--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/memory/binaryTreeDictionary.cpp Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,1429 @@
+/*
+ * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "gc/cms/allocationStats.hpp"
+#include "gc/shared/spaceDecorator.hpp"
+#include "logging/log.hpp"
+#include "logging/logStream.hpp"
+#include "memory/binaryTreeDictionary.hpp"
+#include "memory/freeList.hpp"
+#include "memory/metachunk.hpp"
+#include "memory/resourceArea.hpp"
+#include "runtime/globals.hpp"
+#include "utilities/macros.hpp"
+#include "utilities/ostream.hpp"
+#if INCLUDE_ALL_GCS
+#include "gc/cms/adaptiveFreeList.hpp"
+#include "gc/cms/freeChunk.hpp"
+#endif // INCLUDE_ALL_GCS
+
+////////////////////////////////////////////////////////////////////////////////
+// A binary tree based search structure for free blocks.
+// This is currently used in the Concurrent Mark&Sweep implementation.
+////////////////////////////////////////////////////////////////////////////////
+
+template <class Chunk_t, class FreeList_t>
+TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) {
+ // Do some assertion checking here.
+ return (TreeChunk<Chunk_t, FreeList_t>*) fc;
+}
+
+template <class Chunk_t, class FreeList_t>
+void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const {
+ TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next();
+ if (prev() != NULL) { // interior list node shouldn't have tree fields
+ guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
+ embedded_list()->right() == NULL, "should be clear");
+ }
+ if (nextTC != NULL) {
+ guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
+ guarantee(nextTC->size() == size(), "wrong size");
+ nextTC->verify_tree_chunk_list();
+ }
+}
+
+template <class Chunk_t, class FreeList_t>
+TreeList<Chunk_t, FreeList_t>::TreeList() : _parent(NULL),
+ _left(NULL), _right(NULL) {}
+
+template <class Chunk_t, class FreeList_t>
+TreeList<Chunk_t, FreeList_t>*
+TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) {
+ // This first free chunk in the list will be the tree list.
+ assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())),
+ "Chunk is too small for a TreeChunk");
+ TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list();
+ tl->initialize();
+ tc->set_list(tl);
+ tl->set_size(tc->size());
+ tl->link_head(tc);
+ tl->link_tail(tc);
+ tl->set_count(1);
+ assert(tl->parent() == NULL, "Should be clear");
+ return tl;
+}
+
+template <class Chunk_t, class FreeList_t>
+TreeList<Chunk_t, FreeList_t>*
+TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) {
+ TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr;
+ assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()),
+ "Chunk is too small for a TreeChunk");
+ // The space will have been mangled initially but
+ // is not remangled when a Chunk_t is returned to the free list
+ // (since it is used to maintain the chunk on the free list).
+ tc->assert_is_mangled();
+ tc->set_size(size);
+ tc->link_prev(NULL);
+ tc->link_next(NULL);
+ TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
+ return tl;
+}
+
+
+#if INCLUDE_ALL_GCS
+// Specialize for AdaptiveFreeList which tries to avoid
+// splitting a chunk of a size that is under populated in favor of
+// an over populated size. The general get_better_list() just returns
+// the current list.
+template <>
+TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >*
+TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >::get_better_list(
+ BinaryTreeDictionary<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* dictionary) {
+ // A candidate chunk has been found. If it is already under
+ // populated, get a chunk associated with the hint for this
+ // chunk.
+
+ TreeList<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* curTL = this;
+ if (curTL->surplus() <= 0) {
+ /* Use the hint to find a size with a surplus, and reset the hint. */
+ TreeList<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* hintTL = this;
+ while (hintTL->hint() != 0) {
+ assert(hintTL->hint() > hintTL->size(),
+ "hint points in the wrong direction");
+ hintTL = dictionary->find_list(hintTL->hint());
+ assert(curTL != hintTL, "Infinite loop");
+ if (hintTL == NULL ||
+ hintTL == curTL /* Should not happen but protect against it */ ) {
+ // No useful hint. Set the hint to NULL and go on.
+ curTL->set_hint(0);
+ break;
+ }
+ assert(hintTL->size() > curTL->size(), "hint is inconsistent");
+ if (hintTL->surplus() > 0) {
+ // The hint led to a list that has a surplus. Use it.
+ // Set the hint for the candidate to an overpopulated
+ // size.
+ curTL->set_hint(hintTL->size());
+ // Change the candidate.
+ curTL = hintTL;
+ break;
+ }
+ }
+ }
+ return curTL;
+}
+#endif // INCLUDE_ALL_GCS
+
+template <class Chunk_t, class FreeList_t>
+TreeList<Chunk_t, FreeList_t>*
+TreeList<Chunk_t, FreeList_t>::get_better_list(
+ BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) {
+ return this;
+}
+
+template <class Chunk_t, class FreeList_t>
+TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) {
+
+ TreeList<Chunk_t, FreeList_t>* retTL = this;
+ Chunk_t* list = head();
+ assert(!list || list != list->next(), "Chunk on list twice");
+ assert(tc != NULL, "Chunk being removed is NULL");
+ assert(parent() == NULL || this == parent()->left() ||
+ this == parent()->right(), "list is inconsistent");
+ assert(tc->is_free(), "Header is not marked correctly");
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+
+ Chunk_t* prevFC = tc->prev();
+ TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next());
+ assert(list != NULL, "should have at least the target chunk");
+
+ // Is this the first item on the list?
+ if (tc == list) {
+ // The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the
+ // first chunk in the list unless it is the last chunk in the list
+ // because the first chunk is also acting as the tree node.
+ // When coalescing happens, however, the first chunk in the a tree
+ // list can be the start of a free range. Free ranges are removed
+ // from the free lists so that they are not available to be
+ // allocated when the sweeper yields (giving up the free list lock)
+ // to allow mutator activity. If this chunk is the first in the
+ // list and is not the last in the list, do the work to copy the
+ // TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all
+ // the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list.
