src/hotspot/share/gc/g1/c2/g1BarrierSetC2.cpp
changeset 50180 ffa644980dff
child 50375 bfbe7d8369bb
equal deleted inserted replaced
50179:d9bc8557ae16 50180:ffa644980dff
       
     1 /*
       
     2  * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "gc/g1/c2/g1BarrierSetC2.hpp"
       
    27 #include "gc/g1/g1BarrierSet.hpp"
       
    28 #include "gc/g1/g1CardTable.hpp"
       
    29 #include "gc/g1/g1ThreadLocalData.hpp"
       
    30 #include "gc/g1/heapRegion.hpp"
       
    31 #include "opto/arraycopynode.hpp"
       
    32 #include "opto/graphKit.hpp"
       
    33 #include "opto/idealKit.hpp"
       
    34 #include "opto/macro.hpp"
       
    35 #include "opto/type.hpp"
       
    36 #include "runtime/sharedRuntime.hpp"
       
    37 #include "utilities/macros.hpp"
       
    38 
       
    39 const TypeFunc *G1BarrierSetC2::g1_wb_pre_Type() {
       
    40   const Type **fields = TypeTuple::fields(2);
       
    41   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
       
    42   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
       
    43   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
       
    44 
       
    45   // create result type (range)
       
    46   fields = TypeTuple::fields(0);
       
    47   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
       
    48 
       
    49   return TypeFunc::make(domain, range);
       
    50 }
       
    51 
       
    52 const TypeFunc *G1BarrierSetC2::g1_wb_post_Type() {
       
    53   const Type **fields = TypeTuple::fields(2);
       
    54   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
       
    55   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
       
    56   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
       
    57 
       
    58   // create result type (range)
       
    59   fields = TypeTuple::fields(0);
       
    60   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
       
    61 
       
    62   return TypeFunc::make(domain, range);
       
    63 }
       
    64 
       
    65 #define __ ideal.
       
    66 /*
       
    67  * Determine if the G1 pre-barrier can be removed. The pre-barrier is
       
    68  * required by SATB to make sure all objects live at the start of the
       
    69  * marking are kept alive, all reference updates need to any previous
       
    70  * reference stored before writing.
       
    71  *
       
    72  * If the previous value is NULL there is no need to save the old value.
       
    73  * References that are NULL are filtered during runtime by the barrier
       
    74  * code to avoid unnecessary queuing.
       
    75  *
       
    76  * However in the case of newly allocated objects it might be possible to
       
    77  * prove that the reference about to be overwritten is NULL during compile
       
    78  * time and avoid adding the barrier code completely.
       
    79  *
       
    80  * The compiler needs to determine that the object in which a field is about
       
    81  * to be written is newly allocated, and that no prior store to the same field
       
    82  * has happened since the allocation.
       
    83  *
       
    84  * Returns true if the pre-barrier can be removed
       
    85  */
       
    86 bool G1BarrierSetC2::g1_can_remove_pre_barrier(GraphKit* kit,
       
    87                                                PhaseTransform* phase,
       
    88                                                Node* adr,
       
    89                                                BasicType bt,
       
    90                                                uint adr_idx) const {
       
    91   intptr_t offset = 0;
       
    92   Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset);
       
    93   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase);
       
    94 
       
    95   if (offset == Type::OffsetBot) {
       
    96     return false; // cannot unalias unless there are precise offsets
       
    97   }
       
    98 
       
    99   if (alloc == NULL) {
       
   100     return false; // No allocation found
       
   101   }
       
   102 
       
   103   intptr_t size_in_bytes = type2aelembytes(bt);
       
   104 
       
   105   Node* mem = kit->memory(adr_idx); // start searching here...
       
   106 
       
   107   for (int cnt = 0; cnt < 50; cnt++) {
       
   108 
       
   109     if (mem->is_Store()) {
       
   110 
       
   111       Node* st_adr = mem->in(MemNode::Address);
       
   112       intptr_t st_offset = 0;
       
   113       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
       
   114 
       
   115       if (st_base == NULL) {
       
   116         break; // inscrutable pointer
       
   117       }
       
   118 
       
   119       // Break we have found a store with same base and offset as ours so break
       
   120       if (st_base == base && st_offset == offset) {
       
   121         break;
       
   122       }
       
   123 
       
   124       if (st_offset != offset && st_offset != Type::OffsetBot) {
       
   125         const int MAX_STORE = BytesPerLong;
       
   126         if (st_offset >= offset + size_in_bytes ||
       
   127             st_offset <= offset - MAX_STORE ||
       
   128             st_offset <= offset - mem->as_Store()->memory_size()) {
       
   129           // Success:  The offsets are provably independent.
       
