hotspot/src/jdk.internal.vm.compiler/share/classes/org.graalvm.compiler.nodes/src/org/graalvm/compiler/nodes/calc/ReinterpretNode.java
changeset 43972 1ade39b8381b
child 46344 694c102fd8ed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/jdk.internal.vm.compiler/share/classes/org.graalvm.compiler.nodes/src/org/graalvm/compiler/nodes/calc/ReinterpretNode.java	Thu Feb 16 15:46:09 2017 -0800
@@ -0,0 +1,296 @@
+/*
+ * Copyright (c) 2013, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package org.graalvm.compiler.nodes.calc;
+
+import static org.graalvm.compiler.nodeinfo.NodeCycles.CYCLES_1;
+
+import java.nio.ByteBuffer;
+import java.nio.ByteOrder;
+
+import org.graalvm.compiler.core.common.LIRKind;
+import org.graalvm.compiler.core.common.type.ArithmeticStamp;
+import org.graalvm.compiler.core.common.type.FloatStamp;
+import org.graalvm.compiler.core.common.type.IntegerStamp;
+import org.graalvm.compiler.core.common.type.Stamp;
+import org.graalvm.compiler.core.common.type.StampFactory;
+import org.graalvm.compiler.graph.NodeClass;
+import org.graalvm.compiler.graph.spi.CanonicalizerTool;
+import org.graalvm.compiler.lir.gen.ArithmeticLIRGeneratorTool;
+import org.graalvm.compiler.nodeinfo.NodeInfo;
+import org.graalvm.compiler.nodes.ConstantNode;
+import org.graalvm.compiler.nodes.ValueNode;
+import org.graalvm.compiler.nodes.spi.ArithmeticLIRLowerable;
+import org.graalvm.compiler.nodes.spi.NodeLIRBuilderTool;
+
+import jdk.vm.ci.code.CodeUtil;
+import jdk.vm.ci.meta.JavaKind;
+import jdk.vm.ci.meta.SerializableConstant;
+
+/**
+ * The {@code ReinterpretNode} class represents a reinterpreting conversion that changes the stamp
+ * of a primitive value to some other incompatible stamp. The new stamp must have the same width as
+ * the old stamp.
+ */
+@NodeInfo(cycles = CYCLES_1)
+public final class ReinterpretNode extends UnaryNode implements ArithmeticLIRLowerable {
+
+    public static final NodeClass<ReinterpretNode> TYPE = NodeClass.create(ReinterpretNode.class);
+
+    public ReinterpretNode(JavaKind to, ValueNode value) {
+        this(StampFactory.forKind(to), value);
+    }
+
+    public ReinterpretNode(Stamp to, ValueNode value) {
+        super(TYPE, getReinterpretStamp(to, value.stamp()), value);
+        assert to instanceof ArithmeticStamp;
+    }
+
+    private SerializableConstant evalConst(SerializableConstant c) {
+        /*
+         * We don't care about byte order here. Either would produce the correct result.
+         */
+        ByteBuffer buffer = ByteBuffer.wrap(new byte[c.getSerializedSize()]).order(ByteOrder.nativeOrder());
+        c.serialize(buffer);
+
+        buffer.rewind();
+        SerializableConstant ret = ((ArithmeticStamp) stamp()).deserialize(buffer);
+
+        assert !buffer.hasRemaining();
+        return ret;
+    }
+
+    @Override
+    public ValueNode canonical(CanonicalizerTool tool, ValueNode forValue) {
+        if (forValue.isConstant()) {
+            return ConstantNode.forConstant(stamp(), evalConst((SerializableConstant) forValue.asConstant()), null);
+        }
+        if (stamp().isCompatible(forValue.stamp())) {
+            return forValue;
+        }
+        if (forValue instanceof ReinterpretNode) {
+            ReinterpretNode reinterpret = (ReinterpretNode) forValue;
+            return new ReinterpretNode(stamp(), reinterpret.getValue());
+        }
+        return this;
+    }
+
+    /**
+     * Compute the {@link IntegerStamp} from a {@link FloatStamp}, losing as little information as
+     * possible.
