hotspot/src/cpu/aarch64/vm/macroAssembler_aarch64.cpp
changeset 29183 0cc8699f7372
child 30225 e9722ea461d4
child 30027 8978b20138b4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/aarch64/vm/macroAssembler_aarch64.cpp	Tue Jan 20 11:34:17 2015 -0800
@@ -0,0 +1,4138 @@
+/*
+ * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include <sys/types.h>
+
+#include "precompiled.hpp"
+#include "asm/assembler.hpp"
+#include "asm/assembler.inline.hpp"
+#include "interpreter/interpreter.hpp"
+
+#include "compiler/disassembler.hpp"
+#include "memory/resourceArea.hpp"
+#include "runtime/biasedLocking.hpp"
+#include "runtime/icache.hpp"
+#include "runtime/interfaceSupport.hpp"
+#include "runtime/sharedRuntime.hpp"
+
+// #include "gc_interface/collectedHeap.inline.hpp"
+// #include "interpreter/interpreter.hpp"
+// #include "memory/cardTableModRefBS.hpp"
+// #include "prims/methodHandles.hpp"
+// #include "runtime/biasedLocking.hpp"
+// #include "runtime/interfaceSupport.hpp"
+// #include "runtime/objectMonitor.hpp"
+// #include "runtime/os.hpp"
+// #include "runtime/sharedRuntime.hpp"
+// #include "runtime/stubRoutines.hpp"
+
+#if INCLUDE_ALL_GCS
+#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
+#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
+#include "gc_implementation/g1/heapRegion.hpp"
+#endif
+
+#ifdef PRODUCT
+#define BLOCK_COMMENT(str) /* nothing */
+#define STOP(error) stop(error)
+#else
+#define BLOCK_COMMENT(str) block_comment(str)
+#define STOP(error) block_comment(error); stop(error)
+#endif
+
+#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
+
+// Patch any kind of instruction; there may be several instructions.
+// Return the total length (in bytes) of the instructions.
+int MacroAssembler::pd_patch_instruction_size(address branch, address target) {
+  int instructions = 1;
+  assert((uint64_t)target < (1ul << 48), "48-bit overflow in address constant");
+  long offset = (target - branch) >> 2;
+  unsigned insn = *(unsigned*)branch;
+  if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) {
+    // Load register (literal)
+    Instruction_aarch64::spatch(branch, 23, 5, offset);
+  } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) {
+    // Unconditional branch (immediate)
+    Instruction_aarch64::spatch(branch, 25, 0, offset);
+  } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) {
+    // Conditional branch (immediate)
+    Instruction_aarch64::spatch(branch, 23, 5, offset);
+  } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) {
+    // Compare & branch (immediate)
+    Instruction_aarch64::spatch(branch, 23, 5, offset);
+  } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) {
+    // Test & branch (immediate)
+    Instruction_aarch64::spatch(branch, 18, 5, offset);
+  } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
+    // PC-rel. addressing
+    offset = target-branch;
+    int shift = Instruction_aarch64::extract(insn, 31, 31);
+    if (shift) {
+      u_int64_t dest = (u_int64_t)target;
+      uint64_t pc_page = (uint64_t)branch >> 12;
+      uint64_t adr_page = (uint64_t)target >> 12;
+      unsigned offset_lo = dest & 0xfff;
+      offset = adr_page - pc_page;
+
+      // We handle 3 types of PC relative addressing
+      //   1 - adrp    Rx, target_page
+      //       ldr/str Ry, [Rx, #offset_in_page]
+      //   2 - adrp    Rx, target_page
+      //       add     Ry, Rx, #offset_in_page
+      //   3 - adrp    Rx, target_page (page aligned reloc, offset == 0)
+      // In the first 2 cases we must check that Rx is the same in the adrp and the
+      // subsequent ldr/str or add instruction. Otherwise we could accidentally end
+      // up treating a type 3 relocation as a type 1 or 2 just because it happened
+      // to be followed by a random unrelated ldr/str or add instruction.
+      //
+      // In the case of a type 3 relocation, we know that these are only generated
+      // for the safepoint polling page, or for the card type byte map base so we
+      // assert as much and of course that the offset is 0.
+      //
+      unsigned insn2 = ((unsigned*)branch)[1];
+      if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
+                Instruction_aarch64::extract(insn, 4, 0) ==
+                        Instruction_aarch64::extract(insn2, 9, 5)) {
+        // Load/store register (unsigned immediate)
+        unsigned size = Instruction_aarch64::extract(insn2, 31, 30);
+        Instruction_aarch64::patch(branch + sizeof (unsigned),
+                                    21, 10, offset_lo >> size);
+        guarantee(((dest >> size) << size) == dest, "misaligned target");
+        instructions = 2;
+      } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
+                Instruction_aarch64::extract(insn, 4, 0) ==
+                        Instruction_aarch64::extract(insn2, 4, 0)) {
+        // add (immediate)
+        Instruction_aarch64::patch(branch + sizeof (unsigned),
+                                   21, 10, offset_lo);
+        instructions = 2;
+      } else {
+        assert((jbyte *)target ==
+                ((CardTableModRefBS*)(Universe::heap()->barrier_set()))->byte_map_base ||
+               target == StubRoutines::crc_table_addr() ||
+               (address)target == os::get_polling_page(),
+               "adrp must be polling page or byte map base");
+        assert(offset_lo == 0, "offset must be 0 for polling page or byte map base");
+      }
+    }
+    int offset_lo = offset & 3;
+    offset >>= 2;
+    Instruction_aarch64::spatch(branch, 23, 5, offset);
+    Instruction_aarch64::patch(branch, 30, 29, offset_lo);
+  } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) {
+    u_int64_t dest = (u_int64_t)target;
+    // Move wide constant
+    assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch");
+    assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch");
+    Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff);
+    Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff);
+    Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff);
+    assert(target_addr_for_insn(branch) == target, "should be");
+    instructions = 3;
+  } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
+             Instruction_aarch64::extract(insn, 4, 0) == 0b11111) {
+    // nothing to do
+    assert(target == 0, "did not expect to relocate target for polling page load");
+  } else {
+    ShouldNotReachHere();
+  }
+  return instructions * NativeInstruction::instruction_size;
+}
+
+int MacroAssembler::patch_oop(address insn_addr, address o) {
+  int instructions;
+  unsigned insn = *(unsigned*)insn_addr;
+  assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
+
+  // OOPs are either narrow (32 bits) or wide (48 bits).  We encode
+  // narrow OOPs by setting the upper 16 bits in the first
+  // instruction.
+  if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) {
+    // Move narrow OOP
+    narrowOop n = oopDesc::encode_heap_oop((oop)o);
+    Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
+    Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
+    instructions = 2;
+  } else {
+    // Move wide OOP
+    assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
+    uintptr_t dest = (uintptr_t)o;
+    Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
+    Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
+    Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
+    instructions = 3;
+  }
+  return instructions * NativeInstruction::instruction_size;
+}
+
+address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) {
+  long offset = 0;
+  if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) {
+    // Load register (literal)
+    offset = Instruction_aarch64::sextract(insn, 23, 5);
+    return address(((uint64_t)insn_addr + (offset << 2)));
+  } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) {
+    // Unconditional branch (immediate)
+    offset = Instruction_aarch64::sextract(insn, 25, 0);
+  } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) {
+    // Conditional branch (immediate)
+    offset = Instruction_aarch64::sextract(insn, 23, 5);
+  } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) {
+    // Compare & branch (immediate)
+    offset = Instruction_aarch64::sextract(insn, 23, 5);
+   } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) {
+    // Test & branch (immediate)
+    offset = Instruction_aarch64::sextract(insn, 18, 5);
+  } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
+    // PC-rel. addressing
+    offset = Instruction_aarch64::extract(insn, 30, 29);
+    offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2;
+    int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0;
+    if (shift) {
+      offset <<= shift;
+      uint64_t target_page = ((uint64_t)insn_addr) + offset;
+      target_page &= ((uint64_t)-1) << shift;
+      // Return the target address for the following sequences
+      //   1 - adrp    Rx, target_page
+      //       ldr/str Ry, [Rx, #offset_in_page]
+      //   2 - adrp    Rx, target_page         ]
+      //       add     Ry, Rx, #offset_in_page
+      //   3 - adrp    Rx, target_page (page aligned reloc, offset == 0)
+      //
+      // In the first two cases  we check that the register is the same and
+      // return the target_page + the offset within the page.
+      // Otherwise we assume it is a page aligned relocation and return
+      // the target page only. The only cases this is generated is for
+      // the safepoint polling page or for the card table byte map base so
+      // we assert as much.
+      //
+      unsigned insn2 = ((unsigned*)insn_addr)[1];
+      if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
+                Instruction_aarch64::extract(insn, 4, 0) ==
+                        Instruction_aarch64::extract(insn2, 9, 5)) {
+        // Load/store register (unsigned immediate)
+        unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
+        unsigned int size = Instruction_aarch64::extract(insn2, 31, 30);
+        return address(target_page + (byte_offset << size));
+      } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
+                Instruction_aarch64::extract(insn, 4, 0) ==
+                        Instruction_aarch64::extract(insn2, 4, 0)) {
+        // add (immediate)
+        unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
+        return address(target_page + byte_offset);
+      } else {
+        assert((jbyte *)target_page ==
+                ((CardTableModRefBS*)(Universe::heap()->barrier_set()))->byte_map_base ||
+               (address)target_page == os::get_polling_page(),
+               "adrp must be polling page or byte map base");
+        return (address)target_page;
+      }
+    } else {
+      ShouldNotReachHere();
+    }
+  } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) {
+    u_int32_t *insns = (u_int32_t *)insn_addr;
+    // Move wide constant: movz, movk, movk.  See movptr().
+    assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch");
+    assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch");
+    return address(u_int64_t(Instruction_aarch64::extract(insns[0], 20, 5))
+                   + (u_int64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16)
+                   + (u_int64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32));
+  } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
+             Instruction_aarch64::extract(insn, 4, 0) == 0b11111) {
+    return 0;
+  } else {
+    ShouldNotReachHere();
+  }
+  return address(((uint64_t)insn_addr + (offset << 2)));
+}
+
+void MacroAssembler::serialize_memory(Register thread, Register tmp) {
+  dsb(Assembler::SY);
+}
+
+
+void MacroAssembler::reset_last_Java_frame(bool clear_fp,
+                                           bool clear_pc) {
+  // we must set sp to zero to clear frame
+  str(zr, Address(rthread, JavaThread::last_Java_sp_offset()));
+  // must clear fp, so that compiled frames are not confused; it is
+  // possible that we need it only for debugging
+  if (clear_fp) {
+    str(zr, Address(rthread, JavaThread::last_Java_fp_offset()));
+  }
+
+  if (clear_pc) {
+    str(zr, Address(rthread, JavaThread::last_Java_pc_offset()));
+  }
+}
+
+// Calls to C land
+//
+// When entering C land, the rfp, & resp of the last Java frame have to be recorded
+// in the (thread-local) JavaThread object. When leaving C land, the last Java fp
+// has to be reset to 0. This is required to allow proper stack traversal.
+void MacroAssembler::set_last_Java_frame(Register last_java_sp,
+                                         Register last_java_fp,
+                                         Register last_java_pc,
+                                         Register scratch) {
+
+  if (last_java_pc->is_valid()) {
+      str(last_java_pc, Address(rthread,
+                                JavaThread::frame_anchor_offset()
+                                + JavaFrameAnchor::last_Java_pc_offset()));
+    }
+
+  // determine last_java_sp register
+  if (last_java_sp == sp) {
+    mov(scratch, sp);
+    last_java_sp = scratch;
+  } else if (!last_java_sp->is_valid()) {
+    last_java_sp = esp;
+  }
+
+  str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset()));
+
+  // last_java_fp is optional
+  if (last_java_fp->is_valid()) {
+    str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset()));
+  }
+}
+
+void MacroAssembler::set_last_Java_frame(Register last_java_sp,
+                                         Register last_java_fp,
+                                         address  last_java_pc,
+                                         Register scratch) {
+  if (last_java_pc != NULL) {
+    adr(scratch, last_java_pc);
+  } else {
+    // FIXME: This is almost never correct.  We should delete all
+    // cases of set_last_Java_frame with last_java_pc=NULL and use the
+    // correct return address instead.
+    adr(scratch, pc());
+  }
+
+  str(scratch, Address(rthread,
+                       JavaThread::frame_anchor_offset()
+                       + JavaFrameAnchor::last_Java_pc_offset()));
+
+  set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch);
+}
+
+void MacroAssembler::set_last_Java_frame(Register last_java_sp,
+                                         Register last_java_fp,
+                                         Label &L,
+                                         Register scratch) {
+  if (L.is_bound()) {
+    set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch);
+  } else {
+    InstructionMark im(this);
+    L.add_patch_at(code(), locator());
+    set_last_Java_frame(last_java_sp, last_java_fp, (address)NULL, scratch);
+  }
+}
+
+void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) {
+  assert(ReservedCodeCacheSize < 4*G, "branch out of range");
+  assert(CodeCache::find_blob(entry.target()) != NULL,
+         "destination of far call not found in code cache");
+  if (far_branches()) {
+    unsigned long offset;
+    // We can use ADRP here because we know that the total size of
+    // the code cache cannot exceed 2Gb.
+    adrp(tmp, entry, offset);
+    add(tmp, tmp, offset);
+    if (cbuf) cbuf->set_insts_mark();
+    blr(tmp);
+  } else {
+    if (cbuf) cbuf->set_insts_mark();
+    bl(entry);
+  }
+}
+
+void MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) {
+  assert(ReservedCodeCacheSize < 4*G, "branch out of range");
+  assert(CodeCache::find_blob(entry.target()) != NULL,
+         "destination of far call not found in code cache");
+  if (far_branches()) {
+    unsigned long offset;
+    // We can use ADRP here because we know that the total size of
+    // the code cache cannot exceed 2Gb.
+    adrp(tmp, entry, offset);
+    add(tmp, tmp, offset);
+    if (cbuf) cbuf->set_insts_mark();
+    br(tmp);
+  } else {
+    if (cbuf) cbuf->set_insts_mark();
+    b(entry);
+  }
+}
+
+int MacroAssembler::biased_locking_enter(Register lock_reg,
+                                         Register obj_reg,
+                                         Register swap_reg,
+                                         Register tmp_reg,
+                                         bool swap_reg_contains_mark,
+                                         Label& done,
+                                         Label* slow_case,
+                                         BiasedLockingCounters* counters) {
+  assert(UseBiasedLocking, "why call this otherwise?");
+  assert_different_registers(lock_reg, obj_reg, swap_reg);
+
+  if (PrintBiasedLockingStatistics && counters == NULL)
+    counters = BiasedLocking::counters();
+
+  bool need_tmp_reg = false;
+  if (tmp_reg == noreg) {
+    tmp_reg = rscratch2;
+  }
+  assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, rscratch1);
+  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
+  Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
+  Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
+  Address saved_mark_addr(lock_reg, 0);
+
+  // Biased locking
+  // See whether the lock is currently biased toward our thread and
+  // whether the epoch is still valid
+  // Note that the runtime guarantees sufficient alignment of JavaThread
+  // pointers to allow age to be placed into low bits
+  // First check to see whether biasing is even enabled for this object
+  Label cas_label;
+  int null_check_offset = -1;
+  if (!swap_reg_contains_mark) {
+    null_check_offset = offset();
+    ldr(swap_reg, mark_addr);
+  }
+  andr(tmp_reg, swap_reg, markOopDesc::biased_lock_mask_in_place);
+  cmp(tmp_reg, markOopDesc::biased_lock_pattern);
+  br(Assembler::NE, cas_label);
+  // The bias pattern is present in the object's header. Need to check
+  // whether the bias owner and the epoch are both still current.
+  load_prototype_header(tmp_reg, obj_reg);
+  orr(tmp_reg, tmp_reg, rthread);
+  eor(tmp_reg, swap_reg, tmp_reg);
+  andr(tmp_reg, tmp_reg, ~((int) markOopDesc::age_mask_in_place));
+  if (counters != NULL) {
+    Label around;
+    cbnz(tmp_reg, around);
+    atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, rscratch1);
+    b(done);
+    bind(around);
+  } else {
+    cbz(tmp_reg, done);
+  }
+
+  Label try_revoke_bias;
+  Label try_rebias;
+
+  // At this point we know that the header has the bias pattern and
+  // that we are not the bias owner in the current epoch. We need to
+  // figure out more details about the state of the header in order to
+  // know what operations can be legally performed on the object's
+  // header.
+
+  // If the low three bits in the xor result aren't clear, that means
+  // the prototype header is no longer biased and we have to revoke
+  // the bias on this object.
+  andr(rscratch1, tmp_reg, markOopDesc::biased_lock_mask_in_place);
+  cbnz(rscratch1, try_revoke_bias);
+
+  // Biasing is still enabled for this data type. See whether the
+  // epoch of the current bias is still valid, meaning that the epoch
+  // bits of the mark word are equal to the epoch bits of the
+  // prototype header. (Note that the prototype header's epoch bits
+  // only change at a safepoint.) If not, attempt to rebias the object
+  // toward the current thread. Note that we must be absolutely sure
+  // that the current epoch is invalid in order to do this because
+  // otherwise the manipulations it performs on the mark word are
+  // illegal.
+  andr(rscratch1, tmp_reg, markOopDesc::epoch_mask_in_place);
+  cbnz(rscratch1, try_rebias);
+
+  // The epoch of the current bias is still valid but we know nothing
+  // about the owner; it might be set or it might be clear. Try to
+  // acquire the bias of the object using an atomic operation. If this
+  // fails we will go in to the runtime to revoke the object's bias.
+  // Note that we first construct the presumed unbiased header so we
+  // don't accidentally blow away another thread's valid bias.
+  {
+    Label here;
+    mov(rscratch1, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
+    andr(swap_reg, swap_reg, rscratch1);
+    orr(tmp_reg, swap_reg, rthread);
+    cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case);
+    // If the biasing toward our thread failed, this means that
+    // another thread succeeded in biasing it toward itself and we
+    // need to revoke that bias. The revocation will occur in the
+    // interpreter runtime in the slow case.
+    bind(here);
+    if (counters != NULL) {
+      atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()),
+                  tmp_reg, rscratch1);
+    }
+  }
+  b(done);
+
+  bind(try_rebias);
+  // At this point we know the epoch has expired, meaning that the
+  // current "bias owner", if any, is actually invalid. Under these
+  // circumstances _only_, we are allowed to use the current header's
+  // value as the comparison value when doing the cas to acquire the
+  // bias in the current epoch. In other words, we allow transfer of
+  // the bias from one thread to another directly in this situation.
+  //
+  // FIXME: due to a lack of registers we currently blow away the age
+  // bits in this situation. Should attempt to preserve them.
+  {
+    Label here;
+    load_prototype_header(tmp_reg, obj_reg);
+    orr(tmp_reg, rthread, tmp_reg);
+    cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case);
+    // If the biasing toward our thread failed, then another thread
+    // succeeded in biasing it toward itself and we need to revoke that
+    // bias. The revocation will occur in the runtime in the slow case.
+    bind(here);
+    if (counters != NULL) {
+      atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()),
+                  tmp_reg, rscratch1);
+    }
+  }
+  b(done);
+
+  bind(try_revoke_bias);
+  // The prototype mark in the klass doesn't have the bias bit set any
+  // more, indicating that objects of this data type are not supposed
+  // to be biased any more. We are going to try to reset the mark of
+  // this object to the prototype value and fall through to the
+  // CAS-based locking scheme. Note that if our CAS fails, it means
+  // that another thread raced us for the privilege of revoking the
+  // bias of this particular object, so it's okay to continue in the
+  // normal locking code.
+  //
+  // FIXME: due to a lack of registers we currently blow away the age
+  // bits in this situation. Should attempt to preserve them.
+  {
+    Label here, nope;
+    load_prototype_header(tmp_reg, obj_reg);
+    cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, &nope);
+    bind(here);
+
+    // Fall through to the normal CAS-based lock, because no matter what
+    // the result of the above CAS, some thread must have succeeded in
+    // removing the bias bit from the object's header.
+    if (counters != NULL) {
+      atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), tmp_reg,
+                  rscratch1);
+    }
+    bind(nope);
+  }
+
+  bind(cas_label);
+
+  return null_check_offset;
+}
+
+void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
+  assert(UseBiasedLocking, "why call this otherwise?");
+
+  // Check for biased locking unlock case, which is a no-op
+  // Note: we do not have to check the thread ID for two reasons.
+  // First, the interpreter checks for IllegalMonitorStateException at
+  // a higher level. Second, if the bias was revoked while we held the
+  // lock, the object could not be rebiased toward another thread, so
+  // the bias bit would be clear.
+  ldr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
+  andr(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
+  cmp(temp_reg, markOopDesc::biased_lock_pattern);
+  br(Assembler::EQ, done);
+}
+
+
+// added to make this compile
+
+REGISTER_DEFINITION(Register, noreg);
+
+static void pass_arg0(MacroAssembler* masm, Register arg) {
+  if (c_rarg0 != arg ) {
+    masm->mov(c_rarg0, arg);
+  }
+}
+
+static void pass_arg1(MacroAssembler* masm, Register arg) {
+  if (c_rarg1 != arg ) {
+    masm->mov(c_rarg1, arg);
+  }
+}
+
+static void pass_arg2(MacroAssembler* masm, Register arg) {
+  if (c_rarg2 != arg ) {
+    masm->mov(c_rarg2, arg);
+  }
+}
+
+static void pass_arg3(MacroAssembler* masm, Register arg) {
+  if (c_rarg3 != arg ) {
+    masm->mov(c_rarg3, arg);
+  }
+}
+
+void MacroAssembler::call_VM_base(Register oop_result,
+                                  Register java_thread,
+                                  Register last_java_sp,
+                                  address  entry_point,
+                                  int      number_of_arguments,
+                                  bool     check_exceptions) {
+   // determine java_thread register
+  if (!java_thread->is_valid()) {
+    java_thread = rthread;
+  }
+
+  // determine last_java_sp register
+  if (!last_java_sp->is_valid()) {
+    last_java_sp = esp;
+  }
+
+  // debugging support
+  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
+  assert(java_thread == rthread, "unexpected register");
+#ifdef ASSERT
+  // TraceBytecodes does not use r12 but saves it over the call, so don't verify
+  // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");
+#endif // ASSERT
+
+  assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
+  assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
+
+  // push java thread (becomes first argument of C function)
+
+  mov(c_rarg0, java_thread);
+
+  // set last Java frame before call
+  assert(last_java_sp != rfp, "can't use rfp");
+
+  Label l;
+  set_last_Java_frame(last_java_sp, rfp, l, rscratch1);
+
+  // do the call, remove parameters
+  MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l);
+
+  // reset last Java frame
+  // Only interpreter should have to clear fp
+  reset_last_Java_frame(true, true);
+
+   // C++ interp handles this in the interpreter
+  check_and_handle_popframe(java_thread);
+  check_and_handle_earlyret(java_thread);
+
+  if (check_exceptions) {
+    // check for pending exceptions (java_thread is set upon return)
+    ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset())));
+    Label ok;
+    cbz(rscratch1, ok);
+    lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
+    br(rscratch1);
+    bind(ok);
+  }
+
+  // get oop result if there is one and reset the value in the thread
+  if (oop_result->is_valid()) {
+    get_vm_result(oop_result, java_thread);
+  }
+}
+
+void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
+  call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
+}
+
+// Maybe emit a call via a trampoline.  If the code cache is small
+// trampolines won't be emitted.
+
+void MacroAssembler::trampoline_call(Address entry, CodeBuffer *cbuf) {
+  assert(entry.rspec().type() == relocInfo::runtime_call_type
+         || entry.rspec().type() == relocInfo::opt_virtual_call_type
+         || entry.rspec().type() == relocInfo::static_call_type
+         || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type");
+
+  unsigned int start_offset = offset();
+  if (far_branches() && !Compile::current()->in_scratch_emit_size()) {
+    emit_trampoline_stub(offset(), entry.target());
+  }
+
+  if (cbuf) cbuf->set_insts_mark();
+  relocate(entry.rspec());
+  if (Assembler::reachable_from_branch_at(pc(), entry.target())) {
+    bl(entry.target());
+  } else {
+    bl(pc());
+  }
+}
+
+
+// Emit a trampoline stub for a call to a target which is too far away.
+//
+// code sequences:
+//
+// call-site:
+//   branch-and-link to <destination> or <trampoline stub>
+//
+// Related trampoline stub for this call site in the stub section:
+//   load the call target from the constant pool
+//   branch (LR still points to the call site above)
+
+void MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset,
+                                             address dest) {
+  address stub = start_a_stub(Compile::MAX_stubs_size/2);
+  if (stub == NULL) {
+    start_a_stub(Compile::MAX_stubs_size/2);
+    Compile::current()->env()->record_out_of_memory_failure();
+    return;
+  }
+
+  // Create a trampoline stub relocation which relates this trampoline stub
+  // with the call instruction at insts_call_instruction_offset in the
+  // instructions code-section.
+  align(wordSize);
+  relocate(trampoline_stub_Relocation::spec(code()->insts()->start()
+                                            + insts_call_instruction_offset));
+  const int stub_start_offset = offset();
+
+  // Now, create the trampoline stub's code:
+  // - load the call
+  // - call
+  Label target;
+  ldr(rscratch1, target);
+  br(rscratch1);
+  bind(target);
+  assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset,
+         "should be");
+  emit_int64((int64_t)dest);
+
+  const address stub_start_addr = addr_at(stub_start_offset);
+
+  assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
+
+  end_a_stub();
+}
+
+void MacroAssembler::ic_call(address entry) {
+  RelocationHolder rh = virtual_call_Relocation::spec(pc());
+  // address const_ptr = long_constant((jlong)Universe::non_oop_word());
+  // unsigned long offset;
+  // ldr_constant(rscratch2, const_ptr);
+  movptr(rscratch2, (uintptr_t)Universe::non_oop_word());
+  trampoline_call(Address(entry, rh));
+}
+
+// Implementation of call_VM versions
+
+void MacroAssembler::call_VM(Register oop_result,
+                             address entry_point,
+                             bool check_exceptions) {
+  call_VM_helper(oop_result, entry_point, 0, check_exceptions);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             address entry_point,
+                             Register arg_1,
+                             bool check_exceptions) {
+  pass_arg1(this, arg_1);
+  call_VM_helper(oop_result, entry_point, 1, check_exceptions);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             address entry_point,
+                             Register arg_1,
+                             Register arg_2,
+                             bool check_exceptions) {
+  assert(arg_1 != c_rarg2, "smashed arg");
+  pass_arg2(this, arg_2);
+  pass_arg1(this, arg_1);
+  call_VM_helper(oop_result, entry_point, 2, check_exceptions);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             address entry_point,
+                             Register arg_1,
+                             Register arg_2,
+                             Register arg_3,
+                             bool check_exceptions) {
+  assert(arg_1 != c_rarg3, "smashed arg");
+  assert(arg_2 != c_rarg3, "smashed arg");
+  pass_arg3(this, arg_3);
+
+  assert(arg_1 != c_rarg2, "smashed arg");
+  pass_arg2(this, arg_2);
+
+  pass_arg1(this, arg_1);
+  call_VM_helper(oop_result, entry_point, 3, check_exceptions);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             Register last_java_sp,
+                             address entry_point,
+                             int number_of_arguments,
+                             bool check_exceptions) {
+  call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             Register last_java_sp,
+                             address entry_point,
+                             Register arg_1,
+                             bool check_exceptions) {
+  pass_arg1(this, arg_1);
+  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             Register last_java_sp,
+                             address entry_point,
+                             Register arg_1,
+                             Register arg_2,
+                             bool check_exceptions) {
+
+  assert(arg_1 != c_rarg2, "smashed arg");
+  pass_arg2(this, arg_2);
+  pass_arg1(this, arg_1);
+  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             Register last_java_sp,
+                             address entry_point,
+                             Register arg_1,
+                             Register arg_2,
+                             Register arg_3,
+                             bool check_exceptions) {
+  assert(arg_1 != c_rarg3, "smashed arg");
+  assert(arg_2 != c_rarg3, "smashed arg");
+  pass_arg3(this, arg_3);
+  assert(arg_1 != c_rarg2, "smashed arg");
+  pass_arg2(this, arg_2);
+  pass_arg1(this, arg_1);
+  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
+}
+
+
+void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
+  ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
+  str(zr, Address(java_thread, JavaThread::vm_result_offset()));
+  verify_oop(oop_result, "broken oop in call_VM_base");
+}
+
+void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
+  ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
+  str(zr, Address(java_thread, JavaThread::vm_result_2_offset()));
+}
+
+void MacroAssembler::align(int modulus) {
+  while (offset() % modulus != 0) nop();
+}
+
+// these are no-ops overridden by InterpreterMacroAssembler
+
+void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
+
+void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
+
+
+RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
+                                                      Register tmp,
+                                                      int offset) {
+  intptr_t value = *delayed_value_addr;
+  if (value != 0)
+    return RegisterOrConstant(value + offset);
+
+  // load indirectly to solve generation ordering problem
+  ldr(tmp, ExternalAddress((address) delayed_value_addr));
+
+  if (offset != 0)
+    add(tmp, tmp, offset);
+
+  return RegisterOrConstant(tmp);
+}
+
+
+void MacroAssembler:: notify(int type) {
+  if (type == bytecode_start) {
+    // set_last_Java_frame(esp, rfp, (address)NULL);
+    Assembler:: notify(type);
+    // reset_last_Java_frame(true, false);
+  }
+  else
+    Assembler:: notify(type);
+}
+
+// Look up the method for a megamorphic invokeinterface call.
+// The target method is determined by <intf_klass, itable_index>.
+// The receiver klass is in recv_klass.
+// On success, the result will be in method_result, and execution falls through.
+// On failure, execution transfers to the given label.
+void MacroAssembler::lookup_interface_method(Register recv_klass,
+                                             Register intf_klass,
+                                             RegisterOrConstant itable_index,
+                                             Register method_result,
+                                             Register scan_temp,
+                                             Label& L_no_such_interface) {
+  assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
+  assert(itable_index.is_constant() || itable_index.as_register() == method_result,
+         "caller must use same register for non-constant itable index as for method");
+
+  // Compute start of first itableOffsetEntry (which is at the end of the vtable)
+  int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
+  int itentry_off = itableMethodEntry::method_offset_in_bytes();
+  int scan_step   = itableOffsetEntry::size() * wordSize;
+  int vte_size    = vtableEntry::size() * wordSize;
+  assert(vte_size == wordSize, "else adjust times_vte_scale");
+
+  ldrw(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
+
+  // %%% Could store the aligned, prescaled offset in the klassoop.
+  // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
+  lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3)));
+  add(scan_temp, scan_temp, vtable_base);
+  if (HeapWordsPerLong > 1) {
+    // Round up to align_object_offset boundary
+    // see code for instanceKlass::start_of_itable!
+    round_to(scan_temp, BytesPerLong);
+  }
+
+  // Adjust recv_klass by scaled itable_index, so we can free itable_index.
+  assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
+  // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
+  lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3)));
+  if (itentry_off)
+    add(recv_klass, recv_klass, itentry_off);
+
+  // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
+  //   if (scan->interface() == intf) {
+  //     result = (klass + scan->offset() + itable_index);
+  //   }
+  // }
+  Label search, found_method;
+
+  for (int peel = 1; peel >= 0; peel--) {
+    ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
+    cmp(intf_klass, method_result);
+
+    if (peel) {
+      br(Assembler::EQ, found_method);
+    } else {
+      br(Assembler::NE, search);
+      // (invert the test to fall through to found_method...)
+    }
+
+    if (!peel)  break;
+
+    bind(search);
+
+    // Check that the previous entry is non-null.  A null entry means that
+    // the receiver class doesn't implement the interface, and wasn't the
+    // same as when the caller was compiled.
+    cbz(method_result, L_no_such_interface);
+    add(scan_temp, scan_temp, scan_step);
+  }
+
+  bind(found_method);
+
+  // Got a hit.
+  ldr(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
+  ldr(method_result, Address(recv_klass, scan_temp));
+}
+
+// virtual method calling
+void MacroAssembler::lookup_virtual_method(Register recv_klass,
+                                           RegisterOrConstant vtable_index,
+                                           Register method_result) {
+  const int base = InstanceKlass::vtable_start_offset() * wordSize;
+  assert(vtableEntry::size() * wordSize == 8,
+         "adjust the scaling in the code below");
+  int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes();
+
+  if (vtable_index.is_register()) {
+    lea(method_result, Address(recv_klass,
+                               vtable_index.as_register(),
+                               Address::lsl(LogBytesPerWord)));
+    ldr(method_result, Address(method_result, vtable_offset_in_bytes));
+  } else {
+    vtable_offset_in_bytes += vtable_index.as_constant() * wordSize;
+    ldr(method_result, Address(recv_klass, vtable_offset_in_bytes));
+  }
+}
+
+void MacroAssembler::check_klass_subtype(Register sub_klass,
+                           Register super_klass,
+                           Register temp_reg,
+                           Label& L_success) {
+  Label L_failure;
+  check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
+  check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
+  bind(L_failure);
+}
+
+
+void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
+                                                   Register super_klass,
+                                                   Register temp_reg,
+                                                   Label* L_success,
+                                                   Label* L_failure,
+                                                   Label* L_slow_path,
+                                        RegisterOrConstant super_check_offset) {
+  assert_different_registers(sub_klass, super_klass, temp_reg);
+  bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
+  if (super_check_offset.is_register()) {
+    assert_different_registers(sub_klass, super_klass,
+                               super_check_offset.as_register());
+  } else if (must_load_sco) {
+    assert(temp_reg != noreg, "supply either a temp or a register offset");
+  }
+
+  Label L_fallthrough;
+  int label_nulls = 0;
+  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
+  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
+  if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
+  assert(label_nulls <= 1, "at most one NULL in the batch");
+
+  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
+  int sco_offset = in_bytes(Klass::super_check_offset_offset());
+  Address super_check_offset_addr(super_klass, sco_offset);
+
+  // Hacked jmp, which may only be used just before L_fallthrough.
+#define final_jmp(label)                                                \
+  if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
+  else                            b(label)                /*omit semi*/
+
+  // If the pointers are equal, we are done (e.g., String[] elements).
+  // This self-check enables sharing of secondary supertype arrays among
+  // non-primary types such as array-of-interface.  Otherwise, each such
+  // type would need its own customized SSA.
+  // We move this check to the front of the fast path because many
+  // type checks are in fact trivially successful in this manner,
+  // so we get a nicely predicted branch right at the start of the check.
+  cmp(sub_klass, super_klass);
+  br(Assembler::EQ, *L_success);
+
+  // Check the supertype display:
+  if (must_load_sco) {
+    ldrw(temp_reg, super_check_offset_addr);
+    super_check_offset = RegisterOrConstant(temp_reg);
+  }
+  Address super_check_addr(sub_klass, super_check_offset);
+  ldr(rscratch1, super_check_addr);
+  cmp(super_klass, rscratch1); // load displayed supertype
+
+  // This check has worked decisively for primary supers.
+  // Secondary supers are sought in the super_cache ('super_cache_addr').
+  // (Secondary supers are interfaces and very deeply nested subtypes.)
+  // This works in the same check above because of a tricky aliasing
+  // between the super_cache and the primary super display elements.