   130           // (You may ask, why not just test st_offset != offset and be done?
       
   131           // The answer is that stores of different sizes can co-exist
       
   132           // in the same sequence of RawMem effects.  We sometimes initialize
       
   133           // a whole 'tile' of array elements with a single jint or jlong.)
       
   134           mem = mem->in(MemNode::Memory);
       
   135           continue; // advance through independent store memory
       
   136         }
       
   137       }
       
   138 
       
   139       if (st_base != base
       
   140           && MemNode::detect_ptr_independence(base, alloc, st_base,
       
   141                                               AllocateNode::Ideal_allocation(st_base, phase),
       
   142                                               phase)) {
       
   143         // Success:  The bases are provably independent.
       
   144         mem = mem->in(MemNode::Memory);
       
   145         continue; // advance through independent store memory
       
   146       }
       
   147     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
       
   148 
       
   149       InitializeNode* st_init = mem->in(0)->as_Initialize();
       
   150       AllocateNode* st_alloc = st_init->allocation();
       
   151 
       
   152       // Make sure that we are looking at the same allocation site.
       
   153       // The alloc variable is guaranteed to not be null here from earlier check.
       
   154       if (alloc == st_alloc) {
       
   155         // Check that the initialization is storing NULL so that no previous store
       
   156         // has been moved up and directly write a reference
       
   157         Node* captured_store = st_init->find_captured_store(offset,
       
   158                                                             type2aelembytes(T_OBJECT),
       
   159                                                             phase);
       
   160         if (captured_store == NULL || captured_store == st_init->zero_memory()) {
       
   161           return true;
       
   162         }
       
   163       }
       
   164     }
       
   165 
       
   166     // Unless there is an explicit 'continue', we must bail out here,
       
   167     // because 'mem' is an inscrutable memory state (e.g., a call).
       
   168     break;
       
   169   }
       
   170 
       
   171   return false;
       
   172 }
       
   173 
       
   174 // G1 pre/post barriers
       
   175 void G1BarrierSetC2::pre_barrier(GraphKit* kit,
       
   176                                  bool do_load,
       
   177                                  Node* ctl,
       
   178                                  Node* obj,
       
   179                                  Node* adr,
       
   180                                  uint alias_idx,
       
   181                                  Node* val,
       
   182                                  const TypeOopPtr* val_type,
       
   183                                  Node* pre_val,
       
   184                                  BasicType bt) const {
       
   185   // Some sanity checks
       
   186   // Note: val is unused in this routine.
       
   187 
       
   188   if (do_load) {
       
   189     // We need to generate the load of the previous value
       
   190     assert(obj != NULL, "must have a base");
       
   191     assert(adr != NULL, "where are loading from?");
       
   192     assert(pre_val == NULL, "loaded already?");
       
   193     assert(val_type != NULL, "need a type");
       
   194 
       
   195     if (use_ReduceInitialCardMarks()
       
   196         && g1_can_remove_pre_barrier(kit, &kit->gvn(), adr, bt, alias_idx)) {
       
   197       return;
       
   198     }
       
   199 
       
   200   } else {
       
   201     // In this case both val_type and alias_idx are unused.
       
   202     assert(pre_val != NULL, "must be loaded already");
       
   203     // Nothing to be done if pre_val is null.
       
   204     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
       
   205     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
       
   206   }
       
   207   assert(bt == T_OBJECT, "or we shouldn't be here");
       
   208 
       
   209   IdealKit ideal(kit, true);
       
   210 
       
   211   Node* tls = __ thread(); // ThreadLocalStorage
       
   212 
       
   213   Node* no_base = __ top();
       
   214   Node* zero  = __ ConI(0);
       
   215   Node* zeroX = __ ConX(0);
       
   216 
       
   217   float likely  = PROB_LIKELY(0.999);
       
   218   float unlikely  = PROB_UNLIKELY(0.999);
       
   219 
       
   220   BasicType active_type = in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
       
   221   assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 4 || in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "flag width");
       
   222 
       
   223   // Offsets into the thread
       
   224   const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
       
   225   const int index_offset   = in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset());
       
   226   const int buffer_offset  = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset());
       
   227 
       
   228   // Now the actual pointers into the thread
       
   229   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
       
   230   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
       
   231   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
       
   232 
       
   233   // Now some of the values
       
   234   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
       
   235 
       
   236   // if (!marking)
       
   237   __ if_then(marking, BoolTest::ne, zero, unlikely); {
       
   238     BasicType index_bt = TypeX_X->basic_type();
       
   239     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 SATBMarkQueue::_index with wrong size.");
       
   240     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
       
   241 
       
   242     if (do_load) {
       
   243       // load original value
       
   244       // alias_idx correct??
       
   245       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
       
   246     }
       
   247 
       
   248     // if (pre_val != NULL)
       
   249     __ if_then(pre_val, BoolTest::ne, kit->null()); {
       
   250       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
       
   251 
       
   252       // is the queue for this thread full?
       
   253       __ if_then(index, BoolTest::ne, zeroX, likely); {
       
   254 
       
   255         // decrement the index
       
   256         Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
       
   257 
       
   258         // Now get the buffer location we will log the previous value into and store it
       
   259         Node *log_addr = __ AddP(no_base, buffer, next_index);
       
   260         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
       
   261         // update the index
       
   262         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
       
   263 
       
   264       } __ else_(); {
       
   265 
       
   266         // logging buffer is full, call the runtime
       
   267         const TypeFunc *tf = g1_wb_pre_Type();
       
   268         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
       
   269       } __ end_if();  // (!index)
       
   270     } __ end_if();  // (pre_val != NULL)
       
   271   } __ end_if();  // (!marking)
       
   272 
       
   273   // Final sync IdealKit and GraphKit.
       
   274   kit->final_sync(ideal);
       
   275 }
       
   276 
       
   277 /*
       
   278  * G1 similar to any GC with a Young Generation requires a way to keep track of
       
   279  * references from Old Generation to Young Generation to make sure all live
       
   280  * objects are found. G1 also requires to keep track of object references
       
   281  * between different regions to enable evacuation of old regions, which is done
       
   282  * as part of mixed collections. References are tracked in remembered sets and
       
   283  * is continuously updated as reference are written to with the help of the
       
   284  * post-barrier.
       
   285  *
       
   286  * To reduce the number of updates to the remembered set the post-barrier
       
   287  * filters updates to fields in objects located in the Young Generation,
       
   288  * the same region as the reference, when the NULL is being written or
       
   289  * if the card is already marked as dirty by an earlier write.
       
   290  *
       
   291  * Under certain circumstances it is possible to avoid generating the
       
   292  * post-barrier completely if it is possible during compile time to prove
       
   293  * the object is newly allocated and that no safepoint exists between the
       
   294  * allocation and the store.
       
   295  *
       
   296  * In the case of slow allocation the allocation code must handle the barrier
       
   297  * as part of the allocation in the case the allocated object is not located
       
   298  * in the nursery, this would happen for humongous objects. This is similar to
       
   299  * how CMS is required to handle this case, see the comments for the method
       
   300  * CollectedHeap::new_deferred_store_barrier and OptoRuntime::new_deferred_store_barrier.
       
   301  * A deferred card mark is required for these objects and handled in the above
       
   302  * mentioned methods.
       
