langtools/src/share/classes/com/sun/tools/javac/comp/Attr.java
changeset 10 06bc494ca11e
child 163 62bdd3a5194a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/langtools/src/share/classes/com/sun/tools/javac/comp/Attr.java	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,2810 @@
+/*
+ * Copyright 1999-2006 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Sun designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Sun in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ */
+
+package com.sun.tools.javac.comp;
+
+import java.util.*;
+import java.util.Set;
+import javax.lang.model.element.ElementKind;
+import javax.tools.JavaFileObject;
+
+import com.sun.tools.javac.code.*;
+import com.sun.tools.javac.jvm.*;
+import com.sun.tools.javac.tree.*;
+import com.sun.tools.javac.util.*;
+import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
+import com.sun.tools.javac.util.List;
+
+import com.sun.tools.javac.jvm.Target;
+import com.sun.tools.javac.code.Symbol.*;
+import com.sun.tools.javac.tree.JCTree.*;
+import com.sun.tools.javac.code.Type.*;
+
+import com.sun.source.tree.IdentifierTree;
+import com.sun.source.tree.MemberSelectTree;
+import com.sun.source.tree.TreeVisitor;
+import com.sun.source.util.SimpleTreeVisitor;
+
+import static com.sun.tools.javac.code.Flags.*;
+import static com.sun.tools.javac.code.Kinds.*;
+import static com.sun.tools.javac.code.TypeTags.*;
+
+/** This is the main context-dependent analysis phase in GJC. It
+ *  encompasses name resolution, type checking and constant folding as
+ *  subtasks. Some subtasks involve auxiliary classes.
+ *  @see Check
+ *  @see Resolve
+ *  @see ConstFold
+ *  @see Infer
+ *
+ *  <p><b>This is NOT part of any API supported by Sun Microsystems.  If
+ *  you write code that depends on this, you do so at your own risk.
+ *  This code and its internal interfaces are subject to change or
+ *  deletion without notice.</b>
+ */
+public class Attr extends JCTree.Visitor {
+    protected static final Context.Key<Attr> attrKey =
+        new Context.Key<Attr>();
+
+    final Name.Table names;
+    final Log log;
+    final Symtab syms;
+    final Resolve rs;
+    final Check chk;
+    final MemberEnter memberEnter;
+    final TreeMaker make;
+    final ConstFold cfolder;
+    final Enter enter;
+    final Target target;
+    final Types types;
+    final Annotate annotate;
+
+    public static Attr instance(Context context) {
+        Attr instance = context.get(attrKey);
+        if (instance == null)
+            instance = new Attr(context);
+        return instance;
+    }
+
+    protected Attr(Context context) {
+        context.put(attrKey, this);
+
+        names = Name.Table.instance(context);
+        log = Log.instance(context);
+        syms = Symtab.instance(context);
+        rs = Resolve.instance(context);
+        chk = Check.instance(context);
+        memberEnter = MemberEnter.instance(context);
+        make = TreeMaker.instance(context);
+        enter = Enter.instance(context);
+        cfolder = ConstFold.instance(context);
+        target = Target.instance(context);
+        types = Types.instance(context);
+        annotate = Annotate.instance(context);
+
+        Options options = Options.instance(context);
+
+        Source source = Source.instance(context);
+        allowGenerics = source.allowGenerics();
+        allowVarargs = source.allowVarargs();
+        allowEnums = source.allowEnums();
+        allowBoxing = source.allowBoxing();
+        allowCovariantReturns = source.allowCovariantReturns();
+        allowAnonOuterThis = source.allowAnonOuterThis();
+        relax = (options.get("-retrofit") != null ||
+                 options.get("-relax") != null);
+        useBeforeDeclarationWarning = options.get("useBeforeDeclarationWarning") != null;
+    }
+
+    /** Switch: relax some constraints for retrofit mode.
+     */
+    boolean relax;
+
+    /** Switch: support generics?
+     */
+    boolean allowGenerics;
+
+    /** Switch: allow variable-arity methods.
+     */
+    boolean allowVarargs;
+
+    /** Switch: support enums?
+     */
+    boolean allowEnums;
+
+    /** Switch: support boxing and unboxing?
+     */
+    boolean allowBoxing;
+
+    /** Switch: support covariant result types?
+     */
+    boolean allowCovariantReturns;
+
+    /** Switch: allow references to surrounding object from anonymous
+     * objects during constructor call?
+     */
+    boolean allowAnonOuterThis;
+
+    /**
+     * Switch: warn about use of variable before declaration?
+     * RFE: 6425594
+     */
+    boolean useBeforeDeclarationWarning;
+
+    /** Check kind and type of given tree against protokind and prototype.
+     *  If check succeeds, store type in tree and return it.
+     *  If check fails, store errType in tree and return it.
+     *  No checks are performed if the prototype is a method type.
+     *  Its not necessary in this case since we know that kind and type
+     *  are correct.
+     *
+     *  @param tree     The tree whose kind and type is checked
+     *  @param owntype  The computed type of the tree
+     *  @param ownkind  The computed kind of the tree
+     *  @param pkind    The expected kind (or: protokind) of the tree
+     *  @param pt       The expected type (or: prototype) of the tree
+     */
+    Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
+        if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
+            if ((ownkind & ~pkind) == 0) {
+                owntype = chk.checkType(tree.pos(), owntype, pt);
+            } else {
+                log.error(tree.pos(), "unexpected.type",
+                          Resolve.kindNames(pkind),
+                          Resolve.kindName(ownkind));
+                owntype = syms.errType;
+            }
+        }
+        tree.type = owntype;
+        return owntype;
+    }
+
+    /** Is given blank final variable assignable, i.e. in a scope where it
+     *  may be assigned to even though it is final?
+     *  @param v      The blank final variable.
+     *  @param env    The current environment.
+     */
+    boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
+        Symbol owner = env.info.scope.owner;
+           // owner refers to the innermost variable, method or
+           // initializer block declaration at this point.
+        return
+            v.owner == owner
+            ||
+            ((owner.name == names.init ||    // i.e. we are in a constructor
+              owner.kind == VAR ||           // i.e. we are in a variable initializer
+              (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
+             &&
+             v.owner == owner.owner
+             &&
+             ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
+    }
+
+    /** Check that variable can be assigned to.
+     *  @param pos    The current source code position.
+     *  @param v      The assigned varaible
+     *  @param base   If the variable is referred to in a Select, the part
+     *                to the left of the `.', null otherwise.
+     *  @param env    The current environment.
+     */
+    void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
+        if ((v.flags() & FINAL) != 0 &&
+            ((v.flags() & HASINIT) != 0
+             ||
+             !((base == null ||
+               (base.getTag() == JCTree.IDENT && TreeInfo.name(base) == names._this)) &&
+               isAssignableAsBlankFinal(v, env)))) {
+            log.error(pos, "cant.assign.val.to.final.var", v);
+        }
+    }
+
+    /** Does tree represent a static reference to an identifier?
+     *  It is assumed that tree is either a SELECT or an IDENT.
+     *  We have to weed out selects from non-type names here.
+     *  @param tree    The candidate tree.
+     */
+    boolean isStaticReference(JCTree tree) {
+        if (tree.getTag() == JCTree.SELECT) {
+            Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
+            if (lsym == null || lsym.kind != TYP) {
+                return false;
+            }
+        }
+        return true;
+    }
+
+    /** Is this symbol a type?
+     */
+    static boolean isType(Symbol sym) {
+        return sym != null && sym.kind == TYP;
+    }
+
+    /** The current `this' symbol.
+     *  @param env    The current environment.
+     */
+    Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
+        return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
+    }
+
+    /** Attribute a parsed identifier.
+     * @param tree Parsed identifier name
+     * @param topLevel The toplevel to use
+     */
+    public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
+        Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
+        localEnv.enclClass = make.ClassDef(make.Modifiers(0),
+                                           syms.errSymbol.name,
+                                           null, null, null, null);
+        localEnv.enclClass.sym = syms.errSymbol;
+        return tree.accept(identAttributer, localEnv);
+    }
+    // where
+        private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
+        private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
+            @Override
+            public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
+                Symbol site = visit(node.getExpression(), env);
+                if (site.kind == ERR)
+                    return site;
+                Name name = (Name)node.getIdentifier();
+                if (site.kind == PCK) {
+                    env.toplevel.packge = (PackageSymbol)site;
+                    return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
+                } else {
+                    env.enclClass.sym = (ClassSymbol)site;
+                    return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
+                }
+            }
+
+            @Override
+            public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
+                return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
+            }
+        }
+
+    public Type coerce(Type etype, Type ttype) {
+        return cfolder.coerce(etype, ttype);
+    }
+
+    public Type attribType(JCTree node, TypeSymbol sym) {
+        Env<AttrContext> env = enter.typeEnvs.get(sym);
+        Env<AttrContext> localEnv = env.dup(node, env.info.dup());
+        return attribTree(node, localEnv, Kinds.TYP, Type.noType);
+    }
+
+    public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
+        breakTree = tree;
+        JavaFileObject prev = log.useSource(null);
+        try {
+            attribExpr(expr, env);
+        } catch (BreakAttr b) {
+            return b.env;
+        } finally {
+            breakTree = null;
+            log.useSource(prev);
+        }
+        return env;
+    }
+
+    public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
+        breakTree = tree;
+        JavaFileObject prev = log.useSource(null);
+        try {
+            attribStat(stmt, env);
+        } catch (BreakAttr b) {
+            return b.env;
+        } finally {
+            breakTree = null;
+            log.useSource(prev);
+        }
+        return env;
+    }
+
+    private JCTree breakTree = null;
+
+    private static class BreakAttr extends RuntimeException {
+        static final long serialVersionUID = -6924771130405446405L;
+        private Env<AttrContext> env;
+        private BreakAttr(Env<AttrContext> env) {
+            this.env = env;
+        }
+    }
+
+
+/* ************************************************************************
+ * Visitor methods
+ *************************************************************************/
+
+    /** Visitor argument: the current environment.
+     */
+    Env<AttrContext> env;
+
+    /** Visitor argument: the currently expected proto-kind.
+     */
+    int pkind;
+
+    /** Visitor argument: the currently expected proto-type.
+     */
+    Type pt;
+
+    /** Visitor result: the computed type.
+     */
+    Type result;
+
+    /** Visitor method: attribute a tree, catching any completion failure
+     *  exceptions. Return the tree's type.
+     *
+     *  @param tree    The tree to be visited.
+     *  @param env     The environment visitor argument.
+     *  @param pkind   The protokind visitor argument.
+     *  @param pt      The prototype visitor argument.
+     */
+    Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt) {
+        Env<AttrContext> prevEnv = this.env;
+        int prevPkind = this.pkind;
+        Type prevPt = this.pt;
+        try {
+            this.env = env;
+            this.pkind = pkind;
+            this.pt = pt;
+            tree.accept(this);
+            if (tree == breakTree)
+                throw new BreakAttr(env);
+            return result;
+        } catch (CompletionFailure ex) {
+            tree.type = syms.errType;
+            return chk.completionError(tree.pos(), ex);
+        } finally {
+            this.env = prevEnv;
+            this.pkind = prevPkind;
+            this.pt = prevPt;
+        }
+    }
+
+    /** Derived visitor method: attribute an expression tree.
+     */
+    public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
+        return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType);
+    }
+
+    /** Derived visitor method: attribute an expression tree with
+     *  no constraints on the computed type.
+     */
+    Type attribExpr(JCTree tree, Env<AttrContext> env) {
+        return attribTree(tree, env, VAL, Type.noType);
+    }
+
+    /** Derived visitor method: attribute a type tree.
+     */
+    Type attribType(JCTree tree, Env<AttrContext> env) {
+        Type result = attribTree(tree, env, TYP, Type.noType);
+        return result;
+    }
+
+    /** Derived visitor method: attribute a statement or definition tree.
+     */
+    public Type attribStat(JCTree tree, Env<AttrContext> env) {
+        return attribTree(tree, env, NIL, Type.noType);
+    }
+
+    /** Attribute a list of expressions, returning a list of types.