+ if (nextTC == NULL) {
+ assert(prevFC == NULL, "Not last chunk in the list");
+ set_tail(NULL);
+ set_head(NULL);
+ } else {
+ // copy embedded list.
+ nextTC->set_embedded_list(tc->embedded_list());
+ retTL = nextTC->embedded_list();
+ // Fix the pointer to the list in each chunk in the list.
+ // This can be slow for a long list. Consider having
+ // an option that does not allow the first chunk on the
+ // list to be coalesced.
+ for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL;
+ curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) {
+ curTC->set_list(retTL);
+ }
+ // Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>.
+ if (retTL->parent() != NULL) {
+ if (this == retTL->parent()->left()) {
+ retTL->parent()->set_left(retTL);
+ } else {
+ assert(this == retTL->parent()->right(), "Parent is incorrect");
+ retTL->parent()->set_right(retTL);
+ }
+ }
+ // Fix the children's parent pointers to point to the
+ // new list.
+ assert(right() == retTL->right(), "Should have been copied");
+ if (retTL->right() != NULL) {
+ retTL->right()->set_parent(retTL);
+ }
+ assert(left() == retTL->left(), "Should have been copied");
+ if (retTL->left() != NULL) {
+ retTL->left()->set_parent(retTL);
+ }
+ retTL->link_head(nextTC);
+ assert(nextTC->is_free(), "Should be a free chunk");
+ }
+ } else {
+ if (nextTC == NULL) {
+ // Removing chunk at tail of list
+ this->link_tail(prevFC);
+ }
+ // Chunk is interior to the list
+ prevFC->link_after(nextTC);
+ }
+
+ // Below this point the embedded TreeList<Chunk_t, FreeList_t> being used for the
+ // tree node may have changed. Don't use "this"
+ // TreeList<Chunk_t, FreeList_t>*.
+ // chunk should still be a free chunk (bit set in _prev)
+ assert(!retTL->head() || retTL->size() == retTL->head()->size(),
+ "Wrong sized chunk in list");
+ debug_only(
+ tc->link_prev(NULL);
+ tc->link_next(NULL);
+ tc->set_list(NULL);
+ bool prev_found = false;
+ bool next_found = false;
+ for (Chunk_t* curFC = retTL->head();
+ curFC != NULL; curFC = curFC->next()) {
+ assert(curFC != tc, "Chunk is still in list");
+ if (curFC == prevFC) {
+ prev_found = true;
+ }
+ if (curFC == nextTC) {
+ next_found = true;
+ }
+ }
+ assert(prevFC == NULL || prev_found, "Chunk was lost from list");
+ assert(nextTC == NULL || next_found, "Chunk was lost from list");
+ assert(retTL->parent() == NULL ||
+ retTL == retTL->parent()->left() ||
+ retTL == retTL->parent()->right(),
+ "list is inconsistent");
+ )
+ retTL->decrement_count();
+
+ assert(tc->is_free(), "Should still be a free chunk");
+ assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
+ "list invariant");
+ assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
+ "list invariant");
+ return retTL;
+}
+
+template <class Chunk_t, class FreeList_t>
+void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) {
+ assert(chunk != NULL, "returning NULL chunk");
+ assert(chunk->list() == this, "list should be set for chunk");
+ assert(tail() != NULL, "The tree list is embedded in the first chunk");
+ // which means that the list can never be empty.
+ assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+
+ Chunk_t* fc = tail();
+ fc->link_after(chunk);
+ this->link_tail(chunk);
+
+ assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
+ FreeList_t::increment_count();
+ debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+}
+
+// Add this chunk at the head of the list. "At the head of the list"
+// is defined to be after the chunk pointer to by head(). This is
+// because the TreeList<Chunk_t, FreeList_t> is embedded in the first TreeChunk<Chunk_t, FreeList_t> in the
+// list. See the definition of TreeChunk<Chunk_t, FreeList_t>.
+template <class Chunk_t, class FreeList_t>
+void TreeList<Chunk_t, FreeList_t>::return_chunk_at_head(TreeChunk<Chunk_t, FreeList_t>* chunk) {
+ assert(chunk->list() == this, "list should be set for chunk");
+ assert(head() != NULL, "The tree list is embedded in the first chunk");
+ assert(chunk != NULL, "returning NULL chunk");
+ assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+
+ Chunk_t* fc = head()->next();
+ if (fc != NULL) {
+ chunk->link_after(fc);
+ } else {
+ assert(tail() == NULL, "List is inconsistent");
+ this->link_tail(chunk);
+ }
+ head()->link_after(chunk);
+ assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
+ FreeList_t::increment_count();
+ debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+}
+
+template <class Chunk_t, class FreeList_t>
+void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const {
+ assert((ZapUnusedHeapArea &&
+ SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) &&
+ SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) &&
+ SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) ||
+ (size() == 0 && prev() == NULL && next() == NULL),
+ "Space should be clear or mangled");
+}
+
+template <class Chunk_t, class FreeList_t>
+TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() {
+ assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this),
+ "Wrong type of chunk?");
+ return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head());
+}
+
+template <class Chunk_t, class FreeList_t>
+TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() {
+ assert(head() != NULL, "The head of the list cannot be NULL");
+ Chunk_t* fc = head()->next();
+ TreeChunk<Chunk_t, FreeList_t>* retTC;
+ if (fc == NULL) {
+ retTC = head_as_TreeChunk();
+ } else {
+ retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
+ }
+ assert(retTC->list() == this, "Wrong type of chunk.");
+ return retTC;
+}
+
+// Returns the block with the largest heap address amongst
+// those in the list for this size; potentially slow and expensive,
+// use with caution!