   303  *
       
   304  * Returns true if the post barrier can be removed
       
   305  */
       
   306 bool G1BarrierSetC2::g1_can_remove_post_barrier(GraphKit* kit,
       
   307                                                 PhaseTransform* phase, Node* store,
       
   308                                                 Node* adr) const {
       
   309   intptr_t      offset = 0;
       
   310   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
       
   311   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
       
   312 
       
   313   if (offset == Type::OffsetBot) {
       
   314     return false; // cannot unalias unless there are precise offsets
       
   315   }
       
   316 
       
   317   if (alloc == NULL) {
       
   318      return false; // No allocation found
       
   319   }
       
   320 
       
   321   // Start search from Store node
       
   322   Node* mem = store->in(MemNode::Control);
       
   323   if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
       
   324 
       
   325     InitializeNode* st_init = mem->in(0)->as_Initialize();
       
   326     AllocateNode*  st_alloc = st_init->allocation();
       
   327 
       
   328     // Make sure we are looking at the same allocation
       
   329     if (alloc == st_alloc) {
       
   330       return true;
       
   331     }
       
   332   }
       
   333 
       
   334   return false;
       
   335 }
       
   336 
       
   337 //
       
   338 // Update the card table and add card address to the queue
       
   339 //
       
   340 void G1BarrierSetC2::g1_mark_card(GraphKit* kit,
       
   341                                   IdealKit& ideal,
       
   342                                   Node* card_adr,
       
   343                                   Node* oop_store,
       
   344                                   uint oop_alias_idx,
       
   345                                   Node* index,
       
   346                                   Node* index_adr,
       
   347                                   Node* buffer,
       
   348                                   const TypeFunc* tf) const {
       
   349   Node* zero  = __ ConI(0);
       
   350   Node* zeroX = __ ConX(0);
       
   351   Node* no_base = __ top();
       
   352   BasicType card_bt = T_BYTE;
       
   353   // Smash zero into card. MUST BE ORDERED WRT TO STORE
       
   354   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
       
   355 
       
   356   //  Now do the queue work
       
   357   __ if_then(index, BoolTest::ne, zeroX); {
       
   358 
       
   359     Node* next_index = kit->gvn().transform(new SubXNode(index, __ ConX(sizeof(intptr_t))));
       
   360     Node* log_addr = __ AddP(no_base, buffer, next_index);
       
   361 
       
   362     // Order, see storeCM.
       
   363     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
       
   364     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
       
   365 
       
   366   } __ else_(); {
       
   367     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
       
   368   } __ end_if();
       
   369 
       
   370 }
       
   371 
       
   372 void G1BarrierSetC2::post_barrier(GraphKit* kit,
       
   373                                   Node* ctl,
       
   374                                   Node* oop_store,
       
   375                                   Node* obj,
       
   376                                   Node* adr,
       
   377                                   uint alias_idx,
       
   378                                   Node* val,
       
   379                                   BasicType bt,
       
   380                                   bool use_precise) const {
       
   381   // If we are writing a NULL then we need no post barrier
       
   382 
       
   383   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
       
   384     // Must be NULL
       
   385     const Type* t = val->bottom_type();
       
   386     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
       
   387     // No post barrier if writing NULLx
       
   388     return;
       
   389   }
       
   390 
       
   391   if (use_ReduceInitialCardMarks() && obj == kit->just_allocated_object(kit->control())) {
       
   392     // We can skip marks on a freshly-allocated object in Eden.
       
   393     // Keep this code in sync with new_deferred_store_barrier() in runtime.cpp.
       
   394     // That routine informs GC to take appropriate compensating steps,
       
   395     // upon a slow-path allocation, so as to make this card-mark
       
   396     // elision safe.
       
   397     return;
       
   398   }
       
   399 
       
   400   if (use_ReduceInitialCardMarks()
       
   401       && g1_can_remove_post_barrier(kit, &kit->gvn(), oop_store, adr)) {
       
   402     return;
       
   403   }
       
   404 
       
   405   if (!use_precise) {
       
   406     // All card marks for a (non-array) instance are in one place:
       
   407     adr = obj;
       
   408   }
       
   409   // (Else it's an array (or unknown), and we want more precise card marks.)
       
   410   assert(adr != NULL, "");
       
   411 
       
   412   IdealKit ideal(kit, true);
       
   413 
       
   414   Node* tls = __ thread(); // ThreadLocalStorage
       
   415 
       
   416   Node* no_base = __ top();
       
   417   float unlikely  = PROB_UNLIKELY(0.999);
       
   418   Node* young_card = __ ConI((jint)G1CardTable::g1_young_card_val());
       
   419   Node* dirty_card = __ ConI((jint)G1CardTable::dirty_card_val());
       
   420   Node* zeroX = __ ConX(0);
       
   421 
       
   422   const TypeFunc *tf = g1_wb_post_Type();
       
   423 
       
   424   // Offsets into the thread
       
   425   const int index_offset  = in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset());
       
   426   const int buffer_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset());
       
   427 
       
   428   // Pointers into the thread
       
   429 
       
   430   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
       
   431   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
       
   432 
       
   433   // Now some values
       
   434   // Use ctrl to avoid hoisting these values past a safepoint, which could
       
   435   // potentially reset these fields in the JavaThread.
       