+     */
+    List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
+        ListBuffer<Type> ts = new ListBuffer<Type>();
+        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
+            ts.append(attribExpr(l.head, env, pt));
+        return ts.toList();
+    }
+
+    /** Attribute a list of statements, returning nothing.
+     */
+    <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
+        for (List<T> l = trees; l.nonEmpty(); l = l.tail)
+            attribStat(l.head, env);
+    }
+
+    /** Attribute the arguments in a method call, returning a list of types.
+     */
+    List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
+        ListBuffer<Type> argtypes = new ListBuffer<Type>();
+        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
+            argtypes.append(chk.checkNonVoid(
+                l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly))));
+        return argtypes.toList();
+    }
+
+    /** Attribute a type argument list, returning a list of types.
+     */
+    List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
+        ListBuffer<Type> argtypes = new ListBuffer<Type>();
+        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
+            argtypes.append(chk.checkRefType(l.head.pos(), attribType(l.head, env)));
+        return argtypes.toList();
+    }
+
+
+    /**
+     * Attribute type variables (of generic classes or methods).
+     * Compound types are attributed later in attribBounds.
+     * @param typarams the type variables to enter
+     * @param env      the current environment
+     */
+    void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
+        for (JCTypeParameter tvar : typarams) {
+            TypeVar a = (TypeVar)tvar.type;
+            if (!tvar.bounds.isEmpty()) {
+                List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
+                for (JCExpression bound : tvar.bounds.tail)
+                    bounds = bounds.prepend(attribType(bound, env));
+                types.setBounds(a, bounds.reverse());
+            } else {
+                // if no bounds are given, assume a single bound of
+                // java.lang.Object.
+                types.setBounds(a, List.of(syms.objectType));
+            }
+        }
+        for (JCTypeParameter tvar : typarams)
+            chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
+        attribStats(typarams, env);
+    }
+
+    void attribBounds(List<JCTypeParameter> typarams) {
+        for (JCTypeParameter typaram : typarams) {
+            Type bound = typaram.type.getUpperBound();
+            if (bound != null && bound.tsym instanceof ClassSymbol) {
+                ClassSymbol c = (ClassSymbol)bound.tsym;
+                if ((c.flags_field & COMPOUND) != 0) {
+                    assert (c.flags_field & UNATTRIBUTED) != 0 : c;
+                    attribClass(typaram.pos(), c);
+                }
+            }
+        }
+    }
+
+    /**
+     * Attribute the type references in a list of annotations.
+     */
+    void attribAnnotationTypes(List<JCAnnotation> annotations,
+                               Env<AttrContext> env) {
+        for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
+            JCAnnotation a = al.head;
+            attribType(a.annotationType, env);
+        }
+    }
+
+    /** Attribute type reference in an `extends' or `implements' clause.
+     *
+     *  @param tree              The tree making up the type reference.
+     *  @param env               The environment current at the reference.
+     *  @param classExpected     true if only a class is expected here.
+     *  @param interfaceExpected true if only an interface is expected here.
+     */
+    Type attribBase(JCTree tree,
+                    Env<AttrContext> env,
+                    boolean classExpected,
+                    boolean interfaceExpected,
+                    boolean checkExtensible) {
+        Type t = attribType(tree, env);
+        return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
+    }
+    Type checkBase(Type t,
+                   JCTree tree,
+                   Env<AttrContext> env,
+                   boolean classExpected,
+                   boolean interfaceExpected,
+                   boolean checkExtensible) {
+        if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
+            // check that type variable is already visible
+            if (t.getUpperBound() == null) {
+                log.error(tree.pos(), "illegal.forward.ref");
+                return syms.errType;
+            }
+        } else {
+            t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
+        }
+        if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
+            log.error(tree.pos(), "intf.expected.here");
+            // return errType is necessary since otherwise there might
+            // be undetected cycles which cause attribution to loop
+            return syms.errType;
+        } else if (checkExtensible &&
+                   classExpected &&
+                   (t.tsym.flags() & INTERFACE) != 0) {
+            log.error(tree.pos(), "no.intf.expected.here");
+            return syms.errType;
+        }
+        if (checkExtensible &&
+            ((t.tsym.flags() & FINAL) != 0)) {
+            log.error(tree.pos(),
+                      "cant.inherit.from.final", t.tsym);
+        }
+        chk.checkNonCyclic(tree.pos(), t);
+        return t;
+    }
+
+    public void visitClassDef(JCClassDecl tree) {
+        // Local classes have not been entered yet, so we need to do it now:
+        if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
+            enter.classEnter(tree, env);
+
+        ClassSymbol c = tree.sym;
+        if (c == null) {
+            // exit in case something drastic went wrong during enter.
+            result = null;
+        } else {
+            // make sure class has been completed:
+            c.complete();
+
+            // If this class appears as an anonymous class
+            // in a superclass constructor call where
+            // no explicit outer instance is given,
+            // disable implicit outer instance from being passed.
+            // (This would be an illegal access to "this before super").
+            if (env.info.isSelfCall &&
+                env.tree.getTag() == JCTree.NEWCLASS &&
+                ((JCNewClass) env.tree).encl == null)
+            {
+                c.flags_field |= NOOUTERTHIS;
+            }
+            attribClass(tree.pos(), c);
+            result = tree.type = c.type;
+        }
+    }
+
+    public void visitMethodDef(JCMethodDecl tree) {
+        MethodSymbol m = tree.sym;
+
+        Lint lint = env.info.lint.augment(m.attributes_field, m.flags());
+        Lint prevLint = chk.setLint(lint);
+        try {
+            chk.checkDeprecatedAnnotation(tree.pos(), m);
+
+            attribBounds(tree.typarams);
+
+            // If we override any other methods, check that we do so properly.
+            // JLS ???
+            chk.checkOverride(tree, m);
+
+            // Create a new environment with local scope
+            // for attributing the method.
+            Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
+
+            localEnv.info.lint = lint;
+
+            // Enter all type parameters into the local method scope.
+            for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
+                localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
+
+            ClassSymbol owner = env.enclClass.sym;
+            if ((owner.flags() & ANNOTATION) != 0 &&
+                tree.params.nonEmpty())
+                log.error(tree.params.head.pos(),
+                          "intf.annotation.members.cant.have.params");
+
+            // Attribute all value parameters.
+            for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
+                attribStat(l.head, localEnv);
+            }
+
+            // Check that type parameters are well-formed.
+            chk.validateTypeParams(tree.typarams);
+            if ((owner.flags() & ANNOTATION) != 0 &&
+                tree.typarams.nonEmpty())
+                log.error(tree.typarams.head.pos(),
+                          "intf.annotation.members.cant.have.type.params");
+
+            // Check that result type is well-formed.
+            chk.validate(tree.restype);
+            if ((owner.flags() & ANNOTATION) != 0)
+                chk.validateAnnotationType(tree.restype);
+
+            if ((owner.flags() & ANNOTATION) != 0)
+                chk.validateAnnotationMethod(tree.pos(), m);
+
+            // Check that all exceptions mentioned in the throws clause extend
+            // java.lang.Throwable.
+            if ((owner.flags() & ANNOTATION) != 0 && tree.thrown.nonEmpty())
+                log.error(tree.thrown.head.pos(),
+                          "throws.not.allowed.in.intf.annotation");
+            for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
+                chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
+
+            if (tree.body == null) {
+                // Empty bodies are only allowed for
+                // abstract, native, or interface methods, or for methods
+                // in a retrofit signature class.
+                if ((owner.flags() & INTERFACE) == 0 &&
+                    (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
+                    !relax)
+                    log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
+                if (tree.defaultValue != null) {
+                    if ((owner.flags() & ANNOTATION) == 0)
+                        log.error(tree.pos(),
+                                  "default.allowed.in.intf.annotation.member");
+                }
+            } else if ((owner.flags() & INTERFACE) != 0) {
+                log.error(tree.body.pos(), "intf.meth.cant.have.body");
+            } else if ((tree.mods.flags & ABSTRACT) != 0) {
+                log.error(tree.pos(), "abstract.meth.cant.have.body");
+            } else if ((tree.mods.flags & NATIVE) != 0) {
+                log.error(tree.pos(), "native.meth.cant.have.body");
+            } else {
+                // Add an implicit super() call unless an explicit call to
+                // super(...) or this(...) is given
+                // or we are compiling class java.lang.Object.
+                if (tree.name == names.init && owner.type != syms.objectType) {
+                    JCBlock body = tree.body;
+                    if (body.stats.isEmpty() ||
+                        !TreeInfo.isSelfCall(body.stats.head)) {
+                        body.stats = body.stats.
+                            prepend(memberEnter.SuperCall(make.at(body.pos),
+                                                          List.<Type>nil(),
+                                                          List.<JCVariableDecl>nil(),
+                                                          false));
+                    } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
+                               (tree.mods.flags & GENERATEDCONSTR) == 0 &&
+                               TreeInfo.isSuperCall(body.stats.head)) {
+                        // enum constructors are not allowed to call super
+                        // directly, so make sure there aren't any super calls
+                        // in enum constructors, except in the compiler
+                        // generated one.
+                        log.error(tree.body.stats.head.pos(),
+                                  "call.to.super.not.allowed.in.enum.ctor",
+                                  env.enclClass.sym);
+                    }
+                }
+
+                // Attribute method body.
+                attribStat(tree.body, localEnv);
+            }
+            localEnv.info.scope.leave();
+            result = tree.type = m.type;
+            chk.validateAnnotations(tree.mods.annotations, m);
+
+        }
+        finally {
+            chk.setLint(prevLint);
+        }
+    }
+
+    public void visitVarDef(JCVariableDecl tree) {
+        // Local variables have not been entered yet, so we need to do it now:
+        if (env.info.scope.owner.kind == MTH) {
+            if (tree.sym != null) {
+                // parameters have already been entered
+                env.info.scope.enter(tree.sym);
+            } else {
+                memberEnter.memberEnter(tree, env);
+                annotate.flush();
+            }
+        }
+
+        // Check that the variable's declared type is well-formed.
+        chk.validate(tree.vartype);
+
+        VarSymbol v = tree.sym;
+        Lint lint = env.info.lint.augment(v.attributes_field, v.flags());
+        Lint prevLint = chk.setLint(lint);
+
+        try {
+            chk.checkDeprecatedAnnotation(tree.pos(), v);
+
+            if (tree.init != null) {
+                if ((v.flags_field & FINAL) != 0 && tree.init.getTag() != JCTree.NEWCLASS) {
+                    // In this case, `v' is final.  Ensure that it's initializer is
+                    // evaluated.
+                    v.getConstValue(); // ensure initializer is evaluated
+                } else {
+                    // Attribute initializer in a new environment
+                    // with the declared variable as owner.
+                    // Check that initializer conforms to variable's declared type.
+                    Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
+                    initEnv.info.lint = lint;
+                    // In order to catch self-references, we set the variable's
+                    // declaration position to maximal possible value, effectively
+                    // marking the variable as undefined.
+                    v.pos = Position.MAXPOS;
+                    attribExpr(tree.init, initEnv, v.type);
+                    v.pos = tree.pos;
+                }
+            }
+            result = tree.type = v.type;
+            chk.validateAnnotations(tree.mods.annotations, v);
+        }
+        finally {
+            chk.setLint(prevLint);
+        }
+    }
+
+    public void visitSkip(JCSkip tree) {
+        result = null;
+    }
+
+    public void visitBlock(JCBlock tree) {
+        if (env.info.scope.owner.kind == TYP) {
+            // Block is a static or instance initializer;
+            // let the owner of the environment be a freshly
+            // created BLOCK-method.
+            Env<AttrContext> localEnv =
+                env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
+            localEnv.info.scope.owner =
+                new MethodSymbol(tree.flags | BLOCK, names.empty, null,
+                                 env.info.scope.owner);
+            if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
+            attribStats(tree.stats, localEnv);
+        } else {
+            // Create a new local environment with a local scope.