+template <class Chunk_t, class FreeList_t>
+TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() {
+ assert(head() != NULL, "The head of the list cannot be NULL");
+ Chunk_t* fc = head()->next();
+ TreeChunk<Chunk_t, FreeList_t>* retTC;
+ if (fc == NULL) {
+ retTC = head_as_TreeChunk();
+ } else {
+ // walk down the list and return the one with the highest
+ // heap address among chunks of this size.
+ Chunk_t* last = fc;
+ while (fc->next() != NULL) {
+ if ((HeapWord*)last < (HeapWord*)fc) {
+ last = fc;
+ }
+ fc = fc->next();
+ }
+ retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last);
+ }
+ assert(retTC->list() == this, "Wrong type of chunk.");
+ return retTC;
+}
+
+template <class Chunk_t, class FreeList_t>
+BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) {
+ assert((mr.byte_size() > min_size()), "minimum chunk size");
+
+ reset(mr);
+ assert(root()->left() == NULL, "reset check failed");
+ assert(root()->right() == NULL, "reset check failed");
+ assert(root()->head()->next() == NULL, "reset check failed");
+ assert(root()->head()->prev() == NULL, "reset check failed");
+ assert(total_size() == root()->size(), "reset check failed");
+ assert(total_free_blocks() == 1, "reset check failed");
+}
+
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) {
+ _total_size = _total_size + inc;
+}
+
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) {
+ _total_size = _total_size - dec;
+}
+
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) {
+ assert((mr.byte_size() > min_size()), "minimum chunk size");
+ set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size()));
+ set_total_size(mr.word_size());
+ set_total_free_blocks(1);
+}
+
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) {
+ MemRegion mr(addr, heap_word_size(byte_size));
+ reset(mr);
+}
+
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() {
+ set_root(NULL);
+ set_total_size(0);
+ set_total_free_blocks(0);
+}
+
+// Get a free block of size at least size from tree, or NULL.
+template <class Chunk_t, class FreeList_t>
+TreeChunk<Chunk_t, FreeList_t>*
+BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(size_t size)
+{
+ TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
+ TreeChunk<Chunk_t, FreeList_t>* retTC = NULL;
+
+ assert((size >= min_size()), "minimum chunk size");
+ if (FLSVerifyDictionary) {
+ verify_tree();
+ }
+ // starting at the root, work downwards trying to find match.
+ // Remember the last node of size too great or too small.
+ for (prevTL = curTL = root(); curTL != NULL;) {
+ if (curTL->size() == size) { // exact match
+ break;
+ }
+ prevTL = curTL;
+ if (curTL->size() < size) { // proceed to right sub-tree
+ curTL = curTL->right();
+ } else { // proceed to left sub-tree
+ assert(curTL->size() > size, "size inconsistency");
+ curTL = curTL->left();
+ }
+ }
+ if (curTL == NULL) { // couldn't find exact match
+
+ // try and find the next larger size by walking back up the search path
+ for (curTL = prevTL; curTL != NULL;) {
+ if (curTL->size() >= size) break;
+ else curTL = curTL->parent();
+ }
+ assert(curTL == NULL || curTL->count() > 0,
+ "An empty list should not be in the tree");
+ }
+ if (curTL != NULL) {
+ assert(curTL->size() >= size, "size inconsistency");
+
+ curTL = curTL->get_better_list(this);
+
+ retTC = curTL->first_available();
+ assert((retTC != NULL) && (curTL->count() > 0),
+ "A list in the binary tree should not be NULL");
+ assert(retTC->size() >= size,
+ "A chunk of the wrong size was found");
+ remove_chunk_from_tree(retTC);
+ assert(retTC->is_free(), "Header is not marked correctly");
+ }
+
+ if (FLSVerifyDictionary) {
+ verify();
+ }
+ return retTC;
+}
+
+template <class Chunk_t, class FreeList_t>
+TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const {
+ TreeList<Chunk_t, FreeList_t>* curTL;
+ for (curTL = root(); curTL != NULL;) {
+ if (curTL->size() == size) { // exact match
+ break;
+ }
+
+ if (curTL->size() < size) { // proceed to right sub-tree
+ curTL = curTL->right();
+ } else { // proceed to left sub-tree
+ assert(curTL->size() > size, "size inconsistency");
+ curTL = curTL->left();
+ }
+ }
+ return curTL;
+}
+
+
+template <class Chunk_t, class FreeList_t>
+bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const {
+ size_t size = tc->size();
+ TreeList<Chunk_t, FreeList_t>* tl = find_list(size);
+ if (tl == NULL) {
+ return false;
+ } else {
+ return tl->verify_chunk_in_free_list(tc);
+ }
+}
+
+template <class Chunk_t, class FreeList_t>
+Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const {
+ TreeList<Chunk_t, FreeList_t> *curTL = root();
+ if (curTL != NULL) {
+ while(curTL->right() != NULL) curTL = curTL->right();
+ return curTL->largest_address();
+ } else {
+ return NULL;
+ }
+}
+
+// Remove the current chunk from the tree. If it is not the last
+// chunk in a list on a tree node, just unlink it.
+// If it is the last chunk in the list (the next link is NULL),
+// remove the node and repair the tree.
+template <class Chunk_t, class FreeList_t>
+TreeChunk<Chunk_t, FreeList_t>*
+BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) {
+ assert(tc != NULL, "Should not call with a NULL chunk");
+ assert(tc->is_free(), "Header is not marked correctly");
+
+ TreeList<Chunk_t, FreeList_t> *newTL, *parentTL;
+ TreeChunk<Chunk_t, FreeList_t>* retTC;
+ TreeList<Chunk_t, FreeList_t>* tl = tc->list();
+ debug_only(
+ bool removing_only_chunk = false;
+ if (tl == _root) {
+ if ((_root->left() == NULL) && (_root->right() == NULL)) {
+ if (_root->count() == 1) {
+ assert(_root->head() == tc, "Should only be this one chunk");
+ removing_only_chunk = true;
+ }
+ }
+ }
+ )
+ assert(tl != NULL, "List should be set");
+ assert(tl->parent() == NULL || tl == tl->parent()->left() ||
+ tl == tl->parent()->right(), "list is inconsistent");
+
+ bool complicated_splice = false;
+
+ retTC = tc;
+ // Removing this chunk can have the side effect of changing the node
+ // (TreeList<Chunk_t, FreeList_t>*) in the tree. If the node is the root, update it.
+ TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
+ assert(tc->is_free(), "Chunk should still be free");
+ assert(replacementTL->parent() == NULL ||
+ replacementTL == replacementTL->parent()->left() ||
+ replacementTL == replacementTL->parent()->right(),
+ "list is inconsistent");
+ if (tl == root()) {
+ assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
+ set_root(replacementTL);
+ }
+#ifdef ASSERT
+ if (tl != replacementTL) {
+ assert(replacementTL->head() != NULL,
+ "If the tree list was replaced, it should not be a NULL list");
+ TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list();
+ TreeList<Chunk_t, FreeList_t>* rtl =
+ TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list();
+ assert(rhl == replacementTL, "Broken head");
+ assert(rtl == replacementTL, "Broken tail");
+ assert(replacementTL->size() == tc->size(), "Broken size");
+ }
+#endif
+
+ // Does the tree need to be repaired?
+ if (replacementTL->count() == 0) {
+ assert(replacementTL->head() == NULL &&
+ replacementTL->tail() == NULL, "list count is incorrect");
+ // Find the replacement node for the (soon to be empty) node being removed.
+ // if we have a single (or no) child, splice child in our stead
+ if (replacementTL->left() == NULL) {
+ // left is NULL so pick right. right may also be NULL.
+ newTL = replacementTL->right();
+ debug_only(replacementTL->clear_right();)
+ } else if (replacementTL->right() == NULL) {
+ // right is NULL
+ newTL = replacementTL->left();
+ debug_only(replacementTL->clear_left();)
+ } else { // we have both children, so, by patriarchal convention,
+ // my replacement is least node in right sub-tree
+ complicated_splice = true;
+ newTL = remove_tree_minimum(replacementTL->right());
+ assert(newTL != NULL && newTL->left() == NULL &&
+ newTL->right() == NULL, "sub-tree minimum exists");
+ }
+ // newTL is the replacement for the (soon to be empty) node.
+ // newTL may be NULL.
+ // should verify; we just cleanly excised our replacement
+ if (FLSVerifyDictionary) {
+ verify_tree();
+ }
+ // first make newTL my parent's child
+ if ((parentTL = replacementTL->parent()) == NULL) {
+ // newTL should be root
+ assert(tl == root(), "Incorrectly replacing root");
+ set_root(newTL);
+ if (newTL != NULL) {
+ newTL->clear_parent();
+ }
+ } else if (parentTL->right() == replacementTL) {
+ // replacementTL is a right child
+ parentTL->set_right(newTL);
+ } else { // replacementTL is a left child
+ assert(parentTL->left() == replacementTL, "should be left child");
+ parentTL->set_left(newTL);
+ }
+ debug_only(replacementTL->clear_parent();)
+ if (complicated_splice) { // we need newTL to get replacementTL's
+ // two children
+ assert(newTL != NULL &&
+ newTL->left() == NULL && newTL->right() == NULL,
+ "newTL should not have encumbrances from the past");
+ // we'd like to assert as below:
+ // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
+ // "else !complicated_splice");
+ // ... however, the above assertion is too strong because we aren't
+ // guaranteed that replacementTL->right() is still NULL.
+ // Recall that we removed
+ // the right sub-tree minimum from replacementTL.
+ // That may well have been its right
+ // child! So we'll just assert half of the above:
+ assert(replacementTL->left() != NULL, "else !complicated_splice");
+ newTL->set_left(replacementTL->left());
+ newTL->set_right(replacementTL->right());
+ debug_only(
+ replacementTL->clear_right();
+ replacementTL->clear_left();
+ )
+ }
+ assert(replacementTL->right() == NULL &&
+ replacementTL->left() == NULL &&
+ replacementTL->parent() == NULL,
+ "delete without encumbrances");
+ }
+
+ assert(total_size() >= retTC->size(), "Incorrect total size");
+ dec_total_size(retTC->size()); // size book-keeping
+ assert(total_free_blocks() > 0, "Incorrect total count");
+ set_total_free_blocks(total_free_blocks() - 1);
+
+ assert(retTC != NULL, "null chunk?");
+ assert(retTC->prev() == NULL && retTC->next() == NULL,
+ "should return without encumbrances");
+ if (FLSVerifyDictionary) {
+ verify_tree();
+ }
+ assert(!removing_only_chunk || _root == NULL, "root should be NULL");
+ return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC);
+}
+
+// Remove the leftmost node (lm) in the tree and return it.
+// If lm has a right child, link it to the left node of
+// the parent of lm.
+template <class Chunk_t, class FreeList_t>
+TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) {
+ assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
+ // locate the subtree minimum by walking down left branches
+ TreeList<Chunk_t, FreeList_t>* curTL = tl;
+ for (; curTL->left() != NULL; curTL = curTL->left());
+ // obviously curTL now has at most one child, a right child
+ if (curTL != root()) { // Should this test just be removed?
+ TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent();
+ if (parentTL->left() == curTL) { // curTL is a left child
+ parentTL->set_left(curTL->right());
+ } else {
+ // If the list tl has no left child, then curTL may be
+ // the right child of parentTL.
+ assert(parentTL->right() == curTL, "should be a right child");
+ parentTL->set_right(curTL->right());
+ }
+ } else {
+ // The only use of this method would not pass the root of the
+ // tree (as indicated by the assertion above that the tree list
+ // has a parent) but the specification does not explicitly exclude the
+ // passing of the root so accommodate it.
+ set_root(NULL);
+ }
+ debug_only(
+ curTL->clear_parent(); // Test if this needs to be cleared
+ curTL->clear_right(); // recall, above, left child is already null
+ )
+ // we just excised a (non-root) node, we should still verify all tree invariants
+ if (FLSVerifyDictionary) {
+ verify_tree();
+ }
+ return curTL;
+}
+
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) {
+ TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
+ size_t size = fc->size();
+
+ assert((size >= min_size()),
+ SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT,
+ size, min_size());
+ if (FLSVerifyDictionary) {
+ verify_tree();
+ }
+
+ fc->clear_next();
+ fc->link_prev(NULL);
+
+ // work down from the _root, looking for insertion point
+ for (prevTL = curTL = root(); curTL != NULL;) {
+ if (curTL->size() == size) // exact match
+ break;
+ prevTL = curTL;
+ if (curTL->size() > size) { // follow left branch
+ curTL = curTL->left();
+ } else { // follow right branch
+ assert(curTL->size() < size, "size inconsistency");
+ curTL = curTL->right();
+ }
+ }
+ TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
+ // This chunk is being returned to the binary tree. Its embedded
+ // TreeList<Chunk_t, FreeList_t> should be unused at this point.
+ tc->initialize();
+ if (curTL != NULL) { // exact match
+ tc->set_list(curTL);
+ curTL->return_chunk_at_tail(tc);
+ } else { // need a new node in tree
+ tc->clear_next();
+ tc->link_prev(NULL);
+ TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
+ assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL,
+ "List was not initialized correctly");
+ if (prevTL == NULL) { // we are the only tree node
+ assert(root() == NULL, "control point invariant");
+ set_root(newTL);
+ } else { // insert under prevTL ...
+ if (prevTL->size() < size) { // am right child
+ assert(prevTL->right() == NULL, "control point invariant");
+ prevTL->set_right(newTL);
+ } else { // am left child
+ assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
+ prevTL->set_left(newTL);
+ }
+ }
+ }
+ assert(tc->list() != NULL, "Tree list should be set");
+
+ inc_total_size(size);
+ // Method 'total_size_in_tree' walks through the every block in the
+ // tree, so it can cause significant performance loss if there are
+ // many blocks in the tree
+ assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
+ set_total_free_blocks(total_free_blocks() + 1);
+ if (FLSVerifyDictionary) {
+ verify_tree();
+ }
+}
+
+template <class Chunk_t, class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const {
+ verify_par_locked();
+ TreeList<Chunk_t, FreeList_t>* tc = root();
+ if (tc == NULL) return 0;
+ for (; tc->right() != NULL; tc = tc->right());
+ return tc->size();
+}
+
+template <class Chunk_t, class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const {
+ size_t res;
+ res = tl->count();
+#ifdef ASSERT
+ size_t cnt;
+ Chunk_t* tc = tl->head();
+ for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
+ assert(res == cnt, "The count is not being maintained correctly");
+#endif
+ return res;
+}
+
+template <class Chunk_t, class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
+ if (tl == NULL)
+ return 0;
+ return (tl->size() * total_list_length(tl)) +
+ total_size_in_tree(tl->left()) +
+ total_size_in_tree(tl->right());
+}
+
+template <class Chunk_t, class FreeList_t>
+double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const {
+ if (tl == NULL) {
+ return 0.0;
+ }
+ double size = (double)(tl->size());
+ double curr = size * size * total_list_length(tl);
+ curr += sum_of_squared_block_sizes(tl->left());
+ curr += sum_of_squared_block_sizes(tl->right());
+ return curr;
+}
+
+template <class Chunk_t, class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
+ if (tl == NULL)
+ return 0;
+ return total_list_length(tl) +
+ total_free_blocks_in_tree(tl->left()) +
+ total_free_blocks_in_tree(tl->right());
+}
+
+template <class Chunk_t, class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const {
+ assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
+ "_total_free_blocks inconsistency");
+ return total_free_blocks();
+}
+
+template <class Chunk_t, class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
+ if (tl == NULL)
+ return 0;
+ return 1 + MAX2(tree_height_helper(tl->left()),
+ tree_height_helper(tl->right()));
+}
+
+template <class Chunk_t, class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const {
+ return tree_height_helper(root());
+}
+
+template <class Chunk_t, class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
+ if (tl == NULL) {
+ return 0;
+ }
+ return 1 + total_nodes_helper(tl->left()) +
+ total_nodes_helper(tl->right());
+}
+
+template <class Chunk_t, class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
+ return total_nodes_helper(root());
+}
+
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::dict_census_update(size_t size, bool split, bool birth){}
+
+#if INCLUDE_ALL_GCS
+template <>
+void AFLBinaryTreeDictionary::dict_census_update(size_t size, bool split, bool birth) {
+ TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* nd = find_list(size);
+ if (nd) {
+ if (split) {
+ if (birth) {
+ nd->increment_split_births();
+ nd->increment_surplus();
+ } else {
+ nd->increment_split_deaths();
+ nd->decrement_surplus();
+ }
+ } else {
+ if (birth) {
+ nd->increment_coal_births();
+ nd->increment_surplus();
+ } else {
+ nd->increment_coal_deaths();
+ nd->decrement_surplus();
+ }
+ }
+ }
+ // A list for this size may not be found (nd == 0) if
+ // This is a death where the appropriate list is now
+ // empty and has been removed from the list.
+ // This is a birth associated with a LinAB. The chunk
+ // for the LinAB is not in the dictionary.
+}
+#endif // INCLUDE_ALL_GCS
+
+template <class Chunk_t, class FreeList_t>
+bool BinaryTreeDictionary<Chunk_t, FreeList_t>::coal_dict_over_populated(size_t size) {
+ // For the general type of freelists, encourage coalescing by
+ // returning true.
+ return true;
+}
+
+#if INCLUDE_ALL_GCS
+template <>
+bool AFLBinaryTreeDictionary::coal_dict_over_populated(size_t size) {
+ if (FLSAlwaysCoalesceLarge) return true;
+
+ TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* list_of_size = find_list(size);
+ // None of requested size implies overpopulated.