   436   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
       
   437   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
       
   438 
       
   439   // Convert the store obj pointer to an int prior to doing math on it
       
   440   // Must use ctrl to prevent "integerized oop" existing across safepoint
       
   441   Node* cast =  __ CastPX(__ ctrl(), adr);
       
   442 
       
   443   // Divide pointer by card size
       
   444   Node* card_offset = __ URShiftX( cast, __ ConI(CardTable::card_shift) );
       
   445 
       
   446   // Combine card table base and card offset
       
   447   Node* card_adr = __ AddP(no_base, byte_map_base_node(kit), card_offset );
       
   448 
       
   449   // If we know the value being stored does it cross regions?
       
   450 
       
   451   if (val != NULL) {
       
   452     // Does the store cause us to cross regions?
       
   453 
       
   454     // Should be able to do an unsigned compare of region_size instead of
       
   455     // and extra shift. Do we have an unsigned compare??
       
   456     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
       
   457     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
       
   458 
       
   459     // if (xor_res == 0) same region so skip
       
   460     __ if_then(xor_res, BoolTest::ne, zeroX); {
       
   461 
       
   462       // No barrier if we are storing a NULL
       
   463       __ if_then(val, BoolTest::ne, kit->null(), unlikely); {
       
   464 
       
   465         // Ok must mark the card if not already dirty
       
   466 
       
   467         // load the original value of the card
       
   468         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
       
   469 
       
   470         __ if_then(card_val, BoolTest::ne, young_card); {
       
   471           kit->sync_kit(ideal);
       
   472           kit->insert_mem_bar(Op_MemBarVolatile, oop_store);
       
   473           __ sync_kit(kit);
       
   474 
       
   475           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
       
   476           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
       
   477             g1_mark_card(kit, ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
       
   478           } __ end_if();
       
   479         } __ end_if();
       
   480       } __ end_if();
       
   481     } __ end_if();
       
   482   } else {
       
   483     // The Object.clone() intrinsic uses this path if !ReduceInitialCardMarks.
       
   484     // We don't need a barrier here if the destination is a newly allocated object
       
   485     // in Eden. Otherwise, GC verification breaks because we assume that cards in Eden
       
   486     // are set to 'g1_young_gen' (see G1CardTable::verify_g1_young_region()).
       
   487     assert(!use_ReduceInitialCardMarks(), "can only happen with card marking");
       
   488     Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
       
   489     __ if_then(card_val, BoolTest::ne, young_card); {
       
   490       g1_mark_card(kit, ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
       
   491     } __ end_if();
       
   492   }
       
   493 
       
   494   // Final sync IdealKit and GraphKit.
       
   495   kit->final_sync(ideal);
       
   496 }
       
   497 
       
   498 // Helper that guards and inserts a pre-barrier.
       
   499 void G1BarrierSetC2::insert_pre_barrier(GraphKit* kit, Node* base_oop, Node* offset,
       
   500                                         Node* pre_val, bool need_mem_bar) const {
       
   501   // We could be accessing the referent field of a reference object. If so, when G1
       
   502   // is enabled, we need to log the value in the referent field in an SATB buffer.
       
   503   // This routine performs some compile time filters and generates suitable
       
   504   // runtime filters that guard the pre-barrier code.
       
   505   // Also add memory barrier for non volatile load from the referent field
       
   506   // to prevent commoning of loads across safepoint.
       
   507 
       
   508   // Some compile time checks.
       
   509 
       
   510   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
       
   511   const TypeX* otype = offset->find_intptr_t_type();
       
   512   if (otype != NULL && otype->is_con() &&
       
   513       otype->get_con() != java_lang_ref_Reference::referent_offset) {
       
   514     // Constant offset but not the reference_offset so just return
       
   515     return;
       
   516   }
       
   517 
       
   518   // We only need to generate the runtime guards for instances.
       
