hotspot/src/share/vm/gc/shared/taskqueue.hpp
changeset 30764 fec48bf5a827
parent 30585 12f312d694cd
child 30878 f1702744b3a4
equal deleted inserted replaced
30614:e45861098f5a 30764:fec48bf5a827
       
     1 /*
       
     2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #ifndef SHARE_VM_GC_SHARED_TASKQUEUE_HPP
       
    26 #define SHARE_VM_GC_SHARED_TASKQUEUE_HPP
       
    27 
       
    28 #include "memory/allocation.hpp"
       
    29 #include "utilities/stack.hpp"
       
    30 
       
    31 // Simple TaskQueue stats that are collected by default in debug builds.
       
    32 
       
    33 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
       
    34 #define TASKQUEUE_STATS 1
       
    35 #elif !defined(TASKQUEUE_STATS)
       
    36 #define TASKQUEUE_STATS 0
       
    37 #endif
       
    38 
       
    39 #if TASKQUEUE_STATS
       
    40 #define TASKQUEUE_STATS_ONLY(code) code
       
    41 #else
       
    42 #define TASKQUEUE_STATS_ONLY(code)
       
    43 #endif // TASKQUEUE_STATS
       
    44 
       
    45 #if TASKQUEUE_STATS
       
    46 class TaskQueueStats {
       
    47 public:
       
    48   enum StatId {
       
    49     push,             // number of taskqueue pushes
       
    50     pop,              // number of taskqueue pops
       
    51     pop_slow,         // subset of taskqueue pops that were done slow-path
       
    52     steal_attempt,    // number of taskqueue steal attempts
       
    53     steal,            // number of taskqueue steals
       
    54     overflow,         // number of overflow pushes
       
    55     overflow_max_len, // max length of overflow stack
       
    56     last_stat_id
       
    57   };
       
    58 
       
    59 public:
       
    60   inline TaskQueueStats()       { reset(); }
       
    61 
       
    62   inline void record_push()     { ++_stats[push]; }
       
    63   inline void record_pop()      { ++_stats[pop]; }
       
    64   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
       
    65   inline void record_steal(bool success);
       
    66   inline void record_overflow(size_t new_length);
       
    67 
       
    68   TaskQueueStats & operator +=(const TaskQueueStats & addend);
       
    69 
       
    70   inline size_t get(StatId id) const { return _stats[id]; }
       
    71   inline const size_t* get() const   { return _stats; }
       
    72 
       
    73   inline void reset();
       
    74 
       
    75   // Print the specified line of the header (does not include a line separator).
       
    76   static void print_header(unsigned int line, outputStream* const stream = tty,
       
    77                            unsigned int width = 10);
       
    78   // Print the statistics (does not include a line separator).
       
    79   void print(outputStream* const stream = tty, unsigned int width = 10) const;
       
    80 
       
    81   DEBUG_ONLY(void verify() const;)
       
    82 
       
    83 private:
       
    84   size_t                    _stats[last_stat_id];
       
    85   static const char * const _names[last_stat_id];
       
    86 };
       
    87 
       
    88 void TaskQueueStats::record_steal(bool success) {
       
    89   ++_stats[steal_attempt];
       
    90   if (success) ++_stats[steal];
       
    91 }
       
    92 
       
    93 void TaskQueueStats::record_overflow(size_t new_len) {
       
    94   ++_stats[overflow];
       
    95   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
       
    96 }
       
    97 
       
    98 void TaskQueueStats::reset() {
       
    99   memset(_stats, 0, sizeof(_stats));
       
   100 }
       
   101 #endif // TASKQUEUE_STATS
       
   102 
       
   103 // TaskQueueSuper collects functionality common to all GenericTaskQueue instances.
       
   104 
       
   105 template <unsigned int N, MEMFLAGS F>
       
   106 class TaskQueueSuper: public CHeapObj<F> {
       
   107 protected:
       
   108   // Internal type for indexing the queue; also used for the tag.
       
   109   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
       
   110 
       
   111   // The first free element after the last one pushed (mod N).
       
   112   volatile uint _bottom;
       
   113 
       
   114   enum { MOD_N_MASK = N - 1 };
       
   115 
       
   116   class Age {
       
   117   public:
       
   118     Age(size_t data = 0)         { _data = data; }
       
   119     Age(const Age& age)          { _data = age._data; }
       
   120     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
       
   121 
       
   122     Age   get()        const volatile { return _data; }
       
   123     void  set(Age age) volatile       { _data = age._data; }
       
   124 
       
   125     idx_t top()        const volatile { return _fields._top; }
       
   126     idx_t tag()        const volatile { return _fields._tag; }
       
   127 
       
   128     // Increment top; if it wraps, increment tag also.
       