+ return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
+ list_of_size->count() > list_of_size->coal_desired();
+}
+#endif // INCLUDE_ALL_GCS
+
+// Closures for walking the binary tree.
+// do_list() walks the free list in a node applying the closure
+// to each free chunk in the list
+// do_tree() walks the nodes in the binary tree applying do_list()
+// to each list at each node.
+
+template <class Chunk_t, class FreeList_t>
+class TreeCensusClosure : public StackObj {
+ protected:
+ virtual void do_list(FreeList_t* fl) = 0;
+ public:
+ virtual void do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
+};
+
+template <class Chunk_t, class FreeList_t>
+class AscendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
+ public:
+ void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
+ if (tl != NULL) {
+ do_tree(tl->left());
+ this->do_list(tl);
+ do_tree(tl->right());
+ }
+ }
+};
+
+template <class Chunk_t, class FreeList_t>
+class DescendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
+ public:
+ void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
+ if (tl != NULL) {
+ do_tree(tl->right());
+ this->do_list(tl);
+ do_tree(tl->left());
+ }
+ }
+};
+
+// For each list in the tree, calculate the desired, desired
+// coalesce, count before sweep, and surplus before sweep.
+template <class Chunk_t, class FreeList_t>
+class BeginSweepClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
+ double _percentage;
+ float _inter_sweep_current;
+ float _inter_sweep_estimate;
+ float _intra_sweep_estimate;
+
+ public:
+ BeginSweepClosure(double p, float inter_sweep_current,
+ float inter_sweep_estimate,
+ float intra_sweep_estimate) :
+ _percentage(p),
+ _inter_sweep_current(inter_sweep_current),
+ _inter_sweep_estimate(inter_sweep_estimate),
+ _intra_sweep_estimate(intra_sweep_estimate) { }
+
+ void do_list(FreeList<Chunk_t>* fl) {}
+
+#if INCLUDE_ALL_GCS
+ void do_list(AdaptiveFreeList<Chunk_t>* fl) {
+ double coalSurplusPercent = _percentage;
+ fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
+ fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
+ fl->set_before_sweep(fl->count());
+ fl->set_bfr_surp(fl->surplus());
+ }
+#endif // INCLUDE_ALL_GCS
+};
+
+// Used to search the tree until a condition is met.
+// Similar to TreeCensusClosure but searches the
+// tree and returns promptly when found.
+
+template <class Chunk_t, class FreeList_t>
+class TreeSearchClosure : public StackObj {
+ protected:
+ virtual bool do_list(FreeList_t* fl) = 0;
+ public:
+ virtual bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
+};
+
+#if 0 // Don't need this yet but here for symmetry.
+template <class Chunk_t, class FreeList_t>
+class AscendTreeSearchClosure : public TreeSearchClosure<Chunk_t> {
+ public:
+ bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
+ if (tl != NULL) {
+ if (do_tree(tl->left())) return true;
+ if (do_list(tl)) return true;
+ if (do_tree(tl->right())) return true;
+ }
+ return false;
+ }
+};
+#endif
+
+template <class Chunk_t, class FreeList_t>
+class DescendTreeSearchClosure : public TreeSearchClosure<Chunk_t, FreeList_t> {
+ public:
+ bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
+ if (tl != NULL) {
+ if (do_tree(tl->right())) return true;
+ if (this->do_list(tl)) return true;
+ if (do_tree(tl->left())) return true;
+ }
+ return false;
+ }
+};
+
+// Searches the tree for a chunk that ends at the
+// specified address.
+template <class Chunk_t, class FreeList_t>
+class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> {
+ HeapWord* _target;
+ Chunk_t* _found;
+
+ public:
+ EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
+ bool do_list(FreeList_t* fl) {
+ Chunk_t* item = fl->head();
+ while (item != NULL) {
+ if (item->end() == (uintptr_t*) _target) {
+ _found = item;
+ return true;
+ }
+ item = item->next();
+ }
+ return false;
+ }
+ Chunk_t* found() { return _found; }
+};
+
+template <class Chunk_t, class FreeList_t>
+Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const {
+ EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target);
+ bool found_target = etsc.do_tree(root());
+ assert(found_target || etsc.found() == NULL, "Consistency check");
+ assert(!found_target || etsc.found() != NULL, "Consistency check");
+ return etsc.found();
+}
+
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::begin_sweep_dict_census(double coalSurplusPercent,
+ float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
+ BeginSweepClosure<Chunk_t, FreeList_t> bsc(coalSurplusPercent, inter_sweep_current,
+ inter_sweep_estimate,
+ intra_sweep_estimate);
+ bsc.do_tree(root());
+}
+
+// Closures and methods for calculating total bytes returned to the
+// free lists in the tree.
+#ifndef PRODUCT
+template <class Chunk_t, class FreeList_t>
+class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
+ public:
+ void do_list(FreeList_t* fl) {
+ fl->set_returned_bytes(0);
+ }
+};
+
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() {
+ InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb;
+ idrb.do_tree(root());
+}
+
+template <class Chunk_t, class FreeList_t>
+class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
+ size_t _dict_returned_bytes;
+ public:
+ ReturnedBytesClosure() { _dict_returned_bytes = 0; }
+ void do_list(FreeList_t* fl) {
+ _dict_returned_bytes += fl->returned_bytes();
+ }
+ size_t dict_returned_bytes() { return _dict_returned_bytes; }
+};
+
+template <class Chunk_t, class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() {
+ ReturnedBytesClosure<Chunk_t, FreeList_t> rbc;
+ rbc.do_tree(root());
+
+ return rbc.dict_returned_bytes();
+}
+
+// Count the number of entries in the tree.
+template <class Chunk_t, class FreeList_t>
+class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
+ public:
+ uint count;
+ treeCountClosure(uint c) { count = c; }
+ void do_list(FreeList_t* fl) {
+ count++;
+ }
+};
+
+template <class Chunk_t, class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() {
+ treeCountClosure<Chunk_t, FreeList_t> ctc(0);
+ ctc.do_tree(root());
+ return ctc.count;
+}
+
+template <class Chunk_t, class FreeList_t>
+Mutex* BinaryTreeDictionary<Chunk_t, FreeList_t>::par_lock() const {
+ return _lock;
+}
+
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_par_lock(Mutex* lock) {
+ _lock = lock;
+}
+
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_par_locked() const {
+#ifdef ASSERT
+ Thread* my_thread = Thread::current();
+ if (my_thread->is_GC_task_thread()) {
+ assert(par_lock() != NULL, "Should be using locking?");
+ assert_lock_strong(par_lock());
+ }
+#endif // ASSERT
+}
+#endif // PRODUCT
+
+// Calculate surpluses for the lists in the tree.
+template <class Chunk_t, class FreeList_t>
+class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
+ double percentage;
+ public:
+ setTreeSurplusClosure(double v) { percentage = v; }
+ void do_list(FreeList<Chunk_t>* fl) {}
+
+#if INCLUDE_ALL_GCS
+ void do_list(AdaptiveFreeList<Chunk_t>* fl) {
+ double splitSurplusPercent = percentage;
+ fl->set_surplus(fl->count() -
+ (ssize_t)((double)fl->desired() * splitSurplusPercent));
+ }
+#endif // INCLUDE_ALL_GCS
+};
+
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_surplus(double splitSurplusPercent) {
+ setTreeSurplusClosure<Chunk_t, FreeList_t> sts(splitSurplusPercent);
+ sts.do_tree(root());
+}
+
+// Set hints for the lists in the tree.
+template <class Chunk_t, class FreeList_t>
+class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
+ size_t hint;
+ public:
+ setTreeHintsClosure(size_t v) { hint = v; }
+ void do_list(FreeList<Chunk_t>* fl) {}
+
+#if INCLUDE_ALL_GCS
+ void do_list(AdaptiveFreeList<Chunk_t>* fl) {
+ fl->set_hint(hint);
+ assert(fl->hint() == 0 || fl->hint() > fl->size(),
+ "Current hint is inconsistent");
+ if (fl->surplus() > 0) {
+ hint = fl->size();
+ }
+ }
+#endif // INCLUDE_ALL_GCS
+};
+
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_hints(void) {
+ setTreeHintsClosure<Chunk_t, FreeList_t> sth(0);
+ sth.do_tree(root());
+}
+
+// Save count before previous sweep and splits and coalesces.
+template <class Chunk_t, class FreeList_t>
+class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
+ void do_list(FreeList<Chunk_t>* fl) {}
+
+#if INCLUDE_ALL_GCS
+ void do_list(AdaptiveFreeList<Chunk_t>* fl) {
+ fl->set_prev_sweep(fl->count());
+ fl->set_coal_births(0);
+ fl->set_coal_deaths(0);
+ fl->set_split_births(0);
+ fl->set_split_deaths(0);
+ }
+#endif // INCLUDE_ALL_GCS
+};
+
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::clear_tree_census(void) {
+ clearTreeCensusClosure<Chunk_t, FreeList_t> ctc;
+ ctc.do_tree(root());
+}
+
+// Do reporting and post sweep clean up.
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::end_sweep_dict_census(double splitSurplusPercent) {
+ // Does walking the tree 3 times hurt?
+ set_tree_surplus(splitSurplusPercent);
+ set_tree_hints();
+ LogTarget(Trace, gc, freelist, stats) log;
+ if (log.is_enabled()) {
+ LogStream out(log);
+ report_statistics(&out);
+ }
+ clear_tree_census();
+}
+
+// Print summary statistics
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics(outputStream* st) const {
+ verify_par_locked();
+ st->print_cr("Statistics for BinaryTreeDictionary:");
+ st->print_cr("------------------------------------");
+ size_t total_size = total_chunk_size(debug_only(NULL));
+ size_t free_blocks = num_free_blocks();
+ st->print_cr("Total Free Space: " SIZE_FORMAT, total_size);
+ st->print_cr("Max Chunk Size: " SIZE_FORMAT, max_chunk_size());
+ st->print_cr("Number of Blocks: " SIZE_FORMAT, free_blocks);
+ if (free_blocks > 0) {
+ st->print_cr("Av. Block Size: " SIZE_FORMAT, total_size/free_blocks);
+ }
+ st->print_cr("Tree Height: " SIZE_FORMAT, tree_height());
+}
+
+// Print census information - counts, births, deaths, etc.
+// for each list in the tree. Also print some summary
+// information.
+template <class Chunk_t, class FreeList_t>
+class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
+ int _print_line;
+ size_t _total_free;
+ FreeList_t _total;
+
+ public:
+ PrintTreeCensusClosure() {
+ _print_line = 0;
+ _total_free = 0;
+ }
+ FreeList_t* total() { return &_total; }
+ size_t total_free() { return _total_free; }
+ void do_list(FreeList<Chunk_t>* fl) {
+ LogStreamHandle(Debug, gc, freelist, census) out;
+
+ if (++_print_line >= 40) {
+ FreeList_t::print_labels_on(&out, "size");
+ _print_line = 0;
+ }
+ fl->print_on(&out);
+ _total_free += fl->count() * fl->size();
+ total()->set_count(total()->count() + fl->count());
+ }
+
+#if INCLUDE_ALL_GCS
+ void do_list(AdaptiveFreeList<Chunk_t>* fl) {
+ LogStreamHandle(Debug, gc, freelist, census) out;
+
+ if (++_print_line >= 40) {
+ FreeList_t::print_labels_on(&out, "size");
+ _print_line = 0;
+ }
+ fl->print_on(&out);
+ _total_free += fl->count() * fl->size() ;
+ total()->set_count( total()->count() + fl->count() );
+ total()->set_bfr_surp( total()->bfr_surp() + fl->bfr_surp() );
+ total()->set_surplus( total()->split_deaths() + fl->surplus() );
+ total()->set_desired( total()->desired() + fl->desired() );
+ total()->set_prev_sweep( total()->prev_sweep() + fl->prev_sweep() );
+ total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
+ total()->set_coal_births( total()->coal_births() + fl->coal_births() );
+ total()->set_coal_deaths( total()->coal_deaths() + fl->coal_deaths() );
+ total()->set_split_births(total()->split_births() + fl->split_births());
+ total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
+ }
+#endif // INCLUDE_ALL_GCS
+};
+
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_dict_census(outputStream* st) const {
+
+ st->print("BinaryTree");
+ FreeList_t::print_labels_on(st, "size");
+ PrintTreeCensusClosure<Chunk_t, FreeList_t> ptc;
+ ptc.do_tree(root());
+
+ FreeList_t* total = ptc.total();
+ FreeList_t::print_labels_on(st, " ");
+}
+
+#if INCLUDE_ALL_GCS
+template <>
+void AFLBinaryTreeDictionary::print_dict_census(outputStream* st) const {
+
+ st->print_cr("BinaryTree");
+ AdaptiveFreeList<FreeChunk>::print_labels_on(st, "size");
+ PrintTreeCensusClosure<FreeChunk, AdaptiveFreeList<FreeChunk> > ptc;
+ ptc.do_tree(root());
+
+ AdaptiveFreeList<FreeChunk>* total = ptc.total();
+ AdaptiveFreeList<FreeChunk>::print_labels_on(st, " ");
+ total->print_on(st, "TOTAL\t");
+ st->print_cr("total_free(words): " SIZE_FORMAT_W(16) " growth: %8.5f deficit: %8.5f",
+ ptc.total_free(),
+ (double)(total->split_births() + total->coal_births()
+ - total->split_deaths() - total->coal_deaths())
+ /(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0),
+ (double)(total->desired() - total->count())
+ /(total->desired() != 0 ? (double)total->desired() : 1.0));
+}
+#endif // INCLUDE_ALL_GCS
+
+template <class Chunk_t, class FreeList_t>
+class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
+ outputStream* _st;
+ int _print_line;
+
+ public:
+ PrintFreeListsClosure(outputStream* st) {
+ _st = st;
+ _print_line = 0;
+ }
+ void do_list(FreeList_t* fl) {
+ if (++_print_line >= 40) {
+ FreeList_t::print_labels_on(_st, "size");
+ _print_line = 0;
+ }
+ fl->print_on(_st);
+ size_t sz = fl->size();
+ for (Chunk_t* fc = fl->head(); fc != NULL;
+ fc = fc->next()) {
+ _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s",
+ p2i(fc), p2i((HeapWord*)fc + sz),
+ fc->cantCoalesce() ? "\t CC" : "");
+ }
+ }
+};
+
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const {
+
+ FreeList_t::print_labels_on(st, "size");
+ PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st);
+ pflc.do_tree(root());
+}
+
+// Verify the following tree invariants:
+// . _root has no parent
+// . parent and child point to each other
+// . each node's key correctly related to that of its child(ren)
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const {
+ guarantee(root() == NULL || total_free_blocks() == 0 ||
+ total_size() != 0, "_total_size shouldn't be 0?");
+ guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
+ verify_tree_helper(root());
+}
+
+template <class Chunk_t, class FreeList_t>
+size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) {
+ size_t ct = 0;
+ for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
+ ct++;
+ assert(curFC->prev() == NULL || curFC->prev()->is_free(),
+ "Chunk should be free");
+ }
+ return ct;
+}
+
+// Note: this helper is recursive rather than iterative, so use with
+// caution on very deep trees; and watch out for stack overflow errors;
+// In general, to be used only for debugging.
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
+ if (tl == NULL)
+ return;
+ guarantee(tl->size() != 0, "A list must has a size");
+ guarantee(tl->left() == NULL || tl->left()->parent() == tl,
+ "parent<-/->left");
+ guarantee(tl->right() == NULL || tl->right()->parent() == tl,
+ "parent<-/->right");;
+ guarantee(tl->left() == NULL || tl->left()->size() < tl->size(),
+ "parent !> left");
+ guarantee(tl->right() == NULL || tl->right()->size() > tl->size(),
+ "parent !< left");
+ guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
+ guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
+ "list inconsistency");
+ guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
+ "list count is inconsistent");
+ guarantee(tl->count() > 1 || tl->head() == tl->tail(),
+ "list is incorrectly constructed");
+ size_t count = verify_prev_free_ptrs(tl);
+ guarantee(count == (size_t)tl->count(), "Node count is incorrect");
+ if (tl->head() != NULL) {
+ tl->head_as_TreeChunk()->verify_tree_chunk_list();
+ }
+ verify_tree_helper(tl->left());
+ verify_tree_helper(tl->right());
+}
+
+template <class Chunk_t, class FreeList_t>
+void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const {
+ verify_tree();
+ guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
+}
+
+template class TreeList<Metablock, FreeList<Metablock> >;
+template class BinaryTreeDictionary<Metablock, FreeList<Metablock> >;
+template class TreeChunk<Metablock, FreeList<Metablock> >;
+
+template class TreeList<Metachunk, FreeList<Metachunk> >;
+template class BinaryTreeDictionary<Metachunk, FreeList<Metachunk> >;
+template class TreeChunk<Metachunk, FreeList<Metachunk> >;
+
+
+#if INCLUDE_ALL_GCS
+// Explicitly instantiate these types for FreeChunk.
+template class TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >;
+template class BinaryTreeDictionary<FreeChunk, AdaptiveFreeList<FreeChunk> >;
+template class TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >;
+
+#endif // INCLUDE_ALL_GCS