hotspot/src/share/vm/gc/shared/collectedHeap.hpp
changeset 30764 fec48bf5a827
parent 30581 a91d6c47f076
child 30870 3050fdcdc60b
equal deleted inserted replaced
30614:e45861098f5a 30764:fec48bf5a827
       
     1 /*
       
     2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
       
    26 #define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
       
    27 
       
    28 #include "gc/shared/gcCause.hpp"
       
    29 #include "gc/shared/gcWhen.hpp"
       
    30 #include "memory/allocation.hpp"
       
    31 #include "runtime/handles.hpp"
       
    32 #include "runtime/perfData.hpp"
       
    33 #include "runtime/safepoint.hpp"
       
    34 #include "utilities/events.hpp"
       
    35 
       
    36 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
       
    37 // is an abstract class: there may be many different kinds of heaps.  This
       
    38 // class defines the functions that a heap must implement, and contains
       
    39 // infrastructure common to all heaps.
       
    40 
       
    41 class AdaptiveSizePolicy;
       
    42 class BarrierSet;
       
    43 class CollectorPolicy;
       
    44 class GCHeapSummary;
       
    45 class GCTimer;
       
    46 class GCTracer;
       
    47 class MetaspaceSummary;
       
    48 class Thread;
       
    49 class ThreadClosure;
       
    50 class VirtualSpaceSummary;
       
    51 class nmethod;
       
    52 
       
    53 class GCMessage : public FormatBuffer<1024> {
       
    54  public:
       
    55   bool is_before;
       
    56 
       
    57  public:
       
    58   GCMessage() {}
       
    59 };
       
    60 
       
    61 class GCHeapLog : public EventLogBase<GCMessage> {
       
    62  private:
       
    63   void log_heap(bool before);
       
    64 
       
    65  public:
       
    66   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
       
    67 
       
    68   void log_heap_before() {
       
    69     log_heap(true);
       
    70   }
       
    71   void log_heap_after() {
       
    72     log_heap(false);
       
    73   }
       
    74 };
       
    75 
       
    76 //
       
    77 // CollectedHeap
       
    78 //   GenCollectedHeap
       
    79 //   G1CollectedHeap
       
    80 //   ParallelScavengeHeap
       
    81 //
       
    82 class CollectedHeap : public CHeapObj<mtInternal> {
       
    83   friend class VMStructs;
       
    84   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
       
    85 
       
    86  private:
       
    87 #ifdef ASSERT
       
    88   static int       _fire_out_of_memory_count;
       
    89 #endif
       
    90 
       
    91   // Used for filler objects (static, but initialized in ctor).
       
    92   static size_t _filler_array_max_size;
       
    93 
       
    94   GCHeapLog* _gc_heap_log;
       
    95 
       
    96   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
       
    97   bool _defer_initial_card_mark;
       
    98 
       
    99   MemRegion _reserved;
       
   100 
       
   101  protected:
       
   102   BarrierSet* _barrier_set;
       
   103   bool _is_gc_active;
       
   104   uint _n_par_threads;
       
   105 
       
   106   unsigned int _total_collections;          // ... started
       
   107   unsigned int _total_full_collections;     // ... started
       
   108   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
       
   109   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
       
   110 
       
   111   // Reason for current garbage collection.  Should be set to
       
   112   // a value reflecting no collection between collections.
       
   113   GCCause::Cause _gc_cause;
       
   114   GCCause::Cause _gc_lastcause;
       
   115   PerfStringVariable* _perf_gc_cause;
       
   116   PerfStringVariable* _perf_gc_lastcause;
       
   117 
       
   118   // Constructor
       
   119   CollectedHeap();
       
   120 
       
   121   // Do common initializations that must follow instance construction,
       
   122   // for example, those needing virtual calls.
       
   123   // This code could perhaps be moved into initialize() but would
       
   124   // be slightly more awkward because we want the latter to be a
       
   125   // pure virtual.
       