   519   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
       
   520   if (btype != NULL) {
       
   521     if (btype->isa_aryptr()) {
       
   522       // Array type so nothing to do
       
   523       return;
       
   524     }
       
   525 
       
   526     const TypeInstPtr* itype = btype->isa_instptr();
       
   527     if (itype != NULL) {
       
   528       // Can the klass of base_oop be statically determined to be
       
   529       // _not_ a sub-class of Reference and _not_ Object?
       
   530       ciKlass* klass = itype->klass();
       
   531       if ( klass->is_loaded() &&
       
   532           !klass->is_subtype_of(kit->env()->Reference_klass()) &&
       
   533           !kit->env()->Object_klass()->is_subtype_of(klass)) {
       
   534         return;
       
   535       }
       
   536     }
       
   537   }
       
   538 
       
   539   // The compile time filters did not reject base_oop/offset so
       
   540   // we need to generate the following runtime filters
       
   541   //
       
   542   // if (offset == java_lang_ref_Reference::_reference_offset) {
       
   543   //   if (instance_of(base, java.lang.ref.Reference)) {
       
   544   //     pre_barrier(_, pre_val, ...);
       
   545   //   }
       
   546   // }
       
   547 
       
   548   float likely   = PROB_LIKELY(  0.999);
       
   549   float unlikely = PROB_UNLIKELY(0.999);
       
   550 
       
   551   IdealKit ideal(kit);
       
   552 
       
   553   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
       
   554 
       
   555   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
       
   556       // Update graphKit memory and control from IdealKit.
       
   557       kit->sync_kit(ideal);
       
   558 
       
   559       Node* ref_klass_con = kit->makecon(TypeKlassPtr::make(kit->env()->Reference_klass()));
       
   560       Node* is_instof = kit->gen_instanceof(base_oop, ref_klass_con);
       
   561 
       
   562       // Update IdealKit memory and control from graphKit.
       
   563       __ sync_kit(kit);
       
   564 
       
   565       Node* one = __ ConI(1);
       
   566       // is_instof == 0 if base_oop == NULL
       
   567       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
       
   568 
       
   569         // Update graphKit from IdeakKit.
       
   570         kit->sync_kit(ideal);
       
   571 
       
   572         // Use the pre-barrier to record the value in the referent field
       
   573         pre_barrier(kit, false /* do_load */,
       
   574                     __ ctrl(),
       
   575                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
       
   576                     pre_val /* pre_val */,
       
   577                     T_OBJECT);
       
   578         if (need_mem_bar) {
       
   579           // Add memory barrier to prevent commoning reads from this field
       
   580           // across safepoint since GC can change its value.
       
   581           kit->insert_mem_bar(Op_MemBarCPUOrder);
       
   582         }
       
   583         // Update IdealKit from graphKit.
       
   584         __ sync_kit(kit);
       
   585 
       
   586       } __ end_if(); // _ref_type != ref_none
       
   587   } __ end_if(); // offset == referent_offset
       
   588 
       
   589   // Final sync IdealKit and GraphKit.
       
   590   kit->final_sync(ideal);
       
   591 }
       
   592 
       
   593 #undef __
       
   594 
       
   595 Node* G1BarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
       
   596   DecoratorSet decorators = access.decorators();
       
   597   GraphKit* kit = access.kit();
       
   598 
       
   599   Node* adr = access.addr().node();
       
   600   Node* obj = access.base();
       
   601 
       
   602   bool mismatched = (decorators & C2_MISMATCHED) != 0;
       
   603   bool unknown = (decorators & ON_UNKNOWN_OOP_REF) != 0;
       
   604   bool on_heap = (decorators & IN_HEAP) != 0;
       
   605   bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
       
   606   bool is_unordered = (decorators & MO_UNORDERED) != 0;
       
   607   bool need_cpu_mem_bar = !is_unordered || mismatched || !on_heap;
       
   608 
       
   609   Node* offset = adr->is_AddP() ? adr->in(AddPNode::Offset) : kit->top();
       
   610   Node* load = CardTableBarrierSetC2::load_at_resolved(access, val_type);
       
   611 
       
   612   // If we are reading the value of the referent field of a Reference
       
   613   // object (either by using Unsafe directly or through reflection)
       
   614   // then, if G1 is enabled, we need to record the referent in an
       
   615   // SATB log buffer using the pre-barrier mechanism.
       