   129     void increment() {
       
   130       _fields._top = increment_index(_fields._top);
       
   131       if (_fields._top == 0) ++_fields._tag;
       
   132     }
       
   133 
       
   134     Age cmpxchg(const Age new_age, const Age old_age) volatile;
       
   135 
       
   136     bool operator ==(const Age& other) const { return _data == other._data; }
       
   137 
       
   138   private:
       
   139     struct fields {
       
   140       idx_t _top;
       
   141       idx_t _tag;
       
   142     };
       
   143     union {
       
   144       size_t _data;
       
   145       fields _fields;
       
   146     };
       
   147   };
       
   148 
       
   149   volatile Age _age;
       
   150 
       
   151   // These both operate mod N.
       
   152   static uint increment_index(uint ind) {
       
   153     return (ind + 1) & MOD_N_MASK;
       
   154   }
       
   155   static uint decrement_index(uint ind) {
       
   156     return (ind - 1) & MOD_N_MASK;
       
   157   }
       
   158 
       
   159   // Returns a number in the range [0..N).  If the result is "N-1", it should be
       
   160   // interpreted as 0.
       
   161   uint dirty_size(uint bot, uint top) const {
       
   162     return (bot - top) & MOD_N_MASK;
       
   163   }
       
   164 
       
   165   // Returns the size corresponding to the given "bot" and "top".
       
   166   uint size(uint bot, uint top) const {
       
   167     uint sz = dirty_size(bot, top);
       
   168     // Has the queue "wrapped", so that bottom is less than top?  There's a
       
   169     // complicated special case here.  A pair of threads could perform pop_local
       
   170     // and pop_global operations concurrently, starting from a state in which
       
   171     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
       
   172     // and the pop_global in incrementing _top (in which case the pop_global
       
   173     // will be awarded the contested queue element.)  The resulting state must
       
   174     // be interpreted as an empty queue.  (We only need to worry about one such
       
   175     // event: only the queue owner performs pop_local's, and several concurrent
       
   176     // threads attempting to perform the pop_global will all perform the same
       
   177     // CAS, and only one can succeed.)  Any stealing thread that reads after
       
   178     // either the increment or decrement will see an empty queue, and will not
       
   179     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
       
   180     // modified by concurrent queues, so the owner thread can reset the state to
       
   181     // _bottom == top so subsequent pushes will be performed normally.
       
   182     return (sz == N - 1) ? 0 : sz;
       
   183   }
       
   184 
       
   185 public:
       
   186   TaskQueueSuper() : _bottom(0), _age() {}
       
   187 
       
   188   // Return true if the TaskQueue contains/does not contain any tasks.
       
   189   bool peek()     const { return _bottom != _age.top(); }
       
   190   bool is_empty() const { return size() == 0; }
       
   191 
       
   192   // Return an estimate of the number of elements in the queue.
       
   193   // The "careful" version admits the possibility of pop_local/pop_global
       
   194   // races.
       
   195   uint size() const {
       
   196     return size(_bottom, _age.top());
       
   197   }
       
   198 
       
   199   uint dirty_size() const {
       
   200     return dirty_size(_bottom, _age.top());
       
   201   }
       
   202 
       
   203   void set_empty() {
       
   204     _bottom = 0;
       
   205     _age.set(0);
       
   206   }
       
   207 
       
   208   // Maximum number of elements allowed in the queue.  This is two less
       
   209   // than the actual queue size, for somewhat complicated reasons.
       
   210   uint max_elems() const { return N - 2; }
       
   211 
       
   212   // Total size of queue.
       
   213   static const uint total_size() { return N; }
       
   214 
       
   215   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
       
   216 };
       
   217 
       
   218 //
       
   219 // GenericTaskQueue implements an ABP, Aurora-Blumofe-Plaxton, double-
       
   220 // ended-queue (deque), intended for use in work stealing. Queue operations
       
   221 // are non-blocking.
       
   222 //
       
   223 // A queue owner thread performs push() and pop_local() operations on one end
       
   224 // of the queue, while other threads may steal work using the pop_global()
       
   225 // method.
       
   226 //
       
   227 // The main difference to the original algorithm is that this
       
   228 // implementation allows wrap-around at the end of its allocated
       
   229 // storage, which is an array.
       
   230 //
       
   231 // The original paper is:
       
   232 //
       
   233 // Arora, N. S., Blumofe, R. D., and Plaxton, C. G.
       
   234 // Thread scheduling for multiprogrammed multiprocessors.
       
   235 // Theory of Computing Systems 34, 2 (2001), 115-144.
       
   236 //
       
   237 // The following paper provides an correctness proof and an
       
   238 // implementation for weakly ordered memory models including (pseudo-)
       
   239 // code containing memory barriers for a Chase-Lev deque. Chase-Lev is
       
   240 // similar to ABP, with the main difference that it allows resizing of the
       
   241 // underlying storage:
       
   242 //
       
   243 // Le, N. M., Pop, A., Cohen A., and Nardell, F. Z.
       
   244 // Correct and efficient work-stealing for weak memory models
       
   245 // Proceedings of the 18th ACM SIGPLAN symposium on Principles and
       
   246 // practice of parallel programming (PPoPP 2013), 69-80
       
   247 //
       
   248 
       
   249 template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
       
   250 class GenericTaskQueue: public TaskQueueSuper<N, F> {
       
   251   ArrayAllocator<E, F> _array_allocator;
       
   252 protected:
       
   253   typedef typename TaskQueueSuper<N, F>::Age Age;
       
   254   typedef typename TaskQueueSuper<N, F>::idx_t idx_t;
       
   255 
       
   256   using TaskQueueSuper<N, F>::_bottom;
       
   257   using TaskQueueSuper<N, F>::_age;
       
   258   using TaskQueueSuper<N, F>::increment_index;
       
   259   using TaskQueueSuper<N, F>::decrement_index;
       
   260   using TaskQueueSuper<N, F>::dirty_size;
       
   261 
       
   262 public:
       
   263   using TaskQueueSuper<N, F>::max_elems;
       
   264   using TaskQueueSuper<N, F>::size;
       
   265 
       
   266 #if  TASKQUEUE_STATS
       
   267   using TaskQueueSuper<N, F>::stats;
       
   268 #endif
       
   269 
       
   270 private:
       
   271   // Slow paths for push, pop_local.  (pop_global has no fast path.)
       
   272   bool push_slow(E t, uint dirty_n_elems);
       
   273   bool pop_local_slow(uint localBot, Age oldAge);
       
   274 
       
   275 public:
       
   276   typedef E element_type;
       
   277 
       
   278   // Initializes the queue to empty.
       
   279   GenericTaskQueue();
       
   280 
       
   281   void initialize();
       
   282 
       
   283   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
       
   284   inline bool push(E t);
       
   285 
       
   286   // Attempts to claim a task from the "local" end of the queue (the most
       
   287   // recently pushed).  If successful, returns true and sets t to the task;
       
   288   // otherwise, returns false (the queue is empty).
       
   289   inline bool pop_local(volatile E& t);
       
   290 
       
   291   // Like pop_local(), but uses the "global" end of the queue (the least
       
   292   // recently pushed).
       
   293   bool pop_global(volatile E& t);
       
   294 
       
   295   // Delete any resource associated with the queue.
       
   296   ~GenericTaskQueue();
       
   297 
       
   298   // apply the closure to all elements in the task queue
       
   299   void oops_do(OopClosure* f);
       
   300 
       
   301 private:
       
   302   // Element array.
       
   303   volatile E* _elems;
       
   304 };
       
   305 
       
   306 template<class E, MEMFLAGS F, unsigned int N>
       
   307 GenericTaskQueue<E, F, N>::GenericTaskQueue() {
       
   308   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
       
   309 }
       
   310 
       
   311 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
       
   312 // elements that do not fit in the TaskQueue.
       
   313 //
       
   314 // This class hides two methods from super classes:
       
   315 //
       
   316 // push() - push onto the task queue or, if that fails, onto the overflow stack
       
   317 // is_empty() - return true if both the TaskQueue and overflow stack are empty
       
   318 //
       
   319 // Note that size() is not hidden--it returns the number of elements in the
       
   320 // TaskQueue, and does not include the size of the overflow stack.  This
       
   321 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
       
   322 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
       
   323 class OverflowTaskQueue: public GenericTaskQueue<E, F, N>
       
   324 {
       
   325 public:
       
   326   typedef Stack<E, F>               overflow_t;
       
   327   typedef GenericTaskQueue<E, F, N> taskqueue_t;
       
   328 
       
   329   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
       
   330 
       
   331   // Push task t onto the queue or onto the overflow stack.  Return true.
       
   332   inline bool push(E t);
       
   333 
       
   334   // Attempt to pop from the overflow stack; return true if anything was popped.
       
   335   inline bool pop_overflow(E& t);
       
   336 
       
   337   inline overflow_t* overflow_stack() { return &_overflow_stack; }
       
   338 
       
   339   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
       
   340   inline bool overflow_empty()  const { return _overflow_stack.is_empty(); }
       
   341   inline bool is_empty()        const {
       
   342     return taskqueue_empty() && overflow_empty();
       
   343   }
       
   344 
       
   345 private:
       
   346   overflow_t _overflow_stack;
       
   347 };
       
   348 
       
   349 class TaskQueueSetSuper {
       
   350 protected:
       
   351   static int randomParkAndMiller(int* seed0);
       
   352 public:
       
   353   // Returns "true" if some TaskQueue in the set contains a task.
       
   354   virtual bool peek() = 0;
       
   355 };
       
   356 
       
   357 template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper {
       
   358 };
       
   359 
       
   360 template<class T, MEMFLAGS F>
       
   361 class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> {
       
   362 private:
       
   363   uint _n;
       
   364   T** _queues;
       
   365 
       
   366 public:
       
   367   typedef typename T::element_type E;
       
   368 
       
   369   GenericTaskQueueSet(int n);
       
   370 
       
   371   bool steal_best_of_2(uint queue_num, int* seed, E& t);
       
   372 
       
   373   void register_queue(uint i, T* q);
       
   374 
       
   375   T* queue(uint n);
       
   376 
       
   377   // The thread with queue number "queue_num" (and whose random number seed is
       
   378   // at "seed") is trying to steal a task from some other queue.  (It may try
       
   379   // several queues, according to some configuration parameter.)  If some steal
       
   380   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
       
   381   // false.
       
   382   bool steal(uint queue_num, int* seed, E& t);
       
   383 
       
   384   bool peek();
       
   385 };
       
   386 
       
   387 template<class T, MEMFLAGS F> void
       
   388 GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) {
       
   389   assert(i < _n, "index out of range.");
       
   390   _queues[i] = q;
       
   391 }
       
   392 
       
   393 template<class T, MEMFLAGS F> T*
       
   394 GenericTaskQueueSet<T, F>::queue(uint i) {
       
   395   return _queues[i];
       
   396 }
       
   397 
       
   398 template<class T, MEMFLAGS F>
       
   399 bool GenericTaskQueueSet<T, F>::peek() {
       
   400   // Try all the queues.
       
   401   for (uint j = 0; j < _n; j++) {
       
   402     if (_queues[j]->peek())
       
   403       return true;
       
   404   }
       
   405   return false;
       
   406 }
       
   407 
       
   408 // When to terminate from the termination protocol.
       
   409 class TerminatorTerminator: public CHeapObj<mtInternal> {
       
   410 public:
       
   411   virtual bool should_exit_termination() = 0;
       
   412 };
       
   413 
       
   414 // A class to aid in the termination of a set of parallel tasks using
       
   415 // TaskQueueSet's for work stealing.
       
   416 
       
   417 #undef TRACESPINNING
       
   418 
       
   419 class ParallelTaskTerminator: public StackObj {
       
   420 private:
       
   421   uint _n_threads;
       
   422   TaskQueueSetSuper* _queue_set;
       
   423   uint _offered_termination;
       
   424 
       
   425 #ifdef TRACESPINNING
       
   426   static uint _total_yields;
       
   427   static uint _total_spins;
       
   428   static uint _total_peeks;
       
   429 #endif
       
   430 
       
   431   bool peek_in_queue_set();
       
   432 protected:
       
   433   virtual void yield();
       
   434   void sleep(uint millis);
       
   435 
       
   436 public:
       
   437 
       
   438   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
       
   439   // queue sets of work queues of other threads.
       
   440   ParallelTaskTerminator(uint n_threads, TaskQueueSetSuper* queue_set);
       
   441 
       
   442   // The current thread has no work, and is ready to terminate if everyone
       
   443   // else is.  If returns "true", all threads are terminated.  If returns
       
   444   // "false", available work has been observed in one of the task queues,
       
   445   // so the global task is not complete.
       