   126   void pre_initialize();
       
   127 
       
   128   // Create a new tlab. All TLAB allocations must go through this.
       
   129   virtual HeapWord* allocate_new_tlab(size_t size);
       
   130 
       
   131   // Accumulate statistics on all tlabs.
       
   132   virtual void accumulate_statistics_all_tlabs();
       
   133 
       
   134   // Reinitialize tlabs before resuming mutators.
       
   135   virtual void resize_all_tlabs();
       
   136 
       
   137   // Allocate from the current thread's TLAB, with broken-out slow path.
       
   138   inline static HeapWord* allocate_from_tlab(KlassHandle klass, Thread* thread, size_t size);
       
   139   static HeapWord* allocate_from_tlab_slow(KlassHandle klass, Thread* thread, size_t size);
       
   140 
       
   141   // Allocate an uninitialized block of the given size, or returns NULL if
       
   142   // this is impossible.
       
   143   inline static HeapWord* common_mem_allocate_noinit(KlassHandle klass, size_t size, TRAPS);
       
   144 
       
   145   // Like allocate_init, but the block returned by a successful allocation
       
   146   // is guaranteed initialized to zeros.
       
   147   inline static HeapWord* common_mem_allocate_init(KlassHandle klass, size_t size, TRAPS);
       
   148 
       
   149   // Helper functions for (VM) allocation.
       
   150   inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj);
       
   151   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
       
   152                                                             HeapWord* objPtr);
       
   153 
       
   154   inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj, int size);
       
   155 
       
   156   inline static void post_allocation_setup_array(KlassHandle klass,
       
   157                                                  HeapWord* obj, int length);
       
   158 
       
   159   // Clears an allocated object.
       
   160   inline static void init_obj(HeapWord* obj, size_t size);
       
   161 
       
   162   // Filler object utilities.
       
   163   static inline size_t filler_array_hdr_size();
       
   164   static inline size_t filler_array_min_size();
       
   165 
       
   166   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
       
   167   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
       
   168 
       
   169   // Fill with a single array; caller must ensure filler_array_min_size() <=
       
   170   // words <= filler_array_max_size().
       
   171   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
       
   172 
       
   173   // Fill with a single object (either an int array or a java.lang.Object).
       
   174   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
       
   175 
       
   176   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
       
   177 
       
   178   // Verification functions
       
   179   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
       
   180     PRODUCT_RETURN;
       
   181   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
       
   182     PRODUCT_RETURN;
       
   183   debug_only(static void check_for_valid_allocation_state();)
       
   184 
       
   185  public:
       
   186   enum Name {
       
   187     GenCollectedHeap,
       
   188     ParallelScavengeHeap,
       
   189     G1CollectedHeap
       
   190   };
       
   191 
       
   192   static inline size_t filler_array_max_size() {
       
   193     return _filler_array_max_size;
       
   194   }
       
   195 
       
   196   virtual Name kind() const = 0;
       
   197 
       
   198   /**
       
   199    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
       
   200    * and JNI_OK on success.
       
   201    */
       
   202   virtual jint initialize() = 0;
       
   203 
       
   204   // In many heaps, there will be a need to perform some initialization activities
       
   205   // after the Universe is fully formed, but before general heap allocation is allowed.
       
   206   // This is the correct place to place such initialization methods.
       
   207   virtual void post_initialize();
       
   208 
       
   209   // Stop any onging concurrent work and prepare for exit.
       
   210   virtual void stop() {}
       
   211 
       
   212   void initialize_reserved_region(HeapWord *start, HeapWord *end);
       
   213   MemRegion reserved_region() const { return _reserved; }
       
   214   address base() const { return (address)reserved_region().start(); }
       
   215 
       
   216   virtual size_t capacity() const = 0;
       
   217   virtual size_t used() const = 0;
       
   218 
       
   219   // Return "true" if the part of the heap that allocates Java
       
   220   // objects has reached the maximal committed limit that it can
       
   221   // reach, without a garbage collection.
       