   616   // Also we need to add memory barrier to prevent commoning reads
       
   617   // from this field across safepoint since GC can change its value.
       
   618   bool need_read_barrier = on_heap && (on_weak ||
       
   619                                        (unknown && offset != kit->top() && obj != kit->top()));
       
   620 
       
   621   if (!access.is_oop() || !need_read_barrier) {
       
   622     return load;
       
   623   }
       
   624 
       
   625   if (on_weak) {
       
   626     // Use the pre-barrier to record the value in the referent field
       
   627     pre_barrier(kit, false /* do_load */,
       
   628                 kit->control(),
       
   629                 NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
       
   630                 load /* pre_val */, T_OBJECT);
       
   631     // Add memory barrier to prevent commoning reads from this field
       
   632     // across safepoint since GC can change its value.
       
   633     kit->insert_mem_bar(Op_MemBarCPUOrder);
       
   634   } else if (unknown) {
       
   635     // We do not require a mem bar inside pre_barrier if need_mem_bar
       
   636     // is set: the barriers would be emitted by us.
       
   637     insert_pre_barrier(kit, obj, offset, load, !need_cpu_mem_bar);
       
   638   }
       
   639 
       
   640   return load;
       
   641 }
       
   642 
       
   643 bool G1BarrierSetC2::is_gc_barrier_node(Node* node) const {
       
   644   if (CardTableBarrierSetC2::is_gc_barrier_node(node)) {
       
   645     return true;
       
   646   }
       
   647   if (node->Opcode() != Op_CallLeaf) {
       
   648     return false;
       
   649   }
       
   650   CallLeafNode *call = node->as_CallLeaf();
       
   651   if (call->_name == NULL) {
       
   652     return false;
       
   653   }
       
   654 
       
   655   return strcmp(call->_name, "g1_wb_pre") == 0 || strcmp(call->_name, "g1_wb_post") == 0;
       
   656 }
       
   657 
       
   658 void G1BarrierSetC2::eliminate_gc_barrier(PhaseMacroExpand* macro, Node* node) const {
       
   659   assert(node->Opcode() == Op_CastP2X, "ConvP2XNode required");
       
   660   assert(node->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
       
   661   // It could be only one user, URShift node, in Object.clone() intrinsic
       
   662   // but the new allocation is passed to arraycopy stub and it could not
       
   663   // be scalar replaced. So we don't check the case.
       
   664 
       
   665   // An other case of only one user (Xor) is when the value check for NULL
       
   666   // in G1 post barrier is folded after CCP so the code which used URShift
       
   667   // is removed.
       
   668 
       
   669   // Take Region node before eliminating post barrier since it also
       
   670   // eliminates CastP2X node when it has only one user.
       
   671   Node* this_region = node->in(0);
       
   672   assert(this_region != NULL, "");
       
   673 
       
   674   // Remove G1 post barrier.
       
   675 
       
   676   // Search for CastP2X->Xor->URShift->Cmp path which
       
   677   // checks if the store done to a different from the value's region.
       
   678   // And replace Cmp with #0 (false) to collapse G1 post barrier.
       
   679   Node* xorx = node->find_out_with(Op_XorX);
       
   680   if (xorx != NULL) {
       
   681     Node* shift = xorx->unique_out();
       
   682     Node* cmpx = shift->unique_out();
       
   683     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
       
   684     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
       
   685     "missing region check in G1 post barrier");
       
   686     macro->replace_node(cmpx, macro->makecon(TypeInt::CC_EQ));
       
   687 
       
   688     // Remove G1 pre barrier.
       
   689 
       
   690     // Search "if (marking != 0)" check and set it to "false".
       
   691     // There is no G1 pre barrier if previous stored value is NULL
       
   692     // (for example, after initialization).
       
   693     if (this_region->is_Region() && this_region->req() == 3) {
       
   694       int ind = 1;
       
   695       if (!this_region->in(ind)->is_IfFalse()) {
       
   696         ind = 2;
       
   697       }
       
   698       if (this_region->in(ind)->is_IfFalse() &&
       
   699           this_region->in(ind)->in(0)->Opcode() == Op_If) {
       
   700         Node* bol = this_region->in(ind)->in(0)->in(1);
       
   701         assert(bol->is_Bool(), "");
       
   702         cmpx = bol->in(1);
       
   703         if (bol->as_Bool()->_test._test == BoolTest::ne &&
       
   704             cmpx->is_Cmp() && cmpx->in(2) == macro->intcon(0) &&
       
   705             cmpx->in(1)->is_Load()) {
       
   706           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
       
   707           const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
       
   708           if (adr->is_AddP() && adr->in(AddPNode::Base) == macro->top() &&
       
   709               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
       
   710               adr->in(AddPNode::Offset) == macro->MakeConX(marking_offset)) {
       
   711             macro->replace_node(cmpx, macro->makecon(TypeInt::CC_EQ));
       
   712           }
       
   713         }
       
   714       }
       
   715     }
       
   716   } else {
       
   717     assert(!use_ReduceInitialCardMarks(), "can only happen with card marking");
       
   718     // This is a G1 post barrier emitted by the Object.clone() intrinsic.
       
   719     // Search for the CastP2X->URShiftX->AddP->LoadB->Cmp path which checks if the card
       
   720     // is marked as young_gen and replace the Cmp with 0 (false) to collapse the barrier.
       
   721     Node* shift = node->find_out_with(Op_URShiftX);
       
   722     assert(shift != NULL, "missing G1 post barrier");
       
   723     Node* addp = shift->unique_out();
       
   724     Node* load = addp->find_out_with(Op_LoadB);
       
   725     assert(load != NULL, "missing G1 post barrier");
       
   726     Node* cmpx = load->unique_out();
       
   727     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
       
   728            cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
       
   729            "missing card value check in G1 post barrier");
       
   730     macro->replace_node(cmpx, macro->makecon(TypeInt::CC_EQ));
       
   731     // There is no G1 pre barrier in this case
       
   732   }
       
   733   // Now CastP2X can be removed since it is used only on dead path
       
   734   // which currently still alive until igvn optimize it.
       
   735   assert(node->outcnt() == 0 || node->unique_out()->Opcode() == Op_URShiftX, "");
       
   736   macro->replace_node(node, macro->top());
       
   737 }
       
   738 
       
   739 Node* G1BarrierSetC2::step_over_gc_barrier(Node* c) const {
       
   740   if (!use_ReduceInitialCardMarks() &&
       
   741       c != NULL && c->is_Region() && c->req() == 3) {
       
   742     for (uint i = 1; i < c->req(); i++) {
       
   743       if (c->in(i) != NULL && c->in(i)->is_Region() &&
       
   744           c->in(i)->req() == 3) {
       
   745         Node* r = c->in(i);
       
   746         for (uint j = 1; j < r->req(); j++) {
       
   747           if (r->in(j) != NULL && r->in(j)->is_Proj() &&
       
   748               r->in(j)->in(0) != NULL &&
       
   749               r->in(j)->in(0)->Opcode() == Op_CallLeaf &&
       
   750               r->in(j)->in(0)->as_Call()->entry_point() == CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post)) {
       
   751             Node* call = r->in(j)->in(0);
       
   752             c = c->in(i == 1 ? 2 : 1);
       
   753             if (c != NULL) {
       
   754               c = c->in(0);
       
   755               if (c != NULL) {
       
   756                 c = c->in(0);
       
   757                 assert(call->in(0) == NULL ||
       
   758                        call->in(0)->in(0) == NULL ||
       
   759                        call->in(0)->in(0)->in(0) == NULL ||
       
   760                        call->in(0)->in(0)->in(0)->in(0) == NULL ||
       
   761                        call->in(0)->in(0)->in(0)->in(0)->in(0) == NULL ||
       
   762                        c == call->in(0)->in(0)->in(0)->in(0)->in(0), "bad barrier shape");
       
   763                 return c;
       
   764               }
       
   765             }
       
   766           }
       
   767         }
       
   768       }
       
   769     }
       
   770   }
       
   771   return c;
       
   772 }