|
1 /* |
|
2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. |
|
8 * |
|
9 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 * version 2 for more details (a copy is included in the LICENSE file that |
|
13 * accompanied this code). |
|
14 * |
|
15 * You should have received a copy of the GNU General Public License version |
|
16 * 2 along with this work; if not, write to the Free Software Foundation, |
|
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 * |
|
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
20 * or visit www.oracle.com if you need additional information or have any |
|
21 * questions. |
|
22 * |
|
23 */ |
|
24 |
|
25 #ifndef SHARE_VM_GC_SHARED_TASKQUEUE_HPP |
|
26 #define SHARE_VM_GC_SHARED_TASKQUEUE_HPP |
|
27 |
|
28 #include "memory/allocation.hpp" |
|
29 #include "utilities/stack.hpp" |
|
30 |
|
31 // Simple TaskQueue stats that are collected by default in debug builds. |
|
32 |
|
33 #if !defined(TASKQUEUE_STATS) && defined(ASSERT) |
|
34 #define TASKQUEUE_STATS 1 |
|
35 #elif !defined(TASKQUEUE_STATS) |
|
36 #define TASKQUEUE_STATS 0 |
|
37 #endif |
|
38 |
|
39 #if TASKQUEUE_STATS |
|
40 #define TASKQUEUE_STATS_ONLY(code) code |
|
41 #else |
|
42 #define TASKQUEUE_STATS_ONLY(code) |
|
43 #endif // TASKQUEUE_STATS |
|
44 |
|
45 #if TASKQUEUE_STATS |
|
46 class TaskQueueStats { |
|
47 public: |
|
48 enum StatId { |
|
49 push, // number of taskqueue pushes |
|
50 pop, // number of taskqueue pops |
|
51 pop_slow, // subset of taskqueue pops that were done slow-path |
|
52 steal_attempt, // number of taskqueue steal attempts |
|
53 steal, // number of taskqueue steals |
|
54 overflow, // number of overflow pushes |
|
55 overflow_max_len, // max length of overflow stack |
|
56 last_stat_id |
|
57 }; |
|
58 |
|
59 public: |
|
60 inline TaskQueueStats() { reset(); } |
|
61 |
|
62 inline void record_push() { ++_stats[push]; } |
|
63 inline void record_pop() { ++_stats[pop]; } |
|
64 inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; } |
|
65 inline void record_steal(bool success); |
|
66 inline void record_overflow(size_t new_length); |
|
67 |
|
68 TaskQueueStats & operator +=(const TaskQueueStats & addend); |
|
69 |
|
70 inline size_t get(StatId id) const { return _stats[id]; } |
|
71 inline const size_t* get() const { return _stats; } |
|
72 |
|
73 inline void reset(); |
|
74 |
|
75 // Print the specified line of the header (does not include a line separator). |
|
76 static void print_header(unsigned int line, outputStream* const stream = tty, |
|
77 unsigned int width = 10); |
|
78 // Print the statistics (does not include a line separator). |
|
79 void print(outputStream* const stream = tty, unsigned int width = 10) const; |
|
80 |
|
81 DEBUG_ONLY(void verify() const;) |
|
82 |
|
83 private: |
|
84 size_t _stats[last_stat_id]; |
|
85 static const char * const _names[last_stat_id]; |
|
86 }; |
|
87 |
|
88 void TaskQueueStats::record_steal(bool success) { |
|
89 ++_stats[steal_attempt]; |
|
90 if (success) ++_stats[steal]; |
|
91 } |
|
92 |
|
93 void TaskQueueStats::record_overflow(size_t new_len) { |
|
94 ++_stats[overflow]; |
|
95 if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len; |
|
96 } |
|
97 |
|
98 void TaskQueueStats::reset() { |
|
99 memset(_stats, 0, sizeof(_stats)); |
|
100 } |
|
101 #endif // TASKQUEUE_STATS |
|
102 |
|
103 // TaskQueueSuper collects functionality common to all GenericTaskQueue instances. |
|
104 |
|
105 template <unsigned int N, MEMFLAGS F> |
|
106 class TaskQueueSuper: public CHeapObj<F> { |
|
107 protected: |
|
108 // Internal type for indexing the queue; also used for the tag. |
|
109 typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t; |
|
110 |
|
111 // The first free element after the last one pushed (mod N). |
|
112 volatile uint _bottom; |
|
113 |
|
114 enum { MOD_N_MASK = N - 1 }; |
|
115 |
|
116 class Age { |
|
117 public: |
|
118 Age(size_t data = 0) { _data = data; } |
|
119 Age(const Age& age) { _data = age._data; } |
|
120 Age(idx_t top, idx_t tag) { _fields._top = top; _fields._tag = tag; } |
|
121 |
|
122 Age get() const volatile { return _data; } |
|
123 void set(Age age) volatile { _data = age._data; } |
|
124 |
|
125 idx_t top() const volatile { return _fields._top; } |
|
126 idx_t tag() const volatile { return _fields._tag; } |
|
127 |
|
128 // Increment top; if it wraps, increment tag also. |
|
129 void increment() { |
|
130 _fields._top = increment_index(_fields._top); |
|
131 if (_fields._top == 0) ++_fields._tag; |
|
132 } |
|
133 |
|
134 Age cmpxchg(const Age new_age, const Age old_age) volatile; |
|
135 |
|
136 bool operator ==(const Age& other) const { return _data == other._data; } |
|
137 |
|
138 private: |
|
139 struct fields { |
|
140 idx_t _top; |
|
141 idx_t _tag; |
|
142 }; |
|
143 union { |
|
144 size_t _data; |
|
145 fields _fields; |
|
146 }; |
|
147 }; |
|
148 |
|
149 volatile Age _age; |
|
150 |
|
151 // These both operate mod N. |
|
152 static uint increment_index(uint ind) { |
|
153 return (ind + 1) & MOD_N_MASK; |
|
154 } |
|
155 static uint decrement_index(uint ind) { |
|
156 return (ind - 1) & MOD_N_MASK; |
|
157 } |
|
158 |
|
159 // Returns a number in the range [0..N). If the result is "N-1", it should be |
|
160 // interpreted as 0. |
|
161 uint dirty_size(uint bot, uint top) const { |
|
162 return (bot - top) & MOD_N_MASK; |
|
163 } |
|
164 |
|
165 // Returns the size corresponding to the given "bot" and "top". |
|
166 uint size(uint bot, uint top) const { |
|
167 uint sz = dirty_size(bot, top); |
|
168 // Has the queue "wrapped", so that bottom is less than top? There's a |
|
169 // complicated special case here. A pair of threads could perform pop_local |
|
170 // and pop_global operations concurrently, starting from a state in which |
|
171 // _bottom == _top+1. The pop_local could succeed in decrementing _bottom, |
|
172 // and the pop_global in incrementing _top (in which case the pop_global |
|
173 // will be awarded the contested queue element.) The resulting state must |
|
174 // be interpreted as an empty queue. (We only need to worry about one such |
|
175 // event: only the queue owner performs pop_local's, and several concurrent |
|
176 // threads attempting to perform the pop_global will all perform the same |
|
177 // CAS, and only one can succeed.) Any stealing thread that reads after |
|
178 // either the increment or decrement will see an empty queue, and will not |
|
179 // join the competitors. The "sz == -1 || sz == N-1" state will not be |
|
180 // modified by concurrent queues, so the owner thread can reset the state to |
|
181 // _bottom == top so subsequent pushes will be performed normally. |
|
182 return (sz == N - 1) ? 0 : sz; |
|
183 } |
|
184 |
|
185 public: |
|
186 TaskQueueSuper() : _bottom(0), _age() {} |
|
187 |
|
188 // Return true if the TaskQueue contains/does not contain any tasks. |
|
189 bool peek() const { return _bottom != _age.top(); } |
|
190 bool is_empty() const { return size() == 0; } |
|
191 |
|
192 // Return an estimate of the number of elements in the queue. |
|
193 // The "careful" version admits the possibility of pop_local/pop_global |
|
194 // races. |
|
195 uint size() const { |
|
196 return size(_bottom, _age.top()); |
|
197 } |
|
198 |
|
199 uint dirty_size() const { |
|
200 return dirty_size(_bottom, _age.top()); |
|
201 } |
|
202 |
|
203 void set_empty() { |
|
204 _bottom = 0; |
|
205 _age.set(0); |
|
206 } |
|
207 |
|
208 // Maximum number of elements allowed in the queue. This is two less |
|
209 // than the actual queue size, for somewhat complicated reasons. |
|
210 uint max_elems() const { return N - 2; } |
|
211 |
|
212 // Total size of queue. |
|
213 static const uint total_size() { return N; } |
|
214 |
|
215 TASKQUEUE_STATS_ONLY(TaskQueueStats stats;) |
|
216 }; |
|
217 |
|
218 // |
|
219 // GenericTaskQueue implements an ABP, Aurora-Blumofe-Plaxton, double- |
|
220 // ended-queue (deque), intended for use in work stealing. Queue operations |
|
221 // are non-blocking. |
|
222 // |
|
223 // A queue owner thread performs push() and pop_local() operations on one end |
|
