src/hotspot/share/gc/cms/concurrentMarkSweepGeneration.cpp
branchaefimov-dns-client-branch
changeset 59099 fcdb8e7ead8f
parent 58984 15e026239a6c
parent 59075 355f4f42dda5
child 59100 b92aac38b046
equal deleted inserted replaced
58984:15e026239a6c 59099:fcdb8e7ead8f
     1 /*
       
     2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "classfile/classLoaderDataGraph.hpp"
       
    27 #include "classfile/systemDictionary.hpp"
       
    28 #include "code/codeCache.hpp"
       
    29 #include "gc/cms/cmsGCStats.hpp"
       
    30 #include "gc/cms/cmsHeap.hpp"
       
    31 #include "gc/cms/cmsOopClosures.inline.hpp"
       
    32 #include "gc/cms/cmsVMOperations.hpp"
       
    33 #include "gc/cms/compactibleFreeListSpace.hpp"
       
    34 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
       
    35 #include "gc/cms/concurrentMarkSweepThread.hpp"
       
    36 #include "gc/cms/parNewGeneration.hpp"
       
    37 #include "gc/cms/promotionInfo.inline.hpp"
       
    38 #include "gc/serial/genMarkSweep.hpp"
       
    39 #include "gc/serial/tenuredGeneration.hpp"
       
    40 #include "gc/shared/adaptiveSizePolicy.hpp"
       
    41 #include "gc/shared/cardGeneration.inline.hpp"
       
    42 #include "gc/shared/cardTableRS.hpp"
       
    43 #include "gc/shared/collectedHeap.inline.hpp"
       
    44 #include "gc/shared/collectorCounters.hpp"
       
    45 #include "gc/shared/gcLocker.hpp"
       
    46 #include "gc/shared/gcPolicyCounters.hpp"
       
    47 #include "gc/shared/gcTimer.hpp"
       
    48 #include "gc/shared/gcTrace.hpp"
       
    49 #include "gc/shared/gcTraceTime.inline.hpp"
       
    50 #include "gc/shared/genCollectedHeap.hpp"
       
    51 #include "gc/shared/genOopClosures.inline.hpp"
       
    52 #include "gc/shared/isGCActiveMark.hpp"
       
    53 #include "gc/shared/owstTaskTerminator.hpp"
       
    54 #include "gc/shared/referencePolicy.hpp"
       
    55 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
       
    56 #include "gc/shared/space.inline.hpp"
       
    57 #include "gc/shared/strongRootsScope.hpp"
       
    58 #include "gc/shared/taskqueue.inline.hpp"
       
    59 #include "gc/shared/weakProcessor.hpp"
       
    60 #include "gc/shared/workerPolicy.hpp"
       
    61 #include "logging/log.hpp"
       
    62 #include "logging/logStream.hpp"
       
    63 #include "memory/allocation.hpp"
       
    64 #include "memory/binaryTreeDictionary.inline.hpp"
       
    65 #include "memory/iterator.inline.hpp"
       
    66 #include "memory/padded.hpp"
       
    67 #include "memory/resourceArea.hpp"
       
    68 #include "memory/universe.hpp"
       
    69 #include "oops/access.inline.hpp"
       
    70 #include "oops/oop.inline.hpp"
       
    71 #include "prims/jvmtiExport.hpp"
       
    72 #include "runtime/atomic.hpp"
       
    73 #include "runtime/flags/flagSetting.hpp"
       
    74 #include "runtime/globals_extension.hpp"
       
    75 #include "runtime/handles.inline.hpp"
       
    76 #include "runtime/java.hpp"
       
    77 #include "runtime/orderAccess.hpp"
       
    78 #include "runtime/timer.hpp"
       
    79 #include "runtime/vmThread.hpp"
       
    80 #include "services/memoryService.hpp"
       
    81 #include "services/runtimeService.hpp"
       
    82 #include "utilities/align.hpp"
       
    83 #include "utilities/stack.inline.hpp"
       
    84 #if INCLUDE_JVMCI
       
    85 #include "jvmci/jvmci.hpp"
       
    86 #endif
       
    87 
       
    88 // statics
       
    89 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
       
    90 bool CMSCollector::_full_gc_requested = false;
       
    91 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
       
    92 
       
    93 //////////////////////////////////////////////////////////////////
       
    94 // In support of CMS/VM thread synchronization
       
    95 //////////////////////////////////////////////////////////////////
       
    96 // We split use of the CGC_lock into 2 "levels".
       
    97 // The low-level locking is of the usual CGC_lock monitor. We introduce
       
    98 // a higher level "token" (hereafter "CMS token") built on top of the
       
    99 // low level monitor (hereafter "CGC lock").
       
   100 // The token-passing protocol gives priority to the VM thread. The
       
   101 // CMS-lock doesn't provide any fairness guarantees, but clients
       
   102 // should ensure that it is only held for very short, bounded
       
   103 // durations.
       
   104 //
       
   105 // When either of the CMS thread or the VM thread is involved in
       
   106 // collection operations during which it does not want the other
       
   107 // thread to interfere, it obtains the CMS token.
       
   108 //
       
   109 // If either thread tries to get the token while the other has
       
   110 // it, that thread waits. However, if the VM thread and CMS thread
       
   111 // both want the token, then the VM thread gets priority while the
       
   112 // CMS thread waits. This ensures, for instance, that the "concurrent"
       
   113 // phases of the CMS thread's work do not block out the VM thread
       
   114 // for long periods of time as the CMS thread continues to hog
       
   115 // the token. (See bug 4616232).
       
   116 //
       
   117 // The baton-passing functions are, however, controlled by the
       
   118 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
       
   119 // and here the low-level CMS lock, not the high level token,
       
   120 // ensures mutual exclusion.
       
   121 //
       
   122 // Two important conditions that we have to satisfy:
       
   123 // 1. if a thread does a low-level wait on the CMS lock, then it
       
   124 //    relinquishes the CMS token if it were holding that token
       
   125 //    when it acquired the low-level CMS lock.
       
   126 // 2. any low-level notifications on the low-level lock
       
   127 //    should only be sent when a thread has relinquished the token.
       
   128 //
       
   129 // In the absence of either property, we'd have potential deadlock.
       
   130 //
       
   131 // We protect each of the CMS (concurrent and sequential) phases
       
   132 // with the CMS _token_, not the CMS _lock_.
       
   133 //
       
   134 // The only code protected by CMS lock is the token acquisition code
       
   135 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
       
   136 // baton-passing code.
       
   137 //
       
   138 // Unfortunately, i couldn't come up with a good abstraction to factor and
       
   139 // hide the naked CGC_lock manipulation in the baton-passing code
       
   140 // further below. That's something we should try to do. Also, the proof
       
   141 // of correctness of this 2-level locking scheme is far from obvious,
       
   142 // and potentially quite slippery. We have an uneasy suspicion, for instance,
       
   143 // that there may be a theoretical possibility of delay/starvation in the
       
   144 // low-level lock/wait/notify scheme used for the baton-passing because of
       
   145 // potential interference with the priority scheme embodied in the
       
   146 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
       
   147 // invocation further below and marked with "XXX 20011219YSR".
       
   148 // Indeed, as we note elsewhere, this may become yet more slippery
       
   149 // in the presence of multiple CMS and/or multiple VM threads. XXX
       
   150 
       
   151 class CMSTokenSync: public StackObj {
       
   152  private:
       
   153   bool _is_cms_thread;
       
   154  public:
       
   155   CMSTokenSync(bool is_cms_thread):
       
   156     _is_cms_thread(is_cms_thread) {
       
   157     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
       
   158            "Incorrect argument to constructor");
       
   159     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
       
   160   }
       
   161 
       
   162   ~CMSTokenSync() {
       
   163     assert(_is_cms_thread ?
       
   164              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
       
   165              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
       
   166           "Incorrect state");
       
   167     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
       
   168   }
       
   169 };
       
   170 
       
   171 // Convenience class that does a CMSTokenSync, and then acquires
       
   172 // upto three locks.
       
   173 class CMSTokenSyncWithLocks: public CMSTokenSync {
       
   174  private:
       
   175   // Note: locks are acquired in textual declaration order
       
   176   // and released in the opposite order
       
   177   MutexLocker _locker1, _locker2, _locker3;
       
   178  public:
       
   179   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
       
   180                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
       
   181     CMSTokenSync(is_cms_thread),
       
   182     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
       
   183     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
       
   184     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
       
   185   { }
       
   186 };
       
   187 
       
   188 
       
   189 //////////////////////////////////////////////////////////////////
       
   190 //  Concurrent Mark-Sweep Generation /////////////////////////////
       
   191 //////////////////////////////////////////////////////////////////
       
   192 
       
   193 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
       
   194 
       
   195 // This struct contains per-thread things necessary to support parallel
       
   196 // young-gen collection.
       
   197 class CMSParGCThreadState: public CHeapObj<mtGC> {
       
   198  public:
       
   199   CompactibleFreeListSpaceLAB lab;
       
   200   PromotionInfo promo;
       
   201 
       
   202   // Constructor.
       
   203   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
       
   204     promo.setSpace(cfls);
       
   205   }
       
   206 };
       
   207 
       
   208 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
       
   209      ReservedSpace rs,
       
   210      size_t initial_byte_size,
       
   211      size_t min_byte_size,
       
   212      size_t max_byte_size,
       
   213      CardTableRS* ct) :
       
   214   CardGeneration(rs, initial_byte_size, ct),
       
   215   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
       
   216   _did_compact(false)
       
   217 {
       
   218   HeapWord* bottom = (HeapWord*) _virtual_space.low();
       
   219   HeapWord* end    = (HeapWord*) _virtual_space.high();
       
   220 
       
   221   _direct_allocated_words = 0;
       
   222   NOT_PRODUCT(
       
   223     _numObjectsPromoted = 0;
       
   224     _numWordsPromoted = 0;
       
   225     _numObjectsAllocated = 0;
       
   226     _numWordsAllocated = 0;
       
   227   )
       
   228 
       
   229   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
       
   230   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
       
   231   _cmsSpace->_old_gen = this;
       
   232 
       
   233   _gc_stats = new CMSGCStats();
       
   234 
       
   235   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
       
   236   // offsets match. The ability to tell free chunks from objects
       
   237   // depends on this property.
       
   238   debug_only(
       
   239     FreeChunk* junk = NULL;
       
   240     assert(UseCompressedClassPointers ||
       
   241            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
       
   242            "Offset of FreeChunk::_prev within FreeChunk must match"
       
   243            "  that of OopDesc::_klass within OopDesc");
       
   244   )
       
   245 
       
   246   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
       
   247   for (uint i = 0; i < ParallelGCThreads; i++) {
       
   248     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
       
   249   }
       
   250 
       
   251   _incremental_collection_failed = false;
       
   252   // The "dilatation_factor" is the expansion that can occur on
       
   253   // account of the fact that the minimum object size in the CMS
       
   254   // generation may be larger than that in, say, a contiguous young
       
   255   //  generation.
       
   256   // Ideally, in the calculation below, we'd compute the dilatation
       
   257   // factor as: MinChunkSize/(promoting_gen's min object size)
       
   258   // Since we do not have such a general query interface for the
       
   259   // promoting generation, we'll instead just use the minimum
       
   260   // object size (which today is a header's worth of space);
       
   261   // note that all arithmetic is in units of HeapWords.
       
   262   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
       
   263   assert(_dilatation_factor >= 1.0, "from previous assert");
       
   264 
       
   265   initialize_performance_counters(min_byte_size, max_byte_size);
       
   266 }
       
   267 
       
   268 
       
   269 // The field "_initiating_occupancy" represents the occupancy percentage
       
   270 // at which we trigger a new collection cycle.  Unless explicitly specified
       
   271 // via CMSInitiatingOccupancyFraction (argument "io" below), it
       
   272 // is calculated by:
       
   273 //
       
   274 //   Let "f" be MinHeapFreeRatio in
       
   275 //
       
   276 //    _initiating_occupancy = 100-f +
       
   277 //                           f * (CMSTriggerRatio/100)
       
   278 //   where CMSTriggerRatio is the argument "tr" below.
       
   279 //
       
   280 // That is, if we assume the heap is at its desired maximum occupancy at the
       
   281 // end of a collection, we let CMSTriggerRatio of the (purported) free
       
   282 // space be allocated before initiating a new collection cycle.
       
   283 //
       
   284 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
       
   285   assert(io <= 100 && tr <= 100, "Check the arguments");
       
   286   if (io >= 0) {
       
   287     _initiating_occupancy = (double)io / 100.0;
       
   288   } else {
       
   289     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
       
   290                              (double)(tr * MinHeapFreeRatio) / 100.0)
       
   291                             / 100.0;
       
   292   }
       
   293 }
       
   294 
       
   295 void ConcurrentMarkSweepGeneration::ref_processor_init() {
       
   296   assert(collector() != NULL, "no collector");
       
   297   collector()->ref_processor_init();
       
   298 }
       
   299 
       
   300 void CMSCollector::ref_processor_init() {
       
   301   if (_ref_processor == NULL) {
       
   302     // Allocate and initialize a reference processor
       
   303     _ref_processor =
       
   304       new ReferenceProcessor(&_span_based_discoverer,
       
   305                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
       
   306                              ParallelGCThreads,                      // mt processing degree
       
   307                              _cmsGen->refs_discovery_is_mt(),        // mt discovery
       
   308                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
       
   309                              _cmsGen->refs_discovery_is_atomic(),    // discovery is not atomic
       
   310                              &_is_alive_closure,                     // closure for liveness info
       
   311                              false);                                 // disable adjusting number of processing threads
       
   312     // Initialize the _ref_processor field of CMSGen
       
   313     _cmsGen->set_ref_processor(_ref_processor);
       
   314 
       
   315   }
       
   316 }
       
   317 
       
   318 AdaptiveSizePolicy* CMSCollector::size_policy() {
       
   319   return CMSHeap::heap()->size_policy();
       
   320 }
       
   321 
       
   322 void ConcurrentMarkSweepGeneration::initialize_performance_counters(size_t min_old_size,
       
   323                                                                     size_t max_old_size) {
       
   324 
       
   325   const char* gen_name = "old";
       
   326   // Generation Counters - generation 1, 1 subspace
       
   327   _gen_counters = new GenerationCounters(gen_name, 1, 1,
       
   328       min_old_size, max_old_size, &_virtual_space);
       
   329 
       
   330   _space_counters = new GSpaceCounters(gen_name, 0,
       
   331                                        _virtual_space.reserved_size(),
       
   332                                        this, _gen_counters);
       
   333 }
       
   334 
       
   335 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
       
   336   _cms_gen(cms_gen)
       
   337 {
       
   338   assert(alpha <= 100, "bad value");
       
   339   _saved_alpha = alpha;
       
   340 
       
   341   // Initialize the alphas to the bootstrap value of 100.
       
   342   _gc0_alpha = _cms_alpha = 100;
       
   343 
       
   344   _cms_begin_time.update();
       
   345   _cms_end_time.update();
       
   346 
       
   347   _gc0_duration = 0.0;
       
   348   _gc0_period = 0.0;
       
   349   _gc0_promoted = 0;
       
   350 
       
   351   _cms_duration = 0.0;
       
   352   _cms_period = 0.0;
       
   353   _cms_allocated = 0;
       
   354 
       
   355   _cms_used_at_gc0_begin = 0;
       
   356   _cms_used_at_gc0_end = 0;
       
   357   _allow_duty_cycle_reduction = false;
       
   358   _valid_bits = 0;
       
   359 }
       
   360 
       
   361 double CMSStats::cms_free_adjustment_factor(size_t free) const {
       
   362   // TBD: CR 6909490
       
   363   return 1.0;
       
   364 }
       
   365 
       
   366 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
       
   367 }
       
   368 
       
   369 // If promotion failure handling is on use
       
   370 // the padded average size of the promotion for each
       
   371 // young generation collection.
       