   222   virtual bool is_maximal_no_gc() const = 0;
       
   223 
       
   224   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
       
   225   // memory that the vm could make available for storing 'normal' java objects.
       
   226   // This is based on the reserved address space, but should not include space
       
   227   // that the vm uses internally for bookkeeping or temporary storage
       
   228   // (e.g., in the case of the young gen, one of the survivor
       
   229   // spaces).
       
   230   virtual size_t max_capacity() const = 0;
       
   231 
       
   232   // Returns "TRUE" if "p" points into the reserved area of the heap.
       
   233   bool is_in_reserved(const void* p) const {
       
   234     return _reserved.contains(p);
       
   235   }
       
   236 
       
   237   bool is_in_reserved_or_null(const void* p) const {
       
   238     return p == NULL || is_in_reserved(p);
       
   239   }
       
   240 
       
   241   // Returns "TRUE" iff "p" points into the committed areas of the heap.
       
   242   // This method can be expensive so avoid using it in performance critical
       
   243   // code.
       
   244   virtual bool is_in(const void* p) const = 0;
       
   245 
       
   246   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
       
   247 
       
   248   // Let's define some terms: a "closed" subset of a heap is one that
       
   249   //
       
   250   // 1) contains all currently-allocated objects, and
       
   251   //
       
   252   // 2) is closed under reference: no object in the closed subset
       
   253   //    references one outside the closed subset.
       
   254   //
       
   255   // Membership in a heap's closed subset is useful for assertions.
       
   256   // Clearly, the entire heap is a closed subset, so the default
       
   257   // implementation is to use "is_in_reserved".  But this may not be too
       
   258   // liberal to perform useful checking.  Also, the "is_in" predicate
       
   259   // defines a closed subset, but may be too expensive, since "is_in"
       
   260   // verifies that its argument points to an object head.  The
       
   261   // "closed_subset" method allows a heap to define an intermediate
       
   262   // predicate, allowing more precise checking than "is_in_reserved" at
       
   263   // lower cost than "is_in."
       
   264 
       
   265   // One important case is a heap composed of disjoint contiguous spaces,
       
   266   // such as the Garbage-First collector.  Such heaps have a convenient
       
   267   // closed subset consisting of the allocated portions of those
       
   268   // contiguous spaces.
       
   269 
       
   270   // Return "TRUE" iff the given pointer points into the heap's defined
       
   271   // closed subset (which defaults to the entire heap).
       
   272   virtual bool is_in_closed_subset(const void* p) const {
       
   273     return is_in_reserved(p);
       
   274   }
       
   275 
       
   276   bool is_in_closed_subset_or_null(const void* p) const {
       
   277     return p == NULL || is_in_closed_subset(p);
       
   278   }
       
   279 
       
   280   // An object is scavengable if its location may move during a scavenge.
       
   281   // (A scavenge is a GC which is not a full GC.)
       
   282   virtual bool is_scavengable(const void *p) = 0;
       
   283 
       
   284   void set_gc_cause(GCCause::Cause v) {
       
   285      if (UsePerfData) {
       
   286        _gc_lastcause = _gc_cause;
       
   287        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
       
   288        _perf_gc_cause->set_value(GCCause::to_string(v));
       
   289      }
       
   290     _gc_cause = v;
       
   291   }
       
   292   GCCause::Cause gc_cause() { return _gc_cause; }
       
   293 
       
   294   // Number of threads currently working on GC tasks.
       
   295   uint n_par_threads() { return _n_par_threads; }
       
   296 
       
   297   // May be overridden to set additional parallelism.
       
   298   virtual void set_par_threads(uint t) { _n_par_threads = t; };
       
   299 
       
   300   // General obj/array allocation facilities.
       
   301   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
       
   302   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
       
   303   inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS);
       
   304 
       
   305   inline static void post_allocation_install_obj_klass(KlassHandle klass,
       
   306                                                        oop obj);
       
   307 
       
   308   // Raw memory allocation facilities
       
   309   // The obj and array allocate methods are covers for these methods.
       
   310   // mem_allocate() should never be
       
   311   // called to allocate TLABs, only individual objects.
       
   312   virtual HeapWord* mem_allocate(size_t size,
       
   313                                  bool* gc_overhead_limit_was_exceeded) = 0;
       
   314 
       
   315   // Utilities for turning raw memory into filler objects.
       
   316   //
       
   317   // min_fill_size() is the smallest region that can be filled.
       
   318   // fill_with_objects() can fill arbitrary-sized regions of the heap using
       
   319   // multiple objects.  fill_with_object() is for regions known to be smaller
       
   320   // than the largest array of integers; it uses a single object to fill the
       
   321   // region and has slightly less overhead.
       
   322   static size_t min_fill_size() {
       
   323     return size_t(align_object_size(oopDesc::header_size()));
       
   324   }
       
   325 
       
   326   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
       
   327 
       
   328   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
       
   329   static void fill_with_object(MemRegion region, bool zap = true) {
       
   330     fill_with_object(region.start(), region.word_size(), zap);
       
   331   }
       
   332   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
       
   333     fill_with_object(start, pointer_delta(end, start), zap);
       
   334   }
       
   335 
       
   336   // Return the address "addr" aligned by "alignment_in_bytes" if such
       
   337   // an address is below "end".  Return NULL otherwise.
       
   338   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
       
   339                                                    HeapWord* end,
       
   340                                                    unsigned short alignment_in_bytes);
       
   341 
       
   342   // Some heaps may offer a contiguous region for shared non-blocking
       
   343   // allocation, via inlined code (by exporting the address of the top and
       
   344   // end fields defining the extent of the contiguous allocation region.)
       
   345 
       
   346   // This function returns "true" iff the heap supports this kind of
       
   347   // allocation.  (Default is "no".)
       
   348   virtual bool supports_inline_contig_alloc() const {
       
   349     return false;
       
   350   }
       
   351   // These functions return the addresses of the fields that define the
       
   352   // boundaries of the contiguous allocation area.  (These fields should be
       
   353   // physically near to one another.)
       
   354   virtual HeapWord** top_addr() const {
       
   355     guarantee(false, "inline contiguous allocation not supported");
       
   356     return NULL;
       
   357   }
       
   358   virtual HeapWord** end_addr() const {
       
   359     guarantee(false, "inline contiguous allocation not supported");
       
   360     return NULL;
       
   361   }
       
   362 
       
   363   // Some heaps may be in an unparseable state at certain times between
       
   364   // collections. This may be necessary for efficient implementation of
       
   365   // certain allocation-related activities. Calling this function before
       
   366   // attempting to parse a heap ensures that the heap is in a parsable
       
   367   // state (provided other concurrent activity does not introduce
       
   368   // unparsability). It is normally expected, therefore, that this
       
   369   // method is invoked with the world stopped.
       
   370   // NOTE: if you override this method, make sure you call
       
   371   // super::ensure_parsability so that the non-generational
       
   372   // part of the work gets done. See implementation of
       
   373   // CollectedHeap::ensure_parsability and, for instance,
       
   374   // that of GenCollectedHeap::ensure_parsability().
       
   375   // The argument "retire_tlabs" controls whether existing TLABs
       
   376   // are merely filled or also retired, thus preventing further
       
   377   // allocation from them and necessitating allocation of new TLABs.
       
   378   virtual void ensure_parsability(bool retire_tlabs);
       
   379 
       
   380   // Section on thread-local allocation buffers (TLABs)
       
   381   // If the heap supports thread-local allocation buffers, it should override
       
   382   // the following methods:
       
   383   // Returns "true" iff the heap supports thread-local allocation buffers.
       
   384   // The default is "no".
       
   385   virtual bool supports_tlab_allocation() const = 0;
       
   386 
       
   387   // The amount of space available for thread-local allocation buffers.
       