   446   bool offer_termination() {
       
   447     return offer_termination(NULL);
       
   448   }
       
   449 
       
   450   // As above, but it also terminates if the should_exit_termination()
       
   451   // method of the terminator parameter returns true. If terminator is
       
   452   // NULL, then it is ignored.
       
   453   bool offer_termination(TerminatorTerminator* terminator);
       
   454 
       
   455   // Reset the terminator, so that it may be reused again.
       
   456   // The caller is responsible for ensuring that this is done
       
   457   // in an MT-safe manner, once the previous round of use of
       
   458   // the terminator is finished.
       
   459   void reset_for_reuse();
       
   460   // Same as above but the number of parallel threads is set to the
       
   461   // given number.
       
   462   void reset_for_reuse(uint n_threads);
       
   463 
       
   464 #ifdef TRACESPINNING
       
   465   static uint total_yields() { return _total_yields; }
       
   466   static uint total_spins() { return _total_spins; }
       
   467   static uint total_peeks() { return _total_peeks; }
       
   468   static void print_termination_counts();
       
   469 #endif
       
   470 };
       
   471 
       
   472 typedef GenericTaskQueue<oop, mtGC>             OopTaskQueue;
       
   473 typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;
       
   474 
       
   475 #ifdef _MSC_VER
       
   476 #pragma warning(push)
       
   477 // warning C4522: multiple assignment operators specified
       
   478 #pragma warning(disable:4522)
       
   479 #endif
       
   480 
       
   481 // This is a container class for either an oop* or a narrowOop*.
       
   482 // Both are pushed onto a task queue and the consumer will test is_narrow()
       
   483 // to determine which should be processed.
       
   484 class StarTask {
       
   485   void*  _holder;        // either union oop* or narrowOop*
       
   486 
       
   487   enum { COMPRESSED_OOP_MASK = 1 };
       
   488 
       
   489  public:
       
   490   StarTask(narrowOop* p) {
       
   491     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
       
   492     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
       
   493   }
       
   494   StarTask(oop* p)       {
       
   495     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
       
   496     _holder = (void*)p;
       
   497   }
       
   498   StarTask()             { _holder = NULL; }
       
   499   operator oop*()        { return (oop*)_holder; }
       
   500   operator narrowOop*()  {
       
   501     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
       
   502   }
       
   503 
       
   504   StarTask& operator=(const StarTask& t) {
       
   505     _holder = t._holder;
       
   506     return *this;
       
   507   }
       
   508   volatile StarTask& operator=(const volatile StarTask& t) volatile {
       
   509     _holder = t._holder;
       
   510     return *this;
       
   511   }
       
   512 
       
   513   bool is_narrow() const {
       
   514     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
       
   515   }
       
   516 };
       
   517 
       
   518 class ObjArrayTask
       
   519 {
       
   520 public:
       
   521   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
       
   522   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
       
   523     assert(idx <= size_t(max_jint), "too big");
       
   524   }
       
   525   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
       
   526 
       
   527   ObjArrayTask& operator =(const ObjArrayTask& t) {
       
   528     _obj = t._obj;
       
   529     _index = t._index;
       
   530     return *this;
       
   531   }
       
   532   volatile ObjArrayTask&
       
   533   operator =(const volatile ObjArrayTask& t) volatile {
       
   534     (void)const_cast<oop&>(_obj = t._obj);
       
   535     _index = t._index;
       
   536     return *this;
       
   537   }
       
   538 
       
   539   inline oop obj()   const { return _obj; }
       
   540   inline int index() const { return _index; }
       
   541 
       
   542   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
       
   543 
       
   544 private:
       
   545   oop _obj;
       
   546   int _index;
       
   547 };
       
   548 
       
   549 #ifdef _MSC_VER
       
   550 #pragma warning(pop)
       
   551 #endif
       
   552 
       
   553 typedef OverflowTaskQueue<StarTask, mtClass>           OopStarTaskQueue;
       
   554 typedef GenericTaskQueueSet<OopStarTaskQueue, mtClass> OopStarTaskQueueSet;
       
   555 
       
   556 typedef OverflowTaskQueue<size_t, mtInternal>             RegionTaskQueue;
       
   557 typedef GenericTaskQueueSet<RegionTaskQueue, mtClass>     RegionTaskQueueSet;
       
   558 
       
   559 
       
   560 #endif // SHARE_VM_GC_SHARED_TASKQUEUE_HPP