   372 double CMSStats::time_until_cms_gen_full() const {
       
   373   size_t cms_free = _cms_gen->cmsSpace()->free();
       
   374   CMSHeap* heap = CMSHeap::heap();
       
   375   size_t expected_promotion = MIN2(heap->young_gen()->capacity(),
       
   376                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
       
   377   if (cms_free > expected_promotion) {
       
   378     // Start a cms collection if there isn't enough space to promote
       
   379     // for the next young collection.  Use the padded average as
       
   380     // a safety factor.
       
   381     cms_free -= expected_promotion;
       
   382 
       
   383     // Adjust by the safety factor.
       
   384     double cms_free_dbl = (double)cms_free;
       
   385     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
       
   386     // Apply a further correction factor which tries to adjust
       
   387     // for recent occurance of concurrent mode failures.
       
   388     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
       
   389     cms_free_dbl = cms_free_dbl * cms_adjustment;
       
   390 
       
   391     log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
       
   392                   cms_free, expected_promotion);
       
   393     log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
       
   394     // Add 1 in case the consumption rate goes to zero.
       
   395     return cms_free_dbl / (cms_consumption_rate() + 1.0);
       
   396   }
       
   397   return 0.0;
       
   398 }
       
   399 
       
   400 // Compare the duration of the cms collection to the
       
   401 // time remaining before the cms generation is empty.
       
   402 // Note that the time from the start of the cms collection
       
   403 // to the start of the cms sweep (less than the total
       
   404 // duration of the cms collection) can be used.  This
       
   405 // has been tried and some applications experienced
       
   406 // promotion failures early in execution.  This was
       
   407 // possibly because the averages were not accurate
       
   408 // enough at the beginning.
       
   409 double CMSStats::time_until_cms_start() const {
       
   410   // We add "gc0_period" to the "work" calculation
       
   411   // below because this query is done (mostly) at the
       
   412   // end of a scavenge, so we need to conservatively
       
   413   // account for that much possible delay
       
   414   // in the query so as to avoid concurrent mode failures
       
   415   // due to starting the collection just a wee bit too
       
   416   // late.
       
   417   double work = cms_duration() + gc0_period();
       
   418   double deadline = time_until_cms_gen_full();
       
   419   // If a concurrent mode failure occurred recently, we want to be
       
   420   // more conservative and halve our expected time_until_cms_gen_full()
       
   421   if (work > deadline) {
       
   422     log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
       
   423                           cms_duration(), gc0_period(), time_until_cms_gen_full());
       
   424     return 0.0;
       
   425   }
       
   426   return work - deadline;
       
   427 }
       
   428 
       
   429 #ifndef PRODUCT
       
   430 void CMSStats::print_on(outputStream *st) const {
       
   431   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
       
   432   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
       
   433                gc0_duration(), gc0_period(), gc0_promoted());
       
   434   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
       
   435             cms_duration(), cms_period(), cms_allocated());
       
   436   st->print(",cms_since_beg=%g,cms_since_end=%g",
       
   437             cms_time_since_begin(), cms_time_since_end());
       
   438   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
       
   439             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
       
   440 
       
   441   if (valid()) {
       
   442     st->print(",promo_rate=%g,cms_alloc_rate=%g",
       
   443               promotion_rate(), cms_allocation_rate());
       
   444     st->print(",cms_consumption_rate=%g,time_until_full=%g",
       
   445               cms_consumption_rate(), time_until_cms_gen_full());
       
   446   }
       
   447   st->cr();
       
   448 }
       
   449 #endif // #ifndef PRODUCT
       
   450 
       
   451 CMSCollector::CollectorState CMSCollector::_collectorState =
       
   452                              CMSCollector::Idling;
       
   453 bool CMSCollector::_foregroundGCIsActive = false;
       
   454 bool CMSCollector::_foregroundGCShouldWait = false;
       
   455 
       
   456 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
       
   457                            CardTableRS*                   ct):
       
   458   _overflow_list(NULL),
       
   459   _conc_workers(NULL),     // may be set later
       
   460   _completed_initialization(false),
       
   461   _collection_count_start(0),
       
   462   _should_unload_classes(CMSClassUnloadingEnabled),
       
   463   _concurrent_cycles_since_last_unload(0),
       
   464   _roots_scanning_options(GenCollectedHeap::SO_None),
       
   465   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
       
   466   _verifying(false),
       
   467   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
       
   468   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
       
   469   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
       
   470   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
       
   471   _cms_start_registered(false),
       
   472   _cmsGen(cmsGen),
       
   473   // Adjust span to cover old (cms) gen
       
   474   _span(cmsGen->reserved()),
       
   475   _ct(ct),
       
   476   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
       
   477   _modUnionTable((CardTable::card_shift - LogHeapWordSize),
       
   478                  -1 /* lock-free */, "No_lock" /* dummy */),
       
   479   _restart_addr(NULL),
       
   480   _ser_pmc_preclean_ovflw(0),
       
   481   _ser_pmc_remark_ovflw(0),
       
   482   _par_pmc_remark_ovflw(0),
       
   483   _ser_kac_preclean_ovflw(0),
       
   484   _ser_kac_ovflw(0),
       
   485   _par_kac_ovflw(0),
       
   486 #ifndef PRODUCT
       
   487   _num_par_pushes(0),
       
   488 #endif
       
   489   _span_based_discoverer(_span),
       
   490   _ref_processor(NULL),    // will be set later
       
   491   // Construct the is_alive_closure with _span & markBitMap
       
   492   _is_alive_closure(_span, &_markBitMap),
       
   493   _modUnionClosurePar(&_modUnionTable),
       
   494   _between_prologue_and_epilogue(false),
       
   495   _abort_preclean(false),
       
   496   _start_sampling(false),
       
   497   _stats(cmsGen),
       
   498   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
       
   499                              //verify that this lock should be acquired with safepoint check.
       
   500                              Monitor::_safepoint_check_never)),
       
   501   _eden_chunk_array(NULL),     // may be set in ctor body
       
   502   _eden_chunk_index(0),        // -- ditto --
       
   503   _eden_chunk_capacity(0),     // -- ditto --
       
   504   _survivor_chunk_array(NULL), // -- ditto --
       
   505   _survivor_chunk_index(0),    // -- ditto --
       
   506   _survivor_chunk_capacity(0), // -- ditto --
       
   507   _survivor_plab_array(NULL)   // -- ditto --
       
   508 {
       
   509   // Now expand the span and allocate the collection support structures
       
   510   // (MUT, marking bit map etc.) to cover both generations subject to
       
   511   // collection.
       
   512 
       
   513   // For use by dirty card to oop closures.
       
   514   _cmsGen->cmsSpace()->set_collector(this);
       
   515 
       
   516   // Allocate MUT and marking bit map
       
   517   {
       
   518     MutexLocker x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
       
   519     if (!_markBitMap.allocate(_span)) {
       
   520       log_warning(gc)("Failed to allocate CMS Bit Map");
       
   521       return;
       
   522     }
       
   523     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
       
   524   }
       
   525   {
       
   526     _modUnionTable.allocate(_span);
       
   527     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
       
   528   }
       
   529 
       
   530   if (!_markStack.allocate(MarkStackSize)) {
       
   531     log_warning(gc)("Failed to allocate CMS Marking Stack");
       
   532     return;
       
   533   }
       
   534 
       
   535   // Support for multi-threaded concurrent phases
       
   536   if (CMSConcurrentMTEnabled) {
       
   537     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
       
   538       // just for now
       
   539       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
       
   540     }
       
   541     if (ConcGCThreads > 1) {
       
   542       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
       
   543                                  ConcGCThreads, true);
       
   544       if (_conc_workers == NULL) {
       
   545         log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
       
   546         CMSConcurrentMTEnabled = false;
       
   547       } else {
       
   548         _conc_workers->initialize_workers();
       
   549       }
       
   550     } else {
       
   551       CMSConcurrentMTEnabled = false;
       
   552     }
       
   553   }
       
   554   if (!CMSConcurrentMTEnabled) {
       
   555     ConcGCThreads = 0;
       
   556   } else {
       
   557     // Turn off CMSCleanOnEnter optimization temporarily for
       
   558     // the MT case where it's not fixed yet; see 6178663.
       
   559     CMSCleanOnEnter = false;
       
   560   }
       
   561   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
       
   562          "Inconsistency");
       
   563   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
       
   564   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
       
   565 
       
   566   // Parallel task queues; these are shared for the
       
   567   // concurrent and stop-world phases of CMS, but
       
   568   // are not shared with parallel scavenge (ParNew).
       
   569   {
       
   570     uint i;
       
   571     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
       
   572 
       
   573     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
       
   574          || ParallelRefProcEnabled)
       
   575         && num_queues > 0) {
       
   576       _task_queues = new OopTaskQueueSet(num_queues);
       
   577       if (_task_queues == NULL) {
       
   578         log_warning(gc)("task_queues allocation failure.");
       
   579         return;
       
   580       }
       
   581       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
       
   582       for (i = 0; i < num_queues; i++) {
       
   583         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
       
   584         if (q == NULL) {
       
   585           log_warning(gc)("work_queue allocation failure.");
       
   586           return;
       
   587         }
       
   588         _task_queues->register_queue(i, q);
       
   589       }
       
   590       for (i = 0; i < num_queues; i++) {
       
   591         _task_queues->queue(i)->initialize();
       
   592       }
       
   593     }
       
   594   }
       
   595 
       
   596   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
       
   597 
       
   598   // Clip CMSBootstrapOccupancy between 0 and 100.
       
   599   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
       
   600 
       
   601   // Now tell CMS generations the identity of their collector
       
   602   ConcurrentMarkSweepGeneration::set_collector(this);
       
   603 
       
   604   // Create & start a CMS thread for this CMS collector
       
   605   _cmsThread = ConcurrentMarkSweepThread::start(this);
       
   606   assert(cmsThread() != NULL, "CMS Thread should have been created");
       
   607   assert(cmsThread()->collector() == this,
       
   608          "CMS Thread should refer to this gen");
       
   609   assert(CGC_lock != NULL, "Where's the CGC_lock?");
       
   610 
       
   611   // Support for parallelizing young gen rescan
       
   612   CMSHeap* heap = CMSHeap::heap();
       
   613   _young_gen = heap->young_gen();
       
   614   if (heap->supports_inline_contig_alloc()) {
       
   615     _top_addr = heap->top_addr();
       
   616     _end_addr = heap->end_addr();
       
   617     assert(_young_gen != NULL, "no _young_gen");
       
   618     _eden_chunk_index = 0;
       
   619     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
       
   620     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
       
   621   }
       
   622 
       
   623   // Support for parallelizing survivor space rescan
       
   624   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
       
   625     const size_t max_plab_samples =
       
   626       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
       
   627 
       
   628     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
       
   629     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
       
   630     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
       
   631     _survivor_chunk_capacity = max_plab_samples;
       
   632     for (uint i = 0; i < ParallelGCThreads; i++) {
       
   633       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
       
   634       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
       
   635       assert(cur->end() == 0, "Should be 0");
       
   636       assert(cur->array() == vec, "Should be vec");
       
   637       assert(cur->capacity() == max_plab_samples, "Error");
       
   638     }
       
   639   }
       
   640 
       
   641   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
       
   642   _gc_counters = new CollectorCounters("CMS full collection pauses", 1);
       
   643   _cgc_counters = new CollectorCounters("CMS concurrent cycle pauses", 2);
       
   644   _completed_initialization = true;
       
   645   _inter_sweep_timer.start();  // start of time
       
   646 }
       
   647 
       
   648 const char* ConcurrentMarkSweepGeneration::name() const {
       
   649   return "concurrent mark-sweep generation";
       
   650 }
       
   651 void ConcurrentMarkSweepGeneration::update_counters() {
       
   652   if (UsePerfData) {
       
   653     _space_counters->update_all();
       
   654     _gen_counters->update_all();
       
   655   }
       
   656 }
       
   657 
       
   658 // this is an optimized version of update_counters(). it takes the
       
   659 // used value as a parameter rather than computing it.
       
   660 //
       
   661 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
       
   662   if (UsePerfData) {
       
   663     _space_counters->update_used(used);
       
   664     _space_counters->update_capacity();
       
   665     _gen_counters->update_all();
       
   666   }
       
   667 }
       
   668 
       
   669 void ConcurrentMarkSweepGeneration::print() const {
       
   670   Generation::print();
       
   671   cmsSpace()->print();
       
   672 }
       
   673 
       
   674 #ifndef PRODUCT
       
   675 void ConcurrentMarkSweepGeneration::print_statistics() {
       
   676   cmsSpace()->printFLCensus(0);
       
   677 }
       
   678 #endif
       
   679 
       
   680 size_t
       
   681 ConcurrentMarkSweepGeneration::contiguous_available() const {
       
   682   // dld proposes an improvement in precision here. If the committed
       
   683   // part of the space ends in a free block we should add that to
       
   684   // uncommitted size in the calculation below. Will make this
       
   685   // change later, staying with the approximation below for the
       
   686   // time being. -- ysr.
       
   687   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
       
   688 }
       
   689 
       
   690 size_t
       
   691 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
       
   692   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
       
   693 }
       
   694 
       
   695 size_t ConcurrentMarkSweepGeneration::used_stable() const {
       
   696   return cmsSpace()->used_stable();
       
   697 }
       
   698 
       
   699 size_t ConcurrentMarkSweepGeneration::max_available() const {
       
   700   return free() + _virtual_space.uncommitted_size();
       
   701 }
       
   702 
       
   703 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
       
   704   size_t available = max_available();
       
   705   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
       
   706   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
       
   707   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
       
   708                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
       
   709   return res;
       
   710 }
       
   711 
       
   712 // At a promotion failure dump information on block layout in heap
       
   713 // (cms old generation).
       
   714 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
       
   715   Log(gc, promotion) log;
       
   716   if (log.is_trace()) {
       
   717     LogStream ls(log.trace());
       
   718     cmsSpace()->dump_at_safepoint_with_locks(collector(), &ls);
       
   719   }
       
   720 }
       
   721 
       
   722 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
       
   723   // Clear the promotion information.  These pointers can be adjusted
       
   724   // along with all the other pointers into the heap but
       
   725   // compaction is expected to be a rare event with
       
   726   // a heap using cms so don't do it without seeing the need.
       
   727   for (uint i = 0; i < ParallelGCThreads; i++) {
       
   728     _par_gc_thread_states[i]->promo.reset();
       
   729   }
       
   730 }
       
   731 
       
   732 void ConcurrentMarkSweepGeneration::compute_new_size() {
       
   733   assert_locked_or_safepoint(Heap_lock);
       
   734 
       
   735   // If incremental collection failed, we just want to expand
       
   736   // to the limit.
       
   737   if (incremental_collection_failed()) {
       
   738     clear_incremental_collection_failed();
       
   739     grow_to_reserved();
       
   740     return;
       
   741   }
       
   742 
       
   743   // The heap has been compacted but not reset yet.
       
   744   // Any metric such as free() or used() will be incorrect.
       
   745 
       
   746   CardGeneration::compute_new_size();
       
   747 
       
   748   // Reset again after a possible resizing
       
   749   if (did_compact()) {
       
   750     cmsSpace()->reset_after_compaction();
       
   751   }
       
   752 }
       
   753 
       
   754 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
       
   755   assert_locked_or_safepoint(Heap_lock);
       
   756 
       
   757   // If incremental collection failed, we just want to expand
       
   758   // to the limit.
       
   759   if (incremental_collection_failed()) {
       
   760     clear_incremental_collection_failed();
       
   761     grow_to_reserved();
       
   762     return;
       
   763   }
       
   764 
       
   765   double free_percentage = ((double) free()) / capacity();
       
   766   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
       
   767   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
       
   768 
       
   769   // compute expansion delta needed for reaching desired free percentage
       
   770   if (free_percentage < desired_free_percentage) {
       
   771     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
       
   772     assert(desired_capacity >= capacity(), "invalid expansion size");
       
   773     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
       
   774     Log(gc) log;
       
   775     if (log.is_trace()) {
       
   776       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
       
   777       log.trace("From compute_new_size: ");
       
   778       log.trace("  Free fraction %f", free_percentage);
       
   779       log.trace("  Desired free fraction %f", desired_free_percentage);
       
   780       log.trace("  Maximum free fraction %f", maximum_free_percentage);
       
   781       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
       
   782       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
       
   783       CMSHeap* heap = CMSHeap::heap();
       
   784       size_t young_size = heap->young_gen()->capacity();
       
   785       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
       
   786       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
       
   787       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
       
   788       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
       
   789     }
       
   790     // safe if expansion fails
       
   791     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
       
   792     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
       
   793   } else {
       
   794     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
       
   795     assert(desired_capacity <= capacity(), "invalid expansion size");
       
   796     size_t shrink_bytes = capacity() - desired_capacity;
       
   797     // Don't shrink unless the delta is greater than the minimum shrink we want
       
   798     if (shrink_bytes >= MinHeapDeltaBytes) {
       
   799       shrink_free_list_by(shrink_bytes);
       
   800     }
       
   801   }
       
   802 }
       
   803 
       
   804 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
       
   805   return cmsSpace()->freelistLock();
       
   806 }
       
   807 
       
   808 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
       
   809   CMSSynchronousYieldRequest yr;
       
   810   MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag);
       
   811   return have_lock_and_allocate(size, tlab);
       
   812 }
       
   813 
       
   814 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
       
   815                                                                 bool   tlab /* ignored */) {
       
   816   assert_lock_strong(freelistLock());
       
   817   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
       
   818   HeapWord* res = cmsSpace()->allocate(adjustedSize);
       
   819   // Allocate the object live (grey) if the background collector has
       
   820   // started marking. This is necessary because the marker may
       
   821   // have passed this address and consequently this object will
       
   822   // not otherwise be greyed and would be incorrectly swept up.
       
   823   // Note that if this object contains references, the writing
       
   824   // of those references will dirty the card containing this object
       
   825   // allowing the object to be blackened (and its references scanned)
       
   826   // either during a preclean phase or at the final checkpoint.
       
   827   if (res != NULL) {
       
   828     // We may block here with an uninitialized object with
       
   829     // its mark-bit or P-bits not yet set. Such objects need
       
   830     // to be safely navigable by block_start().
       
   831     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
       
   832     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
       
   833     collector()->direct_allocated(res, adjustedSize);
       
   834     _direct_allocated_words += adjustedSize;
       
   835     // allocation counters
       
   836     NOT_PRODUCT(
       
   837       _numObjectsAllocated++;
       
   838       _numWordsAllocated += (int)adjustedSize;
       
   839     )
       
   840   }
       
   841   return res;
       
   842 }
       
   843 
       
   844 // In the case of direct allocation by mutators in a generation that
       
   845 // is being concurrently collected, the object must be allocated
       
   846 // live (grey) if the background collector has started marking.
       
   847 // This is necessary because the marker may
       
   848 // have passed this address and consequently this object will
       
   849 // not otherwise be greyed and would be incorrectly swept up.
       
   850 // Note that if this object contains references, the writing
       
   851 // of those references will dirty the card containing this object
       
   852 // allowing the object to be blackened (and its references scanned)
       
   853 // either during a preclean phase or at the final checkpoint.
       
   854 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
       
   855   assert(_markBitMap.covers(start, size), "Out of bounds");
       
   856   if (_collectorState >= Marking) {
       
   857     MutexLocker y(_markBitMap.lock(),
       
   858                   Mutex::_no_safepoint_check_flag);
       
   859     // [see comments preceding SweepClosure::do_blk() below for details]
       
   860     //
       
   861     // Can the P-bits be deleted now?  JJJ
       
   862     //
       
   863     // 1. need to mark the object as live so it isn't collected
       
   864     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
       
   865     // 3. need to mark the end of the object so marking, precleaning or sweeping
       
   866     //    can skip over uninitialized or unparsable objects. An allocated
       
   867     //    object is considered uninitialized for our purposes as long as
       
   868     //    its klass word is NULL.  All old gen objects are parsable
       
   869     //    as soon as they are initialized.)
       
   870     _markBitMap.mark(start);          // object is live
       
   871     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
       
   872     _markBitMap.mark(start + size - 1);
       
   873                                       // mark end of object
       
   874   }
       
   875   // check that oop looks uninitialized
       
   876   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
       
   877 }
       
   878 
       
   879 void CMSCollector::promoted(bool par, HeapWord* start,
       
   880                             bool is_obj_array, size_t obj_size) {
       
   881   assert(_markBitMap.covers(start), "Out of bounds");
       
   882   // See comment in direct_allocated() about when objects should
       
   883   // be allocated live.
       
   884   if (_collectorState >= Marking) {
       
   885     // we already hold the marking bit map lock, taken in
       
   886     // the prologue
       
   887     if (par) {
       
   888       _markBitMap.par_mark(start);
       
   889     } else {
       
   890       _markBitMap.mark(start);
       
   891     }
       
   892     // We don't need to mark the object as uninitialized (as
       
   893     // in direct_allocated above) because this is being done with the
       
   894     // world stopped and the object will be initialized by the
       
   895     // time the marking, precleaning or sweeping get to look at it.
       
   896     // But see the code for copying objects into the CMS generation,
       
   897     // where we need to ensure that concurrent readers of the
       
   898     // block offset table are able to safely navigate a block that
       
   899     // is in flux from being free to being allocated (and in
       
   900     // transition while being copied into) and subsequently
       
   901     // becoming a bona-fide object when the copy/promotion is complete.
       
   902     assert(SafepointSynchronize::is_at_safepoint(),
       
   903            "expect promotion only at safepoints");
       
   904 
       
   905     if (_collectorState < Sweeping) {
       
   906       // Mark the appropriate cards in the modUnionTable, so that
       
   907       // this object gets scanned before the sweep. If this is
       
   908       // not done, CMS generation references in the object might
       
   909       // not get marked.
       
   910       // For the case of arrays, which are otherwise precisely
       
   911       // marked, we need to dirty the entire array, not just its head.
       
   912       if (is_obj_array) {
       
   913         // The [par_]mark_range() method expects mr.end() below to
       
   914         // be aligned to the granularity of a bit's representation
       
   915         // in the heap. In the case of the MUT below, that's a
       
   916         // card size.
       
   917         MemRegion mr(start,
       
   918                      align_up(start + obj_size,
       
   919                               CardTable::card_size /* bytes */));
       
   920         if (par) {
       
   921           _modUnionTable.par_mark_range(mr);
       
   922         } else {
       
   923           _modUnionTable.mark_range(mr);
       
   924         }
       
   925       } else {  // not an obj array; we can just mark the head
       
   926         if (par) {
       
   927           _modUnionTable.par_mark(start);
       
   928         } else {
       
   929           _modUnionTable.mark(start);
       
   930         }
       
   931       }
       
   932     }
       
   933   }
       
   934 }
       
   935 
       
   936 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
       
   937   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
       
   938   // allocate, copy and if necessary update promoinfo --
       
   939   // delegate to underlying space.
       
   940   assert_lock_strong(freelistLock());
       
   941 
       
   942 #ifndef PRODUCT
       
   943   if (CMSHeap::heap()->promotion_should_fail()) {
       
   944     return NULL;
       
   945   }
       
   946 #endif  // #ifndef PRODUCT
       
   947 
       
   948   oop res = _cmsSpace->promote(obj, obj_size);
       
   949   if (res == NULL) {
       
   950     // expand and retry
       
   951     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
       
   952     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
       
   953     // Since this is the old generation, we don't try to promote
       
   954     // into a more senior generation.
       
   955     res = _cmsSpace->promote(obj, obj_size);
       
   956   }
       
   957   if (res != NULL) {
       
   958     // See comment in allocate() about when objects should
       
   959     // be allocated live.
       
   960     assert(oopDesc::is_oop(obj), "Will dereference klass pointer below");
       
   961     collector()->promoted(false,           // Not parallel
       
   962                           (HeapWord*)res, obj->is_objArray(), obj_size);
       
   963     // promotion counters
       
   964     NOT_PRODUCT(
       
   965       _numObjectsPromoted++;
       
   966       _numWordsPromoted +=
       
   967         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
       
   968     )
       
   969   }
       
   970   return res;
       
   971 }
       
   972 
       
   973 
       
   974 // IMPORTANT: Notes on object size recognition in CMS.
       
   975 // ---------------------------------------------------
       
   976 // A block of storage in the CMS generation is always in
       
   977 // one of three states. A free block (FREE), an allocated
       
   978 // object (OBJECT) whose size() method reports the correct size,
       
   979 // and an intermediate state (TRANSIENT) in which its size cannot
       
   980 // be accurately determined.
       
   981 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
       
   982 // -----------------------------------------------------
       
   983 // FREE:      klass_word & 1 == 1; mark_word holds block size
       
   984 //
       
   985 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
       
   986 //            obj->size() computes correct size
       
   987 //
       
   988 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
       
   989 //
       
   990 // STATE IDENTIFICATION: (64 bit+COOPS)
       
   991 // ------------------------------------
       
   992 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
       
   993 //
       
   994 // OBJECT:    klass_word installed; klass_word != 0;
       
   995 //            obj->size() computes correct size
       
   996 //
       
   997 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
       
   998 //
       
   999 //
       
  1000 // STATE TRANSITION DIAGRAM
       
  1001 //
       
  1002 //        mut / parnew                     mut  /  parnew
       
  1003 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
       
  1004 //  ^                                                                   |
       
  1005 //  |------------------------ DEAD <------------------------------------|
       
  1006 //         sweep                            mut
       
  1007 //
       
  1008 // While a block is in TRANSIENT state its size cannot be determined
       
  1009 // so readers will either need to come back later or stall until
       
  1010 // the size can be determined. Note that for the case of direct
       
  1011 // allocation, P-bits, when available, may be used to determine the
       
  1012 // size of an object that may not yet have been initialized.
       
  1013 
       
  1014 // Things to support parallel young-gen collection.
       
  1015 oop
       
  1016 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
       
  1017                                            oop old, markWord m,
       
  1018                                            size_t word_sz) {
       
  1019 #ifndef PRODUCT
       
  1020   if (CMSHeap::heap()->promotion_should_fail()) {
       
  1021     return NULL;
       
  1022   }
       
  1023 #endif  // #ifndef PRODUCT
       
  1024 
       
  1025   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
       
  1026   PromotionInfo* promoInfo = &ps->promo;
       
  1027   // if we are tracking promotions, then first ensure space for
       
  1028   // promotion (including spooling space for saving header if necessary).
       
  1029   // then allocate and copy, then track promoted info if needed.
       
  1030   // When tracking (see PromotionInfo::track()), the mark word may
       
  1031   // be displaced and in this case restoration of the mark word
       
  1032   // occurs in the (oop_since_save_marks_)iterate phase.
       
  1033   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
       
  1034     // Out of space for allocating spooling buffers;
       
  1035     // try expanding and allocating spooling buffers.
       
  1036     if (!expand_and_ensure_spooling_space(promoInfo)) {
       
  1037       return NULL;
       
  1038     }
       
  1039   }
       
  1040   assert(!promoInfo->tracking() || promoInfo->has_spooling_space(), "Control point invariant");
       
  1041   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
       
  1042   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
       
  1043   if (obj_ptr == NULL) {
       
  1044      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
       
  1045      if (obj_ptr == NULL) {
       
  1046        return NULL;
       
  1047      }
       
  1048   }
       
  1049   oop obj = oop(obj_ptr);
       
  1050   OrderAccess::storestore();
       
  1051   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
       
  1052   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
       
  1053   // IMPORTANT: See note on object initialization for CMS above.
       
  1054   // Otherwise, copy the object.  Here we must be careful to insert the
       
  1055   // klass pointer last, since this marks the block as an allocated object.
       
  1056   // Except with compressed oops it's the mark word.
       
  1057   HeapWord* old_ptr = (HeapWord*)old;
       
  1058   // Restore the mark word copied above.
       
  1059   obj->set_mark_raw(m);
       
  1060   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
       
  1061   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
       
  1062   OrderAccess::storestore();
       
  1063 
       
  1064   if (UseCompressedClassPointers) {
       
  1065     // Copy gap missed by (aligned) header size calculation below
       
  1066     obj->set_klass_gap(old->klass_gap());
       
  1067   }
       
  1068   if (word_sz > (size_t)oopDesc::header_size()) {
       
  1069     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
       
  1070                                  obj_ptr + oopDesc::header_size(),
       
  1071                                  word_sz - oopDesc::header_size());
       
  1072   }
       
  1073 
       
  1074   // Now we can track the promoted object, if necessary.  We take care
       
  1075   // to delay the transition from uninitialized to full object
       
  1076   // (i.e., insertion of klass pointer) until after, so that it
       
  1077   // atomically becomes a promoted object.
       
  1078   if (promoInfo->tracking()) {
       
  1079     promoInfo->track((PromotedObject*)obj, old->klass());
       
  1080   }
       
  1081   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
       
  1082   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
       
  1083   assert(oopDesc::is_oop(old), "Will use and dereference old klass ptr below");
       
  1084 
       
  1085   // Finally, install the klass pointer (this should be volatile).
       
  1086   OrderAccess::storestore();
       
  1087   obj->set_klass(old->klass());
       
  1088   // We should now be able to calculate the right size for this object
       
  1089   assert(oopDesc::is_oop(obj) && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
       
  1090 
       
  1091   collector()->promoted(true,          // parallel
       
  1092                         obj_ptr, old->is_objArray(), word_sz);
       
  1093 
       
  1094   NOT_PRODUCT(
       
  1095     Atomic::inc(&_numObjectsPromoted);
       
  1096     Atomic::add(alloc_sz, &_numWordsPromoted);
       
  1097   )
       
  1098 
       
  1099   return obj;
       
  1100 }
       
  1101 
       
  1102 void
       
  1103 ConcurrentMarkSweepGeneration::
       
  1104 par_promote_alloc_done(int thread_num) {
       
  1105   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
       
  1106   ps->lab.retire(thread_num);
       
  1107 }
       
  1108 
       
  1109 void
       
  1110 ConcurrentMarkSweepGeneration::
       
  1111 par_oop_since_save_marks_iterate_done(int thread_num) {
       
  1112   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
       
  1113   ParScanWithoutBarrierClosure* dummy_cl = NULL;
       
  1114   ps->promo.promoted_oops_iterate(dummy_cl);
       
  1115 
       
  1116   // Because card-scanning has been completed, subsequent phases
       
  1117   // (e.g., reference processing) will not need to recognize which
       
  1118   // objects have been promoted during this GC. So, we can now disable
       
  1119   // promotion tracking.
       
  1120   ps->promo.stopTrackingPromotions();
       
  1121 }
       
  1122 
       
  1123 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
       
  1124                                                    size_t size,
       
  1125                                                    bool   tlab)
       
  1126 {
       
  1127   // We allow a STW collection only if a full
       
  1128   // collection was requested.
       
  1129   return full || should_allocate(size, tlab); // FIX ME !!!
       
  1130   // This and promotion failure handling are connected at the
       
  1131   // hip and should be fixed by untying them.
       
  1132 }
       
  1133 
       
  1134 bool CMSCollector::shouldConcurrentCollect() {
       
  1135   LogTarget(Trace, gc) log;
       
  1136 
       
  1137   if (_full_gc_requested) {
       
  1138     log.print("CMSCollector: collect because of explicit  gc request (or GCLocker)");
       
  1139     return true;
       
  1140   }
       
  1141 
       
  1142   FreelistLocker x(this);
       
  1143   // ------------------------------------------------------------------
       
  1144   // Print out lots of information which affects the initiation of
       
  1145   // a collection.
       
  1146   if (log.is_enabled() && stats().valid()) {
       
  1147     log.print("CMSCollector shouldConcurrentCollect: ");
       
  1148 
       
  1149     LogStream out(log);
       
  1150     stats().print_on(&out);
       
  1151 
       
  1152     log.print("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
       
  1153     log.print("free=" SIZE_FORMAT, _cmsGen->free());
       
  1154     log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
       
  1155     log.print("promotion_rate=%g", stats().promotion_rate());
       
  1156     log.print("cms_allocation_rate=%g", stats().cms_allocation_rate());
       
  1157     log.print("occupancy=%3.7f", _cmsGen->occupancy());
       
  1158     log.print("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
       
  1159     log.print("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
       
  1160     log.print("cms_time_since_end=%3.7f", stats().cms_time_since_end());
       
  1161     log.print("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
       
  1162   }
       
  1163   // ------------------------------------------------------------------
       
  1164 
       
  1165   // If the estimated time to complete a cms collection (cms_duration())
       
  1166   // is less than the estimated time remaining until the cms generation
       
  1167   // is full, start a collection.
       
  1168   if (!UseCMSInitiatingOccupancyOnly) {
       
  1169     if (stats().valid()) {
       
  1170       if (stats().time_until_cms_start() == 0.0) {
       
  1171         return true;
       
  1172       }
       
  1173     } else {
       
  1174       // We want to conservatively collect somewhat early in order
       
  1175       // to try and "bootstrap" our CMS/promotion statistics;
       
  1176       // this branch will not fire after the first successful CMS
       
  1177       // collection because the stats should then be valid.
       
  1178       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
       
  1179         log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
       
  1180                   _cmsGen->occupancy(), _bootstrap_occupancy);
       
  1181         return true;
       
  1182       }
       
  1183     }
       
  1184   }
       
  1185 
       
  1186   // Otherwise, we start a collection cycle if
       
  1187   // old gen want a collection cycle started. Each may use
       
  1188   // an appropriate criterion for making this decision.
       
  1189   // XXX We need to make sure that the gen expansion
       
  1190   // criterion dovetails well with this. XXX NEED TO FIX THIS
       
  1191   if (_cmsGen->should_concurrent_collect()) {
       
  1192     log.print("CMS old gen initiated");
       
  1193     return true;
       
  1194   }
       
  1195 
       
  1196   // We start a collection if we believe an incremental collection may fail;
       
  1197   // this is not likely to be productive in practice because it's probably too
       
  1198   // late anyway.
       
  1199   CMSHeap* heap = CMSHeap::heap();
       
  1200   if (heap->incremental_collection_will_fail(true /* consult_young */)) {
       
  1201     log.print("CMSCollector: collect because incremental collection will fail ");
       
  1202     return true;
       
  1203   }
       
  1204 
       
  1205   if (MetaspaceGC::should_concurrent_collect()) {
       
  1206     log.print("CMSCollector: collect for metadata allocation ");
       
  1207     return true;
       
  1208   }
       
  1209 
       
  1210   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
       
  1211   if (CMSTriggerInterval >= 0) {
       
  1212     if (CMSTriggerInterval == 0) {
       
  1213       // Trigger always
       
  1214       return true;
       
  1215     }
       
  1216 
       
  1217     // Check the CMS time since begin (we do not check the stats validity
       
  1218     // as we want to be able to trigger the first CMS cycle as well)
       
  1219     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
       
  1220       if (stats().valid()) {
       
  1221         log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
       
  1222                   stats().cms_time_since_begin());
       
  1223       } else {
       
  1224         log.print("CMSCollector: collect because of trigger interval (first collection)");
       
  1225       }
       
  1226       return true;
       
  1227     }
       
  1228   }
       
  1229 
       
  1230   return false;
       
  1231 }
       
  1232 
       
  1233 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
       
  1234 
       
  1235 // Clear _expansion_cause fields of constituent generations
       
  1236 void CMSCollector::clear_expansion_cause() {
       
  1237   _cmsGen->clear_expansion_cause();
       
  1238 }
       
  1239 
       
  1240 // We should be conservative in starting a collection cycle.  To
       
  1241 // start too eagerly runs the risk of collecting too often in the
       
  1242 // extreme.  To collect too rarely falls back on full collections,
       
  1243 // which works, even if not optimum in terms of concurrent work.
       
  1244 // As a work around for too eagerly collecting, use the flag
       
  1245 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
       
  1246 // giving the user an easily understandable way of controlling the
       
  1247 // collections.
       
  1248 // We want to start a new collection cycle if any of the following
       
  1249 // conditions hold:
       
  1250 // . our current occupancy exceeds the configured initiating occupancy
       
  1251 //   for this generation, or
       
  1252 // . we recently needed to expand this space and have not, since that
       
  1253 //   expansion, done a collection of this generation, or
       
  1254 // . the underlying space believes that it may be a good idea to initiate
       
  1255 //   a concurrent collection (this may be based on criteria such as the
       
  1256 //   following: the space uses linear allocation and linear allocation is
       
  1257 //   going to fail, or there is believed to be excessive fragmentation in
       
  1258 //   the generation, etc... or ...
       
  1259 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
       
  1260 //   the case of the old generation; see CR 6543076):
       
  1261 //   we may be approaching a point at which allocation requests may fail because
       
  1262 //   we will be out of sufficient free space given allocation rate estimates.]
       
  1263 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
       
  1264 
       
  1265   assert_lock_strong(freelistLock());
       
  1266   if (occupancy() > initiating_occupancy()) {
       
  1267     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
       
  1268                   short_name(), occupancy(), initiating_occupancy());
       
  1269     return true;
       
  1270   }
       
  1271   if (UseCMSInitiatingOccupancyOnly) {
       
  1272     return false;
       
  1273   }
       
  1274   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
       
  1275     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
       
  1276     return true;
       
  1277   }
       
  1278   return false;
       
  1279 }
       
  1280 
       
  1281 void ConcurrentMarkSweepGeneration::collect(bool   full,
       
  1282                                             bool   clear_all_soft_refs,
       
  1283                                             size_t size,
       
  1284                                             bool   tlab)
       
  1285 {
       
  1286   collector()->collect(full, clear_all_soft_refs, size, tlab);
       
  1287 }
       
  1288 
       
  1289 void CMSCollector::collect(bool   full,
       
  1290                            bool   clear_all_soft_refs,
       
  1291                            size_t size,
       
  1292                            bool   tlab)
       
  1293 {
       
  1294   // The following "if" branch is present for defensive reasons.
       
  1295   // In the current uses of this interface, it can be replaced with:
       
  1296   // assert(!GCLocker.is_active(), "Can't be called otherwise");
       
  1297   // But I am not placing that assert here to allow future
       
  1298   // generality in invoking this interface.
       
  1299   if (GCLocker::is_active()) {
       
  1300     // A consistency test for GCLocker
       
  1301     assert(GCLocker::needs_gc(), "Should have been set already");
       
  1302     // Skip this foreground collection, instead
       
  1303     // expanding the heap if necessary.
       
  1304     // Need the free list locks for the call to free() in compute_new_size()
       
  1305     compute_new_size();
       
  1306     return;
       
  1307   }
       
  1308   acquire_control_and_collect(full, clear_all_soft_refs);
       
  1309 }
       
  1310 
       
  1311 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
       
  1312   CMSHeap* heap = CMSHeap::heap();
       
  1313   unsigned int gc_count = heap->total_full_collections();
       
  1314   if (gc_count == full_gc_count) {
       
  1315     MutexLocker y(CGC_lock, Mutex::_no_safepoint_check_flag);
       
  1316     _full_gc_requested = true;
       
  1317     _full_gc_cause = cause;
       
  1318     CGC_lock->notify();   // nudge CMS thread
       
  1319   } else {
       
  1320     assert(gc_count > full_gc_count, "Error: causal loop");
       
  1321   }
       
  1322 }
       
  1323 
       
  1324 bool CMSCollector::is_external_interruption() {
       
  1325   GCCause::Cause cause = CMSHeap::heap()->gc_cause();
       
  1326   return GCCause::is_user_requested_gc(cause) ||
       
  1327          GCCause::is_serviceability_requested_gc(cause);
       
  1328 }
       
  1329 
       
  1330 void CMSCollector::report_concurrent_mode_interruption() {
       
  1331   if (is_external_interruption()) {
       
  1332     log_debug(gc)("Concurrent mode interrupted");
       
  1333   } else {
       
  1334     log_debug(gc)("Concurrent mode failure");
       
  1335     _gc_tracer_cm->report_concurrent_mode_failure();
       
  1336   }
       
  1337 }
       
  1338 
       
  1339 
       
  1340 // The foreground and background collectors need to coordinate in order
       
  1341 // to make sure that they do not mutually interfere with CMS collections.
       
  1342 // When a background collection is active,
       
  1343 // the foreground collector may need to take over (preempt) and
       
  1344 // synchronously complete an ongoing collection. Depending on the
       
  1345 // frequency of the background collections and the heap usage
       
  1346 // of the application, this preemption can be seldom or frequent.
       
  1347 // There are only certain
       
  1348 // points in the background collection that the "collection-baton"
       
  1349 // can be passed to the foreground collector.
       
  1350 //
       
  1351 // The foreground collector will wait for the baton before
       
  1352 // starting any part of the collection.  The foreground collector
       
  1353 // will only wait at one location.
       
  1354 //
       
  1355 // The background collector will yield the baton before starting a new
       
  1356 // phase of the collection (e.g., before initial marking, marking from roots,
       
  1357 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
       
  1358 // of the loop which switches the phases. The background collector does some
       
  1359 // of the phases (initial mark, final re-mark) with the world stopped.
       
  1360 // Because of locking involved in stopping the world,
       
  1361 // the foreground collector should not block waiting for the background
       
  1362 // collector when it is doing a stop-the-world phase.  The background
       
  1363 // collector will yield the baton at an additional point just before
       
  1364 // it enters a stop-the-world phase.  Once the world is stopped, the
       
  1365 // background collector checks the phase of the collection.  If the
       
  1366 // phase has not changed, it proceeds with the collection.  If the
       
  1367 // phase has changed, it skips that phase of the collection.  See
       
  1368 // the comments on the use of the Heap_lock in collect_in_background().
       
  1369 //
       
  1370 // Variable used in baton passing.
       
  1371 //   _foregroundGCIsActive - Set to true by the foreground collector when
       
  1372 //      it wants the baton.  The foreground clears it when it has finished
       
  1373 //      the collection.
       
  1374 //   _foregroundGCShouldWait - Set to true by the background collector
       
  1375 //        when it is running.  The foreground collector waits while
       
  1376 //      _foregroundGCShouldWait is true.
       
  1377 //  CGC_lock - monitor used to protect access to the above variables
       
  1378 //      and to notify the foreground and background collectors.
       
  1379 //  _collectorState - current state of the CMS collection.
       
  1380 //
       
  1381 // The foreground collector
       
  1382 //   acquires the CGC_lock
       
  1383 //   sets _foregroundGCIsActive
       
  1384 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
       
  1385 //     various locks acquired in preparation for the collection
       
  1386 //     are released so as not to block the background collector
       
  1387 //     that is in the midst of a collection
       
  1388 //   proceeds with the collection
       
  1389 //   clears _foregroundGCIsActive
       
  1390 //   returns
       
  1391 //
       
  1392 // The background collector in a loop iterating on the phases of the
       
  1393 //      collection
       
  1394 //   acquires the CGC_lock
       
  1395 //   sets _foregroundGCShouldWait
       
  1396 //   if _foregroundGCIsActive is set
       
  1397 //     clears _foregroundGCShouldWait, notifies _CGC_lock
       
  1398 //     waits on _CGC_lock for _foregroundGCIsActive to become false
       
  1399 //     and exits the loop.
       
  1400 //   otherwise
       
  1401 //     proceed with that phase of the collection
       
  1402 //     if the phase is a stop-the-world phase,
       
  1403 //       yield the baton once more just before enqueueing
       
  1404 //       the stop-world CMS operation (executed by the VM thread).
       
  1405 //   returns after all phases of the collection are done
       
  1406 //
       
  1407 
       
  1408 void CMSCollector::acquire_control_and_collect(bool full,
       
  1409         bool clear_all_soft_refs) {
       
  1410   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
       
  1411   assert(!Thread::current()->is_ConcurrentGC_thread(),
       
  1412          "shouldn't try to acquire control from self!");
       
  1413 
       
  1414   // Start the protocol for acquiring control of the
       
  1415   // collection from the background collector (aka CMS thread).
       
  1416   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
       
  1417          "VM thread should have CMS token");
       
  1418   // Remember the possibly interrupted state of an ongoing
       
  1419   // concurrent collection
       
  1420   CollectorState first_state = _collectorState;
       
  1421 
       
  1422   // Signal to a possibly ongoing concurrent collection that
       
  1423   // we want to do a foreground collection.
       
  1424   _foregroundGCIsActive = true;
       
  1425 
       
  1426   // release locks and wait for a notify from the background collector
       
  1427   // releasing the locks in only necessary for phases which
       
  1428   // do yields to improve the granularity of the collection.
       
  1429   assert_lock_strong(bitMapLock());
       
  1430   // We need to lock the Free list lock for the space that we are
       
  1431   // currently collecting.
       
  1432   assert(haveFreelistLocks(), "Must be holding free list locks");
       
  1433   bitMapLock()->unlock();
       
  1434   releaseFreelistLocks();
       
  1435   {
       
  1436     MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
       
  1437     if (_foregroundGCShouldWait) {
       
  1438       // We are going to be waiting for action for the CMS thread;
       
  1439       // it had better not be gone (for instance at shutdown)!
       
  1440       assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
       
  1441              "CMS thread must be running");
       
  1442       // Wait here until the background collector gives us the go-ahead
       
  1443       ConcurrentMarkSweepThread::clear_CMS_flag(
       
  1444         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
       
  1445       // Get a possibly blocked CMS thread going:
       
  1446       //   Note that we set _foregroundGCIsActive true above,
       
  1447       //   without protection of the CGC_lock.
       
  1448       CGC_lock->notify();
       
  1449       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
       
  1450              "Possible deadlock");
       
  1451       while (_foregroundGCShouldWait) {
       
  1452         // wait for notification
       
  1453         CGC_lock->wait_without_safepoint_check();
       
  1454         // Possibility of delay/starvation here, since CMS token does
       
  1455         // not know to give priority to VM thread? Actually, i think
       
  1456         // there wouldn't be any delay/starvation, but the proof of
       
  1457         // that "fact" (?) appears non-trivial. XXX 20011219YSR
       
  1458       }
       
  1459       ConcurrentMarkSweepThread::set_CMS_flag(
       
  1460         ConcurrentMarkSweepThread::CMS_vm_has_token);
       
  1461     }
       
  1462   }
       
  1463   // The CMS_token is already held.  Get back the other locks.
       
  1464   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
       
  1465          "VM thread should have CMS token");
       
  1466   getFreelistLocks();
       
  1467   bitMapLock()->lock_without_safepoint_check();
       
  1468   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
       
  1469                        p2i(Thread::current()), first_state);
       
  1470   log_debug(gc, state)("    gets control with state %d", _collectorState);
       
  1471 
       
  1472   // Inform cms gen if this was due to partial collection failing.
       
  1473   // The CMS gen may use this fact to determine its expansion policy.
       
  1474   CMSHeap* heap = CMSHeap::heap();
       
  1475   if (heap->incremental_collection_will_fail(false /* don't consult_young */)) {
       
  1476     assert(!_cmsGen->incremental_collection_failed(),
       
  1477            "Should have been noticed, reacted to and cleared");
       
  1478     _cmsGen->set_incremental_collection_failed();
       
  1479   }
       
  1480 
       
  1481   if (first_state > Idling) {
       
  1482     report_concurrent_mode_interruption();
       
  1483   }
       
  1484 
       
  1485   set_did_compact(true);
       
  1486 
       
  1487   // If the collection is being acquired from the background
       
  1488   // collector, there may be references on the discovered
       
  1489   // references lists.  Abandon those references, since some
       
  1490   // of them may have become unreachable after concurrent
       
  1491   // discovery; the STW compacting collector will redo discovery
       
  1492   // more precisely, without being subject to floating garbage.
       
  1493   // Leaving otherwise unreachable references in the discovered
       
  1494   // lists would require special handling.
       
  1495   ref_processor()->disable_discovery();
       
  1496   ref_processor()->abandon_partial_discovery();
       
  1497   ref_processor()->verify_no_references_recorded();
       
  1498 
       
  1499   if (first_state > Idling) {
       
  1500     save_heap_summary();
       
  1501   }
       
  1502 
       
  1503   do_compaction_work(clear_all_soft_refs);
       
  1504 
       
  1505   // Has the GC time limit been exceeded?
       
  1506   size_t max_eden_size = _young_gen->max_eden_size();
       
  1507   GCCause::Cause gc_cause = heap->gc_cause();
       
  1508   size_policy()->check_gc_overhead_limit(_young_gen->eden()->used(),
       
  1509                                          _cmsGen->max_capacity(),
       
  1510                                          max_eden_size,
       
  1511                                          full,
       
  1512                                          gc_cause,
       
  1513                                          heap->soft_ref_policy());
       
  1514 
       
  1515   // Reset the expansion cause, now that we just completed
       
  1516   // a collection cycle.
       
  1517   clear_expansion_cause();
       
  1518   _foregroundGCIsActive = false;
       
  1519   return;
       
  1520 }
       
  1521 
       
  1522 // Resize the tenured generation
       
  1523 // after obtaining the free list locks for the
       
  1524 // two generations.
       
  1525 void CMSCollector::compute_new_size() {
       
  1526   assert_locked_or_safepoint(Heap_lock);
       
  1527   FreelistLocker z(this);
       
  1528   MetaspaceGC::compute_new_size();
       
  1529   _cmsGen->compute_new_size_free_list();
       
  1530   // recalculate CMS used space after CMS collection
       
  1531   _cmsGen->cmsSpace()->recalculate_used_stable();
       
  1532 }
       
  1533 
       
  1534 // A work method used by the foreground collector to do
       
  1535 // a mark-sweep-compact.
       
  1536 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
       
  1537   CMSHeap* heap = CMSHeap::heap();
       
  1538 
       
  1539   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
       
  1540   gc_timer->register_gc_start();
       
  1541 
       
  1542   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
       
  1543   gc_tracer->report_gc_start(heap->gc_cause(), gc_timer->gc_start());
       
  1544 
       
  1545   heap->pre_full_gc_dump(gc_timer);
       
  1546 
       
  1547   GCTraceTime(Trace, gc, phases) t("CMS:MSC");
       
  1548 
       
  1549   // Temporarily widen the span of the weak reference processing to
       
  1550   // the entire heap.
       
  1551   MemRegion new_span(CMSHeap::heap()->reserved_region());
       
  1552   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
       
  1553   // Temporarily, clear the "is_alive_non_header" field of the
       
  1554   // reference processor.
       
  1555   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
       
  1556   // Temporarily make reference _processing_ single threaded (non-MT).
       
  1557   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
       
  1558   // Temporarily make refs discovery atomic
       
  1559   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
       
  1560   // Temporarily make reference _discovery_ single threaded (non-MT)
       
  1561   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
       
  1562 
       
  1563   ref_processor()->set_enqueuing_is_done(false);
       
  1564   ref_processor()->enable_discovery();
       
  1565   ref_processor()->setup_policy(clear_all_soft_refs);
       
  1566   // If an asynchronous collection finishes, the _modUnionTable is
       
  1567   // all clear.  If we are assuming the collection from an asynchronous
       
  1568   // collection, clear the _modUnionTable.
       
  1569   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
       
  1570     "_modUnionTable should be clear if the baton was not passed");
       
  1571   _modUnionTable.clear_all();
       
  1572   assert(_collectorState != Idling || _ct->cld_rem_set()->mod_union_is_clear(),
       
  1573     "mod union for klasses should be clear if the baton was passed");
       
  1574   _ct->cld_rem_set()->clear_mod_union();
       
  1575 
       
  1576 
       
  1577   // We must adjust the allocation statistics being maintained
       
  1578   // in the free list space. We do so by reading and clearing
       
  1579   // the sweep timer and updating the block flux rate estimates below.
       
  1580   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
       
  1581   if (_inter_sweep_timer.is_active()) {
       
  1582     _inter_sweep_timer.stop();
       
  1583     // Note that we do not use this sample to update the _inter_sweep_estimate.
       
  1584     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
       
  1585                                             _inter_sweep_estimate.padded_average(),
       
  1586                                             _intra_sweep_estimate.padded_average());
       
  1587   }
       
  1588 
       
  1589   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
       
  1590   #ifdef ASSERT
       
  1591     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
       
  1592     size_t free_size = cms_space->free();
       
  1593     assert(free_size ==
       
  1594            pointer_delta(cms_space->end(), cms_space->compaction_top())
       
  1595            * HeapWordSize,
       
  1596       "All the free space should be compacted into one chunk at top");
       
  1597     assert(cms_space->dictionary()->total_chunk_size(
       
  1598                                       debug_only(cms_space->freelistLock())) == 0 ||
       
  1599            cms_space->totalSizeInIndexedFreeLists() == 0,
       
  1600       "All the free space should be in a single chunk");
       
  1601     size_t num = cms_space->totalCount();
       
  1602     assert((free_size == 0 && num == 0) ||
       
  1603            (free_size > 0  && (num == 1 || num == 2)),
       
  1604          "There should be at most 2 free chunks after compaction");
       
  1605   #endif // ASSERT
       
  1606   _collectorState = Resetting;
       
  1607   assert(_restart_addr == NULL,
       
  1608          "Should have been NULL'd before baton was passed");
       
  1609   reset_stw();
       
  1610   _cmsGen->reset_after_compaction();
       
  1611   _concurrent_cycles_since_last_unload = 0;
       
  1612 
       
  1613   // Clear any data recorded in the PLAB chunk arrays.
       
  1614   if (_survivor_plab_array != NULL) {
       
  1615     reset_survivor_plab_arrays();
       
  1616   }
       
  1617 
       
  1618   // Adjust the per-size allocation stats for the next epoch.
       
  1619   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
       
  1620   // Restart the "inter sweep timer" for the next epoch.
       
  1621   _inter_sweep_timer.reset();
       
  1622   _inter_sweep_timer.start();
       
  1623 
       
  1624   // No longer a need to do a concurrent collection for Metaspace.
       
  1625   MetaspaceGC::set_should_concurrent_collect(false);
       
  1626 
       
  1627   heap->post_full_gc_dump(gc_timer);
       
  1628 
       
  1629   gc_timer->register_gc_end();
       
  1630 
       
  1631   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
       
  1632 
       
  1633   // For a mark-sweep-compact, compute_new_size() will be called
       
  1634   // in the heap's do_collection() method.
       
  1635 }
       
  1636 
       
  1637 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
       
  1638   Log(gc, heap) log;
       
  1639   if (!log.is_trace()) {
       
  1640     return;
       
  1641   }
       
  1642 
       
  1643   ContiguousSpace* eden_space = _young_gen->eden();
       
  1644   ContiguousSpace* from_space = _young_gen->from();
       
  1645   ContiguousSpace* to_space   = _young_gen->to();
       
  1646   // Eden
       
  1647   if (_eden_chunk_array != NULL) {
       
  1648     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
       
  1649               p2i(eden_space->bottom()), p2i(eden_space->top()),
       
  1650               p2i(eden_space->end()), eden_space->capacity());
       
  1651     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
       
  1652               _eden_chunk_index, _eden_chunk_capacity);
       
  1653     for (size_t i = 0; i < _eden_chunk_index; i++) {
       
  1654       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
       
  1655     }
       
  1656   }
       
  1657   // Survivor
       
  1658   if (_survivor_chunk_array != NULL) {
       
  1659     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
       
  1660               p2i(from_space->bottom()), p2i(from_space->top()),
       
  1661               p2i(from_space->end()), from_space->capacity());
       
  1662     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
       
  1663               _survivor_chunk_index, _survivor_chunk_capacity);
       
  1664     for (size_t i = 0; i < _survivor_chunk_index; i++) {
       
  1665       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
       
  1666     }
       
  1667   }
       
  1668 }
       
  1669 
       
  1670 void CMSCollector::getFreelistLocks() const {
       
  1671   // Get locks for all free lists in all generations that this
       
  1672   // collector is responsible for
       
  1673   _cmsGen->freelistLock()->lock_without_safepoint_check();
       
  1674 }
       
  1675 
       
  1676 void CMSCollector::releaseFreelistLocks() const {
       
  1677   // Release locks for all free lists in all generations that this
       
  1678   // collector is responsible for
       
  1679   _cmsGen->freelistLock()->unlock();
       
  1680 }
       
  1681 
       
  1682 bool CMSCollector::haveFreelistLocks() const {
       
  1683   // Check locks for all free lists in all generations that this
       
  1684   // collector is responsible for
       
  1685   assert_lock_strong(_cmsGen->freelistLock());
       
  1686   PRODUCT_ONLY(ShouldNotReachHere());
       
  1687   return true;
       
  1688 }
       
  1689 
       
  1690 // A utility class that is used by the CMS collector to
       
  1691 // temporarily "release" the foreground collector from its
       
  1692 // usual obligation to wait for the background collector to
       
  1693 // complete an ongoing phase before proceeding.
       
  1694 class ReleaseForegroundGC: public StackObj {
       
  1695  private:
       
  1696   CMSCollector* _c;
       
  1697  public:
       
  1698   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
       
  1699     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
       
  1700     MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
       
  1701     // allow a potentially blocked foreground collector to proceed
       
  1702     _c->_foregroundGCShouldWait = false;
       
  1703     if (_c->_foregroundGCIsActive) {
       
  1704       CGC_lock->notify();
       
  1705     }
       
  1706     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
       
  1707            "Possible deadlock");
       
  1708   }
       
  1709 
       
  1710   ~ReleaseForegroundGC() {
       
  1711     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
       
  1712     MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
       
  1713     _c->_foregroundGCShouldWait = true;
       
  1714   }
       
  1715 };
       
  1716 
       
  1717 void CMSCollector::collect_in_background(GCCause::Cause cause) {
       
  1718   assert(Thread::current()->is_ConcurrentGC_thread(),
       
  1719     "A CMS asynchronous collection is only allowed on a CMS thread.");
       
  1720 
       
  1721   CMSHeap* heap = CMSHeap::heap();
       
  1722   {
       
  1723     MutexLocker hl(Heap_lock, Mutex::_no_safepoint_check_flag);
       
  1724     FreelistLocker fll(this);
       
  1725     MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
       
  1726     if (_foregroundGCIsActive) {
       
  1727       // The foreground collector is. Skip this
       
  1728       // background collection.
       
  1729       assert(!_foregroundGCShouldWait, "Should be clear");
       
  1730       return;
       
  1731     } else {
       
  1732       assert(_collectorState == Idling, "Should be idling before start.");
       
  1733       _collectorState = InitialMarking;
       
  1734       register_gc_start(cause);
       
  1735       // Reset the expansion cause, now that we are about to begin
       
  1736       // a new cycle.
       
  1737       clear_expansion_cause();
       
  1738 
       
  1739       // Clear the MetaspaceGC flag since a concurrent collection
       
  1740       // is starting but also clear it after the collection.
       
  1741       MetaspaceGC::set_should_concurrent_collect(false);
       
  1742     }
       
  1743     // Decide if we want to enable class unloading as part of the
       
  1744     // ensuing concurrent GC cycle.
       
  1745     update_should_unload_classes();
       
  1746     _full_gc_requested = false;           // acks all outstanding full gc requests
       
  1747     _full_gc_cause = GCCause::_no_gc;
       
  1748     // Signal that we are about to start a collection
       
  1749     heap->increment_total_full_collections();  // ... starting a collection cycle
       
  1750     _collection_count_start = heap->total_full_collections();
       
  1751   }
       
  1752 
       
  1753   size_t prev_used = _cmsGen->used();
       
  1754 
       
  1755   // The change of the collection state is normally done at this level;
       
  1756   // the exceptions are phases that are executed while the world is
       
  1757   // stopped.  For those phases the change of state is done while the
       
  1758   // world is stopped.  For baton passing purposes this allows the
       
  1759   // background collector to finish the phase and change state atomically.
       
  1760   // The foreground collector cannot wait on a phase that is done
       
  1761   // while the world is stopped because the foreground collector already
       
  1762   // has the world stopped and would deadlock.
       
  1763   while (_collectorState != Idling) {
       
  1764     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
       
  1765                          p2i(Thread::current()), _collectorState);
       
  1766     // The foreground collector
       
  1767     //   holds the Heap_lock throughout its collection.
       
  1768     //   holds the CMS token (but not the lock)
       
  1769     //     except while it is waiting for the background collector to yield.
       
  1770     //
       
  1771     // The foreground collector should be blocked (not for long)
       
  1772     //   if the background collector is about to start a phase
       
  1773     //   executed with world stopped.  If the background
       
  1774     //   collector has already started such a phase, the
       
  1775     //   foreground collector is blocked waiting for the
       
  1776     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
       
  1777     //   are executed in the VM thread.
       
  1778     //
       
  1779     // The locking order is
       
  1780     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
       
  1781     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
       
  1782     //   CMS token  (claimed in
       
  1783     //                stop_world_and_do() -->
       
  1784     //                  safepoint_synchronize() -->
       
  1785     //                    CMSThread::synchronize())
       
  1786 
       
  1787     {
       
  1788       // Check if the FG collector wants us to yield.
       
  1789       CMSTokenSync x(true); // is cms thread
       
  1790       if (waitForForegroundGC()) {
       
  1791         // We yielded to a foreground GC, nothing more to be
       
  1792         // done this round.
       
  1793         assert(_foregroundGCShouldWait == false, "We set it to false in "
       
  1794                "waitForForegroundGC()");
       
  1795         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
       
  1796                              p2i(Thread::current()), _collectorState);
       
  1797         return;
       
  1798       } else {
       
  1799         // The background collector can run but check to see if the
       
  1800         // foreground collector has done a collection while the
       
  1801         // background collector was waiting to get the CGC_lock
       
  1802         // above.  If yes, break so that _foregroundGCShouldWait
       
  1803         // is cleared before returning.
       
  1804         if (_collectorState == Idling) {
       
  1805           break;
       
  1806         }
       
  1807       }
       
  1808     }
       
  1809 
       
  1810     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
       
  1811       "should be waiting");
       
  1812 
       
  1813     switch (_collectorState) {
       
  1814       case InitialMarking:
       
  1815         {
       
  1816           ReleaseForegroundGC x(this);
       
  1817           stats().record_cms_begin();
       
  1818           VM_CMS_Initial_Mark initial_mark_op(this);
       
  1819           VMThread::execute(&initial_mark_op);
       
  1820         }
       
  1821         // The collector state may be any legal state at this point
       
  1822         // since the background collector may have yielded to the
       
  1823         // foreground collector.
       
