hotspot/src/cpu/aarch64/vm/interp_masm_aarch64.cpp
changeset 29183 0cc8699f7372
child 29188 b40701883668
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/aarch64/vm/interp_masm_aarch64.cpp	Tue Jan 20 11:34:17 2015 -0800
@@ -0,0 +1,1682 @@
+/*
+ * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "interp_masm_aarch64.hpp"
+#include "interpreter/interpreter.hpp"
+#include "interpreter/interpreterRuntime.hpp"
+#include "oops/arrayOop.hpp"
+#include "oops/markOop.hpp"
+#include "oops/methodData.hpp"
+#include "oops/method.hpp"
+#include "prims/jvmtiExport.hpp"
+#include "prims/jvmtiRedefineClassesTrace.hpp"
+#include "prims/jvmtiThreadState.hpp"
+#include "runtime/basicLock.hpp"
+#include "runtime/biasedLocking.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "runtime/thread.inline.hpp"
+
+
+// Implementation of InterpreterMacroAssembler
+
+#ifndef CC_INTERP
+
+void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
+  if (JvmtiExport::can_pop_frame()) {
+    Label L;
+    // Initiate popframe handling only if it is not already being
+    // processed.  If the flag has the popframe_processing bit set, it
+    // means that this code is called *during* popframe handling - we
+    // don't want to reenter.
+    // This method is only called just after the call into the vm in
+    // call_VM_base, so the arg registers are available.
+    ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
+    tstw(rscratch1, JavaThread::popframe_pending_bit);
+    br(Assembler::EQ, L);
+    tstw(rscratch1, JavaThread::popframe_processing_bit);
+    br(Assembler::NE, L);
+    // Call Interpreter::remove_activation_preserving_args_entry() to get the
+    // address of the same-named entrypoint in the generated interpreter code.
+    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
+    br(r0);
+    bind(L);
+  }
+}
+
+
+void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
+  ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
+  const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
+  const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
+  const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
+  switch (state) {
+    case atos: ldr(r0, oop_addr);
+               str(zr, oop_addr);
+               verify_oop(r0, state);               break;
+    case ltos: ldr(r0, val_addr);                   break;
+    case btos:                                   // fall through
+    case ctos:                                   // fall through
+    case stos:                                   // fall through
+    case itos: ldrw(r0, val_addr);                  break;
+    case ftos: ldrs(v0, val_addr);                  break;
+    case dtos: ldrd(v0, val_addr);                  break;
+    case vtos: /* nothing to do */                  break;
+    default  : ShouldNotReachHere();
+  }
+  // Clean up tos value in the thread object
+  movw(rscratch1, (int) ilgl);
+  strw(rscratch1, tos_addr);
+  strw(zr, val_addr);
+}
+
+
+void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
+  if (JvmtiExport::can_force_early_return()) {
+    Label L;
+    ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
+    cbz(rscratch1, L); // if (thread->jvmti_thread_state() == NULL) exit;
+
+    // Initiate earlyret handling only if it is not already being processed.
+    // If the flag has the earlyret_processing bit set, it means that this code
+    // is called *during* earlyret handling - we don't want to reenter.
+    ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
+    cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
+    br(Assembler::NE, L);
+
+    // Call Interpreter::remove_activation_early_entry() to get the address of the
+    // same-named entrypoint in the generated interpreter code.
+    ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
+    ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
+    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
+    br(r0);
+    bind(L);
+  }
+}
+
+void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
+  Register reg,
+  int bcp_offset) {
+  assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
+  ldrh(reg, Address(rbcp, bcp_offset));
+  rev16(reg, reg);
+}
+
+void InterpreterMacroAssembler::get_dispatch() {
+  unsigned long offset;
+  adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
+  lea(rdispatch, Address(rdispatch, offset));
+}
+
+void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
+                                                       int bcp_offset,
+                                                       size_t index_size) {
+  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
+  if (index_size == sizeof(u2)) {
+    load_unsigned_short(index, Address(rbcp, bcp_offset));
+  } else if (index_size == sizeof(u4)) {
+    // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
+    ldrw(index, Address(rbcp, bcp_offset));
+    // Check if the secondary index definition is still ~x, otherwise
+    // we have to change the following assembler code to calculate the
+    // plain index.
+    assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
+    eonw(index, index, zr);  // convert to plain index
+  } else if (index_size == sizeof(u1)) {
+    load_unsigned_byte(index, Address(rbcp, bcp_offset));
+  } else {
+    ShouldNotReachHere();
+  }
+}
+
+// Return
+// Rindex: index into constant pool
+// Rcache: address of cache entry - ConstantPoolCache::base_offset()
+//
+// A caller must add ConstantPoolCache::base_offset() to Rcache to get
+// the true address of the cache entry.
+//
+void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
+                                                           Register index,
+                                                           int bcp_offset,
+                                                           size_t index_size) {
+  assert_different_registers(cache, index);
+  assert_different_registers(cache, rcpool);
+  get_cache_index_at_bcp(index, bcp_offset, index_size);
+  assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
+  // convert from field index to ConstantPoolCacheEntry
+  // aarch64 already has the cache in rcpool so there is no need to
+  // install it in cache. instead we pre-add the indexed offset to
+  // rcpool and return it in cache. All clients of this method need to
+  // be modified accordingly.
+  add(cache, rcpool, index, Assembler::LSL, 5);
+}
+
+
+void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
+                                                                        Register index,
+                                                                        Register bytecode,
+                                                                        int byte_no,
+                                                                        int bcp_offset,
+                                                                        size_t index_size) {
+  get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
+  // We use a 32-bit load here since the layout of 64-bit words on
+  // little-endian machines allow us that.
+  // n.b. unlike x86 cache alreeady includes the index offset
+  ldrw(bytecode, Address(cache,
+                         ConstantPoolCache::base_offset()
+                         + ConstantPoolCacheEntry::indices_offset()));
+  const int shift_count = (1 + byte_no) * BitsPerByte;
+  ubfx(bytecode, bytecode, shift_count, BitsPerByte);
+}
+
+void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
+                                                               Register tmp,
+                                                               int bcp_offset,
+                                                               size_t index_size) {
+  assert(cache != tmp, "must use different register");
+  get_cache_index_at_bcp(tmp, bcp_offset, index_size);
+  assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
+  // convert from field index to ConstantPoolCacheEntry index
+  // and from word offset to byte offset
+  assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
+  ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize));
+  // skip past the header
+  add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
+  add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord);  // construct pointer to cache entry
+}
+
+void InterpreterMacroAssembler::get_method_counters(Register method,
+                                                    Register mcs, Label& skip) {
+  Label has_counters;
+  ldr(mcs, Address(method, Method::method_counters_offset()));
+  cbnz(mcs, has_counters);
+  call_VM(noreg, CAST_FROM_FN_PTR(address,
+          InterpreterRuntime::build_method_counters), method);
+  ldr(mcs, Address(method, Method::method_counters_offset()));
+  cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
+  bind(has_counters);
+}
+
+// Load object from cpool->resolved_references(index)
+void InterpreterMacroAssembler::load_resolved_reference_at_index(
+                                           Register result, Register index) {
+  assert_different_registers(result, index);
+  // convert from field index to resolved_references() index and from
+  // word index to byte offset. Since this is a java object, it can be compressed
+  Register tmp = index;  // reuse
+  lslw(tmp, tmp, LogBytesPerHeapOop);
+
+  get_constant_pool(result);
+  // load pointer for resolved_references[] objArray
+  ldr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
+  // JNIHandles::resolve(obj);
+  ldr(result, Address(result, 0));
+  // Add in the index
+  add(result, result, tmp);
+  load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
+}
+
+// Generate a subtype check: branch to ok_is_subtype if sub_klass is a
+// subtype of super_klass.
+//
+// Args:
+//      r0: superklass
+//      Rsub_klass: subklass
+//
+// Kills:
+//      r2, r5
+void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
+                                                  Label& ok_is_subtype) {
+  assert(Rsub_klass != r0, "r0 holds superklass");
+  assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
+  assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
+
+  // Profile the not-null value's klass.
+  profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
+
+  // Do the check.
+  check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
+
+  // Profile the failure of the check.
+  profile_typecheck_failed(r2); // blows r2
+}
+
+// Java Expression Stack
+
+void InterpreterMacroAssembler::pop_ptr(Register r) {
+  ldr(r, post(esp, wordSize));
+}
+
+void InterpreterMacroAssembler::pop_i(Register r) {
+  ldrw(r, post(esp, wordSize));
+}
+
+void InterpreterMacroAssembler::pop_l(Register r) {
+  ldr(r, post(esp, 2 * Interpreter::stackElementSize));
+}
+
+void InterpreterMacroAssembler::push_ptr(Register r) {
+  str(r, pre(esp, -wordSize));
+ }
+
+void InterpreterMacroAssembler::push_i(Register r) {
+  str(r, pre(esp, -wordSize));
+}
+
+void InterpreterMacroAssembler::push_l(Register r) {
+  str(r, pre(esp, 2 * -wordSize));
+}
+
+void InterpreterMacroAssembler::pop_f(FloatRegister r) {
+  ldrs(r, post(esp, wordSize));
+}
+
+void InterpreterMacroAssembler::pop_d(FloatRegister r) {
+  ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
+}
+
+void InterpreterMacroAssembler::push_f(FloatRegister r) {
+  strs(r, pre(esp, -wordSize));
+}
+
+void InterpreterMacroAssembler::push_d(FloatRegister r) {
+  strd(r, pre(esp, 2* -wordSize));
+}
+
+void InterpreterMacroAssembler::pop(TosState state) {
+  switch (state) {
+  case atos: pop_ptr();                 break;
+  case btos:
+  case ctos:
+  case stos:
+  case itos: pop_i();                   break;
+  case ltos: pop_l();                   break;
+  case ftos: pop_f();                   break;
+  case dtos: pop_d();                   break;
+  case vtos: /* nothing to do */        break;
+  default:   ShouldNotReachHere();
+  }
+  verify_oop(r0, state);
+}
+
+void InterpreterMacroAssembler::push(TosState state) {
+  verify_oop(r0, state);
+  switch (state) {
+  case atos: push_ptr();                break;
+  case btos:
+  case ctos:
+  case stos:
+  case itos: push_i();                  break;
+  case ltos: push_l();                  break;
+  case ftos: push_f();                  break;
+  case dtos: push_d();                  break;
+  case vtos: /* nothing to do */        break;
+  default  : ShouldNotReachHere();
+  }
+}
+
+// Helpers for swap and dup
+void InterpreterMacroAssembler::load_ptr(int n, Register val) {
+  ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
+}
+
+void InterpreterMacroAssembler::store_ptr(int n, Register val) {
+  str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
+}
+
+
+void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
+  // set sender sp
+  mov(r13, sp);
+  // record last_sp
+  str(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
+}
+
+// Jump to from_interpreted entry of a call unless single stepping is possible
+// in this thread in which case we must call the i2i entry
+void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
+  prepare_to_jump_from_interpreted();
+
+  if (JvmtiExport::can_post_interpreter_events()) {
+    Label run_compiled_code;
+    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
+    // compiled code in threads for which the event is enabled.  Check here for
+    // interp_only_mode if these events CAN be enabled.
+    // interp_only is an int, on little endian it is sufficient to test the byte only
+    // Is a cmpl faster?
+    ldr(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
+    cbz(rscratch1, run_compiled_code);
+    ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
+    br(rscratch1);
+    bind(run_compiled_code);
+  }
+
+  ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
+  br(rscratch1);
+}
+
+// The following two routines provide a hook so that an implementation
+// can schedule the dispatch in two parts.  amd64 does not do this.
+void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
+}
+
+void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
+    dispatch_next(state, step);
+}
+
+void InterpreterMacroAssembler::dispatch_base(TosState state,
+                                              address* table,
+                                              bool verifyoop) {
+  if (VerifyActivationFrameSize) {
+    Unimplemented();
+  }
+  if (verifyoop) {
+    verify_oop(r0, state);
+  }
+  if (table == Interpreter::dispatch_table(state)) {
+    addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
+    ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
+  } else {
+    mov(rscratch2, (address)table);
+    ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
+  }
+  br(rscratch2);
+}
+
+void InterpreterMacroAssembler::dispatch_only(TosState state) {
+  dispatch_base(state, Interpreter::dispatch_table(state));
+}
+
+void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
+  dispatch_base(state, Interpreter::normal_table(state));
+}
+
+void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
+  dispatch_base(state, Interpreter::normal_table(state), false);
+}
+
+
+void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
+  // load next bytecode
+  ldrb(rscratch1, Address(pre(rbcp, step)));
+  dispatch_base(state, Interpreter::dispatch_table(state));
+}
+
+void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
+  // load current bytecode
+  ldrb(rscratch1, Address(rbcp, 0));
+  dispatch_base(state, table);
+}
+
+// remove activation
+//
+// Unlock the receiver if this is a synchronized method.
+// Unlock any Java monitors from syncronized blocks.
+// Remove the activation from the stack.
+//
+// If there are locked Java monitors
+//    If throw_monitor_exception
+//       throws IllegalMonitorStateException
+//    Else if install_monitor_exception
+//       installs IllegalMonitorStateException
+//    Else
+//       no error processing
+void InterpreterMacroAssembler::remove_activation(
+        TosState state,
+        bool throw_monitor_exception,
+        bool install_monitor_exception,
+        bool notify_jvmdi) {
+  // Note: Registers r3 xmm0 may be in use for the
+  // result check if synchronized method
+  Label unlocked, unlock, no_unlock;
+
+  // get the value of _do_not_unlock_if_synchronized into r3
+  const Address do_not_unlock_if_synchronized(rthread,
+    in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
+  ldrb(r3, do_not_unlock_if_synchronized);
+  strb(zr, do_not_unlock_if_synchronized); // reset the flag
+
+ // get method access flags
+  ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
+  ldr(r2, Address(r1, Method::access_flags_offset()));
+  tst(r2, JVM_ACC_SYNCHRONIZED);
+  br(Assembler::EQ, unlocked);
+
+  // Don't unlock anything if the _do_not_unlock_if_synchronized flag
+  // is set.
+  cbnz(r3, no_unlock);
+
+  // unlock monitor
+  push(state); // save result
+
+  // BasicObjectLock will be first in list, since this is a
+  // synchronized method. However, need to check that the object has
+  // not been unlocked by an explicit monitorexit bytecode.
+  const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
+                        wordSize - (int) sizeof(BasicObjectLock));
+  // We use c_rarg1 so that if we go slow path it will be the correct
+  // register for unlock_object to pass to VM directly
+  lea(c_rarg1, monitor); // address of first monitor
+
+  ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
+  cbnz(r0, unlock);
+
+  pop(state);
+  if (throw_monitor_exception) {
+    // Entry already unlocked, need to throw exception
+    call_VM(noreg, CAST_FROM_FN_PTR(address,
+                   InterpreterRuntime::throw_illegal_monitor_state_exception));
+    should_not_reach_here();
+  } else {
+    // Monitor already unlocked during a stack unroll. If requested,
+    // install an illegal_monitor_state_exception.  Continue with
+    // stack unrolling.
+    if (install_monitor_exception) {
+      call_VM(noreg, CAST_FROM_FN_PTR(address,
+                     InterpreterRuntime::new_illegal_monitor_state_exception));
+    }
+    b(unlocked);
+  }
+
+  bind(unlock);
+  unlock_object(c_rarg1);
+  pop(state);
+
+  // Check that for block-structured locking (i.e., that all locked
+  // objects has been unlocked)
+  bind(unlocked);
+
+  // r0: Might contain return value
+
+  // Check that all monitors are unlocked
+  {
+    Label loop, exception, entry, restart;
+    const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
+    const Address monitor_block_top(
+        rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
+    const Address monitor_block_bot(
+        rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
+
+    bind(restart);
+    // We use c_rarg1 so that if we go slow path it will be the correct
+    // register for unlock_object to pass to VM directly
+    ldr(c_rarg1, monitor_block_top); // points to current entry, starting
+                                     // with top-most entry
+    lea(r19, monitor_block_bot);  // points to word before bottom of
+                                  // monitor block
+    b(entry);
+
+    // Entry already locked, need to throw exception
+    bind(exception);
+
+    if (throw_monitor_exception) {
+      // Throw exception
+      MacroAssembler::call_VM(noreg,
+                              CAST_FROM_FN_PTR(address, InterpreterRuntime::
+                                   throw_illegal_monitor_state_exception));
+      should_not_reach_here();
+    } else {
+      // Stack unrolling. Unlock object and install illegal_monitor_exception.
+      // Unlock does not block, so don't have to worry about the frame.
+      // We don't have to preserve c_rarg1 since we are going to throw an exception.
+
+      push(state);
+      unlock_object(c_rarg1);
+      pop(state);
+
+      if (install_monitor_exception) {
+        call_VM(noreg, CAST_FROM_FN_PTR(address,
+                                        InterpreterRuntime::
+                                        new_illegal_monitor_state_exception));
+      }
+
+      b(restart);
+    }
+
+    bind(loop);
+    // check if current entry is used
+    ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
+    cbnz(rscratch1, exception);
+
+    add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
+    bind(entry);
+    cmp(c_rarg1, r19); // check if bottom reached
+    br(Assembler::NE, loop); // if not at bottom then check this entry
+  }
+
+  bind(no_unlock);
+
+  // jvmti support
+  if (notify_jvmdi) {
+    notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
+  } else {
+    notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
+  }
+
+  // remove activation
+  // get sender esp
+  ldr(esp,
+      Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
+  // remove frame anchor
+  leave();
+  // If we're returning to interpreted code we will shortly be
+  // adjusting SP to allow some space for ESP.  If we're returning to
+  // compiled code the saved sender SP was saved in sender_sp, so this
+  // restores it.
+  andr(sp, esp, -16);
+}
+
+#endif // C_INTERP
+
+// Lock object
+//
+// Args:
+//      c_rarg1: BasicObjectLock to be used for locking
+//
+// Kills:
+//      r0
+//      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
+//      rscratch1, rscratch2 (scratch regs)
+void InterpreterMacroAssembler::lock_object(Register lock_reg)
+{
+  assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
+  if (UseHeavyMonitors) {
+    call_VM(noreg,
+            CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
+            lock_reg);
+  } else {
+    Label done;
+
+    const Register swap_reg = r0;
+    const Register obj_reg = c_rarg3; // Will contain the oop
+
+    const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
+    const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
+    const int mark_offset = lock_offset +
+                            BasicLock::displaced_header_offset_in_bytes();
+
+    Label slow_case;
+
+    // Load object pointer into obj_reg %c_rarg3
+    ldr(obj_reg, Address(lock_reg, obj_offset));
+
+    if (UseBiasedLocking) {
+      biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch2, false, done, &slow_case);
+    }
+
+    // Load (object->mark() | 1) into swap_reg
+    ldr(rscratch1, Address(obj_reg, 0));
+    orr(swap_reg, rscratch1, 1);
+
+    // Save (object->mark() | 1) into BasicLock's displaced header
+    str(swap_reg, Address(lock_reg, mark_offset));
+
+    assert(lock_offset == 0,
+           "displached header must be first word in BasicObjectLock");
+
+    Label fail;
+    if (PrintBiasedLockingStatistics) {
+      Label fast;
+      cmpxchgptr(swap_reg, lock_reg, obj_reg, rscratch1, fast, &fail);
+      bind(fast);
+      atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
+                  rscratch2, rscratch1);
+      b(done);
+      bind(fail);
+    } else {
+      cmpxchgptr(swap_reg, lock_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
+    }
+
+    // Test if the oopMark is an obvious stack pointer, i.e.,
+    //  1) (mark & 7) == 0, and
+    //  2) rsp <= mark < mark + os::pagesize()
+    //
+    // These 3 tests can be done by evaluating the following
+    // expression: ((mark - rsp) & (7 - os::vm_page_size())),
+    // assuming both stack pointer and pagesize have their
+    // least significant 3 bits clear.
+    // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
+    // NOTE2: aarch64 does not like to subtract sp from rn so take a
+    // copy
+    mov(rscratch1, sp);
+    sub(swap_reg, swap_reg, rscratch1);
+    ands(swap_reg, swap_reg, (unsigned long)(7 - os::vm_page_size()));
+
+    // Save the test result, for recursive case, the result is zero
+    str(swap_reg, Address(lock_reg, mark_offset));
+
+    if (PrintBiasedLockingStatistics) {
+      br(Assembler::NE, slow_case);
+      atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
+                  rscratch2, rscratch1);
+    }
+    br(Assembler::EQ, done);
+
+    bind(slow_case);
+
+    // Call the runtime routine for slow case
+    call_VM(noreg,
+            CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
+            lock_reg);
+
+    bind(done);
+  }
+}
+
+
+// Unlocks an object. Used in monitorexit bytecode and
+// remove_activation.  Throws an IllegalMonitorException if object is
+// not locked by current thread.
+//
+// Args:
+//      c_rarg1: BasicObjectLock for lock
+//
+// Kills:
+//      r0
+//      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
+//      rscratch1, rscratch2 (scratch regs)
+void InterpreterMacroAssembler::unlock_object(Register lock_reg)
+{
+  assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
+
+  if (UseHeavyMonitors) {
+    call_VM(noreg,
+            CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
+            lock_reg);
+  } else {
+    Label done;
+
+    const Register swap_reg   = r0;
+    const Register header_reg = c_rarg2;  // Will contain the old oopMark
+    const Register obj_reg    = c_rarg3;  // Will contain the oop
+
+    save_bcp(); // Save in case of exception
+
+    // Convert from BasicObjectLock structure to object and BasicLock
+    // structure Store the BasicLock address into %r0
+    lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
+
+    // Load oop into obj_reg(%c_rarg3)
+    ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
+
+    // Free entry
+    str(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
+
+    if (UseBiasedLocking) {
+      biased_locking_exit(obj_reg, header_reg, done);
+    }
+
+    // Load the old header from BasicLock structure
+    ldr(header_reg, Address(swap_reg,
+                            BasicLock::displaced_header_offset_in_bytes()));
+
+    // Test for recursion
+    cbz(header_reg, done);
+
+    // Atomic swap back the old header
+    cmpxchgptr(swap_reg, header_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
+
+    // Call the runtime routine for slow case.
+    str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj
+    call_VM(noreg,
+            CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
+            lock_reg);
+
+    bind(done);
+
+    restore_bcp();
+  }
+}
+
+#ifndef CC_INTERP
+
+void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
+                                                         Label& zero_continue) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
+  cbz(mdp, zero_continue);
+}
+
+// Set the method data pointer for the current bcp.
+void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  Label set_mdp;
+  stp(r0, r1, Address(pre(sp, -2 * wordSize)));
+
+  // Test MDO to avoid the call if it is NULL.
+  ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
+  cbz(r0, set_mdp);
+  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
+  // r0: mdi
+  // mdo is guaranteed to be non-zero here, we checked for it before the call.
+  ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
+  lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
+  add(r0, r1, r0);
+  str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
+  bind(set_mdp);
+  ldp(r0, r1, Address(post(sp, 2 * wordSize)));
+}
+
+void InterpreterMacroAssembler::verify_method_data_pointer() {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+#ifdef ASSERT
+  Label verify_continue;
+  stp(r0, r1, Address(pre(sp, -2 * wordSize)));
+  stp(r2, r3, Address(pre(sp, -2 * wordSize)));
+  test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
+  get_method(r1);
+
+  // If the mdp is valid, it will point to a DataLayout header which is
+  // consistent with the bcp.  The converse is highly probable also.
+  ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
+  ldr(rscratch1, Address(r1, Method::const_offset()));
+  add(r2, r2, rscratch1, Assembler::LSL);
+  lea(r2, Address(r2, ConstMethod::codes_offset()));
+  cmp(r2, rbcp);
+  br(Assembler::EQ, verify_continue);
+  // r1: method
+  // rbcp: bcp // rbcp == 22
+  // r3: mdp
+  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
+               r1, rbcp, r3);
+  bind(verify_continue);
+  ldp(r2, r3, Address(post(sp, 2 * wordSize)));
+  ldp(r0, r1, Address(post(sp, 2 * wordSize)));
+#endif // ASSERT
+}
+
+
+void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
+                                                int constant,
+                                                Register value) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  Address data(mdp_in, constant);
+  str(value, data);
+}
+
+
+void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
+                                                      int constant,
+                                                      bool decrement) {
+  increment_mdp_data_at(mdp_in, noreg, constant, decrement);
+}
+
+void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
+                                                      Register reg,
+                                                      int constant,
+                                                      bool decrement) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  // %%% this does 64bit counters at best it is wasting space
+  // at worst it is a rare bug when counters overflow
+
+  assert_different_registers(rscratch2, rscratch1, mdp_in, reg);
+
+  Address addr1(mdp_in, constant);
+  Address addr2(rscratch2, reg, Address::lsl(0));
+  Address &addr = addr1;
+  if (reg != noreg) {
+    lea(rscratch2, addr1);
+    addr = addr2;
+  }
+
+  if (decrement) {
+    // Decrement the register.  Set condition codes.
+    // Intel does this
+    // addptr(data, (int32_t) -DataLayout::counter_increment);
+    // If the decrement causes the counter to overflow, stay negative
+    // Label L;
+    // jcc(Assembler::negative, L);
+    // addptr(data, (int32_t) DataLayout::counter_increment);
+    // so we do this
+    ldr(rscratch1, addr);
+    subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment);
+    Label L;
+    br(Assembler::LO, L);       // skip store if counter underflow
+    str(rscratch1, addr);
+    bind(L);
+  } else {
+    assert(DataLayout::counter_increment == 1,
+           "flow-free idiom only works with 1");
+    // Intel does this
+    // Increment the register.  Set carry flag.
+    // addptr(data, DataLayout::counter_increment);
+    // If the increment causes the counter to overflow, pull back by 1.
+    // sbbptr(data, (int32_t)0);
+    // so we do this
+    ldr(rscratch1, addr);
+    adds(rscratch1, rscratch1, DataLayout::counter_increment);
+    Label L;
+    br(Assembler::CS, L);       // skip store if counter overflow
+    str(rscratch1, addr);
+    bind(L);
+  }
+}
+
+void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
+                                                int flag_byte_constant) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  int header_offset = in_bytes(DataLayout::header_offset());
+  int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
+  // Set the flag
+  ldr(rscratch1, Address(mdp_in, header_offset));
+  orr(rscratch1, rscratch1, header_bits);
+  str(rscratch1, Address(mdp_in, header_offset));
+}
+
+
+void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
+                                                 int offset,
+                                                 Register value,
+                                                 Register test_value_out,
+                                                 Label& not_equal_continue) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  if (test_value_out == noreg) {
+    ldr(rscratch1, Address(mdp_in, offset));
+    cmp(value, rscratch1);
+  } else {
+    // Put the test value into a register, so caller can use it:
+    ldr(test_value_out, Address(mdp_in, offset));
+    cmp(value, test_value_out);
+  }
+  br(Assembler::NE, not_equal_continue);
+}
+
+
+void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
+                                                     int offset_of_disp) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  ldr(rscratch1, Address(mdp_in, offset_of_disp));
+  add(mdp_in, mdp_in, rscratch1, LSL);
+  str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
+}
+
+
+void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
+                                                     Register reg,
+                                                     int offset_of_disp) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  lea(rscratch1, Address(mdp_in, offset_of_disp));
+  ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
+  add(mdp_in, mdp_in, rscratch1, LSL);
+  str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
+}
+
+
+void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
+                                                       int constant) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  add(mdp_in, mdp_in, (unsigned)constant);
+  str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
+}
+
+
+void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  // save/restore across call_VM
+  stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
+  call_VM(noreg,
+          CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
+          return_bci);
+  ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
+}
+
+
+void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
+                                                     Register bumped_count) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    // Otherwise, assign to mdp
+    test_method_data_pointer(mdp, profile_continue);
+
+    // We are taking a branch.  Increment the taken count.
+    // We inline increment_mdp_data_at to return bumped_count in a register
+    //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
+    Address data(mdp, in_bytes(JumpData::taken_offset()));
+    ldr(bumped_count, data);
+    assert(DataLayout::counter_increment == 1,
+            "flow-free idiom only works with 1");
+    // Intel does this to catch overflow
+    // addptr(bumped_count, DataLayout::counter_increment);
+    // sbbptr(bumped_count, 0);
+    // so we do this
+    adds(bumped_count, bumped_count, DataLayout::counter_increment);
+    Label L;
+    br(Assembler::CS, L);       // skip store if counter overflow
+    str(bumped_count, data);
+    bind(L);
+    // The method data pointer needs to be updated to reflect the new target.
+    update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
+    bind(profile_continue);
+  }
+}
+
+
+void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // We are taking a branch.  Increment the not taken count.
+    increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
+
+    // The method data pointer needs to be updated to correspond to
+    // the next bytecode
+    update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
+    bind(profile_continue);
+  }
+}
+
+
+void InterpreterMacroAssembler::profile_call(Register mdp) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // We are making a call.  Increment the count.
+    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
+
+    // The method data pointer needs to be updated to reflect the new target.
+    update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
+    bind(profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::profile_final_call(Register mdp) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // We are making a call.  Increment the count.
+    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
+
+    // The method data pointer needs to be updated to reflect the new target.
+    update_mdp_by_constant(mdp,
+                           in_bytes(VirtualCallData::
+                                    virtual_call_data_size()));
+    bind(profile_continue);
+  }
+}
+
+
+void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
+                                                     Register mdp,
+                                                     Register reg2,
+                                                     bool receiver_can_be_null) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    Label skip_receiver_profile;
+    if (receiver_can_be_null) {
+      Label not_null;
+      // We are making a call.  Increment the count for null receiver.
+      increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
+      b(skip_receiver_profile);
+      bind(not_null);
+    }
+
+    // Record the receiver type.
+    record_klass_in_profile(receiver, mdp, reg2, true);
+    bind(skip_receiver_profile);
+
+    // The method data pointer needs to be updated to reflect the new target.
+    update_mdp_by_constant(mdp,
+                           in_bytes(VirtualCallData::
+                                    virtual_call_data_size()));
+    bind(profile_continue);
+  }
+}
+
+// This routine creates a state machine for updating the multi-row
+// type profile at a virtual call site (or other type-sensitive bytecode).
+// The machine visits each row (of receiver/count) until the receiver type
+// is found, or until it runs out of rows.  At the same time, it remembers
+// the location of the first empty row.  (An empty row records null for its
+// receiver, and can be allocated for a newly-observed receiver type.)
+// Because there are two degrees of freedom in the state, a simple linear
+// search will not work; it must be a decision tree.  Hence this helper
+// function is recursive, to generate the required tree structured code.
+// It's the interpreter, so we are trading off code space for speed.
+// See below for example code.
+void InterpreterMacroAssembler::record_klass_in_profile_helper(
+                                        Register receiver, Register mdp,
+                                        Register reg2, int start_row,
+                                        Label& done, bool is_virtual_call) {
+  if (TypeProfileWidth == 0) {
+    if (is_virtual_call) {
+      increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
+    }
+    return;
+  }
+
+  int last_row = VirtualCallData::row_limit() - 1;
+  assert(start_row <= last_row, "must be work left to do");
+  // Test this row for both the receiver and for null.
+  // Take any of three different outcomes:
+  //   1. found receiver => increment count and goto done
+  //   2. found null => keep looking for case 1, maybe allocate this cell
+  //   3. found something else => keep looking for cases 1 and 2
+  // Case 3 is handled by a recursive call.
+  for (int row = start_row; row <= last_row; row++) {
+    Label next_test;
+    bool test_for_null_also = (row == start_row);
+
+    // See if the receiver is receiver[n].
+    int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
+    test_mdp_data_at(mdp, recvr_offset, receiver,
+                     (test_for_null_also ? reg2 : noreg),
+                     next_test);
+    // (Reg2 now contains the receiver from the CallData.)
+
+    // The receiver is receiver[n].  Increment count[n].
+    int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
+    increment_mdp_data_at(mdp, count_offset);
+    b(done);
+    bind(next_test);
+
+    if (test_for_null_also) {
+      Label found_null;
+      // Failed the equality check on receiver[n]...  Test for null.
+      if (start_row == last_row) {
+        // The only thing left to do is handle the null case.
+        if (is_virtual_call) {
+          cbz(reg2, found_null);
+          // Receiver did not match any saved receiver and there is no empty row for it.
+          // Increment total counter to indicate polymorphic case.
+          increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
+          b(done);
+          bind(found_null);
+        } else {
+          cbz(reg2, done);
+        }
+        break;
+      }
+      // Since null is rare, make it be the branch-taken case.
+      cbz(reg2,found_null);
+
+      // Put all the "Case 3" tests here.
+      record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
+
+      // Found a null.  Keep searching for a matching receiver,
+      // but remember that this is an empty (unused) slot.
+      bind(found_null);
+    }
+  }
+
+  // In the fall-through case, we found no matching receiver, but we
+  // observed the receiver[start_row] is NULL.
+
+  // Fill in the receiver field and increment the count.
+  int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
+  set_mdp_data_at(mdp, recvr_offset, receiver);
+  int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
+  mov(reg2, DataLayout::counter_increment);
+  set_mdp_data_at(mdp, count_offset, reg2);
+  if (start_row > 0) {
+    b(done);
+  }
+}
+
+// Example state machine code for three profile rows:
+//   // main copy of decision tree, rooted at row[1]
+//   if (row[0].rec == rec) { row[0].incr(); goto done; }
+//   if (row[0].rec != NULL) {
+//     // inner copy of decision tree, rooted at row[1]
+//     if (row[1].rec == rec) { row[1].incr(); goto done; }
+//     if (row[1].rec != NULL) {
+//       // degenerate decision tree, rooted at row[2]
+//       if (row[2].rec == rec) { row[2].incr(); goto done; }
+//       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
+//       row[2].init(rec); goto done;
+//     } else {
+//       // remember row[1] is empty
+//       if (row[2].rec == rec) { row[2].incr(); goto done; }
+//       row[1].init(rec); goto done;
+//     }
+//   } else {
+//     // remember row[0] is empty
+//     if (row[1].rec == rec) { row[1].incr(); goto done; }
+//     if (row[2].rec == rec) { row[2].incr(); goto done; }
+//     row[0].init(rec); goto done;
+//   }
+//   done:
+
+void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
+                                                        Register mdp, Register reg2,
+                                                        bool is_virtual_call) {
+  assert(ProfileInterpreter, "must be profiling");
+  Label done;
+
+  record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
+
+  bind (done);
+}
+
+void InterpreterMacroAssembler::profile_ret(Register return_bci,
+                                            Register mdp) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+    uint row;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // Update the total ret count.
+    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
+
+    for (row = 0; row < RetData::row_limit(); row++) {
+      Label next_test;
+
+      // See if return_bci is equal to bci[n]:
+      test_mdp_data_at(mdp,
+                       in_bytes(RetData::bci_offset(row)),
+                       return_bci, noreg,
+                       next_test);
+
+      // return_bci is equal to bci[n].  Increment the count.
+      increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
+
+      // The method data pointer needs to be updated to reflect the new target.
+      update_mdp_by_offset(mdp,
+                           in_bytes(RetData::bci_displacement_offset(row)));
+      b(profile_continue);
+      bind(next_test);
+    }
+
+    update_mdp_for_ret(return_bci);
+
+    bind(profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
+
+    // The method data pointer needs to be updated.
+    int mdp_delta = in_bytes(BitData::bit_data_size());
+    if (TypeProfileCasts) {
+      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
+    }
+    update_mdp_by_constant(mdp, mdp_delta);
+
+    bind(profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
+  if (ProfileInterpreter && TypeProfileCasts) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    int count_offset = in_bytes(CounterData::count_offset());
+    // Back up the address, since we have already bumped the mdp.
+    count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
+
+    // *Decrement* the counter.  We expect to see zero or small negatives.
+    increment_mdp_data_at(mdp, count_offset, true);
+
+    bind (profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // The method data pointer needs to be updated.
+    int mdp_delta = in_bytes(BitData::bit_data_size());
+    if (TypeProfileCasts) {
+      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
+
+      // Record the object type.
+      record_klass_in_profile(klass, mdp, reg2, false);
+    }
+    update_mdp_by_constant(mdp, mdp_delta);
+
+    bind(profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // Update the default case count
+    increment_mdp_data_at(mdp,
+                          in_bytes(MultiBranchData::default_count_offset()));
+
+    // The method data pointer needs to be updated.
+    update_mdp_by_offset(mdp,
+                         in_bytes(MultiBranchData::
+                                  default_displacement_offset()));
+
+    bind(profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::profile_switch_case(Register index,
+                                                    Register mdp,
+                                                    Register reg2) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // Build the base (index * per_case_size_in_bytes()) +
+    // case_array_offset_in_bytes()
+    movw(reg2, in_bytes(MultiBranchData::per_case_size()));
+    movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
+    maddw(index, index, reg2, rscratch1);
+
+    // Update the case count
+    increment_mdp_data_at(mdp,
+                          index,
+                          in_bytes(MultiBranchData::relative_count_offset()));
+
+    // The method data pointer needs to be updated.
+    update_mdp_by_offset(mdp,
+                         index,
+                         in_bytes(MultiBranchData::
+                                  relative_displacement_offset()));
+
+    bind(profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
+  if (state == atos) {
+    MacroAssembler::verify_oop(reg);
+  }
+}
+
+void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
+#endif // !CC_INTERP
+
+
+void InterpreterMacroAssembler::notify_method_entry() {
+  // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
+  // track stack depth.  If it is possible to enter interp_only_mode we add
+  // the code to check if the event should be sent.
+  if (JvmtiExport::can_post_interpreter_events()) {
+    Label L;
+    ldr(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
+    tst(r3, ~0);
+    br(Assembler::EQ, L);
+    call_VM(noreg, CAST_FROM_FN_PTR(address,
+                                    InterpreterRuntime::post_method_entry));
+    bind(L);
+  }
+
+  {
+    SkipIfEqual skip(this, &DTraceMethodProbes, false);
+    get_method(c_rarg1);
+    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
+                 rthread, c_rarg1);
+  }
+
+  // RedefineClasses() tracing support for obsolete method entry
+  if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
+    get_method(c_rarg1);
+    call_VM_leaf(
+      CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
+      rthread, c_rarg1);
+  }
+
+ }
+
+
+void InterpreterMacroAssembler::notify_method_exit(
+    TosState state, NotifyMethodExitMode mode) {
+  // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
+  // track stack depth.  If it is possible to enter interp_only_mode we add
+  // the code to check if the event should be sent.
+  if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
+    Label L;
+    // Note: frame::interpreter_frame_result has a dependency on how the
+    // method result is saved across the call to post_method_exit. If this
+    // is changed then the interpreter_frame_result implementation will
+    // need to be updated too.
+
+    // For c++ interpreter the result is always stored at a known location in the frame
+    // template interpreter will leave it on the top of the stack.
+    NOT_CC_INTERP(push(state);)
+    ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
+    cbz(r3, L);
+    call_VM(noreg,
+            CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
+    bind(L);
+    NOT_CC_INTERP(pop(state));
+  }
+
+  {
+    SkipIfEqual skip(this, &DTraceMethodProbes, false);
+    NOT_CC_INTERP(push(state));
+    get_method(c_rarg1);
+    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
+                 rthread, c_rarg1);
+    NOT_CC_INTERP(pop(state));
+  }
+}
+
+
+// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
+void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
+                                                        int increment, int mask,
+                                                        Register scratch, bool preloaded,
+                                                        Condition cond, Label* where) {
+  if (!preloaded) {
+    ldrw(scratch, counter_addr);
+  }
+  add(scratch, scratch, increment);
+  strw(scratch, counter_addr);
+  ands(scratch, scratch, mask);
+  br(cond, *where);
+}
+
+void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
+                                                  int number_of_arguments) {
+  // interpreter specific
+  //
+  // Note: No need to save/restore rbcp & rlocals pointer since these
+  //       are callee saved registers and no blocking/ GC can happen
+  //       in leaf calls.
+#ifdef ASSERT
+  {
+    Label L;
+    ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
+    cbz(rscratch1, L);
+    stop("InterpreterMacroAssembler::call_VM_leaf_base:"
+         " last_sp != NULL");
+    bind(L);
+  }
+#endif /* ASSERT */
+  // super call
+  MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
+}
+
+void InterpreterMacroAssembler::call_VM_base(Register oop_result,
+                                             Register java_thread,
+                                             Register last_java_sp,
+                                             address  entry_point,
+                                             int      number_of_arguments,
+                                             bool     check_exceptions) {
+  // interpreter specific
+  //
+  // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
+  //       really make a difference for these runtime calls, since they are
+  //       slow anyway. Btw., bcp must be saved/restored since it may change
+  //       due to GC.
+  // assert(java_thread == noreg , "not expecting a precomputed java thread");
+  save_bcp();
+#ifdef ASSERT
+  {
+    Label L;
+    ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
+    cbz(rscratch1, L);
+    stop("InterpreterMacroAssembler::call_VM_leaf_base:"
+         " last_sp != NULL");
+    bind(L);
+  }
+#endif /* ASSERT */
+  // super call
+  MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
+                               entry_point, number_of_arguments,
+                     check_exceptions);
+// interpreter specific
+  restore_bcp();
+  restore_locals();
+}
+
+void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
+  Label update, next, none;
+
+  verify_oop(obj);
+
+  cbnz(obj, update);
+  orptr(mdo_addr, TypeEntries::null_seen);
+  b(next);
+
+  bind(update);
+  load_klass(obj, obj);
+
+  ldr(rscratch1, mdo_addr);
+  eor(obj, obj, rscratch1);
+  tst(obj, TypeEntries::type_klass_mask);
+  br(Assembler::EQ, next); // klass seen before, nothing to
+                           // do. The unknown bit may have been
+                           // set already but no need to check.
+
+  tst(obj, TypeEntries::type_unknown);
+  br(Assembler::NE, next); // already unknown. Nothing to do anymore.
+
+  ldr(rscratch1, mdo_addr);
+  cbz(rscratch1, none);
+  cmp(rscratch1, TypeEntries::null_seen);
+  br(Assembler::EQ, none);
+  // There is a chance that the checks above (re-reading profiling
+  // data from memory) fail if another thread has just set the
+  // profiling to this obj's klass
+  ldr(rscratch1, mdo_addr);
+  eor(obj, obj, rscratch1);
+  tst(obj, TypeEntries::type_klass_mask);
+  br(Assembler::EQ, next);
+
+  // different than before. Cannot keep accurate profile.
+  orptr(mdo_addr, TypeEntries::type_unknown);
+  b(next);
+
+  bind(none);
+  // first time here. Set profile type.
+  str(obj, mdo_addr);
+
+  bind(next);
+}
+
+void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
+  if (!ProfileInterpreter) {
+    return;
+  }
+
+  if (MethodData::profile_arguments() || MethodData::profile_return()) {
+    Label profile_continue;
+
+    test_method_data_pointer(mdp, profile_continue);
+
+    int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
+
+    ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
+    cmp(rscratch1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
+    br(Assembler::NE, profile_continue);
+
+    if (MethodData::profile_arguments()) {
+      Label done;
+      int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
+      add(mdp, mdp, off_to_args);
+
+      for (int i = 0; i < TypeProfileArgsLimit; i++) {
+        if (i > 0 || MethodData::profile_return()) {
+          // If return value type is profiled we may have no argument to profile
+          ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
+          sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
+          cmp(tmp, TypeStackSlotEntries::per_arg_count());
+          br(Assembler::LT, done);
+        }
+        ldr(tmp, Address(callee, Method::const_offset()));
+        load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
+        // stack offset o (zero based) from the start of the argument
+        // list, for n arguments translates into offset n - o - 1 from
+        // the end of the argument list
+        ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
+        sub(tmp, tmp, rscratch1);
+        sub(tmp, tmp, 1);
+        Address arg_addr = argument_address(tmp);
+        ldr(tmp, arg_addr);
+
+        Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
+        profile_obj_type(tmp, mdo_arg_addr);
+
+        int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
+        add(mdp, mdp, to_add);
+        off_to_args += to_add;
+      }
+
+      if (MethodData::profile_return()) {
+        ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
+        sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
+      }
+
+      bind(done);
+
+      if (MethodData::profile_return()) {
+        // We're right after the type profile for the last
+        // argument. tmp is the number of cells left in the
+        // CallTypeData/VirtualCallTypeData to reach its end. Non null
+        // if there's a return to profile.
+        assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
+        add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
+      }
+      str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
+    } else {
+      assert(MethodData::profile_return(), "either profile call args or call ret");
+      update_mdp_by_constant(mdp, in_bytes(ReturnTypeEntry::size()));
+    }
+
+    // mdp points right after the end of the
+    // CallTypeData/VirtualCallTypeData, right after the cells for the
+    // return value type if there's one
+
+    bind(profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
+  assert_different_registers(mdp, ret, tmp, rbcp);
+  if (ProfileInterpreter && MethodData::profile_return()) {
+    Label profile_continue, done;
+
+    test_method_data_pointer(mdp, profile_continue);
+
+    if (MethodData::profile_return_jsr292_only()) {
+      // If we don't profile all invoke bytecodes we must make sure
+      // it's a bytecode we indeed profile. We can't go back to the
+      // begining of the ProfileData we intend to update to check its
+      // type because we're right after it and we don't known its
+      // length
+      Label do_profile;
+      ldrb(rscratch1, Address(rbcp, 0));
+      cmp(rscratch1, Bytecodes::_invokedynamic);
+      br(Assembler::EQ, do_profile);
+      cmp(rscratch1, Bytecodes::_invokehandle);
+      br(Assembler::EQ, do_profile);
+      get_method(tmp);
+      ldrb(rscratch1, Address(tmp, Method::intrinsic_id_offset_in_bytes()));
+      cmp(rscratch1, vmIntrinsics::_compiledLambdaForm);
+      br(Assembler::NE, profile_continue);
+
+      bind(do_profile);
+    }
+
+    Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
+    mov(tmp, ret);
+    profile_obj_type(tmp, mdo_ret_addr);
+
+    bind(profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
+  if (ProfileInterpreter && MethodData::profile_parameters()) {
+    Label profile_continue, done;
+
+    test_method_data_pointer(mdp, profile_continue);
+
+    // Load the offset of the area within the MDO used for
+    // parameters. If it's negative we're not profiling any parameters
+    ldr(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
+    cmp(tmp1, 0u);
+    br(Assembler::LT, profile_continue);
+
+    // Compute a pointer to the area for parameters from the offset
+    // and move the pointer to the slot for the last
+    // parameters. Collect profiling from last parameter down.
+    // mdo start + parameters offset + array length - 1
+    add(mdp, mdp, tmp1);
+    ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
+    sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
+
+    Label loop;
+    bind(loop);
+
+    int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
+    int type_base = in_bytes(ParametersTypeData::type_offset(0));
+    int per_arg_scale = exact_log2(DataLayout::cell_size);
+    add(rscratch1, mdp, off_base);
+    add(rscratch2, mdp, type_base);
+
+    Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
+    Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
+
+    // load offset on the stack from the slot for this parameter
+    ldr(tmp2, arg_off);
+    neg(tmp2, tmp2);
+    // read the parameter from the local area
+    ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
+
+    // profile the parameter
+    profile_obj_type(tmp2, arg_type);
+
+    // go to next parameter
+    subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
+    br(Assembler::GE, loop);
+
+    bind(profile_continue);
+  }
+}