+     *
+     * Sorting by their bit pattern reinterpreted as signed integers gives the following order of
+     * floating point numbers:
+     *
+     * -0 | negative numbers | -Inf | NaNs | 0 | positive numbers | +Inf | NaNs
+     *
+     * So we can compute a better integer range if we know that the input is positive, negative,
+     * finite, non-zero and/or not NaN.
+     */
+    private static IntegerStamp floatToInt(FloatStamp stamp) {
+        int bits = stamp.getBits();
+
+        long signBit = 1L << (bits - 1);
+        long exponentMask;
+        if (bits == 64) {
+            exponentMask = Double.doubleToRawLongBits(Double.POSITIVE_INFINITY);
+        } else {
+            assert bits == 32;
+            exponentMask = Float.floatToRawIntBits(Float.POSITIVE_INFINITY);
+        }
+
+        long positiveInfinity = exponentMask;
+        long negativeInfinity = CodeUtil.signExtend(signBit | positiveInfinity, bits);
+        long negativeZero = CodeUtil.signExtend(signBit | 0, bits);
+
+        if (stamp.isNaN()) {
+            // special case: in addition to the range, we know NaN has all exponent bits set
+            return new IntegerStamp(bits, negativeInfinity + 1, CodeUtil.maxValue(bits), exponentMask, CodeUtil.mask(bits));
+        }
+
+        long upperBound;
+        if (stamp.isNonNaN()) {
+            if (stamp.upperBound() < 0.0) {
+                if (stamp.lowerBound() > Double.NEGATIVE_INFINITY) {
+                    upperBound = negativeInfinity - 1;
+                } else {
+                    upperBound = negativeInfinity;
+                }
+            } else if (stamp.upperBound() == 0.0) {
+                upperBound = 0;
+            } else if (stamp.upperBound() < Double.POSITIVE_INFINITY) {
+                upperBound = positiveInfinity - 1;
+            } else {
+                upperBound = positiveInfinity;
+            }
+        } else {
+            upperBound = CodeUtil.maxValue(bits);
+        }
+
+        long lowerBound;
+        if (stamp.lowerBound() > 0.0) {
+            if (stamp.isNonNaN()) {
+                lowerBound = 1;
+            } else {
+                lowerBound = negativeInfinity + 1;
+            }
+        } else if (stamp.upperBound() == Double.NEGATIVE_INFINITY) {
+            lowerBound = negativeInfinity;
+        } else if (stamp.upperBound() < 0.0) {
+            lowerBound = negativeZero + 1;
+        } else {
+            lowerBound = negativeZero;
+        }
+
+        return StampFactory.forInteger(bits, lowerBound, upperBound);
+    }
+
+    /**
+     * Compute the {@link IntegerStamp} from a {@link FloatStamp}, losing as little information as
+     * possible.
+     *
+     * Sorting by their bit pattern reinterpreted as signed integers gives the following order of
+     * floating point numbers:
+     *
+     * -0 | negative numbers | -Inf | NaNs | 0 | positive numbers | +Inf | NaNs
+     *
+     * So from certain integer ranges we may be able to infer something about the sign, finiteness
+     * or NaN-ness of the result.
+     */
+    private static FloatStamp intToFloat(IntegerStamp stamp) {
+        int bits = stamp.getBits();
+
+        double minPositive;
+        double maxPositive;
+
+        long signBit = 1L << (bits - 1);
+        long exponentMask;
+        if (bits == 64) {
+            exponentMask = Double.doubleToRawLongBits(Double.POSITIVE_INFINITY);
+            minPositive = Double.MIN_VALUE;
+            maxPositive = Double.MAX_VALUE;
+        } else {
+            assert bits == 32;
+            exponentMask = Float.floatToRawIntBits(Float.POSITIVE_INFINITY);
+            minPositive = Float.MIN_VALUE;
+            maxPositive = Float.MAX_VALUE;
+        }
+
+        long significandMask = CodeUtil.mask(bits) & ~(signBit | exponentMask);
+
+        long positiveInfinity = exponentMask;
+        long negativeInfinity = CodeUtil.signExtend(signBit | positiveInfinity, bits);
+        long negativeZero = CodeUtil.signExtend(signBit | 0, bits);
+
+        if ((stamp.downMask() & exponentMask) == exponentMask && (stamp.downMask() & significandMask) != 0) {
+            // if all exponent bits and at least one significand bit are set, the result is NaN
+            return new FloatStamp(bits, Double.NaN, Double.NaN, false);
+        }
+
+        double upperBound;
+        if (stamp.upperBound() < negativeInfinity) {
+            if (stamp.lowerBound() > negativeZero) {
+                upperBound = -minPositive;
+            } else {
+                upperBound = -0.0;
+            }
+        } else if (stamp.upperBound() < 0) {
+            if (stamp.lowerBound() > negativeInfinity) {
+                return new FloatStamp(bits, Double.NaN, Double.NaN, false);
+            } else if (stamp.lowerBound() == negativeInfinity) {
+                upperBound = Double.NEGATIVE_INFINITY;
+            } else if (stamp.lowerBound() > negativeZero) {
+                upperBound = -minPositive;
+            } else {
+                upperBound = -0.0;
+            }
+        } else if (stamp.upperBound() == 0) {
+            upperBound = 0.0;
+        } else if (stamp.upperBound() < positiveInfinity) {
+            upperBound = maxPositive;
+        } else {
+            upperBound = Double.POSITIVE_INFINITY;
+        }
+
+        double lowerBound;
+        if (stamp.lowerBound() > positiveInfinity) {
+            return new FloatStamp(bits, Double.NaN, Double.NaN, false);
+        } else if (stamp.lowerBound() == positiveInfinity) {
+            lowerBound = Double.POSITIVE_INFINITY;
+        } else if (stamp.lowerBound() > 0) {
+            lowerBound = minPositive;
+        } else if (stamp.lowerBound() > negativeInfinity) {
+            lowerBound = 0.0;
+        } else {
+            lowerBound = Double.NEGATIVE_INFINITY;
+        }
+
+        boolean nonNaN;
+        if ((stamp.upMask() & exponentMask) != exponentMask) {
+            // NaN has all exponent bits set
+            nonNaN = true;
+        } else {
+            boolean negativeNaNBlock = stamp.lowerBound() < 0 && stamp.upperBound() > negativeInfinity;
+            boolean positiveNaNBlock = stamp.upperBound() > positiveInfinity;
+            nonNaN = !negativeNaNBlock && !positiveNaNBlock;
+        }
+
+        return new FloatStamp(bits, lowerBound, upperBound, nonNaN);
+    }
+
+    private static Stamp getReinterpretStamp(Stamp toStamp, Stamp fromStamp) {
+        if (toStamp instanceof IntegerStamp && fromStamp instanceof FloatStamp) {
+            return floatToInt((FloatStamp) fromStamp);
+        } else if (toStamp instanceof FloatStamp && fromStamp instanceof IntegerStamp) {
+            return intToFloat((IntegerStamp) fromStamp);
+        } else {
+            return toStamp;
+        }
+    }
+
+    @Override
+    public boolean inferStamp() {
+        return updateStamp(getReinterpretStamp(stamp(), getValue().stamp()));
+    }
+
+    @Override
+    public void generate(NodeLIRBuilderTool builder, ArithmeticLIRGeneratorTool gen) {
+        LIRKind kind = builder.getLIRGeneratorTool().getLIRKind(stamp());
+        builder.setResult(this, gen.emitReinterpret(kind, builder.operand(getValue())));
+    }
+
+    public static ValueNode reinterpret(JavaKind toKind, ValueNode value) {
+        return value.graph().unique(new ReinterpretNode(toKind, value));
+    }
+
+    @NodeIntrinsic
+    public static native float reinterpret(@ConstantNodeParameter JavaKind kind, int value);
+
+    @NodeIntrinsic
+    public static native int reinterpret(@ConstantNodeParameter JavaKind kind, float value);
+
+    @NodeIntrinsic
+    public static native double reinterpret(@ConstantNodeParameter JavaKind kind, long value);
+
+    @NodeIntrinsic
+    public static native long reinterpret(@ConstantNodeParameter JavaKind kind, double value);
+}