  1824         break;
       
  1825       case Marking:
       
  1826         // initial marking in checkpointRootsInitialWork has been completed
       
  1827         if (markFromRoots()) { // we were successful
       
  1828           assert(_collectorState == Precleaning, "Collector state should "
       
  1829             "have changed");
       
  1830         } else {
       
  1831           assert(_foregroundGCIsActive, "Internal state inconsistency");
       
  1832         }
       
  1833         break;
       
  1834       case Precleaning:
       
  1835         // marking from roots in markFromRoots has been completed
       
  1836         preclean();
       
  1837         assert(_collectorState == AbortablePreclean ||
       
  1838                _collectorState == FinalMarking,
       
  1839                "Collector state should have changed");
       
  1840         break;
       
  1841       case AbortablePreclean:
       
  1842         abortable_preclean();
       
  1843         assert(_collectorState == FinalMarking, "Collector state should "
       
  1844           "have changed");
       
  1845         break;
       
  1846       case FinalMarking:
       
  1847         {
       
  1848           ReleaseForegroundGC x(this);
       
  1849 
       
  1850           VM_CMS_Final_Remark final_remark_op(this);
       
  1851           VMThread::execute(&final_remark_op);
       
  1852         }
       
  1853         assert(_foregroundGCShouldWait, "block post-condition");
       
  1854         break;
       
  1855       case Sweeping:
       
  1856         // final marking in checkpointRootsFinal has been completed
       
  1857         sweep();
       
  1858         assert(_collectorState == Resizing, "Collector state change "
       
  1859           "to Resizing must be done under the free_list_lock");
       
  1860 
       
  1861       case Resizing: {
       
  1862         // Sweeping has been completed...
       
  1863         // At this point the background collection has completed.
       
  1864         // Don't move the call to compute_new_size() down
       
  1865         // into code that might be executed if the background
       
  1866         // collection was preempted.
       
  1867         {
       
  1868           ReleaseForegroundGC x(this);   // unblock FG collection
       
  1869           MutexLocker         y(Heap_lock, Mutex::_no_safepoint_check_flag);
       
  1870           CMSTokenSync        z(true);   // not strictly needed.
       
  1871           if (_collectorState == Resizing) {
       
  1872             compute_new_size();
       
  1873             save_heap_summary();
       
  1874             _collectorState = Resetting;
       
  1875           } else {
       
  1876             assert(_collectorState == Idling, "The state should only change"
       
  1877                    " because the foreground collector has finished the collection");
       
  1878           }
       
  1879         }
       
  1880         break;
       
  1881       }
       
  1882       case Resetting:
       
  1883         // CMS heap resizing has been completed
       
  1884         reset_concurrent();
       
  1885         assert(_collectorState == Idling, "Collector state should "
       
  1886           "have changed");
       
  1887 
       
  1888         MetaspaceGC::set_should_concurrent_collect(false);
       
  1889 
       
  1890         stats().record_cms_end();
       
  1891         // Don't move the concurrent_phases_end() and compute_new_size()
       
  1892         // calls to here because a preempted background collection
       
  1893         // has it's state set to "Resetting".
       
  1894         break;
       
  1895       case Idling:
       
  1896       default:
       
  1897         ShouldNotReachHere();
       
  1898         break;
       
  1899     }
       
  1900     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
       
  1901                          p2i(Thread::current()), _collectorState);
       
  1902     assert(_foregroundGCShouldWait, "block post-condition");
       
  1903   }
       
  1904 
       
  1905   // Should this be in gc_epilogue?
       
  1906   heap->counters()->update_counters();
       
  1907 
       
  1908   {
       
  1909     // Clear _foregroundGCShouldWait and, in the event that the
       
  1910     // foreground collector is waiting, notify it, before
       
  1911     // returning.
       
  1912     MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
       
  1913     _foregroundGCShouldWait = false;
       
  1914     if (_foregroundGCIsActive) {
       
  1915       CGC_lock->notify();
       
  1916     }
       
  1917     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
       
  1918            "Possible deadlock");
       
  1919   }
       
  1920   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
       
  1921                        p2i(Thread::current()), _collectorState);
       
  1922   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
       
  1923                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
       
  1924 }
       
  1925 
       
  1926 void CMSCollector::register_gc_start(GCCause::Cause cause) {
       
  1927   _cms_start_registered = true;
       
  1928   _gc_timer_cm->register_gc_start();
       
  1929   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
       
  1930 }
       
  1931 
       
  1932 void CMSCollector::register_gc_end() {
       
  1933   if (_cms_start_registered) {
       
  1934     report_heap_summary(GCWhen::AfterGC);
       
  1935 
       
  1936     _gc_timer_cm->register_gc_end();
       
  1937     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
       
  1938     _cms_start_registered = false;
       
  1939   }
       
  1940 }
       
  1941 
       
  1942 void CMSCollector::save_heap_summary() {
       
  1943   CMSHeap* heap = CMSHeap::heap();
       
  1944   _last_heap_summary = heap->create_heap_summary();
       
  1945   _last_metaspace_summary = heap->create_metaspace_summary();
       
  1946 }
       
  1947 
       
  1948 void CMSCollector::report_heap_summary(GCWhen::Type when) {
       
  1949   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
       
  1950   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
       
  1951 }
       
  1952 
       
  1953 bool CMSCollector::waitForForegroundGC() {
       
  1954   bool res = false;
       
  1955   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
       
  1956          "CMS thread should have CMS token");
       
  1957   // Block the foreground collector until the
       
  1958   // background collectors decides whether to
       
  1959   // yield.
       
  1960   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
       
  1961   _foregroundGCShouldWait = true;
       
  1962   if (_foregroundGCIsActive) {
       
  1963     // The background collector yields to the
       
  1964     // foreground collector and returns a value
       
  1965     // indicating that it has yielded.  The foreground
       
  1966     // collector can proceed.
       
  1967     res = true;
       
  1968     _foregroundGCShouldWait = false;
       
  1969     ConcurrentMarkSweepThread::clear_CMS_flag(
       
  1970       ConcurrentMarkSweepThread::CMS_cms_has_token);
       
  1971     ConcurrentMarkSweepThread::set_CMS_flag(
       
  1972       ConcurrentMarkSweepThread::CMS_cms_wants_token);
       
  1973     // Get a possibly blocked foreground thread going
       
  1974     CGC_lock->notify();
       
  1975     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
       
  1976                          p2i(Thread::current()), _collectorState);
       
  1977     while (_foregroundGCIsActive) {
       
  1978       CGC_lock->wait_without_safepoint_check();
       
  1979     }
       
  1980     ConcurrentMarkSweepThread::set_CMS_flag(
       
  1981       ConcurrentMarkSweepThread::CMS_cms_has_token);
       
  1982     ConcurrentMarkSweepThread::clear_CMS_flag(
       
  1983       ConcurrentMarkSweepThread::CMS_cms_wants_token);
       
  1984   }
       
  1985   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
       
  1986                        p2i(Thread::current()), _collectorState);
       
  1987   return res;
       
  1988 }
       
  1989 
       
  1990 // Because of the need to lock the free lists and other structures in
       
  1991 // the collector, common to all the generations that the collector is
       
  1992 // collecting, we need the gc_prologues of individual CMS generations
       
  1993 // delegate to their collector. It may have been simpler had the
       
  1994 // current infrastructure allowed one to call a prologue on a
       
  1995 // collector. In the absence of that we have the generation's
       
  1996 // prologue delegate to the collector, which delegates back
       
  1997 // some "local" work to a worker method in the individual generations
       
  1998 // that it's responsible for collecting, while itself doing any
       
  1999 // work common to all generations it's responsible for. A similar
       
  2000 // comment applies to the  gc_epilogue()'s.
       
  2001 // The role of the variable _between_prologue_and_epilogue is to
       
  2002 // enforce the invocation protocol.
       
  2003 void CMSCollector::gc_prologue(bool full) {
       
  2004   // Call gc_prologue_work() for the CMSGen
       
  2005   // we are responsible for.
       
  2006 
       
  2007   // The following locking discipline assumes that we are only called
       
  2008   // when the world is stopped.
       
  2009   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
       
  2010 
       
  2011   // The CMSCollector prologue must call the gc_prologues for the
       
  2012   // "generations" that it's responsible
       
  2013   // for.
       
  2014 
       
  2015   assert(   Thread::current()->is_VM_thread()
       
  2016          || (   CMSScavengeBeforeRemark
       
  2017              && Thread::current()->is_ConcurrentGC_thread()),
       
  2018          "Incorrect thread type for prologue execution");
       
  2019 
       
  2020   if (_between_prologue_and_epilogue) {
       
  2021     // We have already been invoked; this is a gc_prologue delegation
       
  2022     // from yet another CMS generation that we are responsible for, just
       
  2023     // ignore it since all relevant work has already been done.
       
  2024     return;
       
  2025   }
       
  2026 
       
  2027   // set a bit saying prologue has been called; cleared in epilogue
       
  2028   _between_prologue_and_epilogue = true;
       
  2029   // Claim locks for common data structures, then call gc_prologue_work()
       
  2030   // for each CMSGen.
       
  2031 
       
  2032   getFreelistLocks();   // gets free list locks on constituent spaces
       
  2033   bitMapLock()->lock_without_safepoint_check();
       
  2034 
       
  2035   // Should call gc_prologue_work() for all cms gens we are responsible for
       
  2036   bool duringMarking =    _collectorState >= Marking
       
  2037                          && _collectorState < Sweeping;
       
  2038 
       
  2039   // The young collections clear the modified oops state, which tells if
       
  2040   // there are any modified oops in the class. The remark phase also needs
       
  2041   // that information. Tell the young collection to save the union of all
       
  2042   // modified klasses.
       
  2043   if (duringMarking) {
       
  2044     _ct->cld_rem_set()->set_accumulate_modified_oops(true);
       
  2045   }
       
  2046 
       
  2047   bool registerClosure = duringMarking;
       
  2048 
       
  2049   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
       
  2050 
       
  2051   if (!full) {
       
  2052     stats().record_gc0_begin();
       
  2053   }
       
  2054 }
       
  2055 
       
  2056 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
       
  2057 
       
  2058   _capacity_at_prologue = capacity();
       
  2059   _used_at_prologue = used();
       
  2060   _cmsSpace->recalculate_used_stable();
       
  2061 
       
  2062   // We enable promotion tracking so that card-scanning can recognize
       
  2063   // which objects have been promoted during this GC and skip them.
       
  2064   for (uint i = 0; i < ParallelGCThreads; i++) {
       
  2065     _par_gc_thread_states[i]->promo.startTrackingPromotions();
       
  2066   }
       
  2067 
       
  2068   // Delegate to CMScollector which knows how to coordinate between
       
  2069   // this and any other CMS generations that it is responsible for
       
  2070   // collecting.
       
  2071   collector()->gc_prologue(full);
       
  2072 }
       
  2073 
       
  2074 // This is a "private" interface for use by this generation's CMSCollector.
       
  2075 // Not to be called directly by any other entity (for instance,
       
  2076 // GenCollectedHeap, which calls the "public" gc_prologue method above).
       
  2077 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
       
  2078   bool registerClosure, ModUnionClosure* modUnionClosure) {
       
  2079   assert(!incremental_collection_failed(), "Shouldn't be set yet");
       
  2080   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
       
  2081     "Should be NULL");
       
  2082   if (registerClosure) {
       
  2083     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
       
  2084   }
       
  2085   cmsSpace()->gc_prologue();
       
  2086   // Clear stat counters
       
  2087   NOT_PRODUCT(
       
  2088     assert(_numObjectsPromoted == 0, "check");
       
  2089     assert(_numWordsPromoted   == 0, "check");
       
  2090     log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
       
  2091                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
       
  2092     _numObjectsAllocated = 0;
       
  2093     _numWordsAllocated   = 0;
       
  2094   )
       
  2095 }
       
  2096 
       
  2097 void CMSCollector::gc_epilogue(bool full) {
       
  2098   // The following locking discipline assumes that we are only called
       
  2099   // when the world is stopped.
       
  2100   assert(SafepointSynchronize::is_at_safepoint(),
       
  2101          "world is stopped assumption");
       
  2102 
       
  2103   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
       
  2104   // if linear allocation blocks need to be appropriately marked to allow the
       
  2105   // the blocks to be parsable. We also check here whether we need to nudge the
       
  2106   // CMS collector thread to start a new cycle (if it's not already active).
       
  2107   assert(   Thread::current()->is_VM_thread()
       
  2108          || (   CMSScavengeBeforeRemark
       
  2109              && Thread::current()->is_ConcurrentGC_thread()),
       
  2110          "Incorrect thread type for epilogue execution");
       
  2111 
       
  2112   if (!_between_prologue_and_epilogue) {
       
  2113     // We have already been invoked; this is a gc_epilogue delegation
       
  2114     // from yet another CMS generation that we are responsible for, just
       
  2115     // ignore it since all relevant work has already been done.
       
  2116     return;
       
  2117   }
       
  2118   assert(haveFreelistLocks(), "must have freelist locks");
       
  2119   assert_lock_strong(bitMapLock());
       
  2120 
       
  2121   _ct->cld_rem_set()->set_accumulate_modified_oops(false);
       
  2122 
       
  2123   _cmsGen->gc_epilogue_work(full);
       
  2124 
       
  2125   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
       
  2126     // in case sampling was not already enabled, enable it
       
  2127     _start_sampling = true;
       
  2128   }
       
  2129   // reset _eden_chunk_array so sampling starts afresh
       
  2130   _eden_chunk_index = 0;
       
  2131 
       
  2132   size_t cms_used   = _cmsGen->cmsSpace()->used();
       
  2133   _cmsGen->cmsSpace()->recalculate_used_stable();
       
  2134 
       
  2135   // update performance counters - this uses a special version of
       
  2136   // update_counters() that allows the utilization to be passed as a
       
  2137   // parameter, avoiding multiple calls to used().
       
  2138   //
       
  2139   _cmsGen->update_counters(cms_used);
       
  2140 
       
  2141   bitMapLock()->unlock();
       
  2142   releaseFreelistLocks();
       
  2143 
       
  2144   if (!CleanChunkPoolAsync) {
       
  2145     Chunk::clean_chunk_pool();
       
  2146   }
       
  2147 
       
  2148   set_did_compact(false);
       
  2149   _between_prologue_and_epilogue = false;  // ready for next cycle
       
  2150 }
       
  2151 
       
  2152 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
       
  2153   collector()->gc_epilogue(full);
       
  2154 
       
  2155   // When using ParNew, promotion tracking should have already been
       
  2156   // disabled. However, the prologue (which enables promotion
       
  2157   // tracking) and epilogue are called irrespective of the type of
       
  2158   // GC. So they will also be called before and after Full GCs, during
       
  2159   // which promotion tracking will not be explicitly disabled. So,
       
  2160   // it's safer to also disable it here too (to be symmetric with
       
  2161   // enabling it in the prologue).
       
  2162   for (uint i = 0; i < ParallelGCThreads; i++) {
       
  2163     _par_gc_thread_states[i]->promo.stopTrackingPromotions();
       
  2164   }
       
  2165 }
       
  2166 
       
  2167 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
       
  2168   assert(!incremental_collection_failed(), "Should have been cleared");
       
  2169   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
       
  2170   cmsSpace()->gc_epilogue();
       
  2171     // Print stat counters
       
  2172   NOT_PRODUCT(
       
  2173     assert(_numObjectsAllocated == 0, "check");
       
  2174     assert(_numWordsAllocated == 0, "check");
       
  2175     log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
       
  2176                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
       
  2177     _numObjectsPromoted = 0;
       
  2178     _numWordsPromoted   = 0;
       
  2179   )
       
  2180 
       
  2181   // Call down the chain in contiguous_available needs the freelistLock
       
  2182   // so print this out before releasing the freeListLock.
       
  2183   log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
       
  2184 }
       
  2185 
       
  2186 #ifndef PRODUCT
       
  2187 bool CMSCollector::have_cms_token() {
       
  2188   Thread* thr = Thread::current();
       
  2189   if (thr->is_VM_thread()) {
       
  2190     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
       
  2191   } else if (thr->is_ConcurrentGC_thread()) {
       
  2192     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
       
  2193   } else if (thr->is_GC_task_thread()) {
       
  2194     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
       
  2195            ParGCRareEvent_lock->owned_by_self();
       
  2196   }
       
  2197   return false;
       
  2198 }
       
  2199 
       
  2200 // Check reachability of the given heap address in CMS generation,
       
  2201 // treating all other generations as roots.
       