   388   virtual size_t tlab_capacity(Thread *thr) const = 0;
       
   389 
       
   390   // The amount of used space for thread-local allocation buffers for the given thread.
       
   391   virtual size_t tlab_used(Thread *thr) const = 0;
       
   392 
       
   393   virtual size_t max_tlab_size() const;
       
   394 
       
   395   // An estimate of the maximum allocation that could be performed
       
   396   // for thread-local allocation buffers without triggering any
       
   397   // collection or expansion activity.
       
   398   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
       
   399     guarantee(false, "thread-local allocation buffers not supported");
       
   400     return 0;
       
   401   }
       
   402 
       
   403   // Can a compiler initialize a new object without store barriers?
       
   404   // This permission only extends from the creation of a new object
       
   405   // via a TLAB up to the first subsequent safepoint. If such permission
       
   406   // is granted for this heap type, the compiler promises to call
       
   407   // defer_store_barrier() below on any slow path allocation of
       
   408   // a new object for which such initializing store barriers will
       
   409   // have been elided.
       
   410   virtual bool can_elide_tlab_store_barriers() const = 0;
       
   411 
       
   412   // If a compiler is eliding store barriers for TLAB-allocated objects,
       
   413   // there is probably a corresponding slow path which can produce
       
   414   // an object allocated anywhere.  The compiler's runtime support
       
   415   // promises to call this function on such a slow-path-allocated
       
   416   // object before performing initializations that have elided
       
   417   // store barriers. Returns new_obj, or maybe a safer copy thereof.
       
   418   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
       
   419 
       
   420   // Answers whether an initializing store to a new object currently
       
   421   // allocated at the given address doesn't need a store
       
   422   // barrier. Returns "true" if it doesn't need an initializing
       
   423   // store barrier; answers "false" if it does.
       
   424   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
       
   425 
       
   426   // If a compiler is eliding store barriers for TLAB-allocated objects,
       
   427   // we will be informed of a slow-path allocation by a call
       
   428   // to new_store_pre_barrier() above. Such a call precedes the
       
   429   // initialization of the object itself, and no post-store-barriers will
       
   430   // be issued. Some heap types require that the barrier strictly follows
       
   431   // the initializing stores. (This is currently implemented by deferring the
       
   432   // barrier until the next slow-path allocation or gc-related safepoint.)
       
   433   // This interface answers whether a particular heap type needs the card
       
   434   // mark to be thus strictly sequenced after the stores.
       
   435   virtual bool card_mark_must_follow_store() const = 0;
       
   436 
       
   437   // If the CollectedHeap was asked to defer a store barrier above,
       
   438   // this informs it to flush such a deferred store barrier to the
       
   439   // remembered set.
       
   440   virtual void flush_deferred_store_barrier(JavaThread* thread);
       
   441 
       
   442   // Perform a collection of the heap; intended for use in implementing
       
   443   // "System.gc".  This probably implies as full a collection as the
       
   444   // "CollectedHeap" supports.
       
   445   virtual void collect(GCCause::Cause cause) = 0;
       
   446 
       
   447   // Perform a full collection
       
   448   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
       
   449 
       
   450   // This interface assumes that it's being called by the
       
   451   // vm thread. It collects the heap assuming that the
       
   452   // heap lock is already held and that we are executing in
       
   453   // the context of the vm thread.
       
   454   virtual void collect_as_vm_thread(GCCause::Cause cause);
       
   455 
       
   456   // Returns the barrier set for this heap
       
   457   BarrierSet* barrier_set() { return _barrier_set; }
       
   458   void set_barrier_set(BarrierSet* barrier_set);
       
   459 
       
   460   // Returns "true" iff there is a stop-world GC in progress.  (I assume
       
   461   // that it should answer "false" for the concurrent part of a concurrent
       
   462   // collector -- dld).
       