224 // of the queue, while other threads may steal work using the pop_global() |
|
225 // method. |
|
226 // |
|
227 // The main difference to the original algorithm is that this |
|
228 // implementation allows wrap-around at the end of its allocated |
|
229 // storage, which is an array. |
|
230 // |
|
231 // The original paper is: |
|
232 // |
|
233 // Arora, N. S., Blumofe, R. D., and Plaxton, C. G. |
|
234 // Thread scheduling for multiprogrammed multiprocessors. |
|
235 // Theory of Computing Systems 34, 2 (2001), 115-144. |
|
236 // |
|
237 // The following paper provides an correctness proof and an |
|
238 // implementation for weakly ordered memory models including (pseudo-) |
|
239 // code containing memory barriers for a Chase-Lev deque. Chase-Lev is |
|
240 // similar to ABP, with the main difference that it allows resizing of the |
|
241 // underlying storage: |
|
242 // |
|
243 // Le, N. M., Pop, A., Cohen A., and Nardell, F. Z. |
|
244 // Correct and efficient work-stealing for weak memory models |
|
245 // Proceedings of the 18th ACM SIGPLAN symposium on Principles and |
|
246 // practice of parallel programming (PPoPP 2013), 69-80 |
|
247 // |
|
248 |
|
249 template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE> |
|
250 class GenericTaskQueue: public TaskQueueSuper<N, F> { |
|
251 ArrayAllocator<E, F> _array_allocator; |
|
252 protected: |
|
253 typedef typename TaskQueueSuper<N, F>::Age Age; |
|
254 typedef typename TaskQueueSuper<N, F>::idx_t idx_t; |
|
255 |
|
256 using TaskQueueSuper<N, F>::_bottom; |
|
257 using TaskQueueSuper<N, F>::_age; |
|
258 using TaskQueueSuper<N, F>::increment_index; |
|
259 using TaskQueueSuper<N, F>::decrement_index; |
|
260 using TaskQueueSuper<N, F>::dirty_size; |
|
261 |
|
262 public: |
|
263 using TaskQueueSuper<N, F>::max_elems; |
|
264 using TaskQueueSuper<N, F>::size; |
|
265 |
|
266 #if TASKQUEUE_STATS |
|
267 using TaskQueueSuper<N, F>::stats; |
|
268 #endif |
|
269 |
|
270 private: |
|
271 // Slow paths for push, pop_local. (pop_global has no fast path.) |
|
272 bool push_slow(E t, uint dirty_n_elems); |
|
273 bool pop_local_slow(uint localBot, Age oldAge); |
|
274 |
|
275 public: |
|
276 typedef E element_type; |
|
277 |
|
278 // Initializes the queue to empty. |
|
279 GenericTaskQueue(); |
|
280 |
|
281 void initialize(); |
|
282 |
|
283 // Push the task "t" on the queue. Returns "false" iff the queue is full. |
|
284 inline bool push(E t); |
|
285 |
|
286 // Attempts to claim a task from the "local" end of the queue (the most |
|
287 // recently pushed). If successful, returns true and sets t to the task; |
|
288 // otherwise, returns false (the queue is empty). |
|
289 inline bool pop_local(volatile E& t); |
|
290 |
|
291 // Like pop_local(), but uses the "global" end of the queue (the least |
|
292 // recently pushed). |
|
293 bool pop_global(volatile E& t); |
|
294 |
|
295 // Delete any resource associated with the queue. |
|
296 ~GenericTaskQueue(); |
|
297 |
|
298 // apply the closure to all elements in the task queue |
|
299 void oops_do(OopClosure* f); |
|
300 |
|
301 private: |
|
302 // Element array. |
|
303 volatile E* _elems; |
|
304 }; |
|
305 |
|
306 template<class E, MEMFLAGS F, unsigned int N> |
|
307 GenericTaskQueue<E, F, N>::GenericTaskQueue() { |
|
308 assert(sizeof(Age) == sizeof(size_t), "Depends on this."); |
|
309 } |
|
310 |
|
311 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for |
|
312 // elements that do not fit in the TaskQueue. |
|
313 // |
|
314 // This class hides two methods from super classes: |
|
315 // |
|
316 // push() - push onto the task queue or, if that fails, onto the overflow stack |
|
317 // is_empty() - return true if both the TaskQueue and overflow stack are empty |
|
318 // |
|
319 // Note that size() is not hidden--it returns the number of elements in the |
|
320 // TaskQueue, and does not include the size of the overflow stack. This |
|
321 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues. |
|
322 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE> |
|