  2202 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
       
  2203   // We could "guarantee" below, rather than assert, but I'll
       
  2204   // leave these as "asserts" so that an adventurous debugger
       
  2205   // could try this in the product build provided some subset of
       
  2206   // the conditions were met, provided they were interested in the
       
  2207   // results and knew that the computation below wouldn't interfere
       
  2208   // with other concurrent computations mutating the structures
       
  2209   // being read or written.
       
  2210   assert(SafepointSynchronize::is_at_safepoint(),
       
  2211          "Else mutations in object graph will make answer suspect");
       
  2212   assert(have_cms_token(), "Should hold cms token");
       
  2213   assert(haveFreelistLocks(), "must hold free list locks");
       
  2214   assert_lock_strong(bitMapLock());
       
  2215 
       
  2216   // Clear the marking bit map array before starting, but, just
       
  2217   // for kicks, first report if the given address is already marked
       
  2218   tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
       
  2219                 _markBitMap.isMarked(addr) ? "" : " not");
       
  2220 
       
  2221   if (verify_after_remark()) {
       
  2222     MutexLocker x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
       
  2223     bool result = verification_mark_bm()->isMarked(addr);
       
  2224     tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
       
  2225                   result ? "IS" : "is NOT");
       
  2226     return result;
       
  2227   } else {
       
  2228     tty->print_cr("Could not compute result");
       
  2229     return false;
       
  2230   }
       
  2231 }
       
  2232 #endif
       
  2233 
       
  2234 void
       
  2235 CMSCollector::print_on_error(outputStream* st) {
       
  2236   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
       
  2237   if (collector != NULL) {
       
  2238     CMSBitMap* bitmap = &collector->_markBitMap;
       
  2239     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
       
  2240     bitmap->print_on_error(st, " Bits: ");
       
  2241 
       
  2242     st->cr();
       
  2243 
       
  2244     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
       
  2245     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
       
  2246     mut_bitmap->print_on_error(st, " Bits: ");
       
  2247   }
       
  2248 }
       
  2249 
       
  2250 ////////////////////////////////////////////////////////
       
  2251 // CMS Verification Support
       
  2252 ////////////////////////////////////////////////////////
       
  2253 // Following the remark phase, the following invariant
       
  2254 // should hold -- each object in the CMS heap which is
       
  2255 // marked in markBitMap() should be marked in the verification_mark_bm().
       
  2256 
       
  2257 class VerifyMarkedClosure: public BitMapClosure {
       
  2258   CMSBitMap* _marks;
       
  2259   bool       _failed;
       
  2260 
       
  2261  public:
       
  2262   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
       
  2263 
       
  2264   bool do_bit(size_t offset) {
       
  2265     HeapWord* addr = _marks->offsetToHeapWord(offset);
       
  2266     if (!_marks->isMarked(addr)) {
       
  2267       Log(gc, verify) log;
       
  2268       ResourceMark rm;
       
  2269       LogStream ls(log.error());
       
  2270       oop(addr)->print_on(&ls);
       
  2271       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
       
  2272       _failed = true;
       
  2273     }
       
  2274     return true;
       
  2275   }
       
  2276 
       
  2277   bool failed() { return _failed; }
       
  2278 };
       
  2279 
       
  2280 bool CMSCollector::verify_after_remark() {
       
  2281   GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
       
  2282   MutexLocker ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
       
  2283   static bool init = false;
       
  2284 
       
  2285   assert(SafepointSynchronize::is_at_safepoint(),
       
  2286          "Else mutations in object graph will make answer suspect");
       
  2287   assert(have_cms_token(),
       
  2288          "Else there may be mutual interference in use of "
       
  2289          " verification data structures");
       
  2290   assert(_collectorState > Marking && _collectorState <= Sweeping,
       
  2291          "Else marking info checked here may be obsolete");
       
  2292   assert(haveFreelistLocks(), "must hold free list locks");
       
  2293   assert_lock_strong(bitMapLock());
       
  2294 
       
  2295 
       
  2296   // Allocate marking bit map if not already allocated
       
  2297   if (!init) { // first time
       
  2298     if (!verification_mark_bm()->allocate(_span)) {
       
  2299       return false;
       
  2300     }
       
  2301     init = true;
       
  2302   }
       
  2303 
       
  2304   assert(verification_mark_stack()->isEmpty(), "Should be empty");
       
  2305 
       
  2306   // Turn off refs discovery -- so we will be tracing through refs.
       
  2307   // This is as intended, because by this time
       
  2308   // GC must already have cleared any refs that need to be cleared,
       
  2309   // and traced those that need to be marked; moreover,
       
  2310   // the marking done here is not going to interfere in any
       
  2311   // way with the marking information used by GC.
       
  2312   NoRefDiscovery no_discovery(ref_processor());
       
  2313 
       
  2314 #if COMPILER2_OR_JVMCI
       
  2315   DerivedPointerTableDeactivate dpt_deact;
       
  2316 #endif
       
  2317 
       
  2318   // Clear any marks from a previous round
       
  2319   verification_mark_bm()->clear_all();
       
  2320   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
       
  2321   verify_work_stacks_empty();
       
  2322 
       
  2323   CMSHeap* heap = CMSHeap::heap();
       
  2324   heap->ensure_parsability(false);  // fill TLABs, but no need to retire them
       
  2325   // Update the saved marks which may affect the root scans.
       
  2326   heap->save_marks();
       
  2327 
       
  2328   if (CMSRemarkVerifyVariant == 1) {
       
  2329     // In this first variant of verification, we complete
       
  2330     // all marking, then check if the new marks-vector is
       
  2331     // a subset of the CMS marks-vector.
       
  2332     verify_after_remark_work_1();
       
  2333   } else {
       
  2334     guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
       
  2335     // In this second variant of verification, we flag an error
       
  2336     // (i.e. an object reachable in the new marks-vector not reachable
       
  2337     // in the CMS marks-vector) immediately, also indicating the
       
  2338     // identify of an object (A) that references the unmarked object (B) --
       
  2339     // presumably, a mutation to A failed to be picked up by preclean/remark?
       
  2340     verify_after_remark_work_2();
       
  2341   }
       
  2342 
       
  2343   return true;
       
  2344 }
       
  2345 
       
  2346 void CMSCollector::verify_after_remark_work_1() {
       
  2347   ResourceMark rm;
       
  2348   HandleMark  hm;
       
  2349   CMSHeap* heap = CMSHeap::heap();
       
  2350 
       
  2351   // Get a clear set of claim bits for the roots processing to work with.
       
  2352   ClassLoaderDataGraph::clear_claimed_marks();
       
  2353 
       
  2354   // Mark from roots one level into CMS
       
  2355   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
       
  2356   heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
       
  2357 
       
  2358   {
       
  2359     StrongRootsScope srs(1);
       
  2360 
       
  2361     heap->cms_process_roots(&srs,
       
  2362                            true,   // young gen as roots
       
  2363                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
       
  2364                            should_unload_classes(),
       
  2365                            &notOlder,
       
  2366                            NULL);
       
  2367   }
       
  2368 
       
  2369   // Now mark from the roots
       
  2370   MarkFromRootsClosure markFromRootsClosure(this, _span,
       
  2371     verification_mark_bm(), verification_mark_stack(),
       
  2372     false /* don't yield */, true /* verifying */);
       
  2373   assert(_restart_addr == NULL, "Expected pre-condition");
       
  2374   verification_mark_bm()->iterate(&markFromRootsClosure);
       
  2375   while (_restart_addr != NULL) {
       
  2376     // Deal with stack overflow: by restarting at the indicated
       
  2377     // address.
       
  2378     HeapWord* ra = _restart_addr;
       
  2379     markFromRootsClosure.reset(ra);
       
  2380     _restart_addr = NULL;
       
  2381     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
       
  2382   }
       
  2383   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
       
  2384   verify_work_stacks_empty();
       
  2385 
       
  2386   // Marking completed -- now verify that each bit marked in
       
  2387   // verification_mark_bm() is also marked in markBitMap(); flag all
       
  2388   // errors by printing corresponding objects.
       
  2389   VerifyMarkedClosure vcl(markBitMap());
       
  2390   verification_mark_bm()->iterate(&vcl);
       
  2391   if (vcl.failed()) {
       
  2392     Log(gc, verify) log;
       
  2393     log.error("Failed marking verification after remark");
       
  2394     ResourceMark rm;
       
  2395     LogStream ls(log.error());
       
  2396     heap->print_on(&ls);
       
  2397     fatal("CMS: failed marking verification after remark");
       
  2398   }
       
  2399 }
       
  2400 
       
  2401 class VerifyCLDOopsCLDClosure : public CLDClosure {
       
  2402   class VerifyCLDOopsClosure : public OopClosure {
       
  2403     CMSBitMap* _bitmap;
       
  2404    public:
       
  2405     VerifyCLDOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
       
  2406     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
       
  2407     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
       
  2408   } _oop_closure;
       
  2409  public:
       
  2410   VerifyCLDOopsCLDClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
       
  2411   void do_cld(ClassLoaderData* cld) {
       
  2412     cld->oops_do(&_oop_closure, ClassLoaderData::_claim_none, false);
       
  2413   }
       
  2414 };
       
  2415 
       
  2416 void CMSCollector::verify_after_remark_work_2() {
       
  2417   ResourceMark rm;
       
  2418   HandleMark  hm;
       
  2419   CMSHeap* heap = CMSHeap::heap();
       
  2420 
       
  2421   // Get a clear set of claim bits for the roots processing to work with.
       
  2422   ClassLoaderDataGraph::clear_claimed_marks();
       
  2423 
       
  2424   // Mark from roots one level into CMS
       
  2425   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
       
  2426                                      markBitMap());
       
  2427   CLDToOopClosure cld_closure(&notOlder, ClassLoaderData::_claim_strong);
       
  2428 
       
  2429   heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
       
  2430 
       
  2431   {
       
  2432     StrongRootsScope srs(1);
       
  2433 
       
  2434     heap->cms_process_roots(&srs,
       
  2435                            true,   // young gen as roots
       
  2436                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
       
  2437                            should_unload_classes(),
       
  2438                            &notOlder,
       
  2439                            &cld_closure);
       
  2440   }
       
  2441 
       
  2442   // Now mark from the roots
       
  2443   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
       
  2444     verification_mark_bm(), markBitMap(), verification_mark_stack());
       
  2445   assert(_restart_addr == NULL, "Expected pre-condition");
       
  2446   verification_mark_bm()->iterate(&markFromRootsClosure);
       
  2447   while (_restart_addr != NULL) {
       
  2448     // Deal with stack overflow: by restarting at the indicated
       
  2449     // address.
       
  2450     HeapWord* ra = _restart_addr;
       
  2451     markFromRootsClosure.reset(ra);
       
  2452     _restart_addr = NULL;
       
  2453     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
       
  2454   }
       
  2455   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
       
  2456   verify_work_stacks_empty();
       
  2457 
       
  2458   VerifyCLDOopsCLDClosure verify_cld_oops(verification_mark_bm());
       
  2459   ClassLoaderDataGraph::cld_do(&verify_cld_oops);
       
  2460 
       
  2461   // Marking completed -- now verify that each bit marked in
       
  2462   // verification_mark_bm() is also marked in markBitMap(); flag all
       
  2463   // errors by printing corresponding objects.
       
  2464   VerifyMarkedClosure vcl(markBitMap());
       
  2465   verification_mark_bm()->iterate(&vcl);
       
  2466   assert(!vcl.failed(), "Else verification above should not have succeeded");
       
  2467 }
       
  2468 
       
  2469 void ConcurrentMarkSweepGeneration::save_marks() {
       
  2470   // delegate to CMS space
       
  2471   cmsSpace()->save_marks();
       
  2472 }
       
  2473 
       
  2474 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
       
  2475   return cmsSpace()->no_allocs_since_save_marks();
       
  2476 }
       
  2477 
       
  2478 void
       
  2479 ConcurrentMarkSweepGeneration::oop_iterate(OopIterateClosure* cl) {
       
  2480   if (freelistLock()->owned_by_self()) {
       
  2481     Generation::oop_iterate(cl);
       
  2482   } else {
       
  2483     MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag);
       
  2484     Generation::oop_iterate(cl);
       
  2485   }
       
  2486 }
       
  2487 
       
  2488 void
       
  2489 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
       
  2490   if (freelistLock()->owned_by_self()) {
       
  2491     Generation::object_iterate(cl);
       
  2492   } else {
       
  2493     MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag);
       
  2494     Generation::object_iterate(cl);
       
  2495   }
       
  2496 }
       
  2497 
       
  2498 void
       
  2499 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
       
  2500   if (freelistLock()->owned_by_self()) {
       
  2501     Generation::safe_object_iterate(cl);
       
  2502   } else {
       
  2503     MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag);
       
  2504     Generation::safe_object_iterate(cl);
       
  2505   }
       
  2506 }
       
  2507 
       
  2508 void
       
  2509 ConcurrentMarkSweepGeneration::post_compact() {
       
  2510 }
       
  2511 
       
  2512 void
       
  2513 ConcurrentMarkSweepGeneration::prepare_for_verify() {
       
  2514   // Fix the linear allocation blocks to look like free blocks.
       
  2515 
       
  2516   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
       
  2517   // are not called when the heap is verified during universe initialization and
       
  2518   // at vm shutdown.
       
  2519   if (freelistLock()->owned_by_self()) {
       
  2520     cmsSpace()->prepare_for_verify();
       
  2521   } else {
       
  2522     MutexLocker fll(freelistLock(), Mutex::_no_safepoint_check_flag);
       
  2523     cmsSpace()->prepare_for_verify();
       
  2524   }
       
  2525 }
       
  2526 
       
  2527 void
       
  2528 ConcurrentMarkSweepGeneration::verify() {
       
  2529   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
       
  2530   // are not called when the heap is verified during universe initialization and
       
  2531   // at vm shutdown.
       
  2532   if (freelistLock()->owned_by_self()) {
       
  2533     cmsSpace()->verify();
       
  2534   } else {
       
  2535     MutexLocker fll(freelistLock(), Mutex::_no_safepoint_check_flag);
       
  2536     cmsSpace()->verify();
       
  2537   }
       
  2538 }
       
  2539 
       
  2540 void CMSCollector::verify() {
       
  2541   _cmsGen->verify();
       
  2542 }
       
  2543 
       
  2544 #ifndef PRODUCT
       
  2545 bool CMSCollector::overflow_list_is_empty() const {
       
  2546   assert(_num_par_pushes >= 0, "Inconsistency");
       
  2547   if (_overflow_list == NULL) {
       
  2548     assert(_num_par_pushes == 0, "Inconsistency");
       
  2549   }
       
  2550   return _overflow_list == NULL;
       
  2551 }
       
  2552 
       
  2553 // The methods verify_work_stacks_empty() and verify_overflow_empty()
       
  2554 // merely consolidate assertion checks that appear to occur together frequently.
       
  2555 void CMSCollector::verify_work_stacks_empty() const {
       
  2556   assert(_markStack.isEmpty(), "Marking stack should be empty");
       
  2557   assert(overflow_list_is_empty(), "Overflow list should be empty");
       
  2558 }
       
  2559 
       
  2560 void CMSCollector::verify_overflow_empty() const {
       
  2561   assert(overflow_list_is_empty(), "Overflow list should be empty");
       
  2562   assert(no_preserved_marks(), "No preserved marks");
       
  2563 }
       
  2564 #endif // PRODUCT
       
  2565 
       
  2566 // Decide if we want to enable class unloading as part of the
       
  2567 // ensuing concurrent GC cycle. We will collect and
       
  2568 // unload classes if it's the case that:
       
  2569 //  (a) class unloading is enabled at the command line, and
       
  2570 //  (b) old gen is getting really full
       
  2571 // NOTE: Provided there is no change in the state of the heap between
       
  2572 // calls to this method, it should have idempotent results. Moreover,
       
  2573 // its results should be monotonically increasing (i.e. going from 0 to 1,
       
  2574 // but not 1 to 0) between successive calls between which the heap was
       
  2575 // not collected. For the implementation below, it must thus rely on
       
  2576 // the property that concurrent_cycles_since_last_unload()
       
  2577 // will not decrease unless a collection cycle happened and that
       
  2578 // _cmsGen->is_too_full() are
       
  2579 // themselves also monotonic in that sense. See check_monotonicity()
       
  2580 // below.
       