   463   bool is_gc_active() const { return _is_gc_active; }
       
   464 
       
   465   // Total number of GC collections (started)
       
   466   unsigned int total_collections() const { return _total_collections; }
       
   467   unsigned int total_full_collections() const { return _total_full_collections;}
       
   468 
       
   469   // Increment total number of GC collections (started)
       
   470   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
       
   471   void increment_total_collections(bool full = false) {
       
   472     _total_collections++;
       
   473     if (full) {
       
   474       increment_total_full_collections();
       
   475     }
       
   476   }
       
   477 
       
   478   void increment_total_full_collections() { _total_full_collections++; }
       
   479 
       
   480   // Return the AdaptiveSizePolicy for the heap.
       
   481   virtual AdaptiveSizePolicy* size_policy() = 0;
       
   482 
       
   483   // Return the CollectorPolicy for the heap
       
   484   virtual CollectorPolicy* collector_policy() const = 0;
       
   485 
       
   486   // Iterate over all objects, calling "cl.do_object" on each.
       
   487   virtual void object_iterate(ObjectClosure* cl) = 0;
       
   488 
       
   489   // Similar to object_iterate() except iterates only
       
   490   // over live objects.
       
   491   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
       
   492 
       
   493   // NOTE! There is no requirement that a collector implement these
       
   494   // functions.
       
   495   //
       
   496   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
       
   497   // each address in the (reserved) heap is a member of exactly
       
   498   // one block.  The defining characteristic of a block is that it is
       
   499   // possible to find its size, and thus to progress forward to the next
       
   500   // block.  (Blocks may be of different sizes.)  Thus, blocks may
       
   501   // represent Java objects, or they might be free blocks in a
       
   502   // free-list-based heap (or subheap), as long as the two kinds are
       
   503   // distinguishable and the size of each is determinable.
       
   504 
       
   505   // Returns the address of the start of the "block" that contains the
       
   506   // address "addr".  We say "blocks" instead of "object" since some heaps
       
   507   // may not pack objects densely; a chunk may either be an object or a
       
   508   // non-object.
       
   509   virtual HeapWord* block_start(const void* addr) const = 0;
       
   510 
       
   511   // Requires "addr" to be the start of a chunk, and returns its size.
       
   512   // "addr + size" is required to be the start of a new chunk, or the end
       
   513   // of the active area of the heap.
       
   514   virtual size_t block_size(const HeapWord* addr) const = 0;
       
   515 
       
   516   // Requires "addr" to be the start of a block, and returns "TRUE" iff
       
   517   // the block is an object.
       
   518   virtual bool block_is_obj(const HeapWord* addr) const = 0;
       
   519 
       
   520   // Returns the longest time (in ms) that has elapsed since the last
       
   521   // time that any part of the heap was examined by a garbage collection.
       
   522   virtual jlong millis_since_last_gc() = 0;
       
   523 
       
   524   // Perform any cleanup actions necessary before allowing a verification.
       
   525   virtual void prepare_for_verify() = 0;
       
   526 
       
   527   // Generate any dumps preceding or following a full gc
       
   528   void pre_full_gc_dump(GCTimer* timer);
       
   529   void post_full_gc_dump(GCTimer* timer);
       
   530 
       
   531   VirtualSpaceSummary create_heap_space_summary();
       
   532   GCHeapSummary create_heap_summary();
       
   533 
       
   534   MetaspaceSummary create_metaspace_summary();
       
   535 
       
   536   // Print heap information on the given outputStream.
       
   537   virtual void print_on(outputStream* st) const = 0;
       
   538   // The default behavior is to call print_on() on tty.
       
   539   virtual void print() const {
       
   540     print_on(tty);
       
   541   }
       
   542   // Print more detailed heap information on the given
       
   543   // outputStream. The default behavior is to call print_on(). It is
       
   544   // up to each subclass to override it and add any additional output
       
   545   // it needs.
       