+            Env<AttrContext> localEnv =
+                env.dup(tree, env.info.dup(env.info.scope.dup()));
+            attribStats(tree.stats, localEnv);
+            localEnv.info.scope.leave();
+        }
+        result = null;
+    }
+
+    public void visitDoLoop(JCDoWhileLoop tree) {
+        attribStat(tree.body, env.dup(tree));
+        attribExpr(tree.cond, env, syms.booleanType);
+        result = null;
+    }
+
+    public void visitWhileLoop(JCWhileLoop tree) {
+        attribExpr(tree.cond, env, syms.booleanType);
+        attribStat(tree.body, env.dup(tree));
+        result = null;
+    }
+
+    public void visitForLoop(JCForLoop tree) {
+        Env<AttrContext> loopEnv =
+            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
+        attribStats(tree.init, loopEnv);
+        if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
+        loopEnv.tree = tree; // before, we were not in loop!
+        attribStats(tree.step, loopEnv);
+        attribStat(tree.body, loopEnv);
+        loopEnv.info.scope.leave();
+        result = null;
+    }
+
+    public void visitForeachLoop(JCEnhancedForLoop tree) {
+        Env<AttrContext> loopEnv =
+            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
+        attribStat(tree.var, loopEnv);
+        Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
+        chk.checkNonVoid(tree.pos(), exprType);
+        Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
+        if (elemtype == null) {
+            // or perhaps expr implements Iterable<T>?
+            Type base = types.asSuper(exprType, syms.iterableType.tsym);
+            if (base == null) {
+                log.error(tree.expr.pos(), "foreach.not.applicable.to.type");
+                elemtype = syms.errType;
+            } else {
+                List<Type> iterableParams = base.allparams();
+                elemtype = iterableParams.isEmpty()
+                    ? syms.objectType
+                    : types.upperBound(iterableParams.head);
+            }
+        }
+        chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
+        loopEnv.tree = tree; // before, we were not in loop!
+        attribStat(tree.body, loopEnv);
+        loopEnv.info.scope.leave();
+        result = null;
+    }
+
+    public void visitLabelled(JCLabeledStatement tree) {
+        // Check that label is not used in an enclosing statement
+        Env<AttrContext> env1 = env;
+        while (env1 != null && env1.tree.getTag() != JCTree.CLASSDEF) {
+            if (env1.tree.getTag() == JCTree.LABELLED &&
+                ((JCLabeledStatement) env1.tree).label == tree.label) {
+                log.error(tree.pos(), "label.already.in.use",
+                          tree.label);
+                break;
+            }
+            env1 = env1.next;
+        }
+
+        attribStat(tree.body, env.dup(tree));
+        result = null;
+    }
+
+    public void visitSwitch(JCSwitch tree) {
+        Type seltype = attribExpr(tree.selector, env);
+
+        Env<AttrContext> switchEnv =
+            env.dup(tree, env.info.dup(env.info.scope.dup()));
+
+        boolean enumSwitch =
+            allowEnums &&
+            (seltype.tsym.flags() & Flags.ENUM) != 0;
+        if (!enumSwitch)
+            seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
+
+        // Attribute all cases and
+        // check that there are no duplicate case labels or default clauses.
+        Set<Object> labels = new HashSet<Object>(); // The set of case labels.
+        boolean hasDefault = false;      // Is there a default label?
+        for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
+            JCCase c = l.head;
+            Env<AttrContext> caseEnv =
+                switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
+            if (c.pat != null) {
+                if (enumSwitch) {
+                    Symbol sym = enumConstant(c.pat, seltype);
+                    if (sym == null) {
+                        log.error(c.pat.pos(), "enum.const.req");
+                    } else if (!labels.add(sym)) {
+                        log.error(c.pos(), "duplicate.case.label");
+                    }
+                } else {
+                    Type pattype = attribExpr(c.pat, switchEnv, seltype);
+                    if (pattype.tag != ERROR) {
+                        if (pattype.constValue() == null) {
+                            log.error(c.pat.pos(), "const.expr.req");
+                        } else if (labels.contains(pattype.constValue())) {
+                            log.error(c.pos(), "duplicate.case.label");
+                        } else {
+                            labels.add(pattype.constValue());
+                        }
+                    }
+                }
+            } else if (hasDefault) {
+                log.error(c.pos(), "duplicate.default.label");
+            } else {
+                hasDefault = true;
+            }
+            attribStats(c.stats, caseEnv);
+            caseEnv.info.scope.leave();
+            addVars(c.stats, switchEnv.info.scope);
+        }
+
+        switchEnv.info.scope.leave();
+        result = null;
+    }
+    // where
+        /** Add any variables defined in stats to the switch scope. */
+        private static void addVars(List<JCStatement> stats, Scope switchScope) {
+            for (;stats.nonEmpty(); stats = stats.tail) {
+                JCTree stat = stats.head;
+                if (stat.getTag() == JCTree.VARDEF)
+                    switchScope.enter(((JCVariableDecl) stat).sym);
+            }
+        }
+    // where
+    /** Return the selected enumeration constant symbol, or null. */
+    private Symbol enumConstant(JCTree tree, Type enumType) {
+        if (tree.getTag() != JCTree.IDENT) {
+            log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
+            return syms.errSymbol;
+        }
+        JCIdent ident = (JCIdent)tree;
+        Name name = ident.name;
+        for (Scope.Entry e = enumType.tsym.members().lookup(name);
+             e.scope != null; e = e.next()) {
+            if (e.sym.kind == VAR) {
+                Symbol s = ident.sym = e.sym;
+                ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
+                ident.type = s.type;
+                return ((s.flags_field & Flags.ENUM) == 0)
+                    ? null : s;
+            }
+        }
+        return null;
+    }
+
+    public void visitSynchronized(JCSynchronized tree) {
+        chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
+        attribStat(tree.body, env);
+        result = null;
+    }
+
+    public void visitTry(JCTry tree) {
+        // Attribute body
+        attribStat(tree.body, env.dup(tree, env.info.dup()));
+
+        // Attribute catch clauses
+        for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
+            JCCatch c = l.head;
+            Env<AttrContext> catchEnv =
+                env.dup(c, env.info.dup(env.info.scope.dup()));
+            Type ctype = attribStat(c.param, catchEnv);
+            if (c.param.type.tsym.kind == Kinds.VAR) {
+                c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
+            }
+            chk.checkType(c.param.vartype.pos(),
+                          chk.checkClassType(c.param.vartype.pos(), ctype),
+                          syms.throwableType);
+            attribStat(c.body, catchEnv);
+            catchEnv.info.scope.leave();
+        }
+
+        // Attribute finalizer
+        if (tree.finalizer != null) attribStat(tree.finalizer, env);
+        result = null;
+    }
+
+    public void visitConditional(JCConditional tree) {
+        attribExpr(tree.cond, env, syms.booleanType);
+        attribExpr(tree.truepart, env);
+        attribExpr(tree.falsepart, env);
+        result = check(tree,
+                       capture(condType(tree.pos(), tree.cond.type,
+                                        tree.truepart.type, tree.falsepart.type)),
+                       VAL, pkind, pt);
+    }
+    //where
+        /** Compute the type of a conditional expression, after
+         *  checking that it exists. See Spec 15.25.
+         *
+         *  @param pos      The source position to be used for
+         *                  error diagnostics.
+         *  @param condtype The type of the expression's condition.
+         *  @param thentype The type of the expression's then-part.
+         *  @param elsetype The type of the expression's else-part.
+         */
+        private Type condType(DiagnosticPosition pos,
+                              Type condtype,
+                              Type thentype,
+                              Type elsetype) {
+            Type ctype = condType1(pos, condtype, thentype, elsetype);
+
+            // If condition and both arms are numeric constants,
+            // evaluate at compile-time.
+            return ((condtype.constValue() != null) &&
+                    (thentype.constValue() != null) &&
+                    (elsetype.constValue() != null))
+                ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype)
+                : ctype;
+        }
+        /** Compute the type of a conditional expression, after
+         *  checking that it exists.  Does not take into
+         *  account the special case where condition and both arms
+         *  are constants.
+         *
+         *  @param pos      The source position to be used for error
+         *                  diagnostics.
+         *  @param condtype The type of the expression's condition.
+         *  @param thentype The type of the expression's then-part.
+         *  @param elsetype The type of the expression's else-part.
+         */
+        private Type condType1(DiagnosticPosition pos, Type condtype,
+                               Type thentype, Type elsetype) {
+            // If same type, that is the result
+            if (types.isSameType(thentype, elsetype))
+                return thentype.baseType();
+
+            Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
+                ? thentype : types.unboxedType(thentype);
+            Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
+                ? elsetype : types.unboxedType(elsetype);
+
+            // Otherwise, if both arms can be converted to a numeric
+            // type, return the least numeric type that fits both arms
+            // (i.e. return larger of the two, or return int if one
+            // arm is short, the other is char).
+            if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
+                // If one arm has an integer subrange type (i.e., byte,
+                // short, or char), and the other is an integer constant
+                // that fits into the subrange, return the subrange type.
+                if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
+                    types.isAssignable(elseUnboxed, thenUnboxed))
+                    return thenUnboxed.baseType();
+                if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
+                    types.isAssignable(thenUnboxed, elseUnboxed))
+                    return elseUnboxed.baseType();
+
+                for (int i = BYTE; i < VOID; i++) {
+                    Type candidate = syms.typeOfTag[i];
+                    if (types.isSubtype(thenUnboxed, candidate) &&
+                        types.isSubtype(elseUnboxed, candidate))
+                        return candidate;
+                }
+            }
+
+            // Those were all the cases that could result in a primitive
+            if (allowBoxing) {
+                if (thentype.isPrimitive())
+                    thentype = types.boxedClass(thentype).type;
+                if (elsetype.isPrimitive())
+                    elsetype = types.boxedClass(elsetype).type;
+            }
+
+            if (types.isSubtype(thentype, elsetype))
+                return elsetype.baseType();
+            if (types.isSubtype(elsetype, thentype))
+                return thentype.baseType();
+
+            if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
+                log.error(pos, "neither.conditional.subtype",
+                          thentype, elsetype);
+                return thentype.baseType();
+            }
+
+            // both are known to be reference types.  The result is
+            // lub(thentype,elsetype). This cannot fail, as it will
+            // always be possible to infer "Object" if nothing better.
+            return types.lub(thentype.baseType(), elsetype.baseType());
+        }
+
+    public void visitIf(JCIf tree) {
+        attribExpr(tree.cond, env, syms.booleanType);
+        attribStat(tree.thenpart, env);
+        if (tree.elsepart != null)
+            attribStat(tree.elsepart, env);
+        chk.checkEmptyIf(tree);
+        result = null;
+    }
+
+    public void visitExec(JCExpressionStatement tree) {
+        attribExpr(tree.expr, env);
+        result = null;
+    }
+
+    public void visitBreak(JCBreak tree) {
+        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
+        result = null;
+    }
+
+    public void visitContinue(JCContinue tree) {
+        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
+        result = null;
+    }
+    //where
+        /** Return the target of a break or continue statement, if it exists,
+         *  report an error if not.
+         *  Note: The target of a labelled break or continue is the
+         *  (non-labelled) statement tree referred to by the label,
+         *  not the tree representing the labelled statement itself.
+         *
+         *  @param pos     The position to be used for error diagnostics
+         *  @param tag     The tag of the jump statement. This is either
+         *                 Tree.BREAK or Tree.CONTINUE.
+         *  @param label   The label of the jump statement, or null if no
+         *                 label is given.
+         *  @param env     The environment current at the jump statement.
+         */
+        private JCTree findJumpTarget(DiagnosticPosition pos,
+                                    int tag,
+                                    Name label,
+                                    Env<AttrContext> env) {
+            // Search environments outwards from the point of jump.
+            Env<AttrContext> env1 = env;
+            LOOP:
+            while (env1 != null) {
+                switch (env1.tree.getTag()) {
+                case JCTree.LABELLED:
+                    JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
+                    if (label == labelled.label) {
+                        // If jump is a continue, check that target is a loop.
+                        if (tag == JCTree.CONTINUE) {
+                            if (labelled.body.getTag() != JCTree.DOLOOP &&
+                                labelled.body.getTag() != JCTree.WHILELOOP &&
+                                labelled.body.getTag() != JCTree.FORLOOP &&
+                                labelled.body.getTag() != JCTree.FOREACHLOOP)
+                                log.error(pos, "not.loop.label", label);
+                            // Found labelled statement target, now go inwards
+                            // to next non-labelled tree.
+                            return TreeInfo.referencedStatement(labelled);
+                        } else {
+                            return labelled;
+                        }
+                    }
+                    break;
+                case JCTree.DOLOOP:
+                case JCTree.WHILELOOP:
+                case JCTree.FORLOOP:
+                case JCTree.FOREACHLOOP:
+                    if (label == null) return env1.tree;
+                    break;
+                case JCTree.SWITCH:
+                    if (label == null && tag == JCTree.BREAK) return env1.tree;
+                    break;
+                case JCTree.METHODDEF:
+                case JCTree.CLASSDEF:
+                    break LOOP;
+                default:
+                }
+                env1 = env1.next;
+            }
+            if (label != null)
+                log.error(pos, "undef.label", label);
+            else if (tag == JCTree.CONTINUE)
+                log.error(pos, "cont.outside.loop");
+            else
+                log.error(pos, "break.outside.switch.loop");
+            return null;
+        }
+
+    public void visitReturn(JCReturn tree) {
+        // Check that there is an enclosing method which is
+        // nested within than the enclosing class.
+        if (env.enclMethod == null ||
+            env.enclMethod.sym.owner != env.enclClass.sym) {
+            log.error(tree.pos(), "ret.outside.meth");
+
+        } else {
+            // Attribute return expression, if it exists, and check that
+            // it conforms to result type of enclosing method.
+            Symbol m = env.enclMethod.sym;
+            if (m.type.getReturnType().tag == VOID) {
+                if (tree.expr != null)
+                    log.error(tree.expr.pos(),
+                              "cant.ret.val.from.meth.decl.void");
+            } else if (tree.expr == null) {
+                log.error(tree.pos(), "missing.ret.val");
+            } else {
+                attribExpr(tree.expr, env, m.type.getReturnType());
+            }
+        }
+        result = null;
+    }
+
+    public void visitThrow(JCThrow tree) {
+        attribExpr(tree.expr, env, syms.throwableType);
+        result = null;
+    }
+
+    public void visitAssert(JCAssert tree) {
+        attribExpr(tree.cond, env, syms.booleanType);
+        if (tree.detail != null) {
+            chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
+        }
+        result = null;
+    }
+
+     /** Visitor method for method invocations.
+     *  NOTE: The method part of an application will have in its type field
+     *        the return type of the method, not the method's type itself!
+     */
+    public void visitApply(JCMethodInvocation tree) {
+        // The local environment of a method application is
+        // a new environment nested in the current one.
+        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
+
+        // The types of the actual method arguments.
+        List<Type> argtypes;
+
+        // The types of the actual method type arguments.
+        List<Type> typeargtypes = null;
+
+        Name methName = TreeInfo.name(tree.meth);
+
+        boolean isConstructorCall =
+            methName == names._this || methName == names._super;
+
+        if (isConstructorCall) {
+            // We are seeing a ...this(...) or ...super(...) call.
+            // Check that this is the first statement in a constructor.
+            if (checkFirstConstructorStat(tree, env)) {
+
+                // Record the fact
+                // that this is a constructor call (using isSelfCall).
+                localEnv.info.isSelfCall = true;
+
+                // Attribute arguments, yielding list of argument types.
+                argtypes = attribArgs(tree.args, localEnv);
+                typeargtypes = attribTypes(tree.typeargs, localEnv);
+
+                // Variable `site' points to the class in which the called
+                // constructor is defined.
+                Type site = env.enclClass.sym.type;
+                if (methName == names._super) {
+                    if (site == syms.objectType) {
+                        log.error(tree.meth.pos(), "no.superclass", site);
+                        site = syms.errType;
+                    } else {
+                        site = types.supertype(site);
+                    }
+                }
+
+                if (site.tag == CLASS) {
+                    if (site.getEnclosingType().tag == CLASS) {
+                        // we are calling a nested class
+
+                        if (tree.meth.getTag() == JCTree.SELECT) {
+                            JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
+
+                            // We are seeing a prefixed call, of the form
+                            //     <expr>.super(...).
+                            // Check that the prefix expression conforms
+                            // to the outer instance type of the class.
+                            chk.checkRefType(qualifier.pos(),
+                                             attribExpr(qualifier, localEnv,
+                                                        site.getEnclosingType()));
+                        } else if (methName == names._super) {
+                            // qualifier omitted; check for existence
+                            // of an appropriate implicit qualifier.
+                            rs.resolveImplicitThis(tree.meth.pos(),
+                                                   localEnv, site);
+                        }
+                    } else if (tree.meth.getTag() == JCTree.SELECT) {
+                        log.error(tree.meth.pos(), "illegal.qual.not.icls",
+                                  site.tsym);
+                    }
+
+                    // if we're calling a java.lang.Enum constructor,
+                    // prefix the implicit String and int parameters
+                    if (site.tsym == syms.enumSym && allowEnums)
+                        argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
+
+                    // Resolve the called constructor under the assumption
+                    // that we are referring to a superclass instance of the
+                    // current instance (JLS ???).
+                    boolean selectSuperPrev = localEnv.info.selectSuper;
+                    localEnv.info.selectSuper = true;
+                    localEnv.info.varArgs = false;
+                    Symbol sym = rs.resolveConstructor(
+                        tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
+                    localEnv.info.selectSuper = selectSuperPrev;
+
+                    // Set method symbol to resolved constructor...
+                    TreeInfo.setSymbol(tree.meth, sym);
+
+                    // ...and check that it is legal in the current context.
+                    // (this will also set the tree's type)
+                    Type mpt = newMethTemplate(argtypes, typeargtypes);
+                    checkId(tree.meth, site, sym, localEnv, MTH,
+                            mpt, tree.varargsElement != null);
+                }
+                // Otherwise, `site' is an error type and we do nothing
+            }
+            result = tree.type = syms.voidType;
+        } else {
+            // Otherwise, we are seeing a regular method call.
+            // Attribute the arguments, yielding list of argument types, ...
+            argtypes = attribArgs(tree.args, localEnv);
+            typeargtypes = attribTypes(tree.typeargs, localEnv);
+
+            // ... and attribute the method using as a prototype a methodtype
+            // whose formal argument types is exactly the list of actual
+            // arguments (this will also set the method symbol).
+            Type mpt = newMethTemplate(argtypes, typeargtypes);
+            localEnv.info.varArgs = false;
+            Type mtype = attribExpr(tree.meth, localEnv, mpt);
+            if (localEnv.info.varArgs)
+                assert mtype.isErroneous() || tree.varargsElement != null;
+
+            // Compute the result type.
+            Type restype = mtype.getReturnType();
+            assert restype.tag != WILDCARD : mtype;
+
+            // as a special case, array.clone() has a result that is
+            // the same as static type of the array being cloned
+            if (tree.meth.getTag() == JCTree.SELECT &&
+                allowCovariantReturns &&
+                methName == names.clone &&
+                types.isArray(((JCFieldAccess) tree.meth).selected.type))
+                restype = ((JCFieldAccess) tree.meth).selected.type;
+
+            // as a special case, x.getClass() has type Class<? extends |X|>
+            if (allowGenerics &&
+                methName == names.getClass && tree.args.isEmpty()) {
+                Type qualifier = (tree.meth.getTag() == JCTree.SELECT)
+                    ? ((JCFieldAccess) tree.meth).selected.type
+                    : env.enclClass.sym.type;
+                restype = new
+                    ClassType(restype.getEnclosingType(),
+                              List.<Type>of(new WildcardType(types.erasure(qualifier),
+                                                               BoundKind.EXTENDS,
+                                                               syms.boundClass)),
+                              restype.tsym);
+            }
+
+            // Check that value of resulting type is admissible in the
+            // current context.  Also, capture the return type
+            result = check(tree, capture(restype), VAL, pkind, pt);
+        }
+        chk.validate(tree.typeargs);
+    }
+    //where
+        /** Check that given application node appears as first statement
+         *  in a constructor call.
+         *  @param tree   The application node
+         *  @param env    The environment current at the application.
+         */
+        boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
+            JCMethodDecl enclMethod = env.enclMethod;
+            if (enclMethod != null && enclMethod.name == names.init) {
+                JCBlock body = enclMethod.body;
+                if (body.stats.head.getTag() == JCTree.EXEC &&
+                    ((JCExpressionStatement) body.stats.head).expr == tree)
+                    return true;
+            }
+            log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
+                      TreeInfo.name(tree.meth));
+            return false;
+        }
+
+        /** Obtain a method type with given argument types.
+         */
+        Type newMethTemplate(List<Type> argtypes, List<Type> typeargtypes) {
+            MethodType mt = new MethodType(argtypes, null, null, syms.methodClass);
+            return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
+        }
+
+    public void visitNewClass(JCNewClass tree) {
+        Type owntype = syms.errType;
+
+        // The local environment of a class creation is
+        // a new environment nested in the current one.
+        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
+
+        // The anonymous inner class definition of the new expression,
+        // if one is defined by it.
+        JCClassDecl cdef = tree.def;
+
+        // If enclosing class is given, attribute it, and
+        // complete class name to be fully qualified
+        JCExpression clazz = tree.clazz; // Class field following new
+        JCExpression clazzid =          // Identifier in class field
+            (clazz.getTag() == JCTree.TYPEAPPLY)
+            ? ((JCTypeApply) clazz).clazz
+            : clazz;
+
+        JCExpression clazzid1 = clazzid; // The same in fully qualified form
+
+        if (tree.encl != null) {
+            // We are seeing a qualified new, of the form
+            //    <expr>.new C <...> (...) ...
+            // In this case, we let clazz stand for the name of the
+            // allocated class C prefixed with the type of the qualifier
+            // expression, so that we can
+            // resolve it with standard techniques later. I.e., if
+            // <expr> has type T, then <expr>.new C <...> (...)
+            // yields a clazz T.C.
+            Type encltype = chk.checkRefType(tree.encl.pos(),
+                                             attribExpr(tree.encl, env));
+            clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
+                                                 ((JCIdent) clazzid).name);
+            if (clazz.getTag() == JCTree.TYPEAPPLY)
+                clazz = make.at(tree.pos).
+                    TypeApply(clazzid1,
+                              ((JCTypeApply) clazz).arguments);
+            else
+                clazz = clazzid1;
+//          System.out.println(clazz + " generated.");//DEBUG
+        }
+
+        // Attribute clazz expression and store
+        // symbol + type back into the attributed tree.
+        Type clazztype = chk.checkClassType(
+            tree.clazz.pos(), attribType(clazz, env), true);
+        chk.validate(clazz);
+        if (tree.encl != null) {
+            // We have to work in this case to store
+            // symbol + type back into the attributed tree.
+            tree.clazz.type = clazztype;
+            TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
+            clazzid.type = ((JCIdent) clazzid).sym.type;
+            if (!clazztype.isErroneous()) {
+                if (cdef != null && clazztype.tsym.isInterface()) {
+                    log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
+                } else if (clazztype.tsym.isStatic()) {
+                    log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
+                }
+            }
+        } else if (!clazztype.tsym.isInterface() &&
+                   clazztype.getEnclosingType().tag == CLASS) {
+            // Check for the existence of an apropos outer instance
+            rs.resolveImplicitThis(tree.pos(), env, clazztype);
+        }
+
+        // Attribute constructor arguments.
+        List<Type> argtypes = attribArgs(tree.args, localEnv);
+        List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
+
+        // If we have made no mistakes in the class type...
+        if (clazztype.tag == CLASS) {
+            // Enums may not be instantiated except implicitly
+            if (allowEnums &&
+                (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
+                (env.tree.getTag() != JCTree.VARDEF ||
+                 (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
+                 ((JCVariableDecl) env.tree).init != tree))
+                log.error(tree.pos(), "enum.cant.be.instantiated");
+            // Check that class is not abstract
+            if (cdef == null &&
+                (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
+                log.error(tree.pos(), "abstract.cant.be.instantiated",
+                          clazztype.tsym);
+            } else if (cdef != null && clazztype.tsym.isInterface()) {
+                // Check that no constructor arguments are given to
+                // anonymous classes implementing an interface
+                if (!argtypes.isEmpty())
+                    log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
+
+                if (!typeargtypes.isEmpty())
+                    log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
+
+                // Error recovery: pretend no arguments were supplied.