323 class OverflowTaskQueue: public GenericTaskQueue<E, F, N> |
|
324 { |
|
325 public: |
|
326 typedef Stack<E, F> overflow_t; |
|
327 typedef GenericTaskQueue<E, F, N> taskqueue_t; |
|
328 |
|
329 TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;) |
|
330 |
|
331 // Push task t onto the queue or onto the overflow stack. Return true. |
|
332 inline bool push(E t); |
|
333 |
|
334 // Attempt to pop from the overflow stack; return true if anything was popped. |
|
335 inline bool pop_overflow(E& t); |
|
336 |
|
337 inline overflow_t* overflow_stack() { return &_overflow_stack; } |
|
338 |
|
339 inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); } |
|
340 inline bool overflow_empty() const { return _overflow_stack.is_empty(); } |
|
341 inline bool is_empty() const { |
|
342 return taskqueue_empty() && overflow_empty(); |
|
343 } |
|
344 |
|
345 private: |
|
346 overflow_t _overflow_stack; |
|
347 }; |
|
348 |
|
349 class TaskQueueSetSuper { |
|
350 protected: |
|
351 static int randomParkAndMiller(int* seed0); |
|
352 public: |
|
353 // Returns "true" if some TaskQueue in the set contains a task. |
|
354 virtual bool peek() = 0; |
|
355 }; |
|
356 |
|
357 template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper { |
|
358 }; |
|
359 |
|
360 template<class T, MEMFLAGS F> |
|
361 class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> { |
|
362 private: |
|
363 uint _n; |
|
364 T** _queues; |
|
365 |
|
366 public: |
|
367 typedef typename T::element_type E; |
|
368 |
|
369 GenericTaskQueueSet(int n); |
|
370 |
|
371 bool steal_best_of_2(uint queue_num, int* seed, E& t); |
|
372 |
|
373 void register_queue(uint i, T* q); |
|
374 |
|
375 T* queue(uint n); |
|
376 |
|
377 // The thread with queue number "queue_num" (and whose random number seed is |
|
378 // at "seed") is trying to steal a task from some other queue. (It may try |
|
379 // several queues, according to some configuration parameter.) If some steal |
|
380 // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns |
|
381 // false. |
|
382 bool steal(uint queue_num, int* seed, E& t); |
|
383 |
|
384 bool peek(); |
|
385 }; |
|
386 |
|
387 template<class T, MEMFLAGS F> void |
|
388 GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) { |
|
389 assert(i < _n, "index out of range."); |
|
390 _queues[i] = q; |
|
391 } |
|
392 |
|
393 template<class T, MEMFLAGS F> T* |
|
394 GenericTaskQueueSet<T, F>::queue(uint i) { |
|
395 return _queues[i]; |
|
396 } |
|
397 |
|
398 template<class T, MEMFLAGS F> |
|
399 bool GenericTaskQueueSet<T, F>::peek() { |
|
400 // Try all the queues. |
|
401 for (uint j = 0; j < _n; j++) { |
|
402 if (_queues[j]->peek()) |
|
403 return true; |
|
404 } |
|
405 return false; |
|
406 } |
|
407 |
|
408 // When to terminate from the termination protocol. |
|
409 class TerminatorTerminator: public CHeapObj<mtInternal> { |
|
410 public: |
|
411 virtual bool should_exit_termination() = 0; |
|
412 }; |
|
413 |
|
414 // A class to aid in the termination of a set of parallel tasks using |
|
415 // TaskQueueSet's for work stealing. |
|
416 |
|
417 #undef TRACESPINNING |
|
418 |
|
419 class ParallelTaskTerminator: public StackObj { |
|
420 private: |
|
421 uint _n_threads; |
|
422 TaskQueueSetSuper* _queue_set; |
|
423 uint _offered_termination; |
|
424 |
|
425 #ifdef TRACESPINNING |
|
426 static uint _total_yields; |
|
427 static uint _total_spins; |
|
428 static uint _total_peeks; |
|
429 #endif |
|
430 |
|
431 bool peek_in_queue_set(); |
|
432 protected: |
|
433 virtual void yield(); |
|
434 void sleep(uint millis); |
|
435 |
|
436 public: |
|
437 |
|
438 // "n_threads" is the number of threads to be terminated. "queue_set" is a |
|
439 // queue sets of work queues of other threads. |
|
440 ParallelTaskTerminator(uint n_threads, TaskQueueSetSuper* queue_set); |
|
441 |
|
442 // The current thread has no work, and is ready to terminate if everyone |
|
443 // else is. If returns "true", all threads are terminated. If returns |
|
444 // "false", available work has been observed in one of the task queues, |
|
