src/hotspot/share/gc/cms/cmsCardTable.cpp
changeset 49488 1f9dd2360b17
parent 49164 7e958a8ebcd3
parent 49455 848864ed9b17
child 49733 6f0a3ea5ab75
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/gc/cms/cmsCardTable.cpp	Sat Mar 24 01:08:35 2018 +0100
@@ -0,0 +1,432 @@
+/*
+ * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "gc/cms/cmsHeap.hpp"
+#include "gc/shared/cardTableBarrierSet.hpp"
+#include "gc/shared/cardTableRS.hpp"
+#include "gc/shared/collectedHeap.hpp"
+#include "gc/shared/space.inline.hpp"
+#include "memory/allocation.inline.hpp"
+#include "memory/virtualspace.hpp"
+#include "oops/oop.inline.hpp"
+#include "runtime/java.hpp"
+#include "runtime/mutexLocker.hpp"
+#include "runtime/orderAccess.inline.hpp"
+#include "runtime/vmThread.hpp"
+
+void CardTableRS::
+non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
+                                     OopsInGenClosure* cl,
+                                     CardTableRS* ct,
+                                     uint n_threads) {
+  assert(n_threads > 0, "expected n_threads > 0");
+  assert(n_threads <= ParallelGCThreads,
+         "n_threads: %u > ParallelGCThreads: %u", n_threads, ParallelGCThreads);
+
+  // Make sure the LNC array is valid for the space.
+  jbyte**   lowest_non_clean;
+  uintptr_t lowest_non_clean_base_chunk_index;
+  size_t    lowest_non_clean_chunk_size;
+  get_LNC_array_for_space(sp, lowest_non_clean,
+                          lowest_non_clean_base_chunk_index,
+                          lowest_non_clean_chunk_size);
+
+  uint n_strides = n_threads * ParGCStridesPerThread;
+  SequentialSubTasksDone* pst = sp->par_seq_tasks();
+  // Sets the condition for completion of the subtask (how many threads
+  // need to finish in order to be done).
+  pst->set_n_threads(n_threads);
+  pst->set_n_tasks(n_strides);
+
+  uint stride = 0;
+  while (!pst->is_task_claimed(/* reference */ stride)) {
+    process_stride(sp, mr, stride, n_strides,
+                   cl, ct,
+                   lowest_non_clean,
+                   lowest_non_clean_base_chunk_index,
+                   lowest_non_clean_chunk_size);
+  }
+  if (pst->all_tasks_completed()) {
+    // Clear lowest_non_clean array for next time.
+    intptr_t first_chunk_index = addr_to_chunk_index(mr.start());
+    uintptr_t last_chunk_index  = addr_to_chunk_index(mr.last());
+    for (uintptr_t ch = first_chunk_index; ch <= last_chunk_index; ch++) {
+      intptr_t ind = ch - lowest_non_clean_base_chunk_index;
+      assert(0 <= ind && ind < (intptr_t)lowest_non_clean_chunk_size,
+             "Bounds error");
+      lowest_non_clean[ind] = NULL;
+    }
+  }
+}
+
+void
+CardTableRS::
+process_stride(Space* sp,
+               MemRegion used,
+               jint stride, int n_strides,
+               OopsInGenClosure* cl,
+               CardTableRS* ct,
+               jbyte** lowest_non_clean,
+               uintptr_t lowest_non_clean_base_chunk_index,
+               size_t    lowest_non_clean_chunk_size) {
+  // We go from higher to lower addresses here; it wouldn't help that much
+  // because of the strided parallelism pattern used here.
+
+  // Find the first card address of the first chunk in the stride that is
+  // at least "bottom" of the used region.
+  jbyte*    start_card  = byte_for(used.start());
+  jbyte*    end_card    = byte_after(used.last());
+  uintptr_t start_chunk = addr_to_chunk_index(used.start());
+  uintptr_t start_chunk_stride_num = start_chunk % n_strides;
+  jbyte* chunk_card_start;
+
+  if ((uintptr_t)stride >= start_chunk_stride_num) {
+    chunk_card_start = (jbyte*)(start_card +
+                                (stride - start_chunk_stride_num) *
+                                ParGCCardsPerStrideChunk);
+  } else {
+    // Go ahead to the next chunk group boundary, then to the requested stride.
+    chunk_card_start = (jbyte*)(start_card +
+                                (n_strides - start_chunk_stride_num + stride) *
+                                ParGCCardsPerStrideChunk);
+  }
+
+  while (chunk_card_start < end_card) {
+    // Even though we go from lower to higher addresses below, the
+    // strided parallelism can interleave the actual processing of the
+    // dirty pages in various ways. For a specific chunk within this
+    // stride, we take care to avoid double scanning or missing a card
+    // by suitably initializing the "min_done" field in process_chunk_boundaries()
+    // below, together with the dirty region extension accomplished in
+    // DirtyCardToOopClosure::do_MemRegion().
+    jbyte*    chunk_card_end = chunk_card_start + ParGCCardsPerStrideChunk;
+    // Invariant: chunk_mr should be fully contained within the "used" region.
+    MemRegion chunk_mr       = MemRegion(addr_for(chunk_card_start),
+                                         chunk_card_end >= end_card ?
+                                           used.end() : addr_for(chunk_card_end));
+    assert(chunk_mr.word_size() > 0, "[chunk_card_start > used_end)");
+    assert(used.contains(chunk_mr), "chunk_mr should be subset of used");
+
+    // This function is used by the parallel card table iteration.
+    const bool parallel = true;
+
+    DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
+                                                     cl->gen_boundary(),
+                                                     parallel);
+    ClearNoncleanCardWrapper clear_cl(dcto_cl, ct, parallel);
+
+
+    // Process the chunk.
+    process_chunk_boundaries(sp,
+                             dcto_cl,
+                             chunk_mr,
+                             used,
+                             lowest_non_clean,
+                             lowest_non_clean_base_chunk_index,
+                             lowest_non_clean_chunk_size);
+
+    // We want the LNC array updates above in process_chunk_boundaries
+    // to be visible before any of the card table value changes as a
+    // result of the dirty card iteration below.
+    OrderAccess::storestore();
+
+    // We want to clear the cards: clear_cl here does the work of finding
+    // contiguous dirty ranges of cards to process and clear.
+    clear_cl.do_MemRegion(chunk_mr);
+
+    // Find the next chunk of the stride.
+    chunk_card_start += ParGCCardsPerStrideChunk * n_strides;
+  }
+}
+
+void
+CardTableRS::
+process_chunk_boundaries(Space* sp,
+                         DirtyCardToOopClosure* dcto_cl,
+                         MemRegion chunk_mr,
+                         MemRegion used,
+                         jbyte** lowest_non_clean,
+                         uintptr_t lowest_non_clean_base_chunk_index,
+                         size_t    lowest_non_clean_chunk_size)
+{
+  // We must worry about non-array objects that cross chunk boundaries,
+  // because such objects are both precisely and imprecisely marked:
+  // .. if the head of such an object is dirty, the entire object
+  //    needs to be scanned, under the interpretation that this
+  //    was an imprecise mark
+  // .. if the head of such an object is not dirty, we can assume
+  //    precise marking and it's efficient to scan just the dirty
+  //    cards.
+  // In either case, each scanned reference must be scanned precisely
+  // once so as to avoid cloning of a young referent. For efficiency,
+  // our closures depend on this property and do not protect against
+  // double scans.
+
+  uintptr_t start_chunk_index = addr_to_chunk_index(chunk_mr.start());
+  assert(start_chunk_index >= lowest_non_clean_base_chunk_index, "Bounds error.");
+  uintptr_t cur_chunk_index   = start_chunk_index - lowest_non_clean_base_chunk_index;
+
+  // First, set "our" lowest_non_clean entry, which would be
+  // used by the thread scanning an adjoining left chunk with
+  // a non-array object straddling the mutual boundary.
+  // Find the object that spans our boundary, if one exists.
+  // first_block is the block possibly straddling our left boundary.
+  HeapWord* first_block = sp->block_start(chunk_mr.start());
+  assert((chunk_mr.start() != used.start()) || (first_block == chunk_mr.start()),
+         "First chunk should always have a co-initial block");
+  // Does the block straddle the chunk's left boundary, and is it
+  // a non-array object?
+  if (first_block < chunk_mr.start()        // first block straddles left bdry
+      && sp->block_is_obj(first_block)      // first block is an object
+      && !(oop(first_block)->is_objArray()  // first block is not an array (arrays are precisely dirtied)
+           || oop(first_block)->is_typeArray())) {
+    // Find our least non-clean card, so that a left neighbor
+    // does not scan an object straddling the mutual boundary
+    // too far to the right, and attempt to scan a portion of
+    // that object twice.
+    jbyte* first_dirty_card = NULL;
+    jbyte* last_card_of_first_obj =
+        byte_for(first_block + sp->block_size(first_block) - 1);
+    jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
+    jbyte* last_card_of_cur_chunk = byte_for(chunk_mr.last());
+    jbyte* last_card_to_check =
+      (jbyte*) MIN2((intptr_t) last_card_of_cur_chunk,
+                    (intptr_t) last_card_of_first_obj);
+    // Note that this does not need to go beyond our last card
+    // if our first object completely straddles this chunk.
+    for (jbyte* cur = first_card_of_cur_chunk;
+         cur <= last_card_to_check; cur++) {
+      jbyte val = *cur;
+      if (card_will_be_scanned(val)) {
+        first_dirty_card = cur; break;
+      } else {
+        assert(!card_may_have_been_dirty(val), "Error");
+      }
+    }
+    if (first_dirty_card != NULL) {
+      assert(cur_chunk_index < lowest_non_clean_chunk_size, "Bounds error.");
+      assert(lowest_non_clean[cur_chunk_index] == NULL,
+             "Write exactly once : value should be stable hereafter for this round");
+      lowest_non_clean[cur_chunk_index] = first_dirty_card;
+    }
+  } else {
+    // In this case we can help our neighbor by just asking them
+    // to stop at our first card (even though it may not be dirty).
+    assert(lowest_non_clean[cur_chunk_index] == NULL, "Write once : value should be stable hereafter");
+    jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
+    lowest_non_clean[cur_chunk_index] = first_card_of_cur_chunk;
+  }
+
+  // Next, set our own max_to_do, which will strictly/exclusively bound
+  // the highest address that we will scan past the right end of our chunk.
+  HeapWord* max_to_do = NULL;
+  if (chunk_mr.end() < used.end()) {
+    // This is not the last chunk in the used region.
+    // What is our last block? We check the first block of
+    // the next (right) chunk rather than strictly check our last block
+    // because it's potentially more efficient to do so.
+    HeapWord* const last_block = sp->block_start(chunk_mr.end());
+    assert(last_block <= chunk_mr.end(), "In case this property changes.");
+    if ((last_block == chunk_mr.end())     // our last block does not straddle boundary
+        || !sp->block_is_obj(last_block)   // last_block isn't an object
+        || oop(last_block)->is_objArray()  // last_block is an array (precisely marked)
+        || oop(last_block)->is_typeArray()) {
+      max_to_do = chunk_mr.end();
+    } else {
+      assert(last_block < chunk_mr.end(), "Tautology");
+      // It is a non-array object that straddles the right boundary of this chunk.
+      // last_obj_card is the card corresponding to the start of the last object
+      // in the chunk.  Note that the last object may not start in
+      // the chunk.
+      jbyte* const last_obj_card = byte_for(last_block);
+      const jbyte val = *last_obj_card;
+      if (!card_will_be_scanned(val)) {
+        assert(!card_may_have_been_dirty(val), "Error");
+        // The card containing the head is not dirty.  Any marks on
+        // subsequent cards still in this chunk must have been made
+        // precisely; we can cap processing at the end of our chunk.
+        max_to_do = chunk_mr.end();
+      } else {
+        // The last object must be considered dirty, and extends onto the
+        // following chunk.  Look for a dirty card in that chunk that will
+        // bound our processing.
+        jbyte* limit_card = NULL;
+        const size_t last_block_size = sp->block_size(last_block);
+        jbyte* const last_card_of_last_obj =
+          byte_for(last_block + last_block_size - 1);
+        jbyte* const first_card_of_next_chunk = byte_for(chunk_mr.end());
+        // This search potentially goes a long distance looking
+        // for the next card that will be scanned, terminating
+        // at the end of the last_block, if no earlier dirty card
+        // is found.
+        assert(byte_for(chunk_mr.end()) - byte_for(chunk_mr.start()) == ParGCCardsPerStrideChunk,
+               "last card of next chunk may be wrong");
+        for (jbyte* cur = first_card_of_next_chunk;
+             cur <= last_card_of_last_obj; cur++) {
+          const jbyte val = *cur;
+          if (card_will_be_scanned(val)) {
+            limit_card = cur; break;
+          } else {
+            assert(!card_may_have_been_dirty(val), "Error: card can't be skipped");
+          }
+        }
+        if (limit_card != NULL) {
+          max_to_do = addr_for(limit_card);
+          assert(limit_card != NULL && max_to_do != NULL, "Error");
+        } else {
+          // The following is a pessimistic value, because it's possible
+          // that a dirty card on a subsequent chunk has been cleared by
+          // the time we get to look at it; we'll correct for that further below,
+          // using the LNC array which records the least non-clean card
+          // before cards were cleared in a particular chunk.
+          limit_card = last_card_of_last_obj;
+          max_to_do = last_block + last_block_size;
+          assert(limit_card != NULL && max_to_do != NULL, "Error");
+        }
+        assert(0 < cur_chunk_index+1 && cur_chunk_index+1 < lowest_non_clean_chunk_size,
+               "Bounds error.");
+        // It is possible that a dirty card for the last object may have been
+        // cleared before we had a chance to examine it. In that case, the value
+        // will have been logged in the LNC for that chunk.
+        // We need to examine as many chunks to the right as this object
+        // covers. However, we need to bound this checking to the largest
+        // entry in the LNC array: this is because the heap may expand
+        // after the LNC array has been created but before we reach this point,
+        // and the last block in our chunk may have been expanded to include
+        // the expansion delta (and possibly subsequently allocated from, so
+        // it wouldn't be sufficient to check whether that last block was
+        // or was not an object at this point).
+        uintptr_t last_chunk_index_to_check = addr_to_chunk_index(last_block + last_block_size - 1)
+                                              - lowest_non_clean_base_chunk_index;
+        const uintptr_t last_chunk_index    = addr_to_chunk_index(used.last())
+                                              - lowest_non_clean_base_chunk_index;
+        if (last_chunk_index_to_check > last_chunk_index) {
+          assert(last_block + last_block_size > used.end(),
+                 "Inconsistency detected: last_block [" PTR_FORMAT "," PTR_FORMAT "]"
+                 " does not exceed used.end() = " PTR_FORMAT ","
+                 " yet last_chunk_index_to_check " INTPTR_FORMAT
+                 " exceeds last_chunk_index " INTPTR_FORMAT,
+                 p2i(last_block), p2i(last_block + last_block_size),
+                 p2i(used.end()),
+                 last_chunk_index_to_check, last_chunk_index);
+          assert(sp->used_region().end() > used.end(),
+                 "Expansion did not happen: "
+                 "[" PTR_FORMAT "," PTR_FORMAT ") -> [" PTR_FORMAT "," PTR_FORMAT ")",
+                 p2i(sp->used_region().start()), p2i(sp->used_region().end()),
+                 p2i(used.start()), p2i(used.end()));
+          last_chunk_index_to_check = last_chunk_index;
+        }
+        for (uintptr_t lnc_index = cur_chunk_index + 1;
+             lnc_index <= last_chunk_index_to_check;
+             lnc_index++) {
+          jbyte* lnc_card = lowest_non_clean[lnc_index];
+          if (lnc_card != NULL) {
+            // we can stop at the first non-NULL entry we find
+            if (lnc_card <= limit_card) {
+              limit_card = lnc_card;
+              max_to_do = addr_for(limit_card);
+              assert(limit_card != NULL && max_to_do != NULL, "Error");
+            }
+            // In any case, we break now
+            break;
+          }  // else continue to look for a non-NULL entry if any
+        }
+        assert(limit_card != NULL && max_to_do != NULL, "Error");
+      }
+      assert(max_to_do != NULL, "OOPS 1 !");
+    }
+    assert(max_to_do != NULL, "OOPS 2!");
+  } else {
+    max_to_do = used.end();
+  }
+  assert(max_to_do != NULL, "OOPS 3!");
+  // Now we can set the closure we're using so it doesn't to beyond
+  // max_to_do.
+  dcto_cl->set_min_done(max_to_do);
+#ifndef PRODUCT
+  dcto_cl->set_last_bottom(max_to_do);
+#endif
+}
+
+void
+CardTableRS::
+get_LNC_array_for_space(Space* sp,
+                        jbyte**& lowest_non_clean,
+                        uintptr_t& lowest_non_clean_base_chunk_index,
+                        size_t& lowest_non_clean_chunk_size) {
+
+  int       i        = find_covering_region_containing(sp->bottom());
+  MemRegion covered  = _covered[i];
+  size_t    n_chunks = chunks_to_cover(covered);
+
+  // Only the first thread to obtain the lock will resize the
+  // LNC array for the covered region.  Any later expansion can't affect
+  // the used_at_save_marks region.
+  // (I observed a bug in which the first thread to execute this would
+  // resize, and then it would cause "expand_and_allocate" that would
+  // increase the number of chunks in the covered region.  Then a second
+  // thread would come and execute this, see that the size didn't match,
+  // and free and allocate again.  So the first thread would be using a
+  // freed "_lowest_non_clean" array.)
+
+  // Do a dirty read here. If we pass the conditional then take the rare
+  // event lock and do the read again in case some other thread had already
+  // succeeded and done the resize.
+  int cur_collection = CMSHeap::heap()->total_collections();
+  // Updated _last_LNC_resizing_collection[i] must not be visible before
+  // _lowest_non_clean and friends are visible. Therefore use acquire/release
+  // to guarantee this on non TSO architecures.
+  if (OrderAccess::load_acquire(&_last_LNC_resizing_collection[i]) != cur_collection) {
+    MutexLocker x(ParGCRareEvent_lock);
+    // This load_acquire is here for clarity only. The MutexLocker already fences.
+    if (OrderAccess::load_acquire(&_last_LNC_resizing_collection[i]) != cur_collection) {
+      if (_lowest_non_clean[i] == NULL ||
+          n_chunks != _lowest_non_clean_chunk_size[i]) {
+
+        // Should we delete the old?
+        if (_lowest_non_clean[i] != NULL) {
+          assert(n_chunks != _lowest_non_clean_chunk_size[i],
+                 "logical consequence");
+          FREE_C_HEAP_ARRAY(CardPtr, _lowest_non_clean[i]);
+          _lowest_non_clean[i] = NULL;
+        }
+        // Now allocate a new one if necessary.
+        if (_lowest_non_clean[i] == NULL) {
+          _lowest_non_clean[i]                  = NEW_C_HEAP_ARRAY(CardPtr, n_chunks, mtGC);
+          _lowest_non_clean_chunk_size[i]       = n_chunks;
+          _lowest_non_clean_base_chunk_index[i] = addr_to_chunk_index(covered.start());
+          for (int j = 0; j < (int)n_chunks; j++)
+            _lowest_non_clean[i][j] = NULL;
+        }
+      }
+      // Make sure this gets visible only after _lowest_non_clean* was initialized
+      OrderAccess::release_store(&_last_LNC_resizing_collection[i], cur_collection);
+    }
+  }
+  // In any case, now do the initialization.
+  lowest_non_clean                  = _lowest_non_clean[i];
+  lowest_non_clean_base_chunk_index = _lowest_non_clean_base_chunk_index[i];
+  lowest_non_clean_chunk_size       = _lowest_non_clean_chunk_size[i];
+}