+                argtypes = List.nil();
+                typeargtypes = List.nil();
+            }
+
+            // Resolve the called constructor under the assumption
+            // that we are referring to a superclass instance of the
+            // current instance (JLS ???).
+            else {
+                localEnv.info.selectSuper = cdef != null;
+                localEnv.info.varArgs = false;
+                tree.constructor = rs.resolveConstructor(
+                    tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
+                Type ctorType = checkMethod(clazztype,
+                                            tree.constructor,
+                                            localEnv,
+                                            tree.args,
+                                            argtypes,
+                                            typeargtypes,
+                                            localEnv.info.varArgs);
+                if (localEnv.info.varArgs)
+                    assert ctorType.isErroneous() || tree.varargsElement != null;
+            }
+
+            if (cdef != null) {
+                // We are seeing an anonymous class instance creation.
+                // In this case, the class instance creation
+                // expression
+                //
+                //    E.new <typeargs1>C<typargs2>(args) { ... }
+                //
+                // is represented internally as
+                //
+                //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
+                //
+                // This expression is then *transformed* as follows:
+                //
+                // (1) add a STATIC flag to the class definition
+                //     if the current environment is static
+                // (2) add an extends or implements clause
+                // (3) add a constructor.
+                //
+                // For instance, if C is a class, and ET is the type of E,
+                // the expression
+                //
+                //    E.new <typeargs1>C<typargs2>(args) { ... }
+                //
+                // is translated to (where X is a fresh name and typarams is the
+                // parameter list of the super constructor):
+                //
+                //   new <typeargs1>X(<*nullchk*>E, args) where
+                //     X extends C<typargs2> {
+                //       <typarams> X(ET e, args) {
+                //         e.<typeargs1>super(args)
+                //       }
+                //       ...
+                //     }
+                if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
+
+                if (clazztype.tsym.isInterface()) {
+                    cdef.implementing = List.of(clazz);
+                } else {
+                    cdef.extending = clazz;
+                }
+
+                attribStat(cdef, localEnv);
+
+                // If an outer instance is given,
+                // prefix it to the constructor arguments
+                // and delete it from the new expression
+                if (tree.encl != null && !clazztype.tsym.isInterface()) {
+                    tree.args = tree.args.prepend(makeNullCheck(tree.encl));
+                    argtypes = argtypes.prepend(tree.encl.type);
+                    tree.encl = null;
+                }
+
+                // Reassign clazztype and recompute constructor.
+                clazztype = cdef.sym.type;
+                Symbol sym = rs.resolveConstructor(
+                    tree.pos(), localEnv, clazztype, argtypes,
+                    typeargtypes, true, tree.varargsElement != null);
+                assert sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous();
+                tree.constructor = sym;
+            }
+
+            if (tree.constructor != null && tree.constructor.kind == MTH)
+                owntype = clazztype;
+        }
+        result = check(tree, owntype, VAL, pkind, pt);
+        chk.validate(tree.typeargs);
+    }
+
+    /** Make an attributed null check tree.
+     */
+    public JCExpression makeNullCheck(JCExpression arg) {
+        // optimization: X.this is never null; skip null check
+        Name name = TreeInfo.name(arg);
+        if (name == names._this || name == names._super) return arg;
+
+        int optag = JCTree.NULLCHK;
+        JCUnary tree = make.at(arg.pos).Unary(optag, arg);
+        tree.operator = syms.nullcheck;
+        tree.type = arg.type;
+        return tree;
+    }
+
+    public void visitNewArray(JCNewArray tree) {
+        Type owntype = syms.errType;
+        Type elemtype;
+        if (tree.elemtype != null) {
+            elemtype = attribType(tree.elemtype, env);
+            chk.validate(tree.elemtype);
+            owntype = elemtype;
+            for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
+                attribExpr(l.head, env, syms.intType);
+                owntype = new ArrayType(owntype, syms.arrayClass);
+            }
+        } else {
+            // we are seeing an untyped aggregate { ... }
+            // this is allowed only if the prototype is an array
+            if (pt.tag == ARRAY) {
+                elemtype = types.elemtype(pt);
+            } else {
+                if (pt.tag != ERROR) {
+                    log.error(tree.pos(), "illegal.initializer.for.type",
+                              pt);
+                }
+                elemtype = syms.errType;
+            }
+        }
+        if (tree.elems != null) {
+            attribExprs(tree.elems, env, elemtype);
+            owntype = new ArrayType(elemtype, syms.arrayClass);
+        }
+        if (!types.isReifiable(elemtype))
+            log.error(tree.pos(), "generic.array.creation");
+        result = check(tree, owntype, VAL, pkind, pt);
+    }
+
+    public void visitParens(JCParens tree) {
+        Type owntype = attribTree(tree.expr, env, pkind, pt);
+        result = check(tree, owntype, pkind, pkind, pt);
+        Symbol sym = TreeInfo.symbol(tree);
+        if (sym != null && (sym.kind&(TYP|PCK)) != 0)
+            log.error(tree.pos(), "illegal.start.of.type");
+    }
+
+    public void visitAssign(JCAssign tree) {
+        Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType);
+        Type capturedType = capture(owntype);
+        attribExpr(tree.rhs, env, owntype);
+        result = check(tree, capturedType, VAL, pkind, pt);
+    }
+
+    public void visitAssignop(JCAssignOp tree) {
+        // Attribute arguments.
+        Type owntype = attribTree(tree.lhs, env, VAR, Type.noType);
+        Type operand = attribExpr(tree.rhs, env);
+        // Find operator.
+        Symbol operator = tree.operator = rs.resolveBinaryOperator(
+            tree.pos(), tree.getTag() - JCTree.ASGOffset, env,
+            owntype, operand);
+
+        if (operator.kind == MTH) {
+            chk.checkOperator(tree.pos(),
+                              (OperatorSymbol)operator,
+                              tree.getTag() - JCTree.ASGOffset,
+                              owntype,
+                              operand);
+            if (types.isSameType(operator.type.getReturnType(), syms.stringType)) {
+                // String assignment; make sure the lhs is a string
+                chk.checkType(tree.lhs.pos(),
+                              owntype,
+                              syms.stringType);
+            } else {
+                chk.checkDivZero(tree.rhs.pos(), operator, operand);
+                chk.checkCastable(tree.rhs.pos(),
+                                  operator.type.getReturnType(),
+                                  owntype);
+            }
+        }
+        result = check(tree, owntype, VAL, pkind, pt);
+    }
+
+    public void visitUnary(JCUnary tree) {
+        // Attribute arguments.
+        Type argtype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
+            ? attribTree(tree.arg, env, VAR, Type.noType)
+            : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
+
+        // Find operator.
+        Symbol operator = tree.operator =
+            rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
+
+        Type owntype = syms.errType;
+        if (operator.kind == MTH) {
+            owntype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
+                ? tree.arg.type
+                : operator.type.getReturnType();
+            int opc = ((OperatorSymbol)operator).opcode;
+
+            // If the argument is constant, fold it.
+            if (argtype.constValue() != null) {
+                Type ctype = cfolder.fold1(opc, argtype);
+                if (ctype != null) {
+                    owntype = cfolder.coerce(ctype, owntype);
+
+                    // Remove constant types from arguments to
+                    // conserve space. The parser will fold concatenations
+                    // of string literals; the code here also
+                    // gets rid of intermediate results when some of the
+                    // operands are constant identifiers.
+                    if (tree.arg.type.tsym == syms.stringType.tsym) {
+                        tree.arg.type = syms.stringType;
+                    }
+                }
+            }
+        }
+        result = check(tree, owntype, VAL, pkind, pt);
+    }
+
+    public void visitBinary(JCBinary tree) {
+        // Attribute arguments.
+        Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
+        Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
+
+        // Find operator.
+        Symbol operator = tree.operator =
+            rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
+
+        Type owntype = syms.errType;
+        if (operator.kind == MTH) {
+            owntype = operator.type.getReturnType();
+            int opc = chk.checkOperator(tree.lhs.pos(),
+                                        (OperatorSymbol)operator,
+                                        tree.getTag(),
+                                        left,
+                                        right);
+
+            // If both arguments are constants, fold them.
+            if (left.constValue() != null && right.constValue() != null) {
+                Type ctype = cfolder.fold2(opc, left, right);
+                if (ctype != null) {
+                    owntype = cfolder.coerce(ctype, owntype);
+
+                    // Remove constant types from arguments to
+                    // conserve space. The parser will fold concatenations
+                    // of string literals; the code here also
+                    // gets rid of intermediate results when some of the
+                    // operands are constant identifiers.
+                    if (tree.lhs.type.tsym == syms.stringType.tsym) {
+                        tree.lhs.type = syms.stringType;
+                    }
+                    if (tree.rhs.type.tsym == syms.stringType.tsym) {
+                        tree.rhs.type = syms.stringType;
+                    }
+                }
+            }
+
+            // Check that argument types of a reference ==, != are
+            // castable to each other, (JLS???).
+            if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
+                if (!types.isCastable(left, right, new Warner(tree.pos()))) {
+                    log.error(tree.pos(), "incomparable.types", left, right);
+                }
+            }
+
+            chk.checkDivZero(tree.rhs.pos(), operator, right);
+        }
+        result = check(tree, owntype, VAL, pkind, pt);
+    }
+
+    public void visitTypeCast(JCTypeCast tree) {
+        Type clazztype = attribType(tree.clazz, env);
+        Type exprtype = attribExpr(tree.expr, env, Infer.anyPoly);
+        Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
+        if (exprtype.constValue() != null)
+            owntype = cfolder.coerce(exprtype, owntype);
+        result = check(tree, capture(owntype), VAL, pkind, pt);
+    }
+
+    public void visitTypeTest(JCInstanceOf tree) {
+        Type exprtype = chk.checkNullOrRefType(
+            tree.expr.pos(), attribExpr(tree.expr, env));
+        Type clazztype = chk.checkReifiableReferenceType(
+            tree.clazz.pos(), attribType(tree.clazz, env));
+        chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
+        result = check(tree, syms.booleanType, VAL, pkind, pt);
+    }
+
+    public void visitIndexed(JCArrayAccess tree) {
+        Type owntype = syms.errType;
+        Type atype = attribExpr(tree.indexed, env);
+        attribExpr(tree.index, env, syms.intType);
+        if (types.isArray(atype))
+            owntype = types.elemtype(atype);
+        else if (atype.tag != ERROR)
+            log.error(tree.pos(), "array.req.but.found", atype);
+        if ((pkind & VAR) == 0) owntype = capture(owntype);
+        result = check(tree, owntype, VAR, pkind, pt);
+    }
+
+    public void visitIdent(JCIdent tree) {
+        Symbol sym;
+        boolean varArgs = false;
+
+        // Find symbol
+        if (pt.tag == METHOD || pt.tag == FORALL) {
+            // If we are looking for a method, the prototype `pt' will be a
+            // method type with the type of the call's arguments as parameters.
+            env.info.varArgs = false;
+            sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments());
+            varArgs = env.info.varArgs;
+        } else if (tree.sym != null && tree.sym.kind != VAR) {
+            sym = tree.sym;
+        } else {
+            sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind);
+        }
+        tree.sym = sym;
+
+        // (1) Also find the environment current for the class where
+        //     sym is defined (`symEnv').
+        // Only for pre-tiger versions (1.4 and earlier):
+        // (2) Also determine whether we access symbol out of an anonymous
+        //     class in a this or super call.  This is illegal for instance
+        //     members since such classes don't carry a this$n link.
+        //     (`noOuterThisPath').
+        Env<AttrContext> symEnv = env;
+        boolean noOuterThisPath = false;
+        if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
+            (sym.kind & (VAR | MTH | TYP)) != 0 &&
+            sym.owner.kind == TYP &&
+            tree.name != names._this && tree.name != names._super) {
+
+            // Find environment in which identifier is defined.
+            while (symEnv.outer != null &&
+                   !sym.isMemberOf(symEnv.enclClass.sym, types)) {
+                if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
+                    noOuterThisPath = !allowAnonOuterThis;
+                symEnv = symEnv.outer;
+            }
+        }
+
+        // If symbol is a variable, ...
+        if (sym.kind == VAR) {
+            VarSymbol v = (VarSymbol)sym;
+
+            // ..., evaluate its initializer, if it has one, and check for
+            // illegal forward reference.
+            checkInit(tree, env, v, false);
+
+            // If symbol is a local variable accessed from an embedded
+            // inner class check that it is final.
+            if (v.owner.kind == MTH &&
+                v.owner != env.info.scope.owner &&
+                (v.flags_field & FINAL) == 0) {
+                log.error(tree.pos(),
+                          "local.var.accessed.from.icls.needs.final",
+                          v);
+            }
+
+            // If we are expecting a variable (as opposed to a value), check
+            // that the variable is assignable in the current environment.
+            if (pkind == VAR)
+                checkAssignable(tree.pos(), v, null, env);
+        }
+
+        // In a constructor body,
+        // if symbol is a field or instance method, check that it is
+        // not accessed before the supertype constructor is called.
+        if ((symEnv.info.isSelfCall || noOuterThisPath) &&
+            (sym.kind & (VAR | MTH)) != 0 &&
+            sym.owner.kind == TYP &&
+            (sym.flags() & STATIC) == 0) {
+            chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
+        }
+        Env<AttrContext> env1 = env;
+        if (sym.kind != ERR && sym.owner != null && sym.owner != env1.enclClass.sym) {
+            // If the found symbol is inaccessible, then it is
+            // accessed through an enclosing instance.  Locate this
+            // enclosing instance:
+            while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
+                env1 = env1.outer;
+        }
+        result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs);
+    }
+
+    public void visitSelect(JCFieldAccess tree) {
+        // Determine the expected kind of the qualifier expression.
+        int skind = 0;
+        if (tree.name == names._this || tree.name == names._super ||
+            tree.name == names._class)
+        {
+            skind = TYP;
+        } else {
+            if ((pkind & PCK) != 0) skind = skind | PCK;
+            if ((pkind & TYP) != 0) skind = skind | TYP | PCK;
+            if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
+        }
+
+        // Attribute the qualifier expression, and determine its symbol (if any).
+        Type site = attribTree(tree.selected, env, skind, Infer.anyPoly);
+        if ((pkind & (PCK | TYP)) == 0)
+            site = capture(site); // Capture field access
+
+        // don't allow T.class T[].class, etc
+        if (skind == TYP) {
+            Type elt = site;
+            while (elt.tag == ARRAY)
+                elt = ((ArrayType)elt).elemtype;
+            if (elt.tag == TYPEVAR) {
+                log.error(tree.pos(), "type.var.cant.be.deref");
+                result = syms.errType;
+                return;
+            }
+        }
+
+        // If qualifier symbol is a type or `super', assert `selectSuper'
+        // for the selection. This is relevant for determining whether
+        // protected symbols are accessible.
+        Symbol sitesym = TreeInfo.symbol(tree.selected);
+        boolean selectSuperPrev = env.info.selectSuper;
+        env.info.selectSuper =
+            sitesym != null &&
+            sitesym.name == names._super;
+
+        // If selected expression is polymorphic, strip
+        // type parameters and remember in env.info.tvars, so that
+        // they can be added later (in Attr.checkId and Infer.instantiateMethod).
+        if (tree.selected.type.tag == FORALL) {
+            ForAll pstype = (ForAll)tree.selected.type;
+            env.info.tvars = pstype.tvars;
+            site = tree.selected.type = pstype.qtype;
+        }
+
+        // Determine the symbol represented by the selection.
+        env.info.varArgs = false;
+        Symbol sym = selectSym(tree, site, env, pt, pkind);
+        if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) {
+            site = capture(site);
+            sym = selectSym(tree, site, env, pt, pkind);
+        }
+        boolean varArgs = env.info.varArgs;
+        tree.sym = sym;
+
+        if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR)
+            site = capture(site.getUpperBound());
+
+        // If that symbol is a variable, ...
+        if (sym.kind == VAR) {
+            VarSymbol v = (VarSymbol)sym;
+
+            // ..., evaluate its initializer, if it has one, and check for
+            // illegal forward reference.
+            checkInit(tree, env, v, true);
+
+            // If we are expecting a variable (as opposed to a value), check
+            // that the variable is assignable in the current environment.
+            if (pkind == VAR)
+                checkAssignable(tree.pos(), v, tree.selected, env);
+        }
+
+        // Disallow selecting a type from an expression
+        if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
+            tree.type = check(tree.selected, pt,
+                              sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt);
+        }
+
+        if (isType(sitesym)) {
+            if (sym.name == names._this) {
+                // If `C' is the currently compiled class, check that
+                // C.this' does not appear in a call to a super(...)
+                if (env.info.isSelfCall &&
+                    site.tsym == env.enclClass.sym) {
+                    chk.earlyRefError(tree.pos(), sym);
+                }
+            } else {
+                // Check if type-qualified fields or methods are static (JLS)
+                if ((sym.flags() & STATIC) == 0 &&
+                    sym.name != names._super &&
+                    (sym.kind == VAR || sym.kind == MTH)) {
+                    rs.access(rs.new StaticError(sym),
+                              tree.pos(), site, sym.name, true);
+                }
+            }
+        }
+
+        // If we are selecting an instance member via a `super', ...
+        if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
+
+            // Check that super-qualified symbols are not abstract (JLS)
+            rs.checkNonAbstract(tree.pos(), sym);
+
+            if (site.isRaw()) {
+                // Determine argument types for site.
+                Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
+                if (site1 != null) site = site1;
+            }
+        }
+
+        env.info.selectSuper = selectSuperPrev;
+        result = checkId(tree, site, sym, env, pkind, pt, varArgs);
+        env.info.tvars = List.nil();
+    }
+    //where
+        /** Determine symbol referenced by a Select expression,
+         *
+         *  @param tree   The select tree.
+         *  @param site   The type of the selected expression,
+         *  @param env    The current environment.
+         *  @param pt     The current prototype.
+         *  @param pkind  The expected kind(s) of the Select expression.
+         */
+        private Symbol selectSym(JCFieldAccess tree,
+                                 Type site,
+                                 Env<AttrContext> env,
+                                 Type pt,
+                                 int pkind) {
+            DiagnosticPosition pos = tree.pos();
+            Name name = tree.name;
+
+            switch (site.tag) {
+            case PACKAGE:
+                return rs.access(
+                    rs.findIdentInPackage(env, site.tsym, name, pkind),
+                    pos, site, name, true);
+            case ARRAY:
+            case CLASS:
+                if (pt.tag == METHOD || pt.tag == FORALL) {
+                    return rs.resolveQualifiedMethod(
+                        pos, env, site, name, pt.getParameterTypes(), pt.getTypeArguments());
+                } else if (name == names._this || name == names._super) {
+                    return rs.resolveSelf(pos, env, site.tsym, name);
+                } else if (name == names._class) {
+                    // In this case, we have already made sure in
+                    // visitSelect that qualifier expression is a type.
+                    Type t = syms.classType;
+                    List<Type> typeargs = allowGenerics
+                        ? List.of(types.erasure(site))
+                        : List.<Type>nil();
+                    t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
+                    return new VarSymbol(
+                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
+                } else {
+                    // We are seeing a plain identifier as selector.
+                    Symbol sym = rs.findIdentInType(env, site, name, pkind);
+                    if ((pkind & ERRONEOUS) == 0)
+                        sym = rs.access(sym, pos, site, name, true);
+                    return sym;
+                }
+            case WILDCARD:
+                throw new AssertionError(tree);
+            case TYPEVAR:
+                // Normally, site.getUpperBound() shouldn't be null.
+                // It should only happen during memberEnter/attribBase
+                // when determining the super type which *must* be
+                // done before attributing the type variables.  In
+                // other words, we are seeing this illegal program:
+                // class B<T> extends A<T.foo> {}
+                Symbol sym = (site.getUpperBound() != null)
+                    ? selectSym(tree, capture(site.getUpperBound()), env, pt, pkind)
+                    : null;
+                if (sym == null || isType(sym)) {
+                    log.error(pos, "type.var.cant.be.deref");
+                    return syms.errSymbol;
+                } else {
+                    return sym;
+                }
+            case ERROR:
+                // preserve identifier names through errors
+                return new ErrorType(name, site.tsym).tsym;
+            default:
+                // The qualifier expression is of a primitive type -- only
+                // .class is allowed for these.
+                if (name == names._class) {
+                    // In this case, we have already made sure in Select that
+                    // qualifier expression is a type.
+                    Type t = syms.classType;
+                    Type arg = types.boxedClass(site).type;
+                    t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
+                    return new VarSymbol(
+                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
+                } else {
+                    log.error(pos, "cant.deref", site);
+                    return syms.errSymbol;
+                }
+            }
+        }
+
+        /** Determine type of identifier or select expression and check that
+         *  (1) the referenced symbol is not deprecated
+         *  (2) the symbol's type is safe (@see checkSafe)
+         *  (3) if symbol is a variable, check that its type and kind are
+         *      compatible with the prototype and protokind.
+         *  (4) if symbol is an instance field of a raw type,
+         *      which is being assigned to, issue an unchecked warning if its
+         *      type changes under erasure.
+         *  (5) if symbol is an instance method of a raw type, issue an
+         *      unchecked warning if its argument types change under erasure.
+         *  If checks succeed:
+         *    If symbol is a constant, return its constant type
+         *    else if symbol is a method, return its result type
+         *    otherwise return its type.
+         *  Otherwise return errType.
+         *
+         *  @param tree       The syntax tree representing the identifier
+         *  @param site       If this is a select, the type of the selected
+         *                    expression, otherwise the type of the current class.
+         *  @param sym        The symbol representing the identifier.
+         *  @param env        The current environment.
+         *  @param pkind      The set of expected kinds.
+         *  @param pt         The expected type.
+         */
+        Type checkId(JCTree tree,
+                     Type site,
+                     Symbol sym,
+                     Env<AttrContext> env,
+                     int pkind,
+                     Type pt,
+                     boolean useVarargs) {
+            if (pt.isErroneous()) return syms.errType;
+            Type owntype; // The computed type of this identifier occurrence.
+            switch (sym.kind) {
+            case TYP:
+                // For types, the computed type equals the symbol's type,
+                // except for two situations:
+                owntype = sym.type;
+                if (owntype.tag == CLASS) {
+                    Type ownOuter = owntype.getEnclosingType();
+
+                    // (a) If the symbol's type is parameterized, erase it
+                    // because no type parameters were given.
+                    // We recover generic outer type later in visitTypeApply.
+                    if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
+                        owntype = types.erasure(owntype);
+                    }
+
+                    // (b) If the symbol's type is an inner class, then
+                    // we have to interpret its outer type as a superclass
+                    // of the site type. Example:
+                    //
+                    // class Tree<A> { class Visitor { ... } }
+                    // class PointTree extends Tree<Point> { ... }
+                    // ...PointTree.Visitor...
+                    //
+                    // Then the type of the last expression above is
+                    // Tree<Point>.Visitor.
+                    else if (ownOuter.tag == CLASS && site != ownOuter) {
+                        Type normOuter = site;
+                        if (normOuter.tag == CLASS)
+                            normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
+                        if (normOuter == null) // perhaps from an import
+                            normOuter = types.erasure(ownOuter);
+                        if (normOuter != ownOuter)
+                            owntype = new ClassType(
+                                normOuter, List.<Type>nil(), owntype.tsym);
+                    }
+                }
+                break;
+            case VAR:
+                VarSymbol v = (VarSymbol)sym;
+                // Test (4): if symbol is an instance field of a raw type,
+                // which is being assigned to, issue an unchecked warning if
+                // its type changes under erasure.
+                if (allowGenerics &&
+                    pkind == VAR &&
+                    v.owner.kind == TYP &&
+                    (v.flags() & STATIC) == 0 &&
+                    (site.tag == CLASS || site.tag == TYPEVAR)) {
+                    Type s = types.asOuterSuper(site, v.owner);
+                    if (s != null &&
+                        s.isRaw() &&
+                        !types.isSameType(v.type, v.erasure(types))) {
+                        chk.warnUnchecked(tree.pos(),
+                                          "unchecked.assign.to.var",
+                                          v, s);
+                    }
+                }
+                // The computed type of a variable is the type of the
+                // variable symbol, taken as a member of the site type.