445 // so the global task is not complete. |
|
446 bool offer_termination() { |
|
447 return offer_termination(NULL); |
|
448 } |
|
449 |
|
450 // As above, but it also terminates if the should_exit_termination() |
|
451 // method of the terminator parameter returns true. If terminator is |
|
452 // NULL, then it is ignored. |
|
453 bool offer_termination(TerminatorTerminator* terminator); |
|
454 |
|
455 // Reset the terminator, so that it may be reused again. |
|
456 // The caller is responsible for ensuring that this is done |
|
457 // in an MT-safe manner, once the previous round of use of |
|
458 // the terminator is finished. |
|
459 void reset_for_reuse(); |
|
460 // Same as above but the number of parallel threads is set to the |
|
461 // given number. |
|
462 void reset_for_reuse(uint n_threads); |
|
463 |
|
464 #ifdef TRACESPINNING |
|
465 static uint total_yields() { return _total_yields; } |
|
466 static uint total_spins() { return _total_spins; } |
|
467 static uint total_peeks() { return _total_peeks; } |
|
468 static void print_termination_counts(); |
|
469 #endif |
|
470 }; |
|
471 |
|
472 typedef GenericTaskQueue<oop, mtGC> OopTaskQueue; |
|
473 typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet; |
|
474 |
|
475 #ifdef _MSC_VER |
|
476 #pragma warning(push) |
|
477 // warning C4522: multiple assignment operators specified |
|
478 #pragma warning(disable:4522) |
|
479 #endif |
|
480 |
|
481 // This is a container class for either an oop* or a narrowOop*. |
|
482 // Both are pushed onto a task queue and the consumer will test is_narrow() |
|
483 // to determine which should be processed. |
|
484 class StarTask { |
|
485 void* _holder; // either union oop* or narrowOop* |
|
486 |
|
487 enum { COMPRESSED_OOP_MASK = 1 }; |
|
488 |
|
489 public: |
|
490 StarTask(narrowOop* p) { |
|
491 assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!"); |
|
492 _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK); |
|
493 } |
|
494 StarTask(oop* p) { |
|
495 assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!"); |
|
496 _holder = (void*)p; |
|
497 } |
|
498 StarTask() { _holder = NULL; } |
|
499 operator oop*() { return (oop*)_holder; } |
|
500 operator narrowOop*() { |
|
501 return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK); |
|
502 } |
|
503 |
|
504 StarTask& operator=(const StarTask& t) { |
|
505 _holder = t._holder; |
|
506 return *this; |
|
507 } |
|
508 volatile StarTask& operator=(const volatile StarTask& t) volatile { |
|
509 _holder = t._holder; |
|
510 return *this; |
|
511 } |
|
512 |
|
513 bool is_narrow() const { |
|
514 return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0); |
|
515 } |
|
516 }; |
|
517 |
|
518 class ObjArrayTask |
|
519 { |
|
520 public: |
|
521 ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { } |
|
522 ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) { |
|
523 assert(idx <= size_t(max_jint), "too big"); |
|
524 } |
|
525 ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { } |
|
526 |
|
527 ObjArrayTask& operator =(const ObjArrayTask& t) { |
|
528 _obj = t._obj; |
|
529 _index = t._index; |
|
530 return *this; |
|
531 } |
|
532 volatile ObjArrayTask& |
|
533 operator =(const volatile ObjArrayTask& t) volatile { |
|
534 (void)const_cast<oop&>(_obj = t._obj); |
|
535 _index = t._index; |
|
536 return *this; |
|
537 } |
|
538 |
|
539 inline oop obj() const { return _obj; } |
|
540 inline int index() const { return _index; } |
|
541 |
|
542 DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid. |
|
543 |
|
544 private: |
|
545 oop _obj; |
|
546 int _index; |
|
547 }; |
|
548 |
|
549 #ifdef _MSC_VER |
|
550 #pragma warning(pop) |
|
551 #endif |
|
552 |
|
553 typedef OverflowTaskQueue<StarTask, mtClass> OopStarTaskQueue; |
|
554 typedef GenericTaskQueueSet<OopStarTaskQueue, mtClass> OopStarTaskQueueSet; |
|
555 |
|
556 typedef OverflowTaskQueue<size_t, mtInternal> RegionTaskQueue; |
|
557 typedef GenericTaskQueueSet<RegionTaskQueue, mtClass> RegionTaskQueueSet; |
|
558 |
|
559 |
|
560 #endif // SHARE_VM_GC_SHARED_TASKQUEUE_HPP |