator, but the alternative is to
-        // work with transformed paths and compute untransformed coordinates
-        // as needed. This would be faster but I do not think the complexity
-        // of working with both untransformed and transformed coordinates in
-        // the same code is worth it.
-        // However, if a path's width is constant after a transformation,
-        // we can skip all this untransforming.
-
-        // If normalization is off we save some transformations by not
-        // transforming the input to pisces. Instead, we apply the
-        // transformation after the path processing has been done.
-        // We can't do this if normalization is on, because it isn't a good
-        // idea to normalize before the transformation is applied.
-        AffineTransform strokerat = null;
-        AffineTransform outat = null;
-
-        PathIterator pi = null;
-
-        if (at != null && !at.isIdentity()) {
-            final double a = at.getScaleX();
-            final double b = at.getShearX();
-            final double c = at.getShearY();
-            final double d = at.getScaleY();
-            final double det = a * d - c * b;
-            if (Math.abs(det) <= 2 * Float.MIN_VALUE) {
-                // this rendering engine takes one dimensional curves and turns
-                // them into 2D shapes by giving them width.
-                // However, if everything is to be passed through a singular
-                // transformation, these 2D shapes will be squashed down to 1D
-                // again so, nothing can be drawn.
-
-                // Every path needs an initial moveTo and a pathDone. If these
-                // are not there this causes a SIGSEGV in libawt.so (at the time
-                // of writing of this comment (September 16, 2010)). Actually,
-                // I am not sure if the moveTo is necessary to avoid the SIGSEGV
-                // but the pathDone is definitely needed.
-                pc2d.moveTo(0, 0);
-                pc2d.pathDone();
-                return;
-            }
-
-            // If the transform is a constant multiple of an orthogonal transformation
-            // then every length is just multiplied by a constant, so we just
-            // need to transform input paths to stroker and tell stroker
-            // the scaled width. This condition is satisfied if
-            // a*b == -c*d && a*a+c*c == b*b+d*d. In the actual check below, we
-            // leave a bit of room for error.
-            if (nearZero(a*b + c*d, 2) && nearZero(a*a+c*c - (b*b+d*d), 2)) {
-                double scale = Math.sqrt(a*a + c*c);
-                if (dashes != null) {
-                    dashes = java.util.Arrays.copyOf(dashes, dashes.length);
-                    for (int i = 0; i < dashes.length; i++) {
-                        dashes[i] = (float)(scale * dashes[i]);
-                    }
-                    dashphase = (float)(scale * dashphase);
-                }
-                width = (float)(scale * width);
-                pi = src.getPathIterator(at);
-                if (normalize != NormMode.OFF) {
-                    pi = new NormalizingPathIterator(pi, normalize);
-                }
-                // by now strokerat == null && outat == null. Input paths to
-                // stroker (and maybe dasher) will have the full transform at
-                // applied to them and nothing will happen to the output paths.
-            } else {
-                if (normalize != NormMode.OFF) {
-                    strokerat = at;
-                    pi = src.getPathIterator(at);
-                    pi = new NormalizingPathIterator(pi, normalize);
-                    // by now strokerat == at && outat == null. Input paths to
-                    // stroker (and maybe dasher) will have the full transform at
-                    // applied to them, then they will be normalized, and then
-                    // the inverse of *only the non translation part of at* will
-                    // be applied to the normalized paths. This won't cause problems
-                    // in stroker, because, suppose at = T*A, where T is just the
-                    // translation part of at, and A is the rest. T*A has already
-                    // been applied to Stroker/Dasher's input. Then Ainv will be
-                    // applied. Ainv*T*A is not equal to T, but it is a translation,
-                    // which means that none of stroker's assumptions about its
-                    // input will be violated. After all this, A will be applied
-                    // to stroker's output.
-                } else {
-                    outat = at;
-                    pi = src.getPathIterator(null);
-                    // outat == at && strokerat == null. This is because if no
-                    // normalization is done, we can just apply all our
-                    // transformations to stroker's output.
-                }
-            }
-        } else {
-            // either at is null or it's the identity. In either case
-            // we don't transform the path.
-            pi = src.getPathIterator(null);
-            if (normalize != NormMode.OFF) {
-                pi = new NormalizingPathIterator(pi, normalize);
-            }
-        }
-
-        // by now, at least one of outat and strokerat will be null. Unless at is not
-        // a constant multiple of an orthogonal transformation, they will both be
-        // null. In other cases, outat == at if normalization is off, and if
-        // normalization is on, strokerat == at.
-        pc2d = TransformingPathConsumer2D.transformConsumer(pc2d, outat);
-        pc2d = TransformingPathConsumer2D.deltaTransformConsumer(pc2d, strokerat);
-        pc2d = new Stroker(pc2d, width, caps, join, miterlimit);
-        if (dashes != null) {
-            pc2d = new Dasher(pc2d, dashes, dashphase);
-        }
-        pc2d = TransformingPathConsumer2D.inverseDeltaTransformConsumer(pc2d, strokerat);
-        pathTo(pi, pc2d);
-    }
-
-    private static boolean nearZero(double num, int nulps) {
-        return Math.abs(num) < nulps * Math.ulp(num);
-    }
-
-    private static class NormalizingPathIterator implements PathIterator {
-
-        private final PathIterator src;
-
-        // the adjustment applied to the current position.
-        private float curx_adjust, cury_adjust;
-        // the adjustment applied to the last moveTo position.
-        private float movx_adjust, movy_adjust;
-
-        // constants used in normalization computations
-        private final float lval, rval;
-
-        NormalizingPathIterator(PathIterator src, NormMode mode) {
-            this.src = src;
-            switch (mode) {
-            case ON_NO_AA:
-                // round to nearest (0.25, 0.25) pixel
-                lval = rval = 0.25f;
-                break;
-            case ON_WITH_AA:
-                // round to nearest pixel center
-                lval = 0f;
-                rval = 0.5f;
-                break;
-            case OFF:
-                throw new InternalError("A NormalizingPathIterator should " +
-                         "not be created if no normalization is being done");
-            default:
-                throw new InternalError("Unrecognized normalization mode");
-            }
-        }
-
-        public int currentSegment(float[] coords) {
-            int type = src.currentSegment(coords);
-
-            int lastCoord;
-            switch(type) {
-            case PathIterator.SEG_CUBICTO:
-                lastCoord = 4;
-                break;
-            case PathIterator.SEG_QUADTO:
-                lastCoord = 2;
-                break;
-            case PathIterator.SEG_LINETO:
-            case PathIterator.SEG_MOVETO:
-                lastCoord = 0;
-                break;
-            case PathIterator.SEG_CLOSE:
-                // we don't want to deal with this case later. We just exit now
-                curx_adjust = movx_adjust;
-                cury_adjust = movy_adjust;
-                return type;
-            default:
-                throw new InternalError("Unrecognized curve type");
-            }
-
-            // normalize endpoint
-            float x_adjust = (float)Math.floor(coords[lastCoord] + lval) +
-                         rval - coords[lastCoord];
-            float y_adjust = (float)Math.floor(coords[lastCoord+1] + lval) +
-                         rval - coords[lastCoord + 1];
-
-            coords[lastCoord    ] += x_adjust;
-            coords[lastCoord + 1] += y_adjust;
-
-            // now that the end points are done, normalize the control points
-            switch(type) {
-            case PathIterator.SEG_CUBICTO:
-                coords[0] += curx_adjust;
-                coords[1] += cury_adjust;
-                coords[2] += x_adjust;
-                coords[3] += y_adjust;
-                break;
-            case PathIterator.SEG_QUADTO:
-                coords[0] += (curx_adjust + x_adjust) / 2;
-                coords[1] += (cury_adjust + y_adjust) / 2;
-                break;
-            case PathIterator.SEG_LINETO:
-                break;
-            case PathIterator.SEG_MOVETO:
-                movx_adjust = x_adjust;
-                movy_adjust = y_adjust;
-                break;
-            case PathIterator.SEG_CLOSE:
-                throw new InternalError("This should be handled earlier.");
-            }
-            curx_adjust = x_adjust;
-            cury_adjust = y_adjust;
-            return type;
-        }
-
-        public int currentSegment(double[] coords) {
-            float[] tmp = new float[6];
-            int type = this.currentSegment(tmp);
-            for (int i = 0; i < 6; i++) {
-                coords[i] = tmp[i];
-            }
-            return type;
-        }
-
-        public int getWindingRule() {
-            return src.getWindingRule();
-        }
-
-        public boolean isDone() {
-            return src.isDone();
-        }
-
-        public void next() {
-            src.next();
-        }
-    }
-
-    static void pathTo(PathIterator pi, PathConsumer2D pc2d) {
-        RenderingEngine.feedConsumer(pi, pc2d);
-        pc2d.pathDone();
-    }
-
-    /**
-     * Construct an antialiased tile generator for the given shape with
-     * the given rendering attributes and store the bounds of the tile
-     * iteration in the bbox parameter.