+                owntype = (sym.owner.kind == TYP &&
+                           sym.name != names._this && sym.name != names._super)
+                    ? types.memberType(site, sym)
+                    : sym.type;
+
+                if (env.info.tvars.nonEmpty()) {
+                    Type owntype1 = new ForAll(env.info.tvars, owntype);
+                    for (List<Type> l = env.info.tvars; l.nonEmpty(); l = l.tail)
+                        if (!owntype.contains(l.head)) {
+                            log.error(tree.pos(), "undetermined.type", owntype1);
+                            owntype1 = syms.errType;
+                        }
+                    owntype = owntype1;
+                }
+
+                // If the variable is a constant, record constant value in
+                // computed type.
+                if (v.getConstValue() != null && isStaticReference(tree))
+                    owntype = owntype.constType(v.getConstValue());
+
+                if (pkind == VAL) {
+                    owntype = capture(owntype); // capture "names as expressions"
+                }
+                break;
+            case MTH: {
+                JCMethodInvocation app = (JCMethodInvocation)env.tree;
+                owntype = checkMethod(site, sym, env, app.args,
+                                      pt.getParameterTypes(), pt.getTypeArguments(),
+                                      env.info.varArgs);
+                break;
+            }
+            case PCK: case ERR:
+                owntype = sym.type;
+                break;
+            default:
+                throw new AssertionError("unexpected kind: " + sym.kind +
+                                         " in tree " + tree);
+            }
+
+            // Test (1): emit a `deprecation' warning if symbol is deprecated.
+            // (for constructors, the error was given when the constructor was
+            // resolved)
+            if (sym.name != names.init &&
+                (sym.flags() & DEPRECATED) != 0 &&
+                (env.info.scope.owner.flags() & DEPRECATED) == 0 &&
+                sym.outermostClass() != env.info.scope.owner.outermostClass())
+                chk.warnDeprecated(tree.pos(), sym);
+
+            if ((sym.flags() & PROPRIETARY) != 0)
+                log.strictWarning(tree.pos(), "sun.proprietary", sym);
+
+            // Test (3): if symbol is a variable, check that its type and
+            // kind are compatible with the prototype and protokind.
+            return check(tree, owntype, sym.kind, pkind, pt);
+        }
+
+        /** Check that variable is initialized and evaluate the variable's
+         *  initializer, if not yet done. Also check that variable is not
+         *  referenced before it is defined.
+         *  @param tree    The tree making up the variable reference.
+         *  @param env     The current environment.
+         *  @param v       The variable's symbol.
+         */
+        private void checkInit(JCTree tree,
+                               Env<AttrContext> env,
+                               VarSymbol v,
+                               boolean onlyWarning) {
+//          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
+//                             tree.pos + " " + v.pos + " " +
+//                             Resolve.isStatic(env));//DEBUG
+
+            // A forward reference is diagnosed if the declaration position
+            // of the variable is greater than the current tree position
+            // and the tree and variable definition occur in the same class
+            // definition.  Note that writes don't count as references.
+            // This check applies only to class and instance
+            // variables.  Local variables follow different scope rules,
+            // and are subject to definite assignment checking.
+            if (v.pos > tree.pos &&
+                v.owner.kind == TYP &&
+                canOwnInitializer(env.info.scope.owner) &&
+                v.owner == env.info.scope.owner.enclClass() &&
+                ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
+                (env.tree.getTag() != JCTree.ASSIGN ||
+                 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
+
+                if (!onlyWarning || isNonStaticEnumField(v)) {
+                    log.error(tree.pos(), "illegal.forward.ref");
+                } else if (useBeforeDeclarationWarning) {
+                    log.warning(tree.pos(), "forward.ref", v);
+                }
+            }
+
+            v.getConstValue(); // ensure initializer is evaluated
+
+            checkEnumInitializer(tree, env, v);
+        }
+
+        /**
+         * Check for illegal references to static members of enum.  In
+         * an enum type, constructors and initializers may not
+         * reference its static members unless they are constant.
+         *
+         * @param tree    The tree making up the variable reference.
+         * @param env     The current environment.
+         * @param v       The variable's symbol.
+         * @see JLS 3rd Ed. (8.9 Enums)
+         */
+        private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
+            // JLS 3rd Ed.:
+            //
+            // "It is a compile-time error to reference a static field
+            // of an enum type that is not a compile-time constant
+            // (15.28) from constructors, instance initializer blocks,
+            // or instance variable initializer expressions of that
+            // type. It is a compile-time error for the constructors,
+            // instance initializer blocks, or instance variable
+            // initializer expressions of an enum constant e to refer
+            // to itself or to an enum constant of the same type that
+            // is declared to the right of e."
+            if (isNonStaticEnumField(v)) {
+                ClassSymbol enclClass = env.info.scope.owner.enclClass();
+
+                if (enclClass == null || enclClass.owner == null)
+                    return;
+
+                // See if the enclosing class is the enum (or a
+                // subclass thereof) declaring v.  If not, this
+                // reference is OK.
+                if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
+                    return;
+
+                // If the reference isn't from an initializer, then
+                // the reference is OK.
+                if (!Resolve.isInitializer(env))
+                    return;
+
+                log.error(tree.pos(), "illegal.enum.static.ref");
+            }
+        }
+
+        private boolean isNonStaticEnumField(VarSymbol v) {
+            return Flags.isEnum(v.owner) && Flags.isStatic(v) && !Flags.isConstant(v);
+        }
+
+        /** Can the given symbol be the owner of code which forms part
+         *  if class initialization? This is the case if the symbol is
+         *  a type or field, or if the symbol is the synthetic method.
+         *  owning a block.
+         */
+        private boolean canOwnInitializer(Symbol sym) {
+            return
+                (sym.kind & (VAR | TYP)) != 0 ||
+                (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
+        }
+
+    Warner noteWarner = new Warner();
+
+    /**
+     * Check that method arguments conform to its instantation.
+     **/
+    public Type checkMethod(Type site,
+                            Symbol sym,
+                            Env<AttrContext> env,
+                            final List<JCExpression> argtrees,
+                            List<Type> argtypes,
+                            List<Type> typeargtypes,
+                            boolean useVarargs) {
+        // Test (5): if symbol is an instance method of a raw type, issue
+        // an unchecked warning if its argument types change under erasure.
+        if (allowGenerics &&
+            (sym.flags() & STATIC) == 0 &&
+            (site.tag == CLASS || site.tag == TYPEVAR)) {
+            Type s = types.asOuterSuper(site, sym.owner);
+            if (s != null && s.isRaw() &&
+                !types.isSameTypes(sym.type.getParameterTypes(),
+                                   sym.erasure(types).getParameterTypes())) {
+                chk.warnUnchecked(env.tree.pos(),
+                                  "unchecked.call.mbr.of.raw.type",
+                                  sym, s);
+            }
+        }
+
+        // Compute the identifier's instantiated type.
+        // For methods, we need to compute the instance type by
+        // Resolve.instantiate from the symbol's type as well as
+        // any type arguments and value arguments.
+        noteWarner.warned = false;
+        Type owntype = rs.instantiate(env,
+                                      site,
+                                      sym,
+                                      argtypes,
+                                      typeargtypes,
+                                      true,
+                                      useVarargs,
+                                      noteWarner);
+        boolean warned = noteWarner.warned;
+
+        // If this fails, something went wrong; we should not have
+        // found the identifier in the first place.
+        if (owntype == null) {
+            if (!pt.isErroneous())
+                log.error(env.tree.pos(),
+                          "internal.error.cant.instantiate",
+                          sym, site,
+                          Type.toString(pt.getParameterTypes()));
+            owntype = syms.errType;
+        } else {
+            // System.out.println("call   : " + env.tree);
+            // System.out.println("method : " + owntype);
+            // System.out.println("actuals: " + argtypes);
+            List<Type> formals = owntype.getParameterTypes();
+            Type last = useVarargs ? formals.last() : null;
+            if (sym.name==names.init &&
+                sym.owner == syms.enumSym)
+                formals = formals.tail.tail;
+            List<JCExpression> args = argtrees;
+            while (formals.head != last) {
+                JCTree arg = args.head;
+                Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head);
+                assertConvertible(arg, arg.type, formals.head, warn);
+                warned |= warn.warned;
+                args = args.tail;
+                formals = formals.tail;
+            }
+            if (useVarargs) {
+                Type varArg = types.elemtype(last);
+                while (args.tail != null) {
+                    JCTree arg = args.head;
+                    Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg);
+                    assertConvertible(arg, arg.type, varArg, warn);
+                    warned |= warn.warned;
+                    args = args.tail;
+                }
+            } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
+                // non-varargs call to varargs method
+                Type varParam = owntype.getParameterTypes().last();
+                Type lastArg = argtypes.last();
+                if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
+                    !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
+                    log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
+                                types.elemtype(varParam),
+                                varParam);
+            }
+
+            if (warned && sym.type.tag == FORALL) {
+                String typeargs = "";
+                if (typeargtypes != null && typeargtypes.nonEmpty()) {
+                    typeargs = "<" + Type.toString(typeargtypes) + ">";
+                }
+                chk.warnUnchecked(env.tree.pos(),
+                                  "unchecked.meth.invocation.applied",
+                                  sym,
+                                  sym.location(),
+                                  typeargs,
+                                  Type.toString(argtypes));
+                owntype = new MethodType(owntype.getParameterTypes(),
+                                         types.erasure(owntype.getReturnType()),
+                                         owntype.getThrownTypes(),
+                                         syms.methodClass);
+            }
+            if (useVarargs) {
+                JCTree tree = env.tree;
+                Type argtype = owntype.getParameterTypes().last();
+                if (!types.isReifiable(argtype))
+                    chk.warnUnchecked(env.tree.pos(),
+                                      "unchecked.generic.array.creation",
+                                      argtype);
+                Type elemtype = types.elemtype(argtype);
+                switch (tree.getTag()) {
+                case JCTree.APPLY:
+                    ((JCMethodInvocation) tree).varargsElement = elemtype;
+                    break;
+                case JCTree.NEWCLASS:
+                    ((JCNewClass) tree).varargsElement = elemtype;
+                    break;
+                default:
+                    throw new AssertionError(""+tree);
+                }
+            }
+        }
+        return owntype;
+    }
+
+    private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
+        if (types.isConvertible(actual, formal, warn))
+            return;
+
+        if (formal.isCompound()
+            && types.isSubtype(actual, types.supertype(formal))
+            && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
+            return;
+
+        if (false) {
+            // TODO: make assertConvertible work
+            chk.typeError(tree.pos(), JCDiagnostic.fragment("incompatible.types"), actual, formal);
+            throw new AssertionError("Tree: " + tree
+                                     + " actual:" + actual
+                                     + " formal: " + formal);
+        }
+    }
+
+    public void visitLiteral(JCLiteral tree) {
+        result = check(
+            tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt);
+    }
+    //where
+    /** Return the type of a literal with given type tag.
+     */
+    Type litType(int tag) {
+        return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
+    }
+
+    public void visitTypeIdent(JCPrimitiveTypeTree tree) {
+        result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt);
+    }
+
+    public void visitTypeArray(JCArrayTypeTree tree) {
+        Type etype = attribType(tree.elemtype, env);
+        Type type = new ArrayType(etype, syms.arrayClass);
+        result = check(tree, type, TYP, pkind, pt);
+    }
+
+    /** Visitor method for parameterized types.
+     *  Bound checking is left until later, since types are attributed
+     *  before supertype structure is completely known
+     */
+    public void visitTypeApply(JCTypeApply tree) {
+        Type owntype = syms.errType;
+
+        // Attribute functor part of application and make sure it's a class.
