|
1 /* |
|
2 * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. |
|
8 * |
|
9 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 * version 2 for more details (a copy is included in the LICENSE file that |
|
13 * accompanied this code). |
|
14 * |
|
15 * You should have received a copy of the GNU General Public License version |
|
16 * 2 along with this work; if not, write to the Free Software Foundation, |
|
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 * |
|
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
20 * or visit www.oracle.com if you need additional information or have any |
|
21 * questions. |
|
22 * |
|
23 */ |
|
24 |
|
25 #ifndef SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP |
|
26 #define SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP |
|
27 |
|
28 #include "gc/shared/taskqueue.hpp" |
|
29 #include "memory/allocation.inline.hpp" |
|
30 #include "oops/oop.inline.hpp" |
|
31 #include "runtime/atomic.inline.hpp" |
|
32 #include "runtime/orderAccess.inline.hpp" |
|
33 #include "utilities/debug.hpp" |
|
34 #include "utilities/stack.inline.hpp" |
|
35 |
|
36 template <class T, MEMFLAGS F> |
|
37 inline GenericTaskQueueSet<T, F>::GenericTaskQueueSet(int n) : _n(n) { |
|
38 typedef T* GenericTaskQueuePtr; |
|
39 _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F); |
|
40 for (int i = 0; i < n; i++) { |
|
41 _queues[i] = NULL; |
|
42 } |
|
43 } |
|
44 |
|
45 template<class E, MEMFLAGS F, unsigned int N> |
|
46 inline void GenericTaskQueue<E, F, N>::initialize() { |
|
47 _elems = _array_allocator.allocate(N); |
|
48 } |
|
49 |
|
50 template<class E, MEMFLAGS F, unsigned int N> |
|
51 inline GenericTaskQueue<E, F, N>::~GenericTaskQueue() { |
|
52 FREE_C_HEAP_ARRAY(E, _elems); |
|
53 } |
|
54 |
|
55 template<class E, MEMFLAGS F, unsigned int N> |
|
56 bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) { |
|
57 if (dirty_n_elems == N - 1) { |
|
58 // Actually means 0, so do the push. |
|
59 uint localBot = _bottom; |
|
60 // g++ complains if the volatile result of the assignment is |
|
61 // unused, so we cast the volatile away. We cannot cast directly |
|
62 // to void, because gcc treats that as not using the result of the |
|
63 // assignment. However, casting to E& means that we trigger an |
|
64 // unused-value warning. So, we cast the E& to void. |
|
65 (void)const_cast<E&>(_elems[localBot] = t); |
|
66 OrderAccess::release_store(&_bottom, increment_index(localBot)); |
|
67 TASKQUEUE_STATS_ONLY(stats.record_push()); |
|
68 return true; |
|
69 } |
|
70 return false; |
|
71 } |
|
72 |
|
73 template<class E, MEMFLAGS F, unsigned int N> inline bool |
|
74 GenericTaskQueue<E, F, N>::push(E t) { |
|
75 uint localBot = _bottom; |
|
76 assert(localBot < N, "_bottom out of range."); |
|
77 idx_t top = _age.top(); |
|
78 uint dirty_n_elems = dirty_size(localBot, top); |
|
79 assert(dirty_n_elems < N, "n_elems out of range."); |
|
80 if (dirty_n_elems < max_elems()) { |
|
81 // g++ complains if the volatile result of the assignment is |
|
82 // unused, so we cast the volatile away. We cannot cast directly |
|
83 // to void, because gcc treats that as not using the result of the |
|
84 // assignment. However, casting to E& means that we trigger an |
|
85 // unused-value warning. So, we cast the E& to void. |
|
86 (void) const_cast<E&>(_elems[localBot] = t); |
|
87 OrderAccess::release_store(&_bottom, increment_index(localBot)); |
|
88 TASKQUEUE_STATS_ONLY(stats.record_push()); |
|
89 return true; |
|
90 } else { |
|
91 return push_slow(t, dirty_n_elems); |
|
92 } |
|
93 } |
|
94 |
|
95 template <class E, MEMFLAGS F, unsigned int N> |
|
96 inline bool OverflowTaskQueue<E, F, N>::push(E t) |
|
97 { |
|
98 if (!taskqueue_t::push(t)) { |
|
99 overflow_stack()->push(t); |
|
100 TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size())); |
|
101 } |
|
102 return true; |
|
103 } |
|
104 |
|
105 // pop_local_slow() is done by the owning thread and is trying to |
|
106 // get the last task in the queue. It will compete with pop_global() |
|
107 // that will be used by other threads. The tag age is incremented |
|
108 // whenever the queue goes empty which it will do here if this thread |
|
109 // gets the last task or in pop_global() if the queue wraps (top == 0 |
|
110 // and pop_global() succeeds, see pop_global()). |
|
111 template<class E, MEMFLAGS F, unsigned int N> |
|
112 bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) { |
|
113 // This queue was observed to contain exactly one element; either this |
|
114 // thread will claim it, or a competing "pop_global". In either case, |
|
115 // the queue will be logically empty afterwards. Create a new Age value |
|
116 // that represents the empty queue for the given value of "_bottom". (We |
|
117 // must also increment "tag" because of the case where "bottom == 1", |
|
118 // "top == 0". A pop_global could read the queue element in that case, |
|
119 // then have the owner thread do a pop followed by another push. Without |
|
120 // the incrementing of "tag", the pop_global's CAS could succeed, |
|
121 // allowing it to believe it has claimed the stale element.) |
|
122 Age newAge((idx_t)localBot, oldAge.tag() + 1); |
|
123 // Perhaps a competing pop_global has already incremented "top", in which |
|
124 // case it wins the element. |
|
125 if (localBot == oldAge.top()) { |
|
126 // No competing pop_global has yet incremented "top"; we'll try to |
|
127 // install new_age, thus claiming the element. |
|
128 Age tempAge = _age.cmpxchg(newAge, oldAge); |
|
129 if (tempAge == oldAge) { |
|
130 // We win. |
|
131 assert(dirty_size(localBot, _age.top()) != N - 1, "sanity"); |
|
132 TASKQUEUE_STATS_ONLY(stats.record_pop_slow()); |
|
133 return true; |
|
134 } |
|
135 } |
|
136 // We lose; a completing pop_global gets the element. But the queue is empty |
|
137 // and top is greater than bottom. Fix this representation of the empty queue |
|
138 // to become the canonical one. |
|
139 _age.set(newAge); |
|
140 assert(dirty_size(localBot, _age.top()) != N - 1, "sanity"); |
|
141 return false; |
|
142 } |
|
143 |
|
144 template<class E, MEMFLAGS F, unsigned int N> inline bool |
|
145 GenericTaskQueue<E, F, N>::pop_local(volatile E& t) { |
|
146 uint localBot = _bottom; |
|
147 // This value cannot be N-1. That can only occur as a result of |
|
148 // the assignment to bottom in this method. If it does, this method |
|
149 // resets the size to 0 before the next call (which is sequential, |
|
150 // since this is pop_local.) |
|
151 uint dirty_n_elems = dirty_size(localBot, _age.top()); |
|
152 assert(dirty_n_elems != N - 1, "Shouldn't be possible..."); |
|
153 if (dirty_n_elems == 0) return false; |
|
154 localBot = decrement_index(localBot); |
|
155 _bottom = localBot; |
|
156 // This is necessary to prevent any read below from being reordered |
|
157 // before the store just above. |
|
158 OrderAccess::fence(); |
|
159 // g++ complains if the volatile result of the assignment is |
|
160 // unused, so we cast the volatile away. We cannot cast directly |
|
161 // to void, because gcc treats that as not using the result of the |
|
162 // assignment. However, casting to E& means that we trigger an |
|
163 // unused-value warning. So, we cast the E& to void. |
|
164 (void) const_cast<E&>(t = _elems[localBot]); |
|
165 // This is a second read of "age"; the "size()" above is the first. |
|
166 // If there's still at least one element in the queue, based on the |
|
167 // "_bottom" and "age" we've read, then there can be no interference with |
|
168 // a "pop_global" operation, and we're done. |
|
169 idx_t tp = _age.top(); // XXX |
|
170 if (size(localBot, tp) > 0) { |
|
171 assert(dirty_size(localBot, tp) != N - 1, "sanity"); |
|
172 TASKQUEUE_STATS_ONLY(stats.record_pop()); |
|
173 return true; |
|
174 } else { |
|
175 // Otherwise, the queue contained exactly one element; we take the slow |
|
176 // path. |
|
177 return pop_local_slow(localBot, _age.get()); |
|
178 } |
|
179 } |
|
180 |
|