+  // (The 'super_check_addr' can address either, as the case requires.)
+  // Note that the cache is updated below if it does not help us find
+  // what we need immediately.
+  // So if it was a primary super, we can just fail immediately.
+  // Otherwise, it's the slow path for us (no success at this point).
+
+  if (super_check_offset.is_register()) {
+    br(Assembler::EQ, *L_success);
+    cmp(super_check_offset.as_register(), sc_offset);
+    if (L_failure == &L_fallthrough) {
+      br(Assembler::EQ, *L_slow_path);
+    } else {
+      br(Assembler::NE, *L_failure);
+      final_jmp(*L_slow_path);
+    }
+  } else if (super_check_offset.as_constant() == sc_offset) {
+    // Need a slow path; fast failure is impossible.
+    if (L_slow_path == &L_fallthrough) {
+      br(Assembler::EQ, *L_success);
+    } else {
+      br(Assembler::NE, *L_slow_path);
+      final_jmp(*L_success);
+    }
+  } else {
+    // No slow path; it's a fast decision.
+    if (L_failure == &L_fallthrough) {
+      br(Assembler::EQ, *L_success);
+    } else {
+      br(Assembler::NE, *L_failure);
+      final_jmp(*L_success);
+    }
+  }
+
+  bind(L_fallthrough);
+
+#undef final_jmp
+}
+
+// These two are taken from x86, but they look generally useful
+
+// scans count pointer sized words at [addr] for occurence of value,
+// generic
+void MacroAssembler::repne_scan(Register addr, Register value, Register count,
+                                Register scratch) {
+  Label Lloop, Lexit;
+  cbz(count, Lexit);
+  bind(Lloop);
+  ldr(scratch, post(addr, wordSize));
+  cmp(value, scratch);
+  br(EQ, Lexit);
+  sub(count, count, 1);
+  cbnz(count, Lloop);
+  bind(Lexit);
+}
+
+// scans count 4 byte words at [addr] for occurence of value,
+// generic
+void MacroAssembler::repne_scanw(Register addr, Register value, Register count,
+                                Register scratch) {
+  Label Lloop, Lexit;
+  cbz(count, Lexit);
+  bind(Lloop);
+  ldrw(scratch, post(addr, wordSize));
+  cmpw(value, scratch);
+  br(EQ, Lexit);
+  sub(count, count, 1);
+  cbnz(count, Lloop);
+  bind(Lexit);
+}
+
+void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
+                                                   Register super_klass,
+                                                   Register temp_reg,
+                                                   Register temp2_reg,
+                                                   Label* L_success,
+                                                   Label* L_failure,
+                                                   bool set_cond_codes) {
+  assert_different_registers(sub_klass, super_klass, temp_reg);
+  if (temp2_reg != noreg)
+    assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1);
+#define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
+
+  Label L_fallthrough;
+  int label_nulls = 0;
+  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
+  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
+  assert(label_nulls <= 1, "at most one NULL in the batch");
+
+  // a couple of useful fields in sub_klass:
+  int ss_offset = in_bytes(Klass::secondary_supers_offset());
+  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
+  Address secondary_supers_addr(sub_klass, ss_offset);
+  Address super_cache_addr(     sub_klass, sc_offset);
+
+  BLOCK_COMMENT("check_klass_subtype_slow_path");
+
+  // Do a linear scan of the secondary super-klass chain.
+  // This code is rarely used, so simplicity is a virtue here.
+  // The repne_scan instruction uses fixed registers, which we must spill.
+  // Don't worry too much about pre-existing connections with the input regs.
+
+  assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super)
+  assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter)
+
+  // Get super_klass value into r0 (even if it was in r5 or r2).
+  RegSet pushed_registers;
+  if (!IS_A_TEMP(r2))    pushed_registers += r2;
+  if (!IS_A_TEMP(r5))    pushed_registers += r5;
+
+  if (super_klass != r0 || UseCompressedOops) {
+    if (!IS_A_TEMP(r0))   pushed_registers += r0;
+  }
+
+  push(pushed_registers, sp);
+
+#ifndef PRODUCT
+  mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr);
+  Address pst_counter_addr(rscratch2);
+  ldr(rscratch1, pst_counter_addr);
+  add(rscratch1, rscratch1, 1);
+  str(rscratch1, pst_counter_addr);
+#endif //PRODUCT
+
+  // We will consult the secondary-super array.
+  ldr(r5, secondary_supers_addr);
+  // Load the array length.
+  ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes()));
+  // Skip to start of data.
+  add(r5, r5, Array<Klass*>::base_offset_in_bytes());
+
+  cmp(sp, zr); // Clear Z flag; SP is never zero
+  // Scan R2 words at [R5] for an occurrence of R0.
+  // Set NZ/Z based on last compare.
+  repne_scan(r5, r0, r2, rscratch1);
+
+  // Unspill the temp. registers:
+  pop(pushed_registers, sp);
+
+  br(Assembler::NE, *L_failure);
+
+  // Success.  Cache the super we found and proceed in triumph.
+  str(super_klass, super_cache_addr);
+
+  if (L_success != &L_fallthrough) {
+    b(*L_success);
+  }
+
+#undef IS_A_TEMP
+
+  bind(L_fallthrough);
+}
+
+
+void MacroAssembler::verify_oop(Register reg, const char* s) {
+  if (!VerifyOops) return;
+
+  // Pass register number to verify_oop_subroutine
+  const char* b = NULL;
+  {
+    ResourceMark rm;
+    stringStream ss;
+    ss.print("verify_oop: %s: %s", reg->name(), s);
+    b = code_string(ss.as_string());
+  }
+  BLOCK_COMMENT("verify_oop {");
+
+  stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
+  stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
+
+  mov(r0, reg);
+  mov(rscratch1, (address)b);
+
+  // call indirectly to solve generation ordering problem
+  lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
+  ldr(rscratch2, Address(rscratch2));
+  blr(rscratch2);
+
+  ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
+  ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
+
+  BLOCK_COMMENT("} verify_oop");
+}
+
+void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
+  if (!VerifyOops) return;
+
+  const char* b = NULL;
+  {
+    ResourceMark rm;
+    stringStream ss;
+    ss.print("verify_oop_addr: %s", s);
+    b = code_string(ss.as_string());
+  }
+  BLOCK_COMMENT("verify_oop_addr {");
+
+  stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
+  stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
+
+  // addr may contain sp so we will have to adjust it based on the
+  // pushes that we just did.
+  if (addr.uses(sp)) {
+    lea(r0, addr);
+    ldr(r0, Address(r0, 4 * wordSize));
+  } else {
+    ldr(r0, addr);
+  }
+  mov(rscratch1, (address)b);
+
+  // call indirectly to solve generation ordering problem
+  lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
+  ldr(rscratch2, Address(rscratch2));
+  blr(rscratch2);
+
+  ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
+  ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
+
+  BLOCK_COMMENT("} verify_oop_addr");
+}
+
+Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
+                                         int extra_slot_offset) {
+  // cf. TemplateTable::prepare_invoke(), if (load_receiver).
+  int stackElementSize = Interpreter::stackElementSize;
+  int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
+#ifdef ASSERT
+  int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
+  assert(offset1 - offset == stackElementSize, "correct arithmetic");
+#endif
+  if (arg_slot.is_constant()) {
+    return Address(esp, arg_slot.as_constant() * stackElementSize
+                   + offset);
+  } else {
+    add(rscratch1, esp, arg_slot.as_register(),
+        ext::uxtx, exact_log2(stackElementSize));
+    return Address(rscratch1, offset);
+  }
+}
+
+void MacroAssembler::call_VM_leaf_base(address entry_point,
+                                       int number_of_arguments,
+                                       Label *retaddr) {
+  call_VM_leaf_base1(entry_point, number_of_arguments, 0, ret_type_integral, retaddr);
+}
+
+void MacroAssembler::call_VM_leaf_base1(address entry_point,
+                                        int number_of_gp_arguments,
+                                        int number_of_fp_arguments,
+                                        ret_type type,
+                                        Label *retaddr) {
+  Label E, L;
+
+  stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize)));
+
+  // We add 1 to number_of_arguments because the thread in arg0 is
+  // not counted
+  mov(rscratch1, entry_point);
+  blrt(rscratch1, number_of_gp_arguments + 1, number_of_fp_arguments, type);
+  if (retaddr)
+    bind(*retaddr);
+
+  ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize)));
+  maybe_isb();
+}
+
+void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
+  call_VM_leaf_base(entry_point, number_of_arguments);
+}
+
+void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
+  pass_arg0(this, arg_0);
+  call_VM_leaf_base(entry_point, 1);
+}
+
+void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
+  pass_arg0(this, arg_0);
+  pass_arg1(this, arg_1);
+  call_VM_leaf_base(entry_point, 2);
+}
+
+void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
+                                  Register arg_1, Register arg_2) {
+  pass_arg0(this, arg_0);
+  pass_arg1(this, arg_1);
+  pass_arg2(this, arg_2);
+  call_VM_leaf_base(entry_point, 3);
+}
+
+void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
+  pass_arg0(this, arg_0);
+  MacroAssembler::call_VM_leaf_base(entry_point, 1);
+}
+
+void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
+
+  assert(arg_0 != c_rarg1, "smashed arg");
+  pass_arg1(this, arg_1);
+  pass_arg0(this, arg_0);
+  MacroAssembler::call_VM_leaf_base(entry_point, 2);
+}
+
+void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
+  assert(arg_0 != c_rarg2, "smashed arg");
+  assert(arg_1 != c_rarg2, "smashed arg");
+  pass_arg2(this, arg_2);
+  assert(arg_0 != c_rarg1, "smashed arg");
+  pass_arg1(this, arg_1);
+  pass_arg0(this, arg_0);
+  MacroAssembler::call_VM_leaf_base(entry_point, 3);
+}
+
+void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
+  assert(arg_0 != c_rarg3, "smashed arg");
+  assert(arg_1 != c_rarg3, "smashed arg");
+  assert(arg_2 != c_rarg3, "smashed arg");
+  pass_arg3(this, arg_3);
+  assert(arg_0 != c_rarg2, "smashed arg");
+  assert(arg_1 != c_rarg2, "smashed arg");
+  pass_arg2(this, arg_2);
+  assert(arg_0 != c_rarg1, "smashed arg");
+  pass_arg1(this, arg_1);
+  pass_arg0(this, arg_0);
+  MacroAssembler::call_VM_leaf_base(entry_point, 4);
+}
+
+void MacroAssembler::null_check(Register reg, int offset) {
+  if (needs_explicit_null_check(offset)) {
+    // provoke OS NULL exception if reg = NULL by
+    // accessing M[reg] w/o changing any registers
+    // NOTE: this is plenty to provoke a segv
+    ldr(zr, Address(reg));
+  } else {
+    // nothing to do, (later) access of M[reg + offset]
+    // will provoke OS NULL exception if reg = NULL
+  }
+}
+
+// MacroAssembler protected routines needed to implement
+// public methods
+
+void MacroAssembler::mov(Register r, Address dest) {
+  code_section()->relocate(pc(), dest.rspec());
+  u_int64_t imm64 = (u_int64_t)dest.target();
+  movptr(r, imm64);
+}
+
+// Move a constant pointer into r.  In AArch64 mode the virtual
+// address space is 48 bits in size, so we only need three
+// instructions to create a patchable instruction sequence that can
+// reach anywhere.
+void MacroAssembler::movptr(Register r, uintptr_t imm64) {
+#ifndef PRODUCT
+  {
+    char buffer[64];
+    snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64);
+    block_comment(buffer);
+  }
+#endif
+  assert(imm64 < (1ul << 48), "48-bit overflow in address constant");
+  movz(r, imm64 & 0xffff);
+  imm64 >>= 16;
+  movk(r, imm64 & 0xffff, 16);
+  imm64 >>= 16;
+  movk(r, imm64 & 0xffff, 32);
+}
+
+void MacroAssembler::mov_immediate64(Register dst, u_int64_t imm64)
+{
+#ifndef PRODUCT
+  {
+    char buffer[64];
+    snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64);
+    block_comment(buffer);
+  }
+#endif
+  if (operand_valid_for_logical_immediate(false, imm64)) {
+    orr(dst, zr, imm64);
+  } else {
+    // we can use a combination of MOVZ or MOVN with
+    // MOVK to build up the constant
+    u_int64_t imm_h[4];
+    int zero_count = 0;
+    int neg_count = 0;
+    int i;
+    for (i = 0; i < 4; i++) {
+      imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL);
+      if (imm_h[i] == 0) {
+        zero_count++;
+      } else if (imm_h[i] == 0xffffL) {
+        neg_count++;
+      }
+    }
+    if (zero_count == 4) {
+      // one MOVZ will do
+      movz(dst, 0);
+    } else if (neg_count == 4) {
+      // one MOVN will do
+      movn(dst, 0);
+    } else if (zero_count == 3) {
+      for (i = 0; i < 4; i++) {
+        if (imm_h[i] != 0L) {
+          movz(dst, (u_int32_t)imm_h[i], (i << 4));
+          break;
+        }
+      }
+    } else if (neg_count == 3) {
+      // one MOVN will do
+      for (int i = 0; i < 4; i++) {
+        if (imm_h[i] != 0xffffL) {
+          movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
+          break;
+        }
+      }
+    } else if (zero_count == 2) {
+      // one MOVZ and one MOVK will do
+      for (i = 0; i < 3; i++) {
+        if (imm_h[i] != 0L) {
+          movz(dst, (u_int32_t)imm_h[i], (i << 4));
+          i++;
+          break;
+        }
+      }
+      for (;i < 4; i++) {
+        if (imm_h[i] != 0L) {
+          movk(dst, (u_int32_t)imm_h[i], (i << 4));
+        }
+      }
+    } else if (neg_count == 2) {
+      // one MOVN and one MOVK will do
+      for (i = 0; i < 4; i++) {
+        if (imm_h[i] != 0xffffL) {
+          movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
+          i++;
+          break;
+        }
+      }
+      for (;i < 4; i++) {
+        if (imm_h[i] != 0xffffL) {
+          movk(dst, (u_int32_t)imm_h[i], (i << 4));
+        }
+      }
+    } else if (zero_count == 1) {
+      // one MOVZ and two MOVKs will do
+      for (i = 0; i < 4; i++) {
+        if (imm_h[i] != 0L) {
+          movz(dst, (u_int32_t)imm_h[i], (i << 4));
+          i++;
+          break;
+        }
+      }
+      for (;i < 4; i++) {
+        if (imm_h[i] != 0x0L) {
+          movk(dst, (u_int32_t)imm_h[i], (i << 4));
+        }
+      }
+    } else if (neg_count == 1) {
+      // one MOVN and two MOVKs will do
+      for (i = 0; i < 4; i++) {
+        if (imm_h[i] != 0xffffL) {
+          movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
+          i++;
+          break;
+        }
+      }
+      for (;i < 4; i++) {
+        if (imm_h[i] != 0xffffL) {
+          movk(dst, (u_int32_t)imm_h[i], (i << 4));
+        }
+      }
+    } else {
+      // use a MOVZ and 3 MOVKs (makes it easier to debug)
+      movz(dst, (u_int32_t)imm_h[0], 0);
+      for (i = 1; i < 4; i++) {
+        movk(dst, (u_int32_t)imm_h[i], (i << 4));
+      }
+    }
+  }
+}
+
+void MacroAssembler::mov_immediate32(Register dst, u_int32_t imm32)
+{
+#ifndef PRODUCT
+    {
+      char buffer[64];
+      snprintf(buffer, sizeof(buffer), "0x%"PRIX32, imm32);
+      block_comment(buffer);
+    }
+#endif
+  if (operand_valid_for_logical_immediate(true, imm32)) {
+    orrw(dst, zr, imm32);
+  } else {
+    // we can use MOVZ, MOVN or two calls to MOVK to build up the
+    // constant
+    u_int32_t imm_h[2];
+    imm_h[0] = imm32 & 0xffff;
+    imm_h[1] = ((imm32 >> 16) & 0xffff);
+    if (imm_h[0] == 0) {
+      movzw(dst, imm_h[1], 16);
+    } else if (imm_h[0] == 0xffff) {
+      movnw(dst, imm_h[1] ^ 0xffff, 16);
+    } else if (imm_h[1] == 0) {
+      movzw(dst, imm_h[0], 0);
+    } else if (imm_h[1] == 0xffff) {
+      movnw(dst, imm_h[0] ^ 0xffff, 0);
+    } else {
+      // use a MOVZ and MOVK (makes it easier to debug)
+      movzw(dst, imm_h[0], 0);
+      movkw(dst, imm_h[1], 16);
+    }
+  }
+}
+
+// Form an address from base + offset in Rd.  Rd may or may
+// not actually be used: you must use the Address that is returned.
+// It is up to you to ensure that the shift provided matches the size
+// of your data.
+Address MacroAssembler::form_address(Register Rd, Register base, long byte_offset, int shift) {
+  if (Address::offset_ok_for_immed(byte_offset, shift))
+    // It fits; no need for any heroics
+    return Address(base, byte_offset);
+
+  // Don't do anything clever with negative or misaligned offsets
+  unsigned mask = (1 << shift) - 1;
+  if (byte_offset < 0 || byte_offset & mask) {
+    mov(Rd, byte_offset);
+    add(Rd, base, Rd);
+    return Address(Rd);
+  }
+
+  // See if we can do this with two 12-bit offsets
+  {
+    unsigned long word_offset = byte_offset >> shift;
+    unsigned long masked_offset = word_offset & 0xfff000;
+    if (Address::offset_ok_for_immed(word_offset - masked_offset)
+        && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) {
+      add(Rd, base, masked_offset << shift);
+      word_offset -= masked_offset;
+      return Address(Rd, word_offset << shift);
+    }
+  }
+
+  // Do it the hard way
+  mov(Rd, byte_offset);
+  add(Rd, base, Rd);
+  return Address(Rd);
+}
+
+void MacroAssembler::atomic_incw(Register counter_addr, Register tmp) {
+  Label retry_load;
+  bind(retry_load);
+  // flush and load exclusive from the memory location
+  ldxrw(tmp, counter_addr);
+  addw(tmp, tmp, 1);
+  // if we store+flush with no intervening write tmp wil be zero
+  stxrw(tmp, tmp, counter_addr);
+  cbnzw(tmp, retry_load);
+}
+
+
+int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb,
+                                    bool want_remainder, Register scratch)
+{
+  // Full implementation of Java idiv and irem.  The function
+  // returns the (pc) offset of the div instruction - may be needed
+  // for implicit exceptions.
+  //
+  // constraint : ra/rb =/= scratch
+  //         normal case
+  //
+  // input : ra: dividend
+  //         rb: divisor
+  //
+  // result: either
+  //         quotient  (= ra idiv rb)
+  //         remainder (= ra irem rb)
+
+  assert(ra != scratch && rb != scratch, "reg cannot be scratch");
+
+  int idivl_offset = offset();
+  if (! want_remainder) {
+    sdivw(result, ra, rb);
+  } else {
+    sdivw(scratch, ra, rb);
+    msubw(result, scratch, rb, ra);
+  }
+
+  return idivl_offset;
+}
+
+int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb,
+                                    bool want_remainder, Register scratch)
+{
+  // Full implementation of Java ldiv and lrem.  The function
+  // returns the (pc) offset of the div instruction - may be needed
+  // for implicit exceptions.
+  //
+  // constraint : ra/rb =/= scratch
+  //         normal case
+  //
+  // input : ra: dividend
+  //         rb: divisor
+  //
+  // result: either
+  //         quotient  (= ra idiv rb)
+  //         remainder (= ra irem rb)
+
+  assert(ra != scratch && rb != scratch, "reg cannot be scratch");
+
+  int idivq_offset = offset();
+  if (! want_remainder) {
+    sdiv(result, ra, rb);
+  } else {
+    sdiv(scratch, ra, rb);
+    msub(result, scratch, rb, ra);
+  }
+
+  return idivq_offset;
+}
+
+// MacroAssembler routines found actually to be needed
+
+void MacroAssembler::push(Register src)
+{
+  str(src, Address(pre(esp, -1 * wordSize)));
+}
+
+void MacroAssembler::pop(Register dst)
+{
+  ldr(dst, Address(post(esp, 1 * wordSize)));
+}
+
+// Note: load_unsigned_short used to be called load_unsigned_word.
+int MacroAssembler::load_unsigned_short(Register dst, Address src) {
+  int off = offset();
+  ldrh(dst, src);
+  return off;
+}
+
+int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
+  int off = offset();
+  ldrb(dst, src);
+  return off;
+}
+
+int MacroAssembler::load_signed_short(Register dst, Address src) {
+  int off = offset();
+  ldrsh(dst, src);
+  return off;
+}
+
+int MacroAssembler::load_signed_byte(Register dst, Address src) {
+  int off = offset();
+  ldrsb(dst, src);
+  return off;
+}
+
+int MacroAssembler::load_signed_short32(Register dst, Address src) {
+  int off = offset();
+  ldrshw(dst, src);
+  return off;
+}
+
+int MacroAssembler::load_signed_byte32(Register dst, Address src) {
+  int off = offset();
+  ldrsbw(dst, src);
+  return off;
+}
+
+void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
+  switch (size_in_bytes) {
+  case  8:  ldr(dst, src); break;
+  case  4:  ldrw(dst, src); break;
+  case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
+  case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
+  default:  ShouldNotReachHere();
+  }
+}
+
+void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
+  switch (size_in_bytes) {
+  case  8:  str(src, dst); break;
+  case  4:  strw(src, dst); break;
+  case  2:  strh(src, dst); break;
+  case  1:  strb(src, dst); break;
+  default:  ShouldNotReachHere();
+  }
+}
+
+void MacroAssembler::decrementw(Register reg, int value)
+{
+  if (value < 0)  { incrementw(reg, -value);      return; }
+  if (value == 0) {                               return; }
+  if (value < (1 << 12)) { subw(reg, reg, value); return; }
+  /* else */ {
+    guarantee(reg != rscratch2, "invalid dst for register decrement");
+    movw(rscratch2, (unsigned)value);
+    subw(reg, reg, rscratch2);
+  }
+}
+
+void MacroAssembler::decrement(Register reg, int value)
+{
+  if (value < 0)  { increment(reg, -value);      return; }
+  if (value == 0) {                              return; }
+  if (value < (1 << 12)) { sub(reg, reg, value); return; }
+  /* else */ {
+    assert(reg != rscratch2, "invalid dst for register decrement");
+    mov(rscratch2, (unsigned long)value);
+    sub(reg, reg, rscratch2);
+  }
+}
+
+void MacroAssembler::decrementw(Address dst, int value)
+{
+  assert(!dst.uses(rscratch1), "invalid dst for address decrement");
+  ldrw(rscratch1, dst);
+  decrementw(rscratch1, value);
+  strw(rscratch1, dst);
+}
+
+void MacroAssembler::decrement(Address dst, int value)
+{
+  assert(!dst.uses(rscratch1), "invalid address for decrement");
+  ldr(rscratch1, dst);
+  decrement(rscratch1, value);
+  str(rscratch1, dst);
+}
+
+void MacroAssembler::incrementw(Register reg, int value)
+{
+  if (value < 0)  { decrementw(reg, -value);      return; }
+  if (value == 0) {                               return; }
+  if (value < (1 << 12)) { addw(reg, reg, value); return; }
+  /* else */ {
+    assert(reg != rscratch2, "invalid dst for register increment");
+    movw(rscratch2, (unsigned)value);
+    addw(reg, reg, rscratch2);
+  }
+}
+
+void MacroAssembler::increment(Register reg, int value)
+{
+  if (value < 0)  { decrement(reg, -value);      return; }
+  if (value == 0) {                              return; }
+  if (value < (1 << 12)) { add(reg, reg, value); return; }
+  /* else */ {
+    assert(reg != rscratch2, "invalid dst for register increment");
+    movw(rscratch2, (unsigned)value);
+    add(reg, reg, rscratch2);
+  }
+}
+
+void MacroAssembler::incrementw(Address dst, int value)
+{
+  assert(!dst.uses(rscratch1), "invalid dst for address increment");
+  ldrw(rscratch1, dst);
+  incrementw(rscratch1, value);
+  strw(rscratch1, dst);
+}
+
+void MacroAssembler::increment(Address dst, int value)
+{
+  assert(!dst.uses(rscratch1), "invalid dst for address increment");
+  ldr(rscratch1, dst);
+  increment(rscratch1, value);
+  str(rscratch1, dst);
+}
+
+
+void MacroAssembler::pusha() {
+  push(0x7fffffff, sp);
+}
+
+void MacroAssembler::popa() {
+  pop(0x7fffffff, sp);
+}
+
+// Push lots of registers in the bit set supplied.  Don't push sp.
+// Return the number of words pushed
+int MacroAssembler::push(unsigned int bitset, Register stack) {
+  int words_pushed = 0;
+
+  // Scan bitset to accumulate register pairs
+  unsigned char regs[32];
+  int count = 0;
+  for (int reg = 0; reg <= 30; reg++) {
+    if (1 & bitset)
+      regs[count++] = reg;
+    bitset >>= 1;
+  }
+  regs[count++] = zr->encoding_nocheck();
+  count &= ~1;  // Only push an even nuber of regs
+
+  if (count) {
+    stp(as_Register(regs[0]), as_Register(regs[1]),
+       Address(pre(stack, -count * wordSize)));
+    words_pushed += 2;
+  }
+  for (int i = 2; i < count; i += 2) {
+    stp(as_Register(regs[i]), as_Register(regs[i+1]),
+       Address(stack, i * wordSize));
+    words_pushed += 2;
+  }
+
+  assert(words_pushed == count, "oops, pushed != count");
+
+  return count;
+}
+
+int MacroAssembler::pop(unsigned int bitset, Register stack) {
+  int words_pushed = 0;
+
+  // Scan bitset to accumulate register pairs
+  unsigned char regs[32];
+  int count = 0;
+  for (int reg = 0; reg <= 30; reg++) {
+    if (1 & bitset)
+      regs[count++] = reg;
+    bitset >>= 1;
+  }
+  regs[count++] = zr->encoding_nocheck();
+  count &= ~1;
+
+  for (int i = 2; i < count; i += 2) {
+    ldp(as_Register(regs[i]), as_Register(regs[i+1]),
+       Address(stack, i * wordSize));
+    words_pushed += 2;
+  }
+  if (count) {
+    ldp(as_Register(regs[0]), as_Register(regs[1]),
+       Address(post(stack, count * wordSize)));
+    words_pushed += 2;
+  }
+
+  assert(words_pushed == count, "oops, pushed != count");
+
+  return count;
+}
+#ifdef ASSERT
+void MacroAssembler::verify_heapbase(const char* msg) {
+#if 0
+  assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
+  assert (Universe::heap() != NULL, "java heap should be initialized");
+  if (CheckCompressedOops) {
+    Label ok;
+    push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1
+    cmpptr(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
+    br(Assembler::EQ, ok);
+    stop(msg);
+    bind(ok);
+    pop(1 << rscratch1->encoding(), sp);
+  }
+#endif
+}
+#endif
+
+void MacroAssembler::stop(const char* msg) {
+  address ip = pc();
+  pusha();
+  mov(c_rarg0, (address)msg);
+  mov(c_rarg1, (address)ip);
+  mov(c_rarg2, sp);
+  mov(c_rarg3, CAST_FROM_FN_PTR(address, MacroAssembler::debug64));
+  // call(c_rarg3);
+  blrt(c_rarg3, 3, 0, 1);
+  hlt(0);
+}
+
+// If a constant does not fit in an immediate field, generate some
+// number of MOV instructions and then perform the operation.
+void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
+                                           add_sub_imm_insn insn1,
+                                           add_sub_reg_insn insn2) {
+  assert(Rd != zr, "Rd = zr and not setting flags?");
+  if (operand_valid_for_add_sub_immediate((int)imm)) {
+    (this->*insn1)(Rd, Rn, imm);
+  } else {
+    if (uabs(imm) < (1 << 24)) {
+       (this->*insn1)(Rd, Rn, imm & -(1 << 12));
+       (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1));
+    } else {
+       assert_different_registers(Rd, Rn);
+       mov(Rd, (uint64_t)imm);
+       (this->*insn2)(Rd, Rn, Rd, LSL, 0);
+    }
+  }
+}
+
+// Seperate vsn which sets the flags. Optimisations are more restricted
+// because we must set the flags correctly.
+void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
+                                           add_sub_imm_insn insn1,
+                                           add_sub_reg_insn insn2) {
+  if (operand_valid_for_add_sub_immediate((int)imm)) {
+    (this->*insn1)(Rd, Rn, imm);
+  } else {
+    assert_different_registers(Rd, Rn);
+    assert(Rd != zr, "overflow in immediate operand");
+    mov(Rd, (uint64_t)imm);
+    (this->*insn2)(Rd, Rn, Rd, LSL, 0);
+  }
+}
+
+
+void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) {
+  if (increment.is_register()) {
+    add(Rd, Rn, increment.as_register());
+  } else {
+    add(Rd, Rn, increment.as_constant());
+  }
+}
+
+void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) {
+  if (increment.is_register()) {
+    addw(Rd, Rn, increment.as_register());
+  } else {
+    addw(Rd, Rn, increment.as_constant());
+  }
+}
+
+void MacroAssembler::reinit_heapbase()
+{
+  if (UseCompressedOops) {
+    if (Universe::is_fully_initialized()) {
+      mov(rheapbase, Universe::narrow_ptrs_base());
+    } else {
+      lea(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
+      ldr(rheapbase, Address(rheapbase));
+    }
+  }
+}
+
+// this simulates the behaviour of the x86 cmpxchg instruction using a
+// load linked/store conditional pair. we use the acquire/release
+// versions of these instructions so that we flush pending writes as
+// per Java semantics.
+
+// n.b the x86 version assumes the old value to be compared against is
+// in rax and updates rax with the value located in memory if the
+// cmpxchg fails. we supply a register for the old value explicitly
+
+// the aarch64 load linked/store conditional instructions do not
+// accept an offset. so, unlike x86, we must provide a plain register
+// to identify the memory word to be compared/exchanged rather than a
+// register+offset Address.
+
+void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
+                                Label &succeed, Label *fail) {
+  // oldv holds comparison value
+  // newv holds value to write in exchange
+  // addr identifies memory word to compare against/update
+  // tmp returns 0/1 for success/failure
+  Label retry_load, nope;
+
+  bind(retry_load);
+  // flush and load exclusive from the memory location
+  // and fail if it is not what we expect
+  ldaxr(tmp, addr);
+  cmp(tmp, oldv);
+  br(Assembler::NE, nope);
+  // if we store+flush with no intervening write tmp wil be zero
+  stlxr(tmp, newv, addr);
+  cbzw(tmp, succeed);
+  // retry so we only ever return after a load fails to compare
+  // ensures we don't return a stale value after a failed write.
+  b(retry_load);
+  // if the memory word differs we return it in oldv and signal a fail
+  bind(nope);
+  membar(AnyAny);
+  mov(oldv, tmp);
+  if (fail)
+    b(*fail);
+}
+
+void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
+                                Label &succeed, Label *fail) {
+  // oldv holds comparison value
+  // newv holds value to write in exchange
+  // addr identifies memory word to compare against/update
+  // tmp returns 0/1 for success/failure
+  Label retry_load, nope;
+
+  bind(retry_load);
+  // flush and load exclusive from the memory location
+  // and fail if it is not what we expect
+  ldaxrw(tmp, addr);
+  cmp(tmp, oldv);
+  br(Assembler::NE, nope);
+  // if we store+flush with no intervening write tmp wil be zero
+  stlxrw(tmp, newv, addr);
+  cbzw(tmp, succeed);
+  // retry so we only ever return after a load fails to compare
+  // ensures we don't return a stale value after a failed write.
+  b(retry_load);
+  // if the memory word differs we return it in oldv and signal a fail
+  bind(nope);
+  membar(AnyAny);
+  mov(oldv, tmp);
+  if (fail)
+    b(*fail);
+}
+
+static bool different(Register a, RegisterOrConstant b, Register c) {
+  if (b.is_constant())
+    return a != c;
+  else
+    return a != b.as_register() && a != c && b.as_register() != c;
+}
+
+#define ATOMIC_OP(LDXR, OP, STXR)                                       \
+void MacroAssembler::atomic_##OP(Register prev, RegisterOrConstant incr, Register addr) { \
+  Register result = rscratch2;                                          \
+  if (prev->is_valid())                                                 \
+    result = different(prev, incr, addr) ? prev : rscratch2;            \
+                                                                        \
+  Label retry_load;                                                     \
+  bind(retry_load);                                                     \
+  LDXR(result, addr);                                                   \
+  OP(rscratch1, result, incr);                                          \
+  STXR(rscratch1, rscratch1, addr);                                     \
+  cbnzw(rscratch1, retry_load);                                         \
+  if (prev->is_valid() && prev != result)                               \
+    mov(prev, result);                                                  \
+}
+
+ATOMIC_OP(ldxr, add, stxr)
+ATOMIC_OP(ldxrw, addw, stxrw)
+
+#undef ATOMIC_OP
+
+#define ATOMIC_XCHG(OP, LDXR, STXR)                                     \
+void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \
+  Register result = rscratch2;                                          \
+  if (prev->is_valid())                                                 \
+    result = different(prev, newv, addr) ? prev : rscratch2;            \
+                                                                        \
+  Label retry_load;                                                     \
+  bind(retry_load);                                                     \
+  LDXR(result, addr);                                                   \
+  STXR(rscratch1, newv, addr);                                          \
+  cbnzw(rscratch1, retry_load);                                         \
+  if (prev->is_valid() && prev != result)                               \
+    mov(prev, result);                                                  \
+}
+
+ATOMIC_XCHG(xchg, ldxr, stxr)
+ATOMIC_XCHG(xchgw, ldxrw, stxrw)
+
+#undef ATOMIC_XCHG
+
+void MacroAssembler::incr_allocated_bytes(Register thread,
+                                          Register var_size_in_bytes,
+                                          int con_size_in_bytes,
+                                          Register t1) {
+  if (!thread->is_valid()) {
+    thread = rthread;
+  }
+  assert(t1->is_valid(), "need temp reg");
+
+  ldr(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset())));
+  if (var_size_in_bytes->is_valid()) {
+    add(t1, t1, var_size_in_bytes);
+  } else {
+    add(t1, t1, con_size_in_bytes);
+  }
+  str(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset())));
+}
+
+#ifndef PRODUCT
+extern "C" void findpc(intptr_t x);
+#endif
+
+void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[])
+{
+  // In order to get locks to work, we need to fake a in_VM state
+  if (ShowMessageBoxOnError ) {
+    JavaThread* thread = JavaThread::current();
+    JavaThreadState saved_state = thread->thread_state();
+    thread->set_thread_state(_thread_in_vm);
+#ifndef PRODUCT
+    if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
+      ttyLocker ttyl;
+      BytecodeCounter::print();
+    }
+#endif
+    if (os::message_box(msg, "Execution stopped, print registers?")) {
+      ttyLocker ttyl;
+      tty->print_cr(" pc = 0x%016lx", pc);
+#ifndef PRODUCT
+      tty->cr();
+      findpc(pc);
+      tty->cr();
+#endif
+      tty->print_cr(" r0 = 0x%016lx", regs[0]);
+      tty->print_cr(" r1 = 0x%016lx", regs[1]);
+      tty->print_cr(" r2 = 0x%016lx", regs[2]);
+      tty->print_cr(" r3 = 0x%016lx", regs[3]);
+      tty->print_cr(" r4 = 0x%016lx", regs[4]);
+      tty->print_cr(" r5 = 0x%016lx", regs[5]);
+      tty->print_cr(" r6 = 0x%016lx", regs[6]);
+      tty->print_cr(" r7 = 0x%016lx", regs[7]);
+      tty->print_cr(" r8 = 0x%016lx", regs[8]);
+      tty->print_cr(" r9 = 0x%016lx", regs[9]);
+      tty->print_cr("r10 = 0x%016lx", regs[10]);
+      tty->print_cr("r11 = 0x%016lx", regs[11]);
+      tty->print_cr("r12 = 0x%016lx", regs[12]);
+      tty->print_cr("r13 = 0x%016lx", regs[13]);
+      tty->print_cr("r14 = 0x%016lx", regs[14]);
+      tty->print_cr("r15 = 0x%016lx", regs[15]);
+      tty->print_cr("r16 = 0x%016lx", regs[16]);
+      tty->print_cr("r17 = 0x%016lx", regs[17]);
+      tty->print_cr("r18 = 0x%016lx", regs[18]);
+      tty->print_cr("r19 = 0x%016lx", regs[19]);
+      tty->print_cr("r20 = 0x%016lx", regs[20]);
+      tty->print_cr("r21 = 0x%016lx", regs[21]);
+      tty->print_cr("r22 = 0x%016lx", regs[22]);
+      tty->print_cr("r23 = 0x%016lx", regs[23]);
+      tty->print_cr("r24 = 0x%016lx", regs[24]);
+      tty->print_cr("r25 = 0x%016lx", regs[25]);
+      tty->print_cr("r26 = 0x%016lx", regs[26]);
+      tty->print_cr("r27 = 0x%016lx", regs[27]);
+      tty->print_cr("r28 = 0x%016lx", regs[28]);
+      tty->print_cr("r30 = 0x%016lx", regs[30]);
+      tty->print_cr("r31 = 0x%016lx", regs[31]);
+      BREAKPOINT;
+    }
+    ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
+  } else {
+    ttyLocker ttyl;
+    ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
+                    msg);
+    assert(false, err_msg("DEBUG MESSAGE: %s", msg));
+  }
+}
+
+#ifdef BUILTIN_SIM
+// routine to generate an x86 prolog for a stub function which
+// bootstraps into the generated ARM code which directly follows the
+// stub
+//
+// the argument encodes the number of general and fp registers
+// passed by the caller and the callng convention (currently just
+// the number of general registers and assumes C argument passing)
+
+extern "C" {
+int aarch64_stub_prolog_size();
+void aarch64_stub_prolog();
+void aarch64_prolog();
+}
+
+void MacroAssembler::c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type,
+                                   address *prolog_ptr)
+{
+  int calltype = (((ret_type & 0x3) << 8) |
+                  ((fp_arg_count & 0xf) << 4) |
+                  (gp_arg_count & 0xf));
+
+  // the addresses for the x86 to ARM entry code we need to use
+  address start = pc();
+  // printf("start = %lx\n", start);
+  int byteCount =  aarch64_stub_prolog_size();
+  // printf("byteCount = %x\n", byteCount);
+  int instructionCount = (byteCount + 3)/ 4;
+  // printf("instructionCount = %x\n", instructionCount);
+  for (int i = 0; i < instructionCount; i++) {
+    nop();
+  }
+
+  memcpy(start, (void*)aarch64_stub_prolog, byteCount);
+
+  // write the address of the setup routine and the call format at the
+  // end of into the copied code
+  u_int64_t *patch_end = (u_int64_t *)(start + byteCount);
+  if (prolog_ptr)
+    patch_end[-2] = (u_int64_t)prolog_ptr;
+  patch_end[-1] = calltype;
+}
+#endif
+
+void MacroAssembler::push_CPU_state() {
+    push(0x3fffffff, sp);         // integer registers except lr & sp
+
+    for (int i = 30; i >= 0; i -= 2)
+      stpd(as_FloatRegister(i), as_FloatRegister(i+1),
+           Address(pre(sp, -2 * wordSize)));
+}
+
+void MacroAssembler::pop_CPU_state() {
+  for (int i = 0; i < 32; i += 2)
+    ldpd(as_FloatRegister(i), as_FloatRegister(i+1),
+         Address(post(sp, 2 * wordSize)));
+
+  pop(0x3fffffff, sp);         // integer registers except lr & sp
+}
+
+/**
+ * Emits code to update CRC-32 with a byte value according to constants in table
+ *
+ * @param [in,out]crc   Register containing the crc.
+ * @param [in]val       Register containing the byte to fold into the CRC.
+ * @param [in]table     Register containing the table of crc constants.
+ *
+ * uint32_t crc;
+ * val = crc_table[(val ^ crc) & 0xFF];
+ * crc = val ^ (crc >> 8);
+ *
+ */
+void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
+  eor(val, val, crc);
+  andr(val, val, 0xff);
+  ldrw(val, Address(table, val, Address::lsl(2)));
+  eor(crc, val, crc, Assembler::LSR, 8);
+}
+
+/**
+ * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3
+ *
+ * @param [in,out]crc   Register containing the crc.
+ * @param [in]v         Register containing the 32-bit to fold into the CRC.
+ * @param [in]table0    Register containing table 0 of crc constants.
+ * @param [in]table1    Register containing table 1 of crc constants.
+ * @param [in]table2    Register containing table 2 of crc constants.
+ * @param [in]table3    Register containing table 3 of crc constants.
+ *
+ * uint32_t crc;
+ *   v = crc ^ v
+ *   crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24]
+ *
+ */
+void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp,
+        Register table0, Register table1, Register table2, Register table3,
+        bool upper) {
+  eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0);
+  uxtb(tmp, v);
+  ldrw(crc, Address(table3, tmp, Address::lsl(2)));
+  ubfx(tmp, v, 8, 8);
+  ldrw(tmp, Address(table2, tmp, Address::lsl(2)));
+  eor(crc, crc, tmp);
+  ubfx(tmp, v, 16, 8);
+  ldrw(tmp, Address(table1, tmp, Address::lsl(2)));
+  eor(crc, crc, tmp);
+  ubfx(tmp, v, 24, 8);
+  ldrw(tmp, Address(table0, tmp, Address::lsl(2)));
+  eor(crc, crc, tmp);
+}
+
+/**
+ * @param crc   register containing existing CRC (32-bit)
+ * @param buf   register pointing to input byte buffer (byte*)
+ * @param len   register containing number of bytes
+ * @param table register that will contain address of CRC table
+ * @param tmp   scratch register
+ */
+void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len,
+        Register table0, Register table1, Register table2, Register table3,
+        Register tmp, Register tmp2, Register tmp3) {
+  Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit;
+  unsigned long offset;
+
+    ornw(crc, zr, crc);
+
+  if (UseCRC32) {
+    Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop;
+
+      subs(len, len, 64);
+      br(Assembler::GE, CRC_by64_loop);
+      adds(len, len, 64-4);
+      br(Assembler::GE, CRC_by4_loop);
+      adds(len, len, 4);
+      br(Assembler::GT, CRC_by1_loop);
+      b(L_exit);
+
+    BIND(CRC_by4_loop);
+      ldrw(tmp, Address(post(buf, 4)));
+      subs(len, len, 4);
+      crc32w(crc, crc, tmp);
+      br(Assembler::GE, CRC_by4_loop);
+      adds(len, len, 4);
+      br(Assembler::LE, L_exit);
+    BIND(CRC_by1_loop);
+      ldrb(tmp, Address(post(buf, 1)));
+      subs(len, len, 1);
+      crc32b(crc, crc, tmp);
+      br(Assembler::GT, CRC_by1_loop);
+      b(L_exit);
+
+      align(CodeEntryAlignment);
+    BIND(CRC_by64_loop);
+      subs(len, len, 64);
+      ldp(tmp, tmp3, Address(post(buf, 16)));
+      crc32x(crc, crc, tmp);
+      crc32x(crc, crc, tmp3);
+      ldp(tmp, tmp3, Address(post(buf, 16)));
+      crc32x(crc, crc, tmp);
+      crc32x(crc, crc, tmp3);
+      ldp(tmp, tmp3, Address(post(buf, 16)));
+      crc32x(crc, crc, tmp);
+      crc32x(crc, crc, tmp3);
+      ldp(tmp, tmp3, Address(post(buf, 16)));
+      crc32x(crc, crc, tmp);
+      crc32x(crc, crc, tmp3);
+      br(Assembler::GE, CRC_by64_loop);
+      adds(len, len, 64-4);
+      br(Assembler::GE, CRC_by4_loop);
+      adds(len, len, 4);
+      br(Assembler::GT, CRC_by1_loop);
+    BIND(L_exit);
+      ornw(crc, zr, crc);
+      return;
+  }
+
+    adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset);
+    if (offset) add(table0, table0, offset);
+    add(table1, table0, 1*256*sizeof(juint));
+    add(table2, table0, 2*256*sizeof(juint));
+    add(table3, table0, 3*256*sizeof(juint));
+
+  if (UseNeon) {
+      cmp(len, 64);
+      br(Assembler::LT, L_by16);
+      eor(v16, T16B, v16, v16);
+
+    Label L_fold;
+
+      add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants
+
+      ld1(v0, v1, T2D, post(buf, 32));
+      ld1r(v4, T2D, post(tmp, 8));
+      ld1r(v5, T2D, post(tmp, 8));
+      ld1r(v6, T2D, post(tmp, 8));
+      ld1r(v7, T2D, post(tmp, 8));
+      mov(v16, T4S, 0, crc);
+
+      eor(v0, T16B, v0, v16);
+      sub(len, len, 64);
+
+    BIND(L_fold);
+      pmull(v22, T8H, v0, v5, T8B);
+      pmull(v20, T8H, v0, v7, T8B);
+      pmull(v23, T8H, v0, v4, T8B);
+      pmull(v21, T8H, v0, v6, T8B);
+
+      pmull2(v18, T8H, v0, v5, T16B);
+      pmull2(v16, T8H, v0, v7, T16B);
+      pmull2(v19, T8H, v0, v4, T16B);
+      pmull2(v17, T8H, v0, v6, T16B);
+
+      uzp1(v24, v20, v22, T8H);
+      uzp2(v25, v20, v22, T8H);
+      eor(v20, T16B, v24, v25);
+
+      uzp1(v26, v16, v18, T8H);
+      uzp2(v27, v16, v18, T8H);
+      eor(v16, T16B, v26, v27);
+
+      ushll2(v22, T4S, v20, T8H, 8);
+      ushll(v20, T4S, v20, T4H, 8);
+
+      ushll2(v18, T4S, v16, T8H, 8);
+      ushll(v16, T4S, v16, T4H, 8);
+
+      eor(v22, T16B, v23, v22);
+      eor(v18, T16B, v19, v18);
+      eor(v20, T16B, v21, v20);
+      eor(v16, T16B, v17, v16);
+
+      uzp1(v17, v16, v20, T2D);
+      uzp2(v21, v16, v20, T2D);
+      eor(v17, T16B, v17, v21);
+
+      ushll2(v20, T2D, v17, T4S, 16);
+      ushll(v16, T2D, v17, T2S, 16);
+
+      eor(v20, T16B, v20, v22);
+      eor(v16, T16B, v16, v18);
+
+      uzp1(v17, v20, v16, T2D);
+      uzp2(v21, v20, v16, T2D);
+      eor(v28, T16B, v17, v21);
+
+      pmull(v22, T8H, v1, v5, T8B);
+      pmull(v20, T8H, v1, v7, T8B);
+      pmull(v23, T8H, v1, v4, T8B);
+      pmull(v21, T8H, v1, v6, T8B);
+
+      pmull2(v18, T8H, v1, v5, T16B);
+      pmull2(v16, T8H, v1, v7, T16B);
+      pmull2(v19, T8H, v1, v4, T16B);
+      pmull2(v17, T8H, v1, v6, T16B);
+
+      ld1(v0, v1, T2D, post(buf, 32));
+
+      uzp1(v24, v20, v22, T8H);
+      uzp2(v25, v20, v22, T8H);
+      eor(v20, T16B, v24, v25);
+
+      uzp1(v26, v16, v18, T8H);
+      uzp2(v27, v16, v18, T8H);
+      eor(v16, T16B, v26, v27);
+
+      ushll2(v22, T4S, v20, T8H, 8);
+      ushll(v20, T4S, v20, T4H, 8);
+
+      ushll2(v18, T4S, v16, T8H, 8);
+      ushll(v16, T4S, v16, T4H, 8);
+
+      eor(v22, T16B, v23, v22);
+      eor(v18, T16B, v19, v18);
+      eor(v20, T16B, v21, v20);
+      eor(v16, T16B, v17, v16);
+
+      uzp1(v17, v16, v20, T2D);
+      uzp2(v21, v16, v20, T2D);
+      eor(v16, T16B, v17, v21);
+
+      ushll2(v20, T2D, v16, T4S, 16);
+      ushll(v16, T2D, v16, T2S, 16);
+
+      eor(v20, T16B, v22, v20);
+      eor(v16, T16B, v16, v18);
+
+      uzp1(v17, v20, v16, T2D);
+      uzp2(v21, v20, v16, T2D);
+      eor(v20, T16B, v17, v21);
+
+      shl(v16, v28, T2D, 1);
+      shl(v17, v20, T2D, 1);
+
+      eor(v0, T16B, v0, v16);
+      eor(v1, T16B, v1, v17);
+
+      subs(len, len, 32);
+      br(Assembler::GE, L_fold);
+
+      mov(crc, 0);
+      mov(tmp, v0, T1D, 0);
+      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
+      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
+      mov(tmp, v0, T1D, 1);
+      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
+      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
+      mov(tmp, v1, T1D, 0);
+      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
+      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
+      mov(tmp, v1, T1D, 1);
+      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
+      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
+
+      add(len, len, 32);
+  }
+
+  BIND(L_by16);
+    subs(len, len, 16);
+    br(Assembler::GE, L_by16_loop);
+    adds(len, len, 16-4);
+    br(Assembler::GE, L_by4_loop);
+    adds(len, len, 4);
+    br(Assembler::GT, L_by1_loop);
+    b(L_exit);
+
+  BIND(L_by4_loop);
+    ldrw(tmp, Address(post(buf, 4)));
+    update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3);
+    subs(len, len, 4);
+    br(Assembler::GE, L_by4_loop);
+    adds(len, len, 4);
+    br(Assembler::LE, L_exit);
+  BIND(L_by1_loop);
+    subs(len, len, 1);
+    ldrb(tmp, Address(post(buf, 1)));
+    update_byte_crc32(crc, tmp, table0);
+    br(Assembler::GT, L_by1_loop);
+    b(L_exit);
+
+    align(CodeEntryAlignment);
+  BIND(L_by16_loop);
+    subs(len, len, 16);
+    ldp(tmp, tmp3, Address(post(buf, 16)));
+    update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
+    update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
+    update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false);
+    update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true);
+    br(Assembler::GE, L_by16_loop);
+    adds(len, len, 16-4);
+    br(Assembler::GE, L_by4_loop);
+    adds(len, len, 4);
+    br(Assembler::GT, L_by1_loop);
+  BIND(L_exit);
+    ornw(crc, zr, crc);
+}
+
+SkipIfEqual::SkipIfEqual(
+    MacroAssembler* masm, const bool* flag_addr, bool value) {
+  _masm = masm;
+  unsigned long offset;
+  _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset);
+  _masm->ldrb(rscratch1, Address(rscratch1, offset));
+  _masm->cbzw(rscratch1, _label);
+}
+
+SkipIfEqual::~SkipIfEqual() {
+  _masm->bind(_label);
+}
+
+void MacroAssembler::cmpptr(Register src1, Address src2) {
+  unsigned long offset;
+  adrp(rscratch1, src2, offset);
+  ldr(rscratch1, Address(rscratch1, offset));
+  cmp(src1, rscratch1);
+}
+
+void MacroAssembler::store_check(Register obj) {
+  // Does a store check for the oop in register obj. The content of
+  // register obj is destroyed afterwards.
+  store_check_part_1(obj);
+  store_check_part_2(obj);
+}
+
+void MacroAssembler::store_check(Register obj, Address dst) {
+  store_check(obj);
+}
+
+
+// split the store check operation so that other instructions can be scheduled inbetween
+void MacroAssembler::store_check_part_1(Register obj) {
+  BarrierSet* bs = Universe::heap()->barrier_set();
+  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
+  lsr(obj, obj, CardTableModRefBS::card_shift);
+}
+
+void MacroAssembler::store_check_part_2(Register obj) {
+  BarrierSet* bs = Universe::heap()->barrier_set();
+  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
+  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
+  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
+
+  // The calculation for byte_map_base is as follows:
+  // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
+  // So this essentially converts an address to a displacement and
+  // it will never need to be relocated.
+
+  // FIXME: It's not likely that disp will fit into an offset so we
+  // don't bother to check, but it could save an instruction.
+  intptr_t disp = (intptr_t) ct->byte_map_base;
+  mov(rscratch1, disp);
+  strb(zr, Address(obj, rscratch1));
+}
+
+void MacroAssembler::load_klass(Register dst, Register src) {
+  if (UseCompressedClassPointers) {
+    ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
+    decode_klass_not_null(dst);
+  } else {
+    ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
+  }
+}
+
+void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
+  if (UseCompressedClassPointers) {
+    ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
+    if (Universe::narrow_klass_base() == NULL) {
+      cmp(trial_klass, tmp, LSL, Universe::narrow_klass_shift());
+      return;
+    } else if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
+               && Universe::narrow_klass_shift() == 0) {
+      // Only the bottom 32 bits matter
+      cmpw(trial_klass, tmp);
+      return;
+    }
+    decode_klass_not_null(tmp);
+  } else {
+    ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
+  }
+  cmp(trial_klass, tmp);
+}
+
+void MacroAssembler::load_prototype_header(Register dst, Register src) {
+  load_klass(dst, src);
+  ldr(dst, Address(dst, Klass::prototype_header_offset()));
+}
+
+void MacroAssembler::store_klass(Register dst, Register src) {
+  // FIXME: Should this be a store release?  concurrent gcs assumes
+  // klass length is valid if klass field is not null.
+  if (UseCompressedClassPointers) {
+    encode_klass_not_null(src);
+    strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
+  } else {
+    str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
+  }
+}
+
+void MacroAssembler::store_klass_gap(Register dst, Register src) {
+  if (UseCompressedClassPointers) {
+    // Store to klass gap in destination
+    strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
+  }
+}
+
+// Algorithm must match oop.inline.hpp encode_heap_oop.
+void MacroAssembler::encode_heap_oop(Register d, Register s) {
+#ifdef ASSERT
+  verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
+#endif
+  verify_oop(s, "broken oop in encode_heap_oop");
+  if (Universe::narrow_oop_base() == NULL) {
+    if (Universe::narrow_oop_shift() != 0) {
+      assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
+      lsr(d, s, LogMinObjAlignmentInBytes);
+    } else {
+      mov(d, s);
+    }
+  } else {
+    subs(d, s, rheapbase);
+    csel(d, d, zr, Assembler::HS);
+    lsr(d, d, LogMinObjAlignmentInBytes);
+
+    /*  Old algorithm: is this any worse?
+    Label nonnull;
+    cbnz(r, nonnull);
+    sub(r, r, rheapbase);
+    bind(nonnull);
+    lsr(r, r, LogMinObjAlignmentInBytes);
+    */
+  }
+}
+
+void MacroAssembler::encode_heap_oop_not_null(Register r) {
+#ifdef ASSERT
+  verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
+  if (CheckCompressedOops) {
+    Label ok;
+    cbnz(r, ok);
+    stop("null oop passed to encode_heap_oop_not_null");
+    bind(ok);
+  }
+#endif
+  verify_oop(r, "broken oop in encode_heap_oop_not_null");
+  if (Universe::narrow_oop_base() != NULL) {
+    sub(r, r, rheapbase);
+  }
+  if (Universe::narrow_oop_shift() != 0) {
+    assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
+    lsr(r, r, LogMinObjAlignmentInBytes);
+  }
+}
+
+void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
+#ifdef ASSERT
+  verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
+  if (CheckCompressedOops) {
+    Label ok;
+    cbnz(src, ok);
+    stop("null oop passed to encode_heap_oop_not_null2");
+    bind(ok);
+  }
+#endif
+  verify_oop(src, "broken oop in encode_heap_oop_not_null2");
+
+  Register data = src;
+  if (Universe::narrow_oop_base() != NULL) {
+    sub(dst, src, rheapbase);
+    data = dst;
+  }
+  if (Universe::narrow_oop_shift() != 0) {
+    assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
+    lsr(dst, data, LogMinObjAlignmentInBytes);
+    data = dst;
+  }
+  if (data == src)
+    mov(dst, src);
+}
+
+void  MacroAssembler::decode_heap_oop(Register d, Register s) {
+#ifdef ASSERT
+  verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
+#endif
+  if (Universe::narrow_oop_base() == NULL) {
+    if (Universe::narrow_oop_shift() != 0 || d != s) {
+      lsl(d, s, Universe::narrow_oop_shift());
+    }
+  } else {
+    Label done;
+    if (d != s)
+      mov(d, s);
+    cbz(s, done);
+    add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes);
+    bind(done);
+  }
+  verify_oop(d, "broken oop in decode_heap_oop");
+}
+
+void  MacroAssembler::decode_heap_oop_not_null(Register r) {
+  assert (UseCompressedOops, "should only be used for compressed headers");
+  assert (Universe::heap() != NULL, "java heap should be initialized");
+  // Cannot assert, unverified entry point counts instructions (see .ad file)
+  // vtableStubs also counts instructions in pd_code_size_limit.
+  // Also do not verify_oop as this is called by verify_oop.
+  if (Universe::narrow_oop_shift() != 0) {
+    assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
+    if (Universe::narrow_oop_base() != NULL) {
+      add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes);
+    } else {
+      add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes);
+    }
+  } else {
+    assert (Universe::narrow_oop_base() == NULL, "sanity");
+  }
+}
+
+void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
+  assert (UseCompressedOops, "should only be used for compressed headers");
+  assert (Universe::heap() != NULL, "java heap should be initialized");
+  // Cannot assert, unverified entry point counts instructions (see .ad file)
+  // vtableStubs also counts instructions in pd_code_size_limit.
+  // Also do not verify_oop as this is called by verify_oop.
+  if (Universe::narrow_oop_shift() != 0) {
+    assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
+    if (Universe::narrow_oop_base() != NULL) {
+      add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes);
+    } else {
+      add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes);
+    }
+  } else {
+    assert (Universe::narrow_oop_base() == NULL, "sanity");
+    if (dst != src) {
+      mov(dst, src);
+    }
+  }
+}
+
+void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
+  if (Universe::narrow_klass_base() == NULL) {
+    if (Universe::narrow_klass_shift() != 0) {
+      assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
+      lsr(dst, src, LogKlassAlignmentInBytes);
+    } else {
+      if (dst != src) mov(dst, src);
+    }
+    return;
+  }
+
+  if (use_XOR_for_compressed_class_base) {
+    if (Universe::narrow_klass_shift() != 0) {
+      eor(dst, src, (uint64_t)Universe::narrow_klass_base());
+      lsr(dst, dst, LogKlassAlignmentInBytes);
+    } else {
+      eor(dst, src, (uint64_t)Universe::narrow_klass_base());
+    }
+    return;
+  }
+
+  if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
+      && Universe::narrow_klass_shift() == 0) {
+    movw(dst, src);
+    return;
+  }
+
+#ifdef ASSERT
+  verify_heapbase("MacroAssembler::encode_klass_not_null2: heap base corrupted?");
+#endif
+
+  Register rbase = dst;
+  if (dst == src) rbase = rheapbase;
+  mov(rbase, (uint64_t)Universe::narrow_klass_base());
+  sub(dst, src, rbase);
+  if (Universe::narrow_klass_shift() != 0) {
+    assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
+    lsr(dst, dst, LogKlassAlignmentInBytes);
+  }
+  if (dst == src) reinit_heapbase();
+}
+
+void MacroAssembler::encode_klass_not_null(Register r) {
+  encode_klass_not_null(r, r);
+}
+
+void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
+  Register rbase = dst;
+  assert (UseCompressedClassPointers, "should only be used for compressed headers");
+
+  if (Universe::narrow_klass_base() == NULL) {
+    if (Universe::narrow_klass_shift() != 0) {
+      assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
+      lsl(dst, src, LogKlassAlignmentInBytes);
+    } else {
+      if (dst != src) mov(dst, src);
+    }
+    return;
+  }
+
+  if (use_XOR_for_compressed_class_base) {
+    if (Universe::narrow_klass_shift() != 0) {
+      lsl(dst, src, LogKlassAlignmentInBytes);
+      eor(dst, dst, (uint64_t)Universe::narrow_klass_base());
+    } else {
+      eor(dst, src, (uint64_t)Universe::narrow_klass_base());
+    }
+    return;
+  }
+
+  if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
+      && Universe::narrow_klass_shift() == 0) {
+    if (dst != src)
+      movw(dst, src);
+    movk(dst, (uint64_t)Universe::narrow_klass_base() >> 32, 32);
+    return;
+  }
+
+  // Cannot assert, unverified entry point counts instructions (see .ad file)
+  // vtableStubs also counts instructions in pd_code_size_limit.
+  // Also do not verify_oop as this is called by verify_oop.
+  if (dst == src) rbase = rheapbase;
+  mov(rbase, (uint64_t)Universe::narrow_klass_base());
+  if (Universe::narrow_klass_shift() != 0) {
+    assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
+    add(dst, rbase, src, Assembler::LSL, LogKlassAlignmentInBytes);
+  } else {
+    add(dst, rbase, src);
+  }
+  if (dst == src) reinit_heapbase();
+}
+
+void  MacroAssembler::decode_klass_not_null(Register r) {
+  decode_klass_not_null(r, r);
+}
+
+void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
+  assert (UseCompressedOops, "should only be used for compressed oops");
+  assert (Universe::heap() != NULL, "java heap should be initialized");
+  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
+
+  int oop_index = oop_recorder()->find_index(obj);
+  assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop");
+
+  InstructionMark im(this);
+  RelocationHolder rspec = oop_Relocation::spec(oop_index);
+  code_section()->relocate(inst_mark(), rspec);
+  movz(dst, 0xDEAD, 16);
+  movk(dst, 0xBEEF);
+}
+
+void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
+  assert (UseCompressedClassPointers, "should only be used for compressed headers");
+  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
+  int index = oop_recorder()->find_index(k);
+  assert(! Universe::heap()->is_in_reserved(k), "should not be an oop");
+
+  InstructionMark im(this);
+  RelocationHolder rspec = metadata_Relocation::spec(index);
+  code_section()->relocate(inst_mark(), rspec);
+  narrowKlass nk = Klass::encode_klass(k);
+  movz(dst, (nk >> 16), 16);
+  movk(dst, nk & 0xffff);
+}
+
+void MacroAssembler::load_heap_oop(Register dst, Address src)
+{
+  if (UseCompressedOops) {
+    ldrw(dst, src);
+    decode_heap_oop(dst);
+  } else {
+    ldr(dst, src);
+  }
+}
+
+void MacroAssembler::load_heap_oop_not_null(Register dst, Address src)
+{
+  if (UseCompressedOops) {
+    ldrw(dst, src);
+    decode_heap_oop_not_null(dst);
+  } else {
+    ldr(dst, src);
+  }
+}
+
+void MacroAssembler::store_heap_oop(Address dst, Register src) {
+  if (UseCompressedOops) {
+    assert(!dst.uses(src), "not enough registers");
+    encode_heap_oop(src);
+    strw(src, dst);
+  } else
+    str(src, dst);
+}
+
+// Used for storing NULLs.
+void MacroAssembler::store_heap_oop_null(Address dst) {
+  if (UseCompressedOops) {
+    strw(zr, dst);
+  } else
+    str(zr, dst);
+}
+
+#if INCLUDE_ALL_GCS
+void MacroAssembler::g1_write_barrier_pre(Register obj,
+                                          Register pre_val,
+                                          Register thread,
+                                          Register tmp,
+                                          bool tosca_live,
+                                          bool expand_call) {
+  // If expand_call is true then we expand the call_VM_leaf macro
+  // directly to skip generating the check by
+  // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
+
+  assert(thread == rthread, "must be");
+
+  Label done;
+  Label runtime;
+
+  assert(pre_val != noreg, "check this code");
+
+  if (obj != noreg)
+    assert_different_registers(obj, pre_val, tmp);
+
+  Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
+                                       PtrQueue::byte_offset_of_active()));
+  Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
+                                       PtrQueue::byte_offset_of_index()));
+  Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
+                                       PtrQueue::byte_offset_of_buf()));
+
+
+  // Is marking active?
+  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
+    ldrw(tmp, in_progress);
+  } else {
+    assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
+    ldrb(tmp, in_progress);
+  }
+  cbzw(tmp, done);
+
+  // Do we need to load the previous value?
+  if (obj != noreg) {
+    load_heap_oop(pre_val, Address(obj, 0));
+  }
+
+  // Is the previous value null?
+  cbz(pre_val, done);
+
+  // Can we store original value in the thread's buffer?
+  // Is index == 0?
+  // (The index field is typed as size_t.)
+
+  ldr(tmp, index);                      // tmp := *index_adr
+  cbz(tmp, runtime);                    // tmp == 0?
+                                        // If yes, goto runtime
+
+  sub(tmp, tmp, wordSize);              // tmp := tmp - wordSize
+  str(tmp, index);                      // *index_adr := tmp
+  ldr(rscratch1, buffer);
+  add(tmp, tmp, rscratch1);             // tmp := tmp + *buffer_adr
+
+  // Record the previous value
+  str(pre_val, Address(tmp, 0));
+  b(done);
+
+  bind(runtime);
+  // save the live input values
+  push(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp);
+
+  // Calling the runtime using the regular call_VM_leaf mechanism generates
+  // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
+  // that checks that the *(rfp+frame::interpreter_frame_last_sp) == NULL.
+  //
+  // If we care generating the pre-barrier without a frame (e.g. in the
+  // intrinsified Reference.get() routine) then ebp might be pointing to
+  // the caller frame and so this check will most likely fail at runtime.
+  //
+  // Expanding the call directly bypasses the generation of the check.
+  // So when we do not have have a full interpreter frame on the stack
+  // expand_call should be passed true.
+
+  if (expand_call) {
+    assert(pre_val != c_rarg1, "smashed arg");
+    pass_arg1(this, thread);
+    pass_arg0(this, pre_val);
+    MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
+  } else {
+    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
+  }
+
+  pop(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp);
+
+  bind(done);
+}
+
+void MacroAssembler::g1_write_barrier_post(Register store_addr,
+                                           Register new_val,
+                                           Register thread,
+                                           Register tmp,
+                                           Register tmp2) {
+  assert(thread == rthread, "must be");
+
+  Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
+                                       PtrQueue::byte_offset_of_index()));
+  Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
+                                       PtrQueue::byte_offset_of_buf()));
+
+  BarrierSet* bs = Universe::heap()->barrier_set();
+  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
+  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
+
+  Label done;
+  Label runtime;
+
+  // Does store cross heap regions?
+
+  eor(tmp, store_addr, new_val);
+  lsr(tmp, tmp, HeapRegion::LogOfHRGrainBytes);
+  cbz(tmp, done);
+
+  // crosses regions, storing NULL?
+
+  cbz(new_val, done);
+
+  // storing region crossing non-NULL, is card already dirty?
+
+  ExternalAddress cardtable((address) ct->byte_map_base);
+  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
+  const Register card_addr = tmp;
+
+  lsr(card_addr, store_addr, CardTableModRefBS::card_shift);
+
+  unsigned long offset;
+  adrp(tmp2, cardtable, offset);
+
+  // get the address of the card
+  add(card_addr, card_addr, tmp2);
+  ldrb(tmp2, Address(card_addr, offset));
+  cmpw(tmp2, (int)G1SATBCardTableModRefBS::g1_young_card_val());
+  br(Assembler::EQ, done);
+
+  assert((int)CardTableModRefBS::dirty_card_val() == 0, "must be 0");
+
+  membar(Assembler::StoreLoad);
+
+  ldrb(tmp2, Address(card_addr, offset));
+  cbzw(tmp2, done);
+
+  // storing a region crossing, non-NULL oop, card is clean.
+  // dirty card and log.
+
+  strb(zr, Address(card_addr, offset));
+
+  ldr(rscratch1, queue_index);
+  cbz(rscratch1, runtime);
+  sub(rscratch1, rscratch1, wordSize);
+  str(rscratch1, queue_index);
+
+  ldr(tmp2, buffer);
+  str(card_addr, Address(tmp2, rscratch1));
+  b(done);
+
+  bind(runtime);
+  // save the live input values
+  push(store_addr->bit(true) | new_val->bit(true), sp);
+  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
+  pop(store_addr->bit(true) | new_val->bit(true), sp);
+
+  bind(done);
+}
+
+#endif // INCLUDE_ALL_GCS
+
+Address MacroAssembler::allocate_metadata_address(Metadata* obj) {
+  assert(oop_recorder() != NULL, "this assembler needs a Recorder");
+  int index = oop_recorder()->allocate_metadata_index(obj);
+  RelocationHolder rspec = metadata_Relocation::spec(index);
+  return Address((address)obj, rspec);
+}
+
+// Move an oop into a register.  immediate is true if we want
+// immediate instrcutions, i.e. we are not going to patch this
+// instruction while the code is being executed by another thread.  In
+// that case we can use move immediates rather than the constant pool.
+void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) {
+  int oop_index;
+  if (obj == NULL) {
+    oop_index = oop_recorder()->allocate_oop_index(obj);
+  } else {
+    oop_index = oop_recorder()->find_index(obj);
+    assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop");
+  }
+  RelocationHolder rspec = oop_Relocation::spec(oop_index);
+  if (! immediate) {
+    address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address
+    ldr_constant(dst, Address(dummy, rspec));
+  } else
+    mov(dst, Address((address)obj, rspec));
+}
+
+// Move a metadata address into a register.
+void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
+  int oop_index;
+  if (obj == NULL) {
+    oop_index = oop_recorder()->allocate_metadata_index(obj);
+  } else {
+    oop_index = oop_recorder()->find_index(obj);
+  }
+  RelocationHolder rspec = metadata_Relocation::spec(oop_index);
+  mov(dst, Address((address)obj, rspec));
+}
+
+Address MacroAssembler::constant_oop_address(jobject obj) {
+  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
+  assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
+  int oop_index = oop_recorder()->find_index(obj);
+  return Address((address)obj, oop_Relocation::spec(oop_index));
+}
+
+// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
+void MacroAssembler::tlab_allocate(Register obj,
+                                   Register var_size_in_bytes,
+                                   int con_size_in_bytes,
+                                   Register t1,
+                                   Register t2,
+                                   Label& slow_case) {
+  assert_different_registers(obj, t2);
+  assert_different_registers(obj, var_size_in_bytes);
+  Register end = t2;
+
+  // verify_tlab();
+
+  ldr(obj, Address(rthread, JavaThread::tlab_top_offset()));
+  if (var_size_in_bytes == noreg) {
+    lea(end, Address(obj, con_size_in_bytes));
+  } else {
+    lea(end, Address(obj, var_size_in_bytes));
+  }
+  ldr(rscratch1, Address(rthread, JavaThread::tlab_end_offset()));
+  cmp(end, rscratch1);
+  br(Assembler::HI, slow_case);
+
+  // update the tlab top pointer
+  str(end, Address(rthread, JavaThread::tlab_top_offset()));
+
+  // recover var_size_in_bytes if necessary
+  if (var_size_in_bytes == end) {
+    sub(var_size_in_bytes, var_size_in_bytes, obj);
+  }
+  // verify_tlab();
+}
+
+// Preserves r19, and r3.
+Register MacroAssembler::tlab_refill(Label& retry,
+                                     Label& try_eden,
+                                     Label& slow_case) {
+  Register top = r0;
+  Register t1  = r2;
+  Register t2  = r4;
+  assert_different_registers(top, rthread, t1, t2, /* preserve: */ r19, r3);
+  Label do_refill, discard_tlab;
+
+  if (!Universe::heap()->supports_inline_contig_alloc()) {
+    // No allocation in the shared eden.
+    b(slow_case);
+  }
+
+  ldr(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
+  ldr(t1,  Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
+
+  // calculate amount of free space
+  sub(t1, t1, top);
+  lsr(t1, t1, LogHeapWordSize);
+
+  // Retain tlab and allocate object in shared space if
+  // the amount free in the tlab is too large to discard.
+
+  ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
+  cmp(t1, rscratch1);
+  br(Assembler::LE, discard_tlab);
+
+  // Retain
+  // ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
+  mov(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
+  add(rscratch1, rscratch1, t2);
+  str(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
+
+  if (TLABStats) {
+    // increment number of slow_allocations
+    addmw(Address(rthread, in_bytes(JavaThread::tlab_slow_allocations_offset())),
+         1, rscratch1);
+  }
+  b(try_eden);
+
+  bind(discard_tlab);
+  if (TLABStats) {
+    // increment number of refills
+    addmw(Address(rthread, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1,
+         rscratch1);
+    // accumulate wastage -- t1 is amount free in tlab
+    addmw(Address(rthread, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1,
+         rscratch1);
+  }
+
+  // if tlab is currently allocated (top or end != null) then
+  // fill [top, end + alignment_reserve) with array object
+  cbz(top, do_refill);
+
+  // set up the mark word
+  mov(rscratch1, (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
+  str(rscratch1, Address(top, oopDesc::mark_offset_in_bytes()));
+  // set the length to the remaining space
+  sub(t1, t1, typeArrayOopDesc::header_size(T_INT));
+  add(t1, t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
+  lsl(t1, t1, log2_intptr(HeapWordSize/sizeof(jint)));
+  strw(t1, Address(top, arrayOopDesc::length_offset_in_bytes()));
+  // set klass to intArrayKlass
+  {
+    unsigned long offset;
+    // dubious reloc why not an oop reloc?
+    adrp(rscratch1, ExternalAddress((address)Universe::intArrayKlassObj_addr()),
+         offset);
+    ldr(t1, Address(rscratch1, offset));
+  }
+  // store klass last.  concurrent gcs assumes klass length is valid if
+  // klass field is not null.
+  store_klass(top, t1);
+
+  mov(t1, top);
+  ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
+  sub(t1, t1, rscratch1);
+  incr_allocated_bytes(rthread, t1, 0, rscratch1);
+
+  // refill the tlab with an eden allocation
+  bind(do_refill);
+  ldr(t1, Address(rthread, in_bytes(JavaThread::tlab_size_offset())));
+  lsl(t1, t1, LogHeapWordSize);
+  // allocate new tlab, address returned in top
+  eden_allocate(top, t1, 0, t2, slow_case);
+
+  // Check that t1 was preserved in eden_allocate.
+#ifdef ASSERT
+  if (UseTLAB) {
+    Label ok;
+    Register tsize = r4;
+    assert_different_registers(tsize, rthread, t1);
+    str(tsize, Address(pre(sp, -16)));
+    ldr(tsize, Address(rthread, in_bytes(JavaThread::tlab_size_offset())));
+    lsl(tsize, tsize, LogHeapWordSize);
+    cmp(t1, tsize);
+    br(Assembler::EQ, ok);
+    STOP("assert(t1 != tlab size)");
+    should_not_reach_here();
+
+    bind(ok);
+    ldr(tsize, Address(post(sp, 16)));
+  }
+#endif
+  str(top, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
+  str(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
+  add(top, top, t1);
+  sub(top, top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
+  str(top, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
+  verify_tlab();
+  b(retry);
+
+  return rthread; // for use by caller
+}
+
+// Defines obj, preserves var_size_in_bytes
+void MacroAssembler::eden_allocate(Register obj,
+                                   Register var_size_in_bytes,
+                                   int con_size_in_bytes,
+                                   Register t1,
+                                   Label& slow_case) {
+  assert_different_registers(obj, var_size_in_bytes, t1);
+  if (!Universe::heap()->supports_inline_contig_alloc()) {
+    b(slow_case);
+  } else {
+    Register end = t1;
+    Register heap_end = rscratch2;
+    Label retry;
+    bind(retry);
+    {
+      unsigned long offset;
+      adrp(rscratch1, ExternalAddress((address) Universe::heap()->end_addr()), offset);
+      ldr(heap_end, Address(rscratch1, offset));
+    }
+
+    ExternalAddress heap_top((address) Universe::heap()->top_addr());
+
+    // Get the current top of the heap
+    {
+      unsigned long offset;
+      adrp(rscratch1, heap_top, offset);
+      // Use add() here after ARDP, rather than lea().
+      // lea() does not generate anything if its offset is zero.
+      // However, relocs expect to find either an ADD or a load/store
+      // insn after an ADRP.  add() always generates an ADD insn, even
+      // for add(Rn, Rn, 0).
+      add(rscratch1, rscratch1, offset);
+      ldaxr(obj, rscratch1);
+    }
+
+    // Adjust it my the size of our new object
+    if (var_size_in_bytes == noreg) {
+      lea(end, Address(obj, con_size_in_bytes));
+    } else {
+      lea(end, Address(obj, var_size_in_bytes));
+    }
+
+    // if end < obj then we wrapped around high memory
+    cmp(end, obj);
+    br(Assembler::LO, slow_case);
+
+    cmp(end, heap_end);
+    br(Assembler::HI, slow_case);
+
+    // If heap_top hasn't been changed by some other thread, update it.
+    stlxr(rscratch1, end, rscratch1);
+    cbnzw(rscratch1, retry);
+  }
+}
+
+void MacroAssembler::verify_tlab() {
+#ifdef ASSERT
+  if (UseTLAB && VerifyOops) {
+    Label next, ok;
+
+    stp(rscratch2, rscratch1, Address(pre(sp, -16)));
+
+    ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
+    ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
+    cmp(rscratch2, rscratch1);
+    br(Assembler::HS, next);
+    STOP("assert(top >= start)");
+    should_not_reach_here();
+
+    bind(next);
+    ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
+    ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
+    cmp(rscratch2, rscratch1);
+    br(Assembler::HS, ok);
+    STOP("assert(top <= end)");
+    should_not_reach_here();
+
+    bind(ok);
+    ldp(rscratch2, rscratch1, Address(post(sp, 16)));
+  }
+#endif
+}
+
+// Writes to stack successive pages until offset reached to check for
+// stack overflow + shadow pages.  This clobbers tmp.
+void MacroAssembler::bang_stack_size(Register size, Register tmp) {
+  assert_different_registers(tmp, size, rscratch1);
+  mov(tmp, sp);
+  // Bang stack for total size given plus shadow page size.
+  // Bang one page at a time because large size can bang beyond yellow and
+  // red zones.
+  Label loop;
+  mov(rscratch1, os::vm_page_size());
+  bind(loop);
+  lea(tmp, Address(tmp, -os::vm_page_size()));
+  subsw(size, size, rscratch1);
+  str(size, Address(tmp));
+  br(Assembler::GT, loop);
+
+  // Bang down shadow pages too.
+  // At this point, (tmp-0) is the last address touched, so don't
+  // touch it again.  (It was touched as (tmp-pagesize) but then tmp
+  // was post-decremented.)  Skip this address by starting at i=1, and
+  // touch a few more pages below.  N.B.  It is important to touch all
+  // the way down to and including i=StackShadowPages.
+  for (int i = 0; i< StackShadowPages-1; i++) {
+    // this could be any sized move but this is can be a debugging crumb
+    // so the bigger the better.
+    lea(tmp, Address(tmp, -os::vm_page_size()));
+    str(size, Address(tmp));
+  }
+}
+
+
+address MacroAssembler::read_polling_page(Register r, address page, relocInfo::relocType rtype) {
+  unsigned long off;
+  adrp(r, Address(page, rtype), off);
+  InstructionMark im(this);
+  code_section()->relocate(inst_mark(), rtype);
+  ldrw(zr, Address(r, off));
+  return inst_mark();
+}
+
+address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) {
+  InstructionMark im(this);
+  code_section()->relocate(inst_mark(), rtype);
+  ldrw(zr, Address(r, 0));
+  return inst_mark();
+}
+
+void MacroAssembler::adrp(Register reg1, const Address &dest, unsigned long &byte_offset) {
+  relocInfo::relocType rtype = dest.rspec().reloc()->type();
+  if (uabs(pc() - dest.target()) >= (1LL << 32)) {
+    guarantee(rtype == relocInfo::none
+              || rtype == relocInfo::external_word_type
+              || rtype == relocInfo::poll_type
+              || rtype == relocInfo::poll_return_type,
+              "can only use a fixed address with an ADRP");
+    // Out of range.  This doesn't happen very often, but we have to
+    // handle it
+    mov(reg1, dest);
+    byte_offset = 0;
+  } else {
+    InstructionMark im(this);
+    code_section()->relocate(inst_mark(), dest.rspec());
+    byte_offset = (uint64_t)dest.target() & 0xfff;
+    _adrp(reg1, dest.target());
+  }
+}
+
+  bool MacroAssembler::use_acq_rel_for_volatile_fields() {
+#ifdef PRODUCT
+    return false;
+#else
+    return UseAcqRelForVolatileFields;
+#endif
+  }
+
+void MacroAssembler::build_frame(int framesize) {
+  if (framesize == 0) {
+    // Is this even possible?
+    stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
+  } else if (framesize < ((1 << 9) + 2 * wordSize)) {
+    sub(sp, sp, framesize);
+    stp(rfp, lr, Address(sp, framesize - 2 * wordSize));
+  } else {
+    stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
+    if (framesize < ((1 << 12) + 2 * wordSize))
+      sub(sp, sp, framesize - 2 * wordSize);
+    else {
+      mov(rscratch1, framesize - 2 * wordSize);
+      sub(sp, sp, rscratch1);
+    }
+  }
+}
+
+void MacroAssembler::remove_frame(int framesize) {
+  if (framesize == 0) {
+    ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
+  } else if (framesize < ((1 << 9) + 2 * wordSize)) {
+    ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
+    add(sp, sp, framesize);
+  } else {
+    if (framesize < ((1 << 12) + 2 * wordSize))
+      add(sp, sp, framesize - 2 * wordSize);
+    else {
+      mov(rscratch1, framesize - 2 * wordSize);
+      add(sp, sp, rscratch1);
+    }
+    ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
+  }
+}
+
+
+// Search for str1 in str2 and return index or -1
+void MacroAssembler::string_indexof(Register str2, Register str1,
+                                    Register cnt2, Register cnt1,
+                                    Register tmp1, Register tmp2,
+                                    Register tmp3, Register tmp4,
+                                    int icnt1, Register result) {
+  Label BM, LINEARSEARCH, DONE, NOMATCH, MATCH;
+
+  Register ch1 = rscratch1;
+  Register ch2 = rscratch2;
+  Register cnt1tmp = tmp1;
+  Register cnt2tmp = tmp2;
+  Register cnt1_neg = cnt1;
+  Register cnt2_neg = cnt2;
+  Register result_tmp = tmp4;
+
+  // Note, inline_string_indexOf() generates checks:
+  // if (substr.count > string.count) return -1;
+  // if (substr.count == 0) return 0;
+
+// We have two strings, a source string in str2, cnt2 and a pattern string
+// in str1, cnt1. Find the 1st occurence of pattern in source or return -1.
+
+// For larger pattern and source we use a simplified Boyer Moore algorithm.
+// With a small pattern and source we use linear scan.
+
+  if (icnt1 == -1) {
+    cmp(cnt1, 256);             // Use Linear Scan if cnt1 < 8 || cnt1 >= 256
+    ccmp(cnt1, 8, 0b0000, LO);  // Can't handle skip >= 256 because we use
+    br(LO, LINEARSEARCH);       // a byte array.
+    cmp(cnt1, cnt2, LSR, 2);    // Source must be 4 * pattern for BM
+    br(HS, LINEARSEARCH);
+  }
+
+// The Boyer Moore alogorithm is based on the description here:-
+//
+// http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm
+//
+// This describes and algorithm with 2 shift rules. The 'Bad Character' rule
+// and the 'Good Suffix' rule.
+//
+// These rules are essentially heuristics for how far we can shift the
+// pattern along the search string.
+//
+// The implementation here uses the 'Bad Character' rule only because of the
+// complexity of initialisation for the 'Good Suffix' rule.
+//
+// This is also known as the Boyer-Moore-Horspool algorithm:-
+//
+// http://en.wikipedia.org/wiki/Boyer-Moore-Horspool_algorithm
+//
+// #define ASIZE 128
+//
+//    int bm(unsigned char *x, int m, unsigned char *y, int n) {
+//       int i, j;
+//       unsigned c;
+//       unsigned char bc[ASIZE];
+//
+//       /* Preprocessing */
+//       for (i = 0; i < ASIZE; ++i)
+//          bc[i] = 0;
+//       for (i = 0; i < m - 1; ) {
+//          c = x[i];
+//          ++i;
+//          if (c < ASIZE) bc[c] = i;
+//       }
+//
+//       /* Searching */
+//       j = 0;
+//       while (j <= n - m) {
+//          c = y[i+j];
+//          if (x[m-1] == c)
+//            for (i = m - 2; i >= 0 && x[i] == y[i + j]; --i);
+//          if (i < 0) return j;
+//          if (c < ASIZE)
+//            j = j - bc[y[j+m-1]] + m;
+//          else
+//            j += 1; // Advance by 1 only if char >= ASIZE
+//       }
+//    }
+
+  if (icnt1 == -1) {
+    BIND(BM);
+
+    Label ZLOOP, BCLOOP, BCSKIP, BMLOOPSTR2, BMLOOPSTR1, BMSKIP;
+    Label BMADV, BMMATCH, BMCHECKEND;
+
+    Register cnt1end = tmp2;
+    Register str2end = cnt2;
+    Register skipch = tmp2;
+
+    // Restrict ASIZE to 128 to reduce stack space/initialisation.
+    // The presence of chars >= ASIZE in the target string does not affect
+    // performance, but we must be careful not to initialise them in the stack
+    // array.
+    // The presence of chars >= ASIZE in the source string may adversely affect
+    // performance since we can only advance by one when we encounter one.
+
+      stp(zr, zr, pre(sp, -128));
+      for (int i = 1; i < 8; i++)
+          stp(zr, zr, Address(sp, i*16));
+
+      mov(cnt1tmp, 0);
+      sub(cnt1end, cnt1, 1);
+    BIND(BCLOOP);
+      ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1)));
+      cmp(ch1, 128);
+      add(cnt1tmp, cnt1tmp, 1);
+      br(HS, BCSKIP);
+      strb(cnt1tmp, Address(sp, ch1));
+    BIND(BCSKIP);
+      cmp(cnt1tmp, cnt1end);
+      br(LT, BCLOOP);
+
+      mov(result_tmp, str2);
+
+      sub(cnt2, cnt2, cnt1);
+      add(str2end, str2, cnt2, LSL, 1);
+    BIND(BMLOOPSTR2);
+      sub(cnt1tmp, cnt1, 1);
+      ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1)));
+      ldrh(skipch, Address(str2, cnt1tmp, Address::lsl(1)));
+      cmp(ch1, skipch);
+      br(NE, BMSKIP);
+      subs(cnt1tmp, cnt1tmp, 1);
+      br(LT, BMMATCH);
+    BIND(BMLOOPSTR1);
+      ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1)));
+      ldrh(ch2, Address(str2, cnt1tmp, Address::lsl(1)));
+      cmp(ch1, ch2);
+      br(NE, BMSKIP);
+      subs(cnt1tmp, cnt1tmp, 1);
+      br(GE, BMLOOPSTR1);
+    BIND(BMMATCH);
+      sub(result_tmp, str2, result_tmp);
+      lsr(result, result_tmp, 1);
+      add(sp, sp, 128);
+      b(DONE);
+    BIND(BMADV);
+      add(str2, str2, 2);
+      b(BMCHECKEND);
+    BIND(BMSKIP);
+      cmp(skipch, 128);
+      br(HS, BMADV);
+      ldrb(ch2, Address(sp, skipch));
+      add(str2, str2, cnt1, LSL, 1);
+      sub(str2, str2, ch2, LSL, 1);
+    BIND(BMCHECKEND);
+      cmp(str2, str2end);
+      br(LE, BMLOOPSTR2);
+      add(sp, sp, 128);
+      b(NOMATCH);
+  }
+
+  BIND(LINEARSEARCH);
+  {
+    Label DO1, DO2, DO3;
+
+    Register str2tmp = tmp2;
+    Register first = tmp3;
+
+    if (icnt1 == -1)
+    {
+        Label DOSHORT, FIRST_LOOP, STR2_NEXT, STR1_LOOP, STR1_NEXT, LAST_WORD;
+
+        cmp(cnt1, 4);
+        br(LT, DOSHORT);
+
+        sub(cnt2, cnt2, cnt1);
+        sub(cnt1, cnt1, 4);
+        mov(result_tmp, cnt2);
+
+        lea(str1, Address(str1, cnt1, Address::uxtw(1)));
+        lea(str2, Address(str2, cnt2, Address::uxtw(1)));
+        sub(cnt1_neg, zr, cnt1, LSL, 1);
+        sub(cnt2_neg, zr, cnt2, LSL, 1);
+        ldr(first, Address(str1, cnt1_neg));
+
+      BIND(FIRST_LOOP);
+        ldr(ch2, Address(str2, cnt2_neg));
+        cmp(first, ch2);
+        br(EQ, STR1_LOOP);
+      BIND(STR2_NEXT);
+        adds(cnt2_neg, cnt2_neg, 2);
+        br(LE, FIRST_LOOP);
+        b(NOMATCH);
+
+      BIND(STR1_LOOP);
+        adds(cnt1tmp, cnt1_neg, 8);
+        add(cnt2tmp, cnt2_neg, 8);
+        br(GE, LAST_WORD);
+
+      BIND(STR1_NEXT);
+        ldr(ch1, Address(str1, cnt1tmp));
+        ldr(ch2, Address(str2, cnt2tmp));
+        cmp(ch1, ch2);
+        br(NE, STR2_NEXT);
+        adds(cnt1tmp, cnt1tmp, 8);
+        add(cnt2tmp, cnt2tmp, 8);
+        br(LT, STR1_NEXT);
+
+      BIND(LAST_WORD);
+        ldr(ch1, Address(str1));
+        sub(str2tmp, str2, cnt1_neg);         // adjust to corresponding
+        ldr(ch2, Address(str2tmp, cnt2_neg)); // word in str2
+        cmp(ch1, ch2);
+        br(NE, STR2_NEXT);
+        b(MATCH);
+
+      BIND(DOSHORT);
+        cmp(cnt1, 2);
+        br(LT, DO1);
+        br(GT, DO3);
+    }
+
+    if (icnt1 == 4) {
+      Label CH1_LOOP;
+
+        ldr(ch1, str1);
+        sub(cnt2, cnt2, 4);
+        mov(result_tmp, cnt2);
+        lea(str2, Address(str2, cnt2, Address::uxtw(1)));
+        sub(cnt2_neg, zr, cnt2, LSL, 1);
+
+      BIND(CH1_LOOP);
+        ldr(ch2, Address(str2, cnt2_neg));
+        cmp(ch1, ch2);
+        br(EQ, MATCH);
+        adds(cnt2_neg, cnt2_neg, 2);
+        br(LE, CH1_LOOP);
+        b(NOMATCH);
+    }
+
+    if (icnt1 == -1 || icnt1 == 2) {
+      Label CH1_LOOP;
+
+      BIND(DO2);
+        ldrw(ch1, str1);
+        sub(cnt2, cnt2, 2);
+        mov(result_tmp, cnt2);
+        lea(str2, Address(str2, cnt2, Address::uxtw(1)));
+        sub(cnt2_neg, zr, cnt2, LSL, 1);
+
+      BIND(CH1_LOOP);
+        ldrw(ch2, Address(str2, cnt2_neg));
+        cmp(ch1, ch2);
+        br(EQ, MATCH);
+        adds(cnt2_neg, cnt2_neg, 2);
+        br(LE, CH1_LOOP);
+        b(NOMATCH);
+    }
+
+    if (icnt1 == -1 || icnt1 == 3) {
+      Label FIRST_LOOP, STR2_NEXT, STR1_LOOP;
+
+      BIND(DO3);
+        ldrw(first, str1);
+        ldrh(ch1, Address(str1, 4));
+
+        sub(cnt2, cnt2, 3);
+        mov(result_tmp, cnt2);
+        lea(str2, Address(str2, cnt2, Address::uxtw(1)));
+        sub(cnt2_neg, zr, cnt2, LSL, 1);
+
+      BIND(FIRST_LOOP);
+        ldrw(ch2, Address(str2, cnt2_neg));
+        cmpw(first, ch2);
+        br(EQ, STR1_LOOP);
+      BIND(STR2_NEXT);
+        adds(cnt2_neg, cnt2_neg, 2);
+        br(LE, FIRST_LOOP);
+        b(NOMATCH);
+
+      BIND(STR1_LOOP);
+        add(cnt2tmp, cnt2_neg, 4);
+        ldrh(ch2, Address(str2, cnt2tmp));
+        cmp(ch1, ch2);
+        br(NE, STR2_NEXT);
+        b(MATCH);
+    }
+
+    if (icnt1 == -1 || icnt1 == 1) {
+      Label CH1_LOOP, HAS_ZERO;
+      Label DO1_SHORT, DO1_LOOP;
+
+      BIND(DO1);
+        ldrh(ch1, str1);
+        cmp(cnt2, 4);
+        br(LT, DO1_SHORT);
+
+        orr(ch1, ch1, ch1, LSL, 16);
+        orr(ch1, ch1, ch1, LSL, 32);
+
+        sub(cnt2, cnt2, 4);
+        mov(result_tmp, cnt2);
+        lea(str2, Address(str2, cnt2, Address::uxtw(1)));
+        sub(cnt2_neg, zr, cnt2, LSL, 1);
+
+        mov(tmp3, 0x0001000100010001);
+      BIND(CH1_LOOP);
+        ldr(ch2, Address(str2, cnt2_neg));
+        eor(ch2, ch1, ch2);
+        sub(tmp1, ch2, tmp3);
+        orr(tmp2, ch2, 0x7fff7fff7fff7fff);
+        bics(tmp1, tmp1, tmp2);
+        br(NE, HAS_ZERO);
+        adds(cnt2_neg, cnt2_neg, 8);
+        br(LT, CH1_LOOP);
+
+        cmp(cnt2_neg, 8);
+        mov(cnt2_neg, 0);
+        br(LT, CH1_LOOP);
+        b(NOMATCH);
+
+      BIND(HAS_ZERO);
+        rev(tmp1, tmp1);
+        clz(tmp1, tmp1);
+        add(cnt2_neg, cnt2_neg, tmp1, LSR, 3);
+        b(MATCH);
+
+      BIND(DO1_SHORT);
+        mov(result_tmp, cnt2);
+        lea(str2, Address(str2, cnt2, Address::uxtw(1)));
+        sub(cnt2_neg, zr, cnt2, LSL, 1);
+      BIND(DO1_LOOP);
+        ldrh(ch2, Address(str2, cnt2_neg));
+        cmpw(ch1, ch2);
+        br(EQ, MATCH);
+        adds(cnt2_neg, cnt2_neg, 2);
+        br(LT, DO1_LOOP);
+    }
+  }
+  BIND(NOMATCH);
+    mov(result, -1);
+    b(DONE);
+  BIND(MATCH);
+    add(result, result_tmp, cnt2_neg, ASR, 1);
+  BIND(DONE);
+}
+
+// Compare strings.
+void MacroAssembler::string_compare(Register str1, Register str2,
+                                    Register cnt1, Register cnt2, Register result,
+                                    Register tmp1) {
+  Label LENGTH_DIFF, DONE, SHORT_LOOP, SHORT_STRING,
+    NEXT_WORD, DIFFERENCE;
+
+  BLOCK_COMMENT("string_compare {");
+
+  // Compute the minimum of the string lengths and save the difference.
+  subsw(tmp1, cnt1, cnt2);
+  cselw(cnt2, cnt1, cnt2, Assembler::LE); // min
+
+  // A very short string
+  cmpw(cnt2, 4);
+  br(Assembler::LT, SHORT_STRING);
+
+  // Check if the strings start at the same location.
+  cmp(str1, str2);
+  br(Assembler::EQ, LENGTH_DIFF);
+
+  // Compare longwords
+  {
+    subw(cnt2, cnt2, 4); // The last longword is a special case
+
+    // Move both string pointers to the last longword of their
+    // strings, negate the remaining count, and convert it to bytes.
+    lea(str1, Address(str1, cnt2, Address::uxtw(1)));
+    lea(str2, Address(str2, cnt2, Address::uxtw(1)));
+    sub(cnt2, zr, cnt2, LSL, 1);
+
+    // Loop, loading longwords and comparing them into rscratch2.
+    bind(NEXT_WORD);
+    ldr(result, Address(str1, cnt2));
+    ldr(cnt1, Address(str2, cnt2));
+    adds(cnt2, cnt2, wordSize);
+    eor(rscratch2, result, cnt1);
+    cbnz(rscratch2, DIFFERENCE);
+    br(Assembler::LT, NEXT_WORD);
+
+    // Last longword.  In the case where length == 4 we compare the
+    // same longword twice, but that's still faster than another
+    // conditional branch.
+
+    ldr(result, Address(str1));
+    ldr(cnt1, Address(str2));
+    eor(rscratch2, result, cnt1);
+    cbz(rscratch2, LENGTH_DIFF);
+
+    // Find the first different characters in the longwords and
+    // compute their difference.
+    bind(DIFFERENCE);
+    rev(rscratch2, rscratch2);
+    clz(rscratch2, rscratch2);
+    andr(rscratch2, rscratch2, -16);
+    lsrv(result, result, rscratch2);
+    uxthw(result, result);
+    lsrv(cnt1, cnt1, rscratch2);
+    uxthw(cnt1, cnt1);
+    subw(result, result, cnt1);
+    b(DONE);
+  }
+
+  bind(SHORT_STRING);
+  // Is the minimum length zero?
+  cbz(cnt2, LENGTH_DIFF);
+
+  bind(SHORT_LOOP);
+  load_unsigned_short(result, Address(post(str1, 2)));
+  load_unsigned_short(cnt1, Address(post(str2, 2)));
+  subw(result, result, cnt1);
+  cbnz(result, DONE);
+  sub(cnt2, cnt2, 1);
+  cbnz(cnt2, SHORT_LOOP);
+
+  // Strings are equal up to min length.  Return the length difference.
+  bind(LENGTH_DIFF);
+  mov(result, tmp1);
+
+  // That's it
+  bind(DONE);
+
+  BLOCK_COMMENT("} string_compare");
+}
+
+
+void MacroAssembler::string_equals(Register str1, Register str2,
+                                   Register cnt, Register result,
+                                   Register tmp1) {
+  Label SAME_CHARS, DONE, SHORT_LOOP, SHORT_STRING,
+    NEXT_WORD;
+
+  const Register tmp2 = rscratch1;
+  assert_different_registers(str1, str2, cnt, result, tmp1, tmp2, rscratch2);
+
+  BLOCK_COMMENT("string_equals {");
+
+  // Start by assuming that the strings are not equal.
+  mov(result, zr);
+
+  // A very short string
+  cmpw(cnt, 4);
+  br(Assembler::LT, SHORT_STRING);
+
+  // Check if the strings start at the same location.
+  cmp(str1, str2);
+  br(Assembler::EQ, SAME_CHARS);
+
+  // Compare longwords
+  {
+    subw(cnt, cnt, 4); // The last longword is a special case
+
+    // Move both string pointers to the last longword of their
+    // strings, negate the remaining count, and convert it to bytes.
+    lea(str1, Address(str1, cnt, Address::uxtw(1)));
+    lea(str2, Address(str2, cnt, Address::uxtw(1)));
+    sub(cnt, zr, cnt, LSL, 1);
+
+    // Loop, loading longwords and comparing them into rscratch2.
+    bind(NEXT_WORD);
+    ldr(tmp1, Address(str1, cnt));
+    ldr(tmp2, Address(str2, cnt));
+    adds(cnt, cnt, wordSize);
+    eor(rscratch2, tmp1, tmp2);
+    cbnz(rscratch2, DONE);
+    br(Assembler::LT, NEXT_WORD);
+
+    // Last longword.  In the case where length == 4 we compare the
+    // same longword twice, but that's still faster than another
+    // conditional branch.
+
+    ldr(tmp1, Address(str1));
+    ldr(tmp2, Address(str2));
+    eor(rscratch2, tmp1, tmp2);
+    cbz(rscratch2, SAME_CHARS);
+    b(DONE);
+  }
+
+  bind(SHORT_STRING);
+  // Is the length zero?
+  cbz(cnt, SAME_CHARS);
+
+  bind(SHORT_LOOP);
+  load_unsigned_short(tmp1, Address(post(str1, 2)));
+  load_unsigned_short(tmp2, Address(post(str2, 2)));
+  subw(tmp1, tmp1, tmp2);
+  cbnz(tmp1, DONE);
+  sub(cnt, cnt, 1);
+  cbnz(cnt, SHORT_LOOP);
+
+  // Strings are equal.
+  bind(SAME_CHARS);
+  mov(result, true);
+
+  // That's it
+  bind(DONE);
+
+  BLOCK_COMMENT("} string_equals");
+}
+
+// Compare char[] arrays aligned to 4 bytes
+void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
+                                        Register result, Register tmp1)
+{
+  Register cnt1 = rscratch1;
+  Register cnt2 = rscratch2;
+  Register tmp2 = rscratch2;
+
+  Label SAME, DIFFER, NEXT, TAIL03, TAIL01;
+
+  int length_offset  = arrayOopDesc::length_offset_in_bytes();
+  int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
+
+  BLOCK_COMMENT("char_arrays_equals  {");
+
+    // different until proven equal
+    mov(result, false);
+
+    // same array?
+    cmp(ary1, ary2);
+    br(Assembler::EQ, SAME);
+
+    // ne if either null
+    cbz(ary1, DIFFER);
+    cbz(ary2, DIFFER);
+
+    // lengths ne?
+    ldrw(cnt1, Address(ary1, length_offset));
+    ldrw(cnt2, Address(ary2, length_offset));
+    cmp(cnt1, cnt2);
+    br(Assembler::NE, DIFFER);
+
+    lea(ary1, Address(ary1, base_offset));
+    lea(ary2, Address(ary2, base_offset));
+
+    subs(cnt1, cnt1, 4);
+    br(LT, TAIL03);
+
+  BIND(NEXT);
+    ldr(tmp1, Address(post(ary1, 8)));
+    ldr(tmp2, Address(post(ary2, 8)));
+    subs(cnt1, cnt1, 4);
+    eor(tmp1, tmp1, tmp2);
+    cbnz(tmp1, DIFFER);
+    br(GE, NEXT);
+
+  BIND(TAIL03);  // 0-3 chars left, cnt1 = #chars left - 4
+    tst(cnt1, 0b10);
+    br(EQ, TAIL01);
+    ldrw(tmp1, Address(post(ary1, 4)));
+    ldrw(tmp2, Address(post(ary2, 4)));
+    cmp(tmp1, tmp2);
+    br(NE, DIFFER);
+  BIND(TAIL01);  // 0-1 chars left
+    tst(cnt1, 0b01);
+    br(EQ, SAME);
+    ldrh(tmp1, ary1);
+    ldrh(tmp2, ary2);
+    cmp(tmp1, tmp2);
+    br(NE, DIFFER);
+
+  BIND(SAME);
+    mov(result, true);
+  BIND(DIFFER); // result already set
+
+  BLOCK_COMMENT("} char_arrays_equals");
+}
+
+// encode char[] to byte[] in ISO_8859_1
+void MacroAssembler::encode_iso_array(Register src, Register dst,
+                      Register len, Register result,
+                      FloatRegister Vtmp1, FloatRegister Vtmp2,
+                      FloatRegister Vtmp3, FloatRegister Vtmp4)
+{
+    Label DONE, NEXT_32, LOOP_8, NEXT_8, LOOP_1, NEXT_1;
+    Register tmp1 = rscratch1;
+
+      mov(result, len); // Save initial len
+
+#ifndef BUILTIN_SIM
+      subs(len, len, 32);
+      br(LT, LOOP_8);
+
+// The following code uses the SIMD 'uqxtn' and 'uqxtn2' instructions
+// to convert chars to bytes. These set the 'QC' bit in the FPSR if
+// any char could not fit in a byte, so clear the FPSR so we can test it.
+      clear_fpsr();
+
+    BIND(NEXT_32);
+      ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src);
+      uqxtn(Vtmp1, T8B, Vtmp1, T8H);  // uqxtn  - write bottom half
+      uqxtn(Vtmp1, T16B, Vtmp2, T8H); // uqxtn2 - write top half
+      uqxtn(Vtmp2, T8B, Vtmp3, T8H);
+      uqxtn(Vtmp2, T16B, Vtmp4, T8H); // uqxtn2
+      get_fpsr(tmp1);
+      cbnzw(tmp1, LOOP_8);
+      st1(Vtmp1, Vtmp2, T16B, post(dst, 32));
+      subs(len, len, 32);
+      add(src, src, 64);
+      br(GE, NEXT_32);
+
+    BIND(LOOP_8);
+      adds(len, len, 32-8);
+      br(LT, LOOP_1);
+      clear_fpsr(); // QC may be set from loop above, clear again
+    BIND(NEXT_8);
+      ld1(Vtmp1, T8H, src);
+      uqxtn(Vtmp1, T8B, Vtmp1, T8H);
+      get_fpsr(tmp1);
+      cbnzw(tmp1, LOOP_1);
+      st1(Vtmp1, T8B, post(dst, 8));
+      subs(len, len, 8);
+      add(src, src, 16);
+      br(GE, NEXT_8);
+
+    BIND(LOOP_1);
+      adds(len, len, 8);
+      br(LE, DONE);
+#else
+      cbz(len, DONE);
+#endif
+    BIND(NEXT_1);
+      ldrh(tmp1, Address(post(src, 2)));
+      tst(tmp1, 0xff00);
+      br(NE, DONE);
+      strb(tmp1, Address(post(dst, 1)));
+      subs(len, len, 1);
+      br(GT, NEXT_1);
+
+    BIND(DONE);
+      sub(result, result, len); // Return index where we stopped
+}