+        Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
+
+        // Attribute type parameters
+        List<Type> actuals = attribTypes(tree.arguments, env);
+
+        if (clazztype.tag == CLASS) {
+            List<Type> formals = clazztype.tsym.type.getTypeArguments();
+
+            if (actuals.length() == formals.length()) {
+                List<Type> a = actuals;
+                List<Type> f = formals;
+                while (a.nonEmpty()) {
+                    a.head = a.head.withTypeVar(f.head);
+                    a = a.tail;
+                    f = f.tail;
+                }
+                // Compute the proper generic outer
+                Type clazzOuter = clazztype.getEnclosingType();
+                if (clazzOuter.tag == CLASS) {
+                    Type site;
+                    if (tree.clazz.getTag() == JCTree.IDENT) {
+                        site = env.enclClass.sym.type;
+                    } else if (tree.clazz.getTag() == JCTree.SELECT) {
+                        site = ((JCFieldAccess) tree.clazz).selected.type;
+                    } else throw new AssertionError(""+tree);
+                    if (clazzOuter.tag == CLASS && site != clazzOuter) {
+                        if (site.tag == CLASS)
+                            site = types.asOuterSuper(site, clazzOuter.tsym);
+                        if (site == null)
+                            site = types.erasure(clazzOuter);
+                        clazzOuter = site;
+                    }
+                }
+                owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
+            } else {
+                if (formals.length() != 0) {
+                    log.error(tree.pos(), "wrong.number.type.args",
+                              Integer.toString(formals.length()));
+                } else {
+                    log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
+                }
+                owntype = syms.errType;
+            }
+        }
+        result = check(tree, owntype, TYP, pkind, pt);
+    }
+
+    public void visitTypeParameter(JCTypeParameter tree) {
+        TypeVar a = (TypeVar)tree.type;
+        Set<Type> boundSet = new HashSet<Type>();
+        if (a.bound.isErroneous())
+            return;
+        List<Type> bs = types.getBounds(a);
+        if (tree.bounds.nonEmpty()) {
+            // accept class or interface or typevar as first bound.
+            Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
+            boundSet.add(types.erasure(b));
+            if (b.tag == TYPEVAR) {
+                // if first bound was a typevar, do not accept further bounds.
+                if (tree.bounds.tail.nonEmpty()) {
+                    log.error(tree.bounds.tail.head.pos(),
+                              "type.var.may.not.be.followed.by.other.bounds");
+                    tree.bounds = List.of(tree.bounds.head);
+                }
+            } else {
+                // if first bound was a class or interface, accept only interfaces
+                // as further bounds.
+                for (JCExpression bound : tree.bounds.tail) {
+                    bs = bs.tail;
+                    Type i = checkBase(bs.head, bound, env, false, true, false);
+                    if (i.tag == CLASS)
+                        chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
+                }
+            }
+        }
+        bs = types.getBounds(a);
+
+        // in case of multiple bounds ...
+        if (bs.length() > 1) {
+            // ... the variable's bound is a class type flagged COMPOUND
+            // (see comment for TypeVar.bound).
+            // In this case, generate a class tree that represents the
+            // bound class, ...
+            JCTree extending;
+            List<JCExpression> implementing;
+            if ((bs.head.tsym.flags() & INTERFACE) == 0) {
+                extending = tree.bounds.head;
+                implementing = tree.bounds.tail;
+            } else {
+                extending = null;
+                implementing = tree.bounds;
+            }
+            JCClassDecl cd = make.at(tree.pos).ClassDef(
+                make.Modifiers(PUBLIC | ABSTRACT),
+                tree.name, List.<JCTypeParameter>nil(),
+                extending, implementing, List.<JCTree>nil());
+
+            ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
+            assert (c.flags() & COMPOUND) != 0;
+            cd.sym = c;
+            c.sourcefile = env.toplevel.sourcefile;
+
+            // ... and attribute the bound class
+            c.flags_field |= UNATTRIBUTED;
+            Env<AttrContext> cenv = enter.classEnv(cd, env);
+            enter.typeEnvs.put(c, cenv);
+        }
+    }
+
+
+    public void visitWildcard(JCWildcard tree) {
+        //- System.err.println("visitWildcard("+tree+");");//DEBUG
+        Type type = (tree.kind.kind == BoundKind.UNBOUND)
+            ? syms.objectType
+            : attribType(tree.inner, env);
+        result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
+                                              tree.kind.kind,
+                                              syms.boundClass),
+                       TYP, pkind, pt);
+    }
+
+    public void visitAnnotation(JCAnnotation tree) {
+        log.error(tree.pos(), "annotation.not.valid.for.type", pt);
+        result = tree.type = syms.errType;
+    }
+
+    public void visitErroneous(JCErroneous tree) {
+        if (tree.errs != null)
+            for (JCTree err : tree.errs)
+                attribTree(err, env, ERR, pt);
+        result = tree.type = syms.errType;
+    }
+
+    /** Default visitor method for all other trees.
+     */
+    public void visitTree(JCTree tree) {
+        throw new AssertionError();
+    }
+
+    /** Main method: attribute class definition associated with given class symbol.
+     *  reporting completion failures at the given position.
+     *  @param pos The source position at which completion errors are to be
+     *             reported.
+     *  @param c   The class symbol whose definition will be attributed.
+     */
+    public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
+        try {
+            annotate.flush();
+            attribClass(c);
+        } catch (CompletionFailure ex) {
+            chk.completionError(pos, ex);
+        }
+    }
+
+    /** Attribute class definition associated with given class symbol.
+     *  @param c   The class symbol whose definition will be attributed.
+     */
+    void attribClass(ClassSymbol c) throws CompletionFailure {
+        if (c.type.tag == ERROR) return;
+
+        // Check for cycles in the inheritance graph, which can arise from
+        // ill-formed class files.
+        chk.checkNonCyclic(null, c.type);
+
+        Type st = types.supertype(c.type);
+        if ((c.flags_field & Flags.COMPOUND) == 0) {
+            // First, attribute superclass.
+            if (st.tag == CLASS)
+                attribClass((ClassSymbol)st.tsym);
+
+            // Next attribute owner, if it is a class.
+            if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
+                attribClass((ClassSymbol)c.owner);
+        }
+
+        // The previous operations might have attributed the current class
+        // if there was a cycle. So we test first whether the class is still
+        // UNATTRIBUTED.
+        if ((c.flags_field & UNATTRIBUTED) != 0) {
+            c.flags_field &= ~UNATTRIBUTED;
+
+            // Get environment current at the point of class definition.
+            Env<AttrContext> env = enter.typeEnvs.get(c);
+
+            // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
+            // because the annotations were not available at the time the env was created. Therefore,
+            // we look up the environment chain for the first enclosing environment for which the
+            // lint value is set. Typically, this is the parent env, but might be further if there
+            // are any envs created as a result of TypeParameter nodes.
+            Env<AttrContext> lintEnv = env;
+            while (lintEnv.info.lint == null)
+                lintEnv = lintEnv.next;
+
+            // Having found the enclosing lint value, we can initialize the lint value for this class
+            env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags());
+
+            Lint prevLint = chk.setLint(env.info.lint);
+            JavaFileObject prev = log.useSource(c.sourcefile);
+
+            try {
+                // java.lang.Enum may not be subclassed by a non-enum
+                if (st.tsym == syms.enumSym &&
+                    ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
+                    log.error(env.tree.pos(), "enum.no.subclassing");
+
+                // Enums may not be extended by source-level classes
+                if (st.tsym != null &&
+                    ((st.tsym.flags_field & Flags.ENUM) != 0) &&
+                    ((c.flags_field & Flags.ENUM) == 0) &&
+                    !target.compilerBootstrap(c)) {
+                    log.error(env.tree.pos(), "enum.types.not.extensible");
+                }
+                attribClassBody(env, c);
+
+                chk.checkDeprecatedAnnotation(env.tree.pos(), c);
+            } finally {
+                log.useSource(prev);
+                chk.setLint(prevLint);
+            }
+
+        }
+    }
+
+    public void visitImport(JCImport tree) {
+        // nothing to do
+    }
+
+    /** Finish the attribution of a class. */
+    private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
+        JCClassDecl tree = (JCClassDecl)env.tree;
+        assert c == tree.sym;
+
+        // Validate annotations
+        chk.validateAnnotations(tree.mods.annotations, c);
+
+        // Validate type parameters, supertype and interfaces.
+        attribBounds(tree.typarams);
+        chk.validateTypeParams(tree.typarams);
+        chk.validate(tree.extending);
+        chk.validate(tree.implementing);
+
+        // If this is a non-abstract class, check that it has no abstract
+        // methods or unimplemented methods of an implemented interface.
+        if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
+            if (!relax)
+                chk.checkAllDefined(tree.pos(), c);
+        }
+
+        if ((c.flags() & ANNOTATION) != 0) {
+            if (tree.implementing.nonEmpty())
+                log.error(tree.implementing.head.pos(),
+                          "cant.extend.intf.annotation");
+            if (tree.typarams.nonEmpty())
+                log.error(tree.typarams.head.pos(),
+                          "intf.annotation.cant.have.type.params");
+        } else {
+            // Check that all extended classes and interfaces
+            // are compatible (i.e. no two define methods with same arguments
+            // yet different return types).  (JLS 8.4.6.3)
+            chk.checkCompatibleSupertypes(tree.pos(), c.type);
+        }
+
+        // Check that class does not import the same parameterized interface
+        // with two different argument lists.
+        chk.checkClassBounds(tree.pos(), c.type);
+
+        tree.type = c.type;
+
+        boolean assertsEnabled = false;
+        assert assertsEnabled = true;
+        if (assertsEnabled) {
+            for (List<JCTypeParameter> l = tree.typarams;
+                 l.nonEmpty(); l = l.tail)
+                assert env.info.scope.lookup(l.head.name).scope != null;
+        }
+
+        // Check that a generic class doesn't extend Throwable
+        if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
+            log.error(tree.extending.pos(), "generic.throwable");
+
+        // Check that all methods which implement some
+        // method conform to the method they implement.
+        chk.checkImplementations(tree);
+
+        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
+            // Attribute declaration
+            attribStat(l.head, env);
+            // Check that declarations in inner classes are not static (JLS 8.1.2)
+            // Make an exception for static constants.
+            if (c.owner.kind != PCK &&
+                ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
+                (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
+                Symbol sym = null;
+                if (l.head.getTag() == JCTree.VARDEF) sym = ((JCVariableDecl) l.head).sym;
+                if (sym == null ||
+                    sym.kind != VAR ||
+                    ((VarSymbol) sym).getConstValue() == null)
+                    log.error(l.head.pos(), "icls.cant.have.static.decl");
+            }
+        }
+
+        // Check for cycles among non-initial constructors.
+        chk.checkCyclicConstructors(tree);
+
+        // Check for cycles among annotation elements.
+        chk.checkNonCyclicElements(tree);
+
+        // Check for proper use of serialVersionUID
+        if (env.info.lint.isEnabled(Lint.LintCategory.SERIAL) &&
+            isSerializable(c) &&
+            (c.flags() & Flags.ENUM) == 0 &&
+            (c.flags() & ABSTRACT) == 0) {
+            checkSerialVersionUID(tree, c);
+        }
+    }
+        // where
+        /** check if a class is a subtype of Serializable, if that is available. */
+        private boolean isSerializable(ClassSymbol c) {
+            try {
+                syms.serializableType.complete();
+            }
+            catch (CompletionFailure e) {
+                return false;
+            }
+            return types.isSubtype(c.type, syms.serializableType);
+        }
+
+        /** Check that an appropriate serialVersionUID member is defined. */
+        private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
+
+            // check for presence of serialVersionUID
+            Scope.Entry e = c.members().lookup(names.serialVersionUID);
+            while (e.scope != null && e.sym.kind != VAR) e = e.next();
+            if (e.scope == null) {
+                log.warning(tree.pos(), "missing.SVUID", c);
+                return;
+            }
+
+            // check that it is static final
+            VarSymbol svuid = (VarSymbol)e.sym;
+            if ((svuid.flags() & (STATIC | FINAL)) !=
+                (STATIC | FINAL))
+                log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
+
+            // check that it is long
+            else if (svuid.type.tag != TypeTags.LONG)
+                log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
+
+            // check constant
+            else if (svuid.getConstValue() == null)
+                log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
+        }
+
+    private Type capture(Type type) {
+        return types.capture(type);
+    }
+}