   546   virtual void print_extended_on(outputStream* st) const {
       
   547     print_on(st);
       
   548   }
       
   549 
       
   550   virtual void print_on_error(outputStream* st) const;
       
   551 
       
   552   // Print all GC threads (other than the VM thread)
       
   553   // used by this heap.
       
   554   virtual void print_gc_threads_on(outputStream* st) const = 0;
       
   555   // The default behavior is to call print_gc_threads_on() on tty.
       
   556   void print_gc_threads() {
       
   557     print_gc_threads_on(tty);
       
   558   }
       
   559   // Iterator for all GC threads (other than VM thread)
       
   560   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
       
   561 
       
   562   // Print any relevant tracing info that flags imply.
       
   563   // Default implementation does nothing.
       
   564   virtual void print_tracing_info() const = 0;
       
   565 
       
   566   void print_heap_before_gc();
       
   567   void print_heap_after_gc();
       
   568 
       
   569   // Registering and unregistering an nmethod (compiled code) with the heap.
       
   570   // Override with specific mechanism for each specialized heap type.
       
   571   virtual void register_nmethod(nmethod* nm);
       
   572   virtual void unregister_nmethod(nmethod* nm);
       
   573 
       
   574   void trace_heap_before_gc(const GCTracer* gc_tracer);
       
   575   void trace_heap_after_gc(const GCTracer* gc_tracer);
       
   576 
       
   577   // Heap verification
       
   578   virtual void verify(bool silent, VerifyOption option) = 0;
       
   579 
       
   580   // Non product verification and debugging.
       
   581 #ifndef PRODUCT
       
   582   // Support for PromotionFailureALot.  Return true if it's time to cause a
       
   583   // promotion failure.  The no-argument version uses
       
   584   // this->_promotion_failure_alot_count as the counter.
       
   585   inline bool promotion_should_fail(volatile size_t* count);
       
   586   inline bool promotion_should_fail();
       
   587 
       
   588   // Reset the PromotionFailureALot counters.  Should be called at the end of a
       
   589   // GC in which promotion failure occurred.
       
   590   inline void reset_promotion_should_fail(volatile size_t* count);
       
   591   inline void reset_promotion_should_fail();
       
   592 #endif  // #ifndef PRODUCT
       
   593 
       
   594 #ifdef ASSERT
       
   595   static int fired_fake_oom() {
       
   596     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
       
   597   }
       
   598 #endif
       
   599 
       
   600  public:
       
   601   // Copy the current allocation context statistics for the specified contexts.
       
   602   // For each context in contexts, set the corresponding entries in the totals
       
   603   // and accuracy arrays to the current values held by the statistics.  Each
       
   604   // array should be of length len.
       
   605   // Returns true if there are more stats available.
       
   606   virtual bool copy_allocation_context_stats(const jint* contexts,
       
   607                                              jlong* totals,
       
   608                                              jbyte* accuracy,
       
   609                                              jint len) {
       
   610     return false;
       
   611   }
       
   612 
       
   613   /////////////// Unit tests ///////////////
       
   614 
       
   615   NOT_PRODUCT(static void test_is_in();)
       
   616 };
       
   617 
       
   618 // Class to set and reset the GC cause for a CollectedHeap.
       
   619 
       
   620 class GCCauseSetter : StackObj {
       
   621   CollectedHeap* _heap;
       
   622   GCCause::Cause _previous_cause;
       
   623  public:
       
   624   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
       
   625     assert(SafepointSynchronize::is_at_safepoint(),
       
   626            "This method manipulates heap state without locking");
       
   627     _heap = heap;
       
   628     _previous_cause = _heap->gc_cause();
       
   629     _heap->set_gc_cause(cause);
       
   630   }
       
   631 
       
   632   ~GCCauseSetter() {
       
   633     assert(SafepointSynchronize::is_at_safepoint(),
       
   634           "This method manipulates heap state without locking");
       
   635     _heap->set_gc_cause(_previous_cause);
       
   636   }
       
   637 };
       
   638 
       
   639 #endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP