hotspot/src/cpu/aarch64/vm/aarch64_call.cpp
changeset 29183 0cc8699f7372
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/aarch64/vm/aarch64_call.cpp	Tue Jan 20 11:34:17 2015 -0800
@@ -0,0 +1,200 @@
+/*
+ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifdef BUILTIN_SIM
+
+#include <stdio.h>
+#include <sys/types.h>
+#include "asm/macroAssembler.hpp"
+#include "asm/macroAssembler.inline.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "../../../../../../simulator/cpustate.hpp"
+#include "../../../../../../simulator/simulator.hpp"
+
+/*
+ * a routine to initialise and enter ARM simulator execution when
+ * calling into ARM code from x86 code.
+ *
+ * we maintain a simulator per-thread and provide it with 8 Mb of
+ * stack space
+ */
+#define SIM_STACK_SIZE (1024 * 1024) // in units of u_int64_t
+
+extern "C" u_int64_t get_alt_stack()
+{
+  return AArch64Simulator::altStack();
+}
+
+extern "C" void setup_arm_sim(void *sp, u_int64_t calltype)
+{
+  // n.b. this function runs on the simulator stack so as to avoid
+  // simulator frames appearing in between VM x86 and ARM frames. note
+  // that arfgument sp points to the old (VM) stack from which the
+  // call into the sim was made. The stack switch and entry into this
+  // routine is handled by x86 prolog code planted in the head of the
+  // ARM code buffer which the sim is about to start executing (see
+  // aarch64_linkage.S).
+  //
+  // The first ARM instruction in the buffer is identified by fnptr
+  // stored at the top of the old stack. x86 register contents precede
+  // fnptr. preceding that are the fp and return address of the VM
+  // caller into ARM code. any extra, non-register arguments passed to
+  // the linkage routine precede the fp (this is as per any normal x86
+  // call wirth extra args).
+  //
+  // note that the sim creates Java frames on the Java stack just
+  // above sp (i.e. directly above fnptr). it sets the sim FP register
+  // to the pushed fp for the caller effectively eliding the register
+  // data saved by the linkage routine.
+  //
+  // x86 register call arguments are loaded from the stack into ARM
+  // call registers. if extra arguments occur preceding the x86
+  // caller's fp then they are copied either into extra ARM registers
+  // (ARM has 8 rather than 6 gp call registers) or up the stack
+  // beyond the saved x86 registers so that they immediately precede
+  // the ARM frame where the ARM calling convention expects them to
+  // be.
+  //
+  // n.b. the number of register/stack values passed to the ARM code
+  // is determined by calltype
+  //
+  // +--------+
+  // | fnptr  |  <--- argument sp points here
+  // +--------+  |
+  // | rax    |  | return slot if we need to return a value
+  // +--------+  |
+  // | rdi    |  increasing
+  // +--------+  address
+  // | rsi    |  |
+  // +--------+  V
+  // | rdx    |
+  // +--------+
+  // | rcx    |
+  // +--------+
+  // | r8     |
+  // +--------+
+  // | r9     |
+  // +--------+
+  // | xmm0   |
+  // +--------+
+  // | xmm1   |
+  // +--------+
+  // | xmm2   |
+  // +--------+
+  // | xmm3   |
+  // +--------+
+  // | xmm4   |
+  // +--------+
+  // | xmm5   |
+  // +--------+
+  // | xmm6   |
+  // +--------+
+  // | xmm7   |
+  // +--------+
+  // | fp     |
+  // +--------+
+  // | caller |
+  // | ret ip |
+  // +--------+
+  // | arg0   | <-- any extra call args start here
+  // +--------+     offset = 18 * wordSize
+  // | . . .  |     (i.e. 1 * calladdr + 1 * rax  + 6 * gp call regs
+  //                      + 8 * fp call regs + 2 * frame words)
+  //
+  // we use a unique sim/stack per thread
+  const int cursor2_offset = 18;
+  const int fp_offset = 16;
+  u_int64_t *cursor = (u_int64_t *)sp;
+  u_int64_t *cursor2 = ((u_int64_t *)sp) + cursor2_offset;
+  u_int64_t *fp = ((u_int64_t *)sp) + fp_offset;
+  int gp_arg_count = calltype & 0xf;
+  int fp_arg_count = (calltype >> 4) & 0xf;
+  int return_type = (calltype >> 8) & 0x3;
+  AArch64Simulator *sim = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
+  // save previous cpu state in case this is a recursive entry
+  CPUState saveState = sim->getCPUState();
+  // set up initial sim pc, sp and fp registers
+  sim->init(*cursor++, (u_int64_t)sp, (u_int64_t)fp);
+  u_int64_t *return_slot = cursor++;
+
+  // if we need to pass the sim extra args on the stack then bump
+  // the stack pointer now
+  u_int64_t *cursor3 = (u_int64_t *)sim->getCPUState().xreg(SP, 1);
+  if (gp_arg_count > 8) {
+    cursor3 -= gp_arg_count - 8;
+  }
+  if (fp_arg_count > 8) {
+    cursor3 -= fp_arg_count - 8;
+  }
+  sim->getCPUState().xreg(SP, 1) = (u_int64_t)(cursor3++);
+
+  for (int i = 0; i < gp_arg_count; i++) {
+    if (i < 6) {
+      // copy saved register to sim register
+      GReg reg = (GReg)i;
+      sim->getCPUState().xreg(reg, 0) = *cursor++;
+    } else if (i < 8) {
+      // copy extra int arg to sim register
+      GReg reg = (GReg)i;
+      sim->getCPUState().xreg(reg, 0) = *cursor2++;
+    } else {
+      // copy extra fp arg to sim stack
+      *cursor3++ = *cursor2++;
+    }
+  }
+  for (int i = 0; i < fp_arg_count; i++) {
+    if (i < 8) {
+      // copy saved register to sim register
+      GReg reg = (GReg)i;
+      sim->getCPUState().xreg(reg, 0) = *cursor++;
+    } else {
+      // copy extra arg to sim stack
+      *cursor3++ = *cursor2++;
+    }
+  }
+  AArch64Simulator::status_t return_status = sim->run();
+  if (return_status != AArch64Simulator::STATUS_RETURN){
+    sim->simPrint0();
+    fatal("invalid status returned from simulator.run()\n");
+  }
+  switch (return_type) {
+  case MacroAssembler::ret_type_void:
+  default:
+    break;
+  case MacroAssembler::ret_type_integral:
+  // this overwrites the saved r0
+    *return_slot = sim->getCPUState().xreg(R0, 0);
+    break;
+  case MacroAssembler::ret_type_float:
+    *(float *)return_slot = sim->getCPUState().sreg(V0);
+    break;
+  case MacroAssembler::ret_type_double:
+    *(double *)return_slot = sim->getCPUState().dreg(V0);
+    break;
+  }
+  // restore incoimng cpu state
+  sim->getCPUState() = saveState;
+}
+
+#endif