-     * The {@code at} parameter specifies a transform that should affect
-     * both the shape and the {@code BasicStroke} attributes.
-     * The {@code clip} parameter specifies the current clip in effect
-     * in device coordinates and can be used to prune the data for the
-     * operation, but the renderer is not required to perform any
-     * clipping.
-     * If the {@code BasicStroke} parameter is null then the shape
-     * should be filled as is, otherwise the attributes of the
-     * {@code BasicStroke} should be used to specify a draw operation.
-     * The {@code thin} parameter indicates whether or not the
-     * transformed {@code BasicStroke} represents coordinates smaller
-     * than the minimum resolution of the antialiasing rasterizer as
-     * specified by the {@code getMinimumAAPenWidth()} method.
-     * <p>
-     * Upon returning, this method will fill the {@code bbox} parameter
-     * with 4 values indicating the bounds of the iteration of the
-     * tile generator.
-     * The iteration order of the tiles will be as specified by the
-     * pseudo-code:
-     * <pre>
-     *     for (y = bbox[1]; y < bbox[3]; y += tileheight) {
-     *         for (x = bbox[0]; x < bbox[2]; x += tilewidth) {
-     *         }
-     *     }
-     * </pre>
-     * If there is no output to be rendered, this method may return
-     * null.
-     *
-     * @param s the shape to be rendered (fill or draw)
-     * @param at the transform to be applied to the shape and the
-     *           stroke attributes
-     * @param clip the current clip in effect in device coordinates
-     * @param bs if non-null, a {@code BasicStroke} whose attributes
-     *           should be applied to this operation
-     * @param thin true if the transformed stroke attributes are smaller
-     *             than the minimum dropout pen width
-     * @param normalize true if the {@code VALUE_STROKE_NORMALIZE}
-     *                  {@code RenderingHint} is in effect
-     * @param bbox returns the bounds of the iteration
-     * @return the {@code AATileGenerator} instance to be consulted
-     *         for tile coverages, or null if there is no output to render
-     * @since 1.7
-     */
-    public AATileGenerator getAATileGenerator(Shape s,
-                                              AffineTransform at,
-                                              Region clip,
-                                              BasicStroke bs,
-                                              boolean thin,
-                                              boolean normalize,
-                                              int bbox[])
-    {
-        Renderer r;
-        NormMode norm = (normalize) ? NormMode.ON_WITH_AA : NormMode.OFF;
-        if (bs == null) {
-            PathIterator pi;
-            if (normalize) {
-                pi = new NormalizingPathIterator(s.getPathIterator(at), norm);
-            } else {
-                pi = s.getPathIterator(at);
-            }
-            r = new Renderer(3, 3,
-                             clip.getLoX(), clip.getLoY(),
-                             clip.getWidth(), clip.getHeight(),
-                             pi.getWindingRule());
-            pathTo(pi, r);
-        } else {
-            r = new Renderer(3, 3,
-                             clip.getLoX(), clip.getLoY(),
-                             clip.getWidth(), clip.getHeight(),
-                             PathIterator.WIND_NON_ZERO);
-            strokeTo(s, at, bs, thin, norm, true, r);
-        }
-        r.endRendering();
-        PiscesTileGenerator ptg = new PiscesTileGenerator(r, r.MAX_AA_ALPHA);
-        ptg.getBbox(bbox);
-        return ptg;
-    }
-
-    public AATileGenerator getAATileGenerator(double x, double y,
-                                              double dx1, double dy1,
-                                              double dx2, double dy2,
-                                              double lw1, double lw2,
-                                              Region clip,
-                                              int bbox[])
-    {
-        // REMIND: Deal with large coordinates!