181 template <class E, MEMFLAGS F, unsigned int N> |
|
182 bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t) |
|
183 { |
|
184 if (overflow_empty()) return false; |
|
185 t = overflow_stack()->pop(); |
|
186 return true; |
|
187 } |
|
188 |
|
189 template<class E, MEMFLAGS F, unsigned int N> |
|
190 bool GenericTaskQueue<E, F, N>::pop_global(volatile E& t) { |
|
191 Age oldAge = _age.get(); |
|
192 // Architectures with weak memory model require a barrier here |
|
193 // to guarantee that bottom is not older than age, |
|
194 // which is crucial for the correctness of the algorithm. |
|
195 #if !(defined SPARC || defined IA32 || defined AMD64) |
|
196 OrderAccess::fence(); |
|
197 #endif |
|
198 uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom); |
|
199 uint n_elems = size(localBot, oldAge.top()); |
|
200 if (n_elems == 0) { |
|
201 return false; |
|
202 } |
|
203 |
|
204 // g++ complains if the volatile result of the assignment is |
|
205 // unused, so we cast the volatile away. We cannot cast directly |
|
206 // to void, because gcc treats that as not using the result of the |
|
207 // assignment. However, casting to E& means that we trigger an |
|
208 // unused-value warning. So, we cast the E& to void. |
|
209 (void) const_cast<E&>(t = _elems[oldAge.top()]); |
|
210 Age newAge(oldAge); |
|
211 newAge.increment(); |
|
212 Age resAge = _age.cmpxchg(newAge, oldAge); |
|
213 |
|
214 // Note that using "_bottom" here might fail, since a pop_local might |
|
215 // have decremented it. |
|
216 assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity"); |
|
217 return resAge == oldAge; |
|
218 } |
|
219 |
|
220 template<class T, MEMFLAGS F> bool |
|
221 GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) { |
|
222 if (_n > 2) { |
|
223 uint k1 = queue_num; |
|
224 while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n; |
|
225 uint k2 = queue_num; |
|
226 while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n; |
|
227 // Sample both and try the larger. |
|
228 uint sz1 = _queues[k1]->size(); |
|
229 uint sz2 = _queues[k2]->size(); |
|
230 if (sz2 > sz1) return _queues[k2]->pop_global(t); |
|
231 else return _queues[k1]->pop_global(t); |
|
232 } else if (_n == 2) { |
|
233 // Just try the other one. |
|
234 uint k = (queue_num + 1) % 2; |
|
235 return _queues[k]->pop_global(t); |
|
236 } else { |
|
237 assert(_n == 1, "can't be zero."); |
|
238 return false; |
|
239 } |
|
240 } |
|
241 |
|
242 template<class T, MEMFLAGS F> bool |
|
243 GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) { |
|
244 for (uint i = 0; i < 2 * _n; i++) { |
|
245 if (steal_best_of_2(queue_num, seed, t)) { |
|
246 TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true)); |
|
247 return true; |
|
248 } |
|
249 } |
|
250 TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false)); |
|
251 return false; |
|
252 } |
|
253 |
|
254 template <unsigned int N, MEMFLAGS F> |
|
255 inline typename TaskQueueSuper<N, F>::Age TaskQueueSuper<N, F>::Age::cmpxchg(const Age new_age, const Age old_age) volatile { |
|
256 return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data, |
|
257 (volatile intptr_t *)&_data, |
|
258 (intptr_t)old_age._data); |
|
259 } |
|
260 |
|
261 template<class E, MEMFLAGS F, unsigned int N> |
|
262 inline void GenericTaskQueue<E, F, N>::oops_do(OopClosure* f) { |
|
263 // tty->print_cr("START OopTaskQueue::oops_do"); |
|
264 uint iters = size(); |
|
265 uint index = _bottom; |
|
266 for (uint i = 0; i < iters; ++i) { |
|
267 index = decrement_index(index); |
|
268 // tty->print_cr(" doing entry %d," INTPTR_T " -> " INTPTR_T, |
|
269 // index, &_elems[index], _elems[index]); |
|
270 E* t = (E*)&_elems[index]; // cast away volatility |
|
271 oop* p = (oop*)t; |
|
272 assert((*t)->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(*t))); |
|
273 f->do_oop(p); |
|
274 } |
|
275 // tty->print_cr("END OopTaskQueue::oops_do"); |
|
276 } |
|
277 |
|
278 |
|
279 #endif // SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP |