hotspot/src/share/vm/utilities/taskqueue.hpp
changeset 30566 18eb9aa972d0
parent 27880 afb974a04396
child 30585 12f312d694cd
--- a/hotspot/src/share/vm/utilities/taskqueue.hpp	Mon Apr 27 09:08:07 2015 +0200
+++ b/hotspot/src/share/vm/utilities/taskqueue.hpp	Mon Apr 27 09:51:06 2015 +0200
@@ -26,9 +26,6 @@
 #define SHARE_VM_UTILITIES_TASKQUEUE_HPP
 
 #include "memory/allocation.hpp"
-#include "memory/allocation.inline.hpp"
-#include "runtime/mutex.hpp"
-#include "runtime/orderAccess.inline.hpp"
 #include "utilities/stack.hpp"
 
 // Simple TaskQueue stats that are collected by default in debug builds.
@@ -134,11 +131,7 @@
       if (_fields._top == 0) ++_fields._tag;
     }
 
-    Age cmpxchg(const Age new_age, const Age old_age) volatile {
-      return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
-                                          (volatile intptr_t *)&_data,
-                                          (intptr_t)old_age._data);
-    }
+    Age cmpxchg(const Age new_age, const Age old_age) volatile;
 
     bool operator ==(const Age& other) const { return _data == other._data; }
 
@@ -315,121 +308,6 @@
   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
 }
 
-template<class E, MEMFLAGS F, unsigned int N>
-void GenericTaskQueue<E, F, N>::initialize() {
-  _elems = _array_allocator.allocate(N);
-}
-
-template<class E, MEMFLAGS F, unsigned int N>
-void GenericTaskQueue<E, F, N>::oops_do(OopClosure* f) {
-  // tty->print_cr("START OopTaskQueue::oops_do");
-  uint iters = size();
-  uint index = _bottom;
-  for (uint i = 0; i < iters; ++i) {
-    index = decrement_index(index);
-    // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
-    //            index, &_elems[index], _elems[index]);
-    E* t = (E*)&_elems[index];      // cast away volatility
-    oop* p = (oop*)t;
-    assert((*t)->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(*t)));
-    f->do_oop(p);
-  }
-  // tty->print_cr("END OopTaskQueue::oops_do");
-}
-
-template<class E, MEMFLAGS F, unsigned int N>
-bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
-  if (dirty_n_elems == N - 1) {
-    // Actually means 0, so do the push.
-    uint localBot = _bottom;
-    // g++ complains if the volatile result of the assignment is
-    // unused, so we cast the volatile away.  We cannot cast directly
-    // to void, because gcc treats that as not using the result of the
-    // assignment.  However, casting to E& means that we trigger an
-    // unused-value warning.  So, we cast the E& to void.
-    (void)const_cast<E&>(_elems[localBot] = t);
-    OrderAccess::release_store(&_bottom, increment_index(localBot));
-    TASKQUEUE_STATS_ONLY(stats.record_push());
-    return true;
-  }
-  return false;
-}
-
-// pop_local_slow() is done by the owning thread and is trying to
-// get the last task in the queue.  It will compete with pop_global()
-// that will be used by other threads.  The tag age is incremented
-// whenever the queue goes empty which it will do here if this thread
-// gets the last task or in pop_global() if the queue wraps (top == 0
-// and pop_global() succeeds, see pop_global()).
-template<class E, MEMFLAGS F, unsigned int N>
-bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
-  // This queue was observed to contain exactly one element; either this
-  // thread will claim it, or a competing "pop_global".  In either case,
-  // the queue will be logically empty afterwards.  Create a new Age value
-  // that represents the empty queue for the given value of "_bottom".  (We
-  // must also increment "tag" because of the case where "bottom == 1",
-  // "top == 0".  A pop_global could read the queue element in that case,
-  // then have the owner thread do a pop followed by another push.  Without
-  // the incrementing of "tag", the pop_global's CAS could succeed,
-  // allowing it to believe it has claimed the stale element.)
-  Age newAge((idx_t)localBot, oldAge.tag() + 1);
-  // Perhaps a competing pop_global has already incremented "top", in which
-  // case it wins the element.
-  if (localBot == oldAge.top()) {
-    // No competing pop_global has yet incremented "top"; we'll try to
-    // install new_age, thus claiming the element.
-    Age tempAge = _age.cmpxchg(newAge, oldAge);
-    if (tempAge == oldAge) {
-      // We win.
-      assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
-      TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
-      return true;
-    }
-  }
-  // We lose; a completing pop_global gets the element.  But the queue is empty
-  // and top is greater than bottom.  Fix this representation of the empty queue
-  // to become the canonical one.
-  _age.set(newAge);
-  assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
-  return false;
-}
-
-template<class E, MEMFLAGS F, unsigned int N>
-bool GenericTaskQueue<E, F, N>::pop_global(volatile E& t) {
-  Age oldAge = _age.get();
-  // Architectures with weak memory model require a barrier here
-  // to guarantee that bottom is not older than age,
-  // which is crucial for the correctness of the algorithm.
-#if !(defined SPARC || defined IA32 || defined AMD64)
-  OrderAccess::fence();
-#endif
-  uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom);
-  uint n_elems = size(localBot, oldAge.top());
-  if (n_elems == 0) {
-    return false;
-  }
-
-  // g++ complains if the volatile result of the assignment is
-  // unused, so we cast the volatile away.  We cannot cast directly
-  // to void, because gcc treats that as not using the result of the
-  // assignment.  However, casting to E& means that we trigger an
-  // unused-value warning.  So, we cast the E& to void.
-  (void) const_cast<E&>(t = _elems[oldAge.top()]);
-  Age newAge(oldAge);
-  newAge.increment();
-  Age resAge = _age.cmpxchg(newAge, oldAge);
-
-  // Note that using "_bottom" here might fail, since a pop_local might
-  // have decremented it.
-  assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
-  return resAge == oldAge;
-}
-
-template<class E, MEMFLAGS F, unsigned int N>
-GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
-  FREE_C_HEAP_ARRAY(E, _elems);
-}
-
 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
 // elements that do not fit in the TaskQueue.
 //
@@ -468,24 +346,6 @@
   overflow_t _overflow_stack;
 };
 
-template <class E, MEMFLAGS F, unsigned int N>
-bool OverflowTaskQueue<E, F, N>::push(E t)
-{
-  if (!taskqueue_t::push(t)) {
-    overflow_stack()->push(t);
-    TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
-  }
-  return true;
-}
-
-template <class E, MEMFLAGS F, unsigned int N>
-bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
-{
-  if (overflow_empty()) return false;
-  t = overflow_stack()->pop();
-  return true;
-}
-
 class TaskQueueSetSuper {
 protected:
   static int randomParkAndMiller(int* seed0);
@@ -506,13 +366,7 @@
 public:
   typedef typename T::element_type E;
 
-  GenericTaskQueueSet(int n) : _n(n) {
-    typedef T* GenericTaskQueuePtr;
-    _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
-    for (int i = 0; i < n; i++) {
-      _queues[i] = NULL;
-    }
-  }
+  GenericTaskQueueSet(int n);
 
   bool steal_best_of_2(uint queue_num, int* seed, E& t);
 
@@ -541,40 +395,6 @@
   return _queues[i];
 }
 
-template<class T, MEMFLAGS F> bool
-GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
-  for (uint i = 0; i < 2 * _n; i++) {
-    if (steal_best_of_2(queue_num, seed, t)) {
-      TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
-      return true;
-    }
-  }
-  TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
-  return false;
-}
-
-template<class T, MEMFLAGS F> bool
-GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
-  if (_n > 2) {
-    uint k1 = queue_num;
-    while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
-    uint k2 = queue_num;
-    while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
-    // Sample both and try the larger.
-    uint sz1 = _queues[k1]->size();
-    uint sz2 = _queues[k2]->size();
-    if (sz2 > sz1) return _queues[k2]->pop_global(t);
-    else return _queues[k1]->pop_global(t);
-  } else if (_n == 2) {
-    // Just try the other one.
-    uint k = (queue_num + 1) % 2;
-    return _queues[k]->pop_global(t);
-  } else {
-    assert(_n == 1, "can't be zero.");
-    return false;
-  }
-}
-
 template<class T, MEMFLAGS F>
 bool GenericTaskQueueSet<T, F>::peek() {
   // Try all the queues.
@@ -649,65 +469,6 @@
 #endif
 };
 
-template<class E, MEMFLAGS F, unsigned int N> inline bool
-GenericTaskQueue<E, F, N>::push(E t) {
-  uint localBot = _bottom;
-  assert(localBot < N, "_bottom out of range.");
-  idx_t top = _age.top();
-  uint dirty_n_elems = dirty_size(localBot, top);
-  assert(dirty_n_elems < N, "n_elems out of range.");
-  if (dirty_n_elems < max_elems()) {
-    // g++ complains if the volatile result of the assignment is
-    // unused, so we cast the volatile away.  We cannot cast directly
-    // to void, because gcc treats that as not using the result of the
-    // assignment.  However, casting to E& means that we trigger an
-    // unused-value warning.  So, we cast the E& to void.
-    (void) const_cast<E&>(_elems[localBot] = t);
-    OrderAccess::release_store(&_bottom, increment_index(localBot));
-    TASKQUEUE_STATS_ONLY(stats.record_push());
-    return true;
-  } else {
-    return push_slow(t, dirty_n_elems);
-  }
-}
-
-template<class E, MEMFLAGS F, unsigned int N> inline bool
-GenericTaskQueue<E, F, N>::pop_local(volatile E& t) {
-  uint localBot = _bottom;
-  // This value cannot be N-1.  That can only occur as a result of
-  // the assignment to bottom in this method.  If it does, this method
-  // resets the size to 0 before the next call (which is sequential,
-  // since this is pop_local.)
-  uint dirty_n_elems = dirty_size(localBot, _age.top());
-  assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
-  if (dirty_n_elems == 0) return false;
-  localBot = decrement_index(localBot);
-  _bottom = localBot;
-  // This is necessary to prevent any read below from being reordered
-  // before the store just above.
-  OrderAccess::fence();
-  // g++ complains if the volatile result of the assignment is
-  // unused, so we cast the volatile away.  We cannot cast directly
-  // to void, because gcc treats that as not using the result of the
-  // assignment.  However, casting to E& means that we trigger an
-  // unused-value warning.  So, we cast the E& to void.
-  (void) const_cast<E&>(t = _elems[localBot]);
-  // This is a second read of "age"; the "size()" above is the first.
-  // If there's still at least one element in the queue, based on the
-  // "_bottom" and "age" we've read, then there can be no interference with
-  // a "pop_global" operation, and we're done.
-  idx_t tp = _age.top();    // XXX
-  if (size(localBot, tp) > 0) {
-    assert(dirty_size(localBot, tp) != N - 1, "sanity");
-    TASKQUEUE_STATS_ONLY(stats.record_pop());
-    return true;
-  } else {
-    // Otherwise, the queue contained exactly one element; we take the slow
-    // path.
-    return pop_local_slow(localBot, _age.get());
-  }
-}
-
 typedef GenericTaskQueue<oop, mtGC>             OopTaskQueue;
 typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;