-        double ldx1, ldy1, ldx2, ldy2;
-        boolean innerpgram = (lw1 > 0 && lw2 > 0);
-
-        if (innerpgram) {
-            ldx1 = dx1 * lw1;
-            ldy1 = dy1 * lw1;
-            ldx2 = dx2 * lw2;
-            ldy2 = dy2 * lw2;
-            x -= (ldx1 + ldx2) / 2.0;
-            y -= (ldy1 + ldy2) / 2.0;
-            dx1 += ldx1;
-            dy1 += ldy1;
-            dx2 += ldx2;
-            dy2 += ldy2;
-            if (lw1 > 1 && lw2 > 1) {
-                // Inner parallelogram was entirely consumed by stroke...
-                innerpgram = false;
-            }
-        } else {
-            ldx1 = ldy1 = ldx2 = ldy2 = 0;
-        }
-
-        Renderer r = new Renderer(3, 3,
-                clip.getLoX(), clip.getLoY(),
-                clip.getWidth(), clip.getHeight(),
-                PathIterator.WIND_EVEN_ODD);
-
-        r.moveTo((float) x, (float) y);
-        r.lineTo((float) (x+dx1), (float) (y+dy1));
-        r.lineTo((float) (x+dx1+dx2), (float) (y+dy1+dy2));
-        r.lineTo((float) (x+dx2), (float) (y+dy2));
-        r.closePath();
-
-        if (innerpgram) {
-            x += ldx1 + ldx2;
-            y += ldy1 + ldy2;
-            dx1 -= 2.0 * ldx1;
-            dy1 -= 2.0 * ldy1;
-            dx2 -= 2.0 * ldx2;
-            dy2 -= 2.0 * ldy2;
-            r.moveTo((float) x, (float) y);
-            r.lineTo((float) (x+dx1), (float) (y+dy1));
-            r.lineTo((float) (x+dx1+dx2), (float) (y+dy1+dy2));
-            r.lineTo((float) (x+dx2), (float) (y+dy2));
-            r.closePath();
-        }
-
-        r.pathDone();
-
-        r.endRendering();
-        PiscesTileGenerator ptg = new PiscesTileGenerator(r, r.MAX_AA_ALPHA);
-        ptg.getBbox(bbox);
-        return ptg;
-    }
-
-    /**
-     * Returns the minimum pen width that the antialiasing rasterizer
-     * can represent without dropouts occurring.
-     * @since 1.7
-     */
-    public float getMinimumAAPenSize() {
-        return 0.5f;
-    }
-
-    static {
-        if (PathIterator.WIND_NON_ZERO != Renderer.WIND_NON_ZERO ||
-            PathIterator.WIND_EVEN_ODD != Renderer.WIND_EVEN_ODD ||
-            BasicStroke.JOIN_MITER != Stroker.JOIN_MITER ||
-            BasicStroke.JOIN_ROUND != Stroker.JOIN_ROUND ||
-            BasicStroke.JOIN_BEVEL != Stroker.JOIN_BEVEL ||
-            BasicStroke.CAP_BUTT != Stroker.CAP_BUTT ||
-            BasicStroke.CAP_ROUND != Stroker.CAP_ROUND ||
-            BasicStroke.CAP_SQUARE != Stroker.CAP_SQUARE)
-        {
-            throw new InternalError("mismatched renderer constants");
-        }
-    }
-}
-