  2581 void CMSCollector::update_should_unload_classes() {
       
  2582   _should_unload_classes = false;
       
  2583   if (CMSClassUnloadingEnabled) {
       
  2584     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
       
  2585                               CMSClassUnloadingMaxInterval)
       
  2586                            || _cmsGen->is_too_full();
       
  2587   }
       
  2588 }
       
  2589 
       
  2590 bool ConcurrentMarkSweepGeneration::is_too_full() const {
       
  2591   bool res = should_concurrent_collect();
       
  2592   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
       
  2593   return res;
       
  2594 }
       
  2595 
       
  2596 void CMSCollector::setup_cms_unloading_and_verification_state() {
       
  2597   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
       
  2598                              || VerifyBeforeExit;
       
  2599   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
       
  2600 
       
  2601   // We set the proper root for this CMS cycle here.
       
  2602   if (should_unload_classes()) {   // Should unload classes this cycle
       
  2603     remove_root_scanning_option(rso);  // Shrink the root set appropriately
       
  2604     set_verifying(should_verify);    // Set verification state for this cycle
       
  2605     return;                            // Nothing else needs to be done at this time
       
  2606   }
       
  2607 
       
  2608   // Not unloading classes this cycle
       
  2609   assert(!should_unload_classes(), "Inconsistency!");
       
  2610 
       
  2611   // If we are not unloading classes then add SO_AllCodeCache to root
       
  2612   // scanning options.
       
  2613   add_root_scanning_option(rso);
       
  2614 
       
  2615   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
       
  2616     set_verifying(true);
       
  2617   } else if (verifying() && !should_verify) {
       
  2618     // We were verifying, but some verification flags got disabled.
       
  2619     set_verifying(false);
       
  2620     // Exclude symbols, strings and code cache elements from root scanning to
       
  2621     // reduce IM and RM pauses.
       
  2622     remove_root_scanning_option(rso);
       
  2623   }
       
  2624 }
       
  2625 
       
  2626 
       
  2627 #ifndef PRODUCT
       
  2628 HeapWord* CMSCollector::block_start(const void* p) const {
       
  2629   const HeapWord* addr = (HeapWord*)p;
       
  2630   if (_span.contains(p)) {
       
  2631     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
       
  2632       return _cmsGen->cmsSpace()->block_start(p);
       
  2633     }
       
  2634   }
       
  2635   return NULL;
       
  2636 }
       
  2637 #endif
       
  2638 
       
  2639 HeapWord*
       
  2640 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
       
  2641                                                    bool   tlab,
       
  2642                                                    bool   parallel) {
       
  2643   CMSSynchronousYieldRequest yr;
       
  2644   assert(!tlab, "Can't deal with TLAB allocation");
       
  2645   MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag);
       
  2646   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
       
  2647   if (GCExpandToAllocateDelayMillis > 0) {
       
  2648     os::naked_sleep(GCExpandToAllocateDelayMillis);
       
  2649   }
       
  2650   return have_lock_and_allocate(word_size, tlab);
       
  2651 }
       
  2652 
       
  2653 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
       
  2654     size_t bytes,
       
  2655     size_t expand_bytes,
       
  2656     CMSExpansionCause::Cause cause)
       
  2657 {
       
  2658 
       
  2659   bool success = expand(bytes, expand_bytes);
       
  2660 
       
  2661   // remember why we expanded; this information is used
       
  2662   // by shouldConcurrentCollect() when making decisions on whether to start
       
  2663   // a new CMS cycle.
       
  2664   if (success) {
       
  2665     set_expansion_cause(cause);
       
  2666     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
       
  2667   }
       
  2668 }
       
  2669 
       
  2670 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
       
  2671   HeapWord* res = NULL;
       
  2672   MutexLocker x(ParGCRareEvent_lock);
       
  2673   while (true) {
       
  2674     // Expansion by some other thread might make alloc OK now:
       
  2675     res = ps->lab.alloc(word_sz);
       
  2676     if (res != NULL) return res;
       
  2677     // If there's not enough expansion space available, give up.
       
  2678     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
       
  2679       return NULL;
       
  2680     }
       
  2681     // Otherwise, we try expansion.
       
  2682     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
       
  2683     // Now go around the loop and try alloc again;
       
  2684     // A competing par_promote might beat us to the expansion space,
       
  2685     // so we may go around the loop again if promotion fails again.
       
  2686     if (GCExpandToAllocateDelayMillis > 0) {
       
  2687       os::naked_sleep(GCExpandToAllocateDelayMillis);
       
  2688     }
       
  2689   }
       
  2690 }
       
  2691 
       
  2692 
       
  2693 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
       
  2694   PromotionInfo* promo) {
       
  2695   MutexLocker x(ParGCRareEvent_lock);
       
  2696   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
       
  2697   while (true) {
       
  2698     // Expansion by some other thread might make alloc OK now:
       
  2699     if (promo->ensure_spooling_space()) {
       
  2700       assert(promo->has_spooling_space(),
       
  2701              "Post-condition of successful ensure_spooling_space()");
       
  2702       return true;
       
  2703     }
       
  2704     // If there's not enough expansion space available, give up.
       
  2705     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
       
  2706       return false;
       
  2707     }
       
  2708     // Otherwise, we try expansion.
       
  2709     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
       
  2710     // Now go around the loop and try alloc again;
       
  2711     // A competing allocation might beat us to the expansion space,
       
  2712     // so we may go around the loop again if allocation fails again.
       
  2713     if (GCExpandToAllocateDelayMillis > 0) {
       
  2714       os::naked_sleep(GCExpandToAllocateDelayMillis);
       
  2715     }
       
  2716   }
       
  2717 }
       
  2718 
       
  2719 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
       
  2720   // Only shrink if a compaction was done so that all the free space
       
  2721   // in the generation is in a contiguous block at the end.
       
  2722   if (did_compact()) {
       
  2723     CardGeneration::shrink(bytes);
       
  2724   }
       
  2725 }
       
  2726 
       
  2727 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
       
  2728   assert_locked_or_safepoint(Heap_lock);
       
  2729 }
       
  2730 
       
  2731 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
       
  2732   assert_locked_or_safepoint(Heap_lock);
       
  2733   assert_lock_strong(freelistLock());
       
  2734   log_trace(gc)("Shrinking of CMS not yet implemented");
       
  2735   return;
       
  2736 }
       
  2737 
       
  2738 
       
  2739 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
       
  2740 // phases.
       
  2741 class CMSPhaseAccounting: public StackObj {
       
  2742  public:
       
  2743   CMSPhaseAccounting(CMSCollector *collector,
       
  2744                      const char *title);
       
  2745   ~CMSPhaseAccounting();
       
  2746 
       
  2747  private:
       
  2748   CMSCollector *_collector;
       
  2749   const char *_title;
       
  2750   GCTraceConcTime(Info, gc) _trace_time;
       
  2751 
       
  2752  public:
       
  2753   // Not MT-safe; so do not pass around these StackObj's
       
  2754   // where they may be accessed by other threads.
       
  2755   double wallclock_millis() {
       
  2756     return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
       
  2757   }
       
  2758 };
       
  2759 
       
  2760 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
       
  2761                                        const char *title) :
       
  2762   _collector(collector), _title(title), _trace_time(title) {
       
  2763 
       
  2764   _collector->resetYields();
       
  2765   _collector->resetTimer();
       
  2766   _collector->startTimer();
       
  2767   _collector->gc_timer_cm()->register_gc_concurrent_start(title);
       
  2768 }
       
  2769 
       
  2770 CMSPhaseAccounting::~CMSPhaseAccounting() {
       
  2771   _collector->gc_timer_cm()->register_gc_concurrent_end();
       
  2772   _collector->stopTimer();
       
  2773   log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_millis(_collector->timerTicks()));
       
  2774   log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
       
  2775 }
       
  2776 
       
  2777 // CMS work
       
  2778 
       
  2779 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
       
  2780 class CMSParMarkTask : public AbstractGangTask {
       
  2781  protected:
       
  2782   CMSCollector*     _collector;
       
  2783   uint              _n_workers;
       
  2784   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
       
  2785       AbstractGangTask(name),
       
  2786       _collector(collector),
       
  2787       _n_workers(n_workers) {}
       
  2788   // Work method in support of parallel rescan ... of young gen spaces
       
  2789   void do_young_space_rescan(OopsInGenClosure* cl,
       
  2790                              ContiguousSpace* space,
       
  2791                              HeapWord** chunk_array, size_t chunk_top);
       
  2792   void work_on_young_gen_roots(OopsInGenClosure* cl);
       
  2793 };
       
  2794 
       
  2795 // Parallel initial mark task
       
  2796 class CMSParInitialMarkTask: public CMSParMarkTask {
       
  2797   StrongRootsScope* _strong_roots_scope;
       
  2798  public:
       
  2799   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
       
  2800       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
       
  2801       _strong_roots_scope(strong_roots_scope) {}
       
  2802   void work(uint worker_id);
       
  2803 };
       
  2804 
       
  2805 // Checkpoint the roots into this generation from outside
       
  2806 // this generation. [Note this initial checkpoint need only
       
  2807 // be approximate -- we'll do a catch up phase subsequently.]
       
  2808 void CMSCollector::checkpointRootsInitial() {
       
  2809   assert(_collectorState == InitialMarking, "Wrong collector state");
       
  2810   check_correct_thread_executing();
       
  2811   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
       
  2812 
       
  2813   save_heap_summary();
       
  2814   report_heap_summary(GCWhen::BeforeGC);
       
  2815 
       
  2816   ReferenceProcessor* rp = ref_processor();
       
  2817   assert(_restart_addr == NULL, "Control point invariant");
       
  2818   {
       
  2819     // acquire locks for subsequent manipulations
       
  2820     MutexLocker x(bitMapLock(),
       
  2821                   Mutex::_no_safepoint_check_flag);
       
  2822     checkpointRootsInitialWork();
       
  2823     // enable ("weak") refs discovery
       
  2824     rp->enable_discovery();
       
  2825     _collectorState = Marking;
       
  2826   }
       
  2827 
       
  2828   _cmsGen->cmsSpace()->recalculate_used_stable();
       
  2829 }
       
  2830 
       
  2831 void CMSCollector::checkpointRootsInitialWork() {
       
  2832   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
       
  2833   assert(_collectorState == InitialMarking, "just checking");
       
  2834 
       
  2835   // Already have locks.
       
  2836   assert_lock_strong(bitMapLock());
       
  2837   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
       
  2838 
       
  2839   // Setup the verification and class unloading state for this
       
  2840   // CMS collection cycle.
       
  2841   setup_cms_unloading_and_verification_state();
       
  2842 
       
  2843   GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
       
  2844 
       
  2845   // Reset all the PLAB chunk arrays if necessary.
       
  2846   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
       
  2847     reset_survivor_plab_arrays();
       
  2848   }
       
  2849 
       
  2850   ResourceMark rm;
       
  2851   HandleMark  hm;
       
  2852 
       
  2853   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
       
  2854   CMSHeap* heap = CMSHeap::heap();
       
  2855 
       
  2856   verify_work_stacks_empty();
       
  2857   verify_overflow_empty();
       
  2858 
       
  2859   heap->ensure_parsability(false);  // fill TLABs, but no need to retire them
       
  2860   // Update the saved marks which may affect the root scans.
       
  2861   heap->save_marks();
       
  2862 
       
  2863   // weak reference processing has not started yet.
       
  2864   ref_processor()->set_enqueuing_is_done(false);
       
  2865 
       
  2866   // Need to remember all newly created CLDs,
       
  2867   // so that we can guarantee that the remark finds them.
       
  2868   ClassLoaderDataGraph::remember_new_clds(true);
       
  2869 
       
  2870   // Whenever a CLD is found, it will be claimed before proceeding to mark
       
  2871   // the klasses. The claimed marks need to be cleared before marking starts.
       
  2872   ClassLoaderDataGraph::clear_claimed_marks();
       
  2873 
       
  2874   print_eden_and_survivor_chunk_arrays();
       
  2875 
       
  2876   {
       
  2877 #if COMPILER2_OR_JVMCI
       
  2878     DerivedPointerTableDeactivate dpt_deact;
       
  2879 #endif
       
  2880     if (CMSParallelInitialMarkEnabled) {
       
  2881       // The parallel version.
       
  2882       WorkGang* workers = heap->workers();
       
  2883       assert(workers != NULL, "Need parallel worker threads.");
       
  2884       uint n_workers = workers->active_workers();
       
  2885 
       
  2886       StrongRootsScope srs(n_workers);
       
  2887 
       
  2888       CMSParInitialMarkTask tsk(this, &srs, n_workers);
       
  2889       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
       
  2890       // If the total workers is greater than 1, then multiple workers
       
  2891       // may be used at some time and the initialization has been set
       
  2892       // such that the single threaded path cannot be used.
       
  2893       if (workers->total_workers() > 1) {
       
  2894         workers->run_task(&tsk);
       
  2895       } else {
       
  2896         tsk.work(0);
       
  2897       }
       
  2898     } else {
       
  2899       // The serial version.
       
  2900       CLDToOopClosure cld_closure(&notOlder, ClassLoaderData::_claim_strong);
       
  2901       heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
       
  2902 
       
  2903       StrongRootsScope srs(1);
       
  2904 
       
  2905       heap->cms_process_roots(&srs,
       
  2906                              true,   // young gen as roots
       
  2907                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
       
  2908                              should_unload_classes(),
       
  2909                              &notOlder,
       
  2910                              &cld_closure);
       
  2911     }
       
  2912   }
       
  2913 
       
  2914   // Clear mod-union table; it will be dirtied in the prologue of
       
  2915   // CMS generation per each young generation collection.
       
  2916 
       
  2917   assert(_modUnionTable.isAllClear(),
       
  2918        "Was cleared in most recent final checkpoint phase"
       
  2919        " or no bits are set in the gc_prologue before the start of the next "
       
  2920        "subsequent marking phase.");
       
  2921 
       
  2922   assert(_ct->cld_rem_set()->mod_union_is_clear(), "Must be");
       
  2923 
       
  2924   // Save the end of the used_region of the constituent generations
       
  2925   // to be used to limit the extent of sweep in each generation.
       
  2926   save_sweep_limits();
       
  2927   verify_overflow_empty();
       
  2928 }
       
  2929 
       
  2930 bool CMSCollector::markFromRoots() {
       
  2931   // we might be tempted to assert that:
       
  2932   // assert(!SafepointSynchronize::is_at_safepoint(),
       
  2933   //        "inconsistent argument?");
       
  2934   // However that wouldn't be right, because it's possible that
       
  2935   // a safepoint is indeed in progress as a young generation
       
  2936   // stop-the-world GC happens even as we mark in this generation.
       
  2937   assert(_collectorState == Marking, "inconsistent state?");
       
  2938   check_correct_thread_executing();
       
  2939   verify_overflow_empty();
       
  2940 
       
  2941   // Weak ref discovery note: We may be discovering weak
       
  2942   // refs in this generation concurrent (but interleaved) with
       
  2943   // weak ref discovery by the young generation collector.
       
  2944 
       
  2945   CMSTokenSyncWithLocks ts(true, bitMapLock());
       
  2946   GCTraceCPUTime tcpu;
       
  2947   CMSPhaseAccounting pa(this, "Concurrent Mark");
       
  2948   bool res = markFromRootsWork();
       
  2949   if (res) {
       
  2950     _collectorState = Precleaning;
       
  2951   } else { // We failed and a foreground collection wants to take over
       
  2952     assert(_foregroundGCIsActive, "internal state inconsistency");
       
  2953     assert(_restart_addr == NULL,  "foreground will restart from scratch");
       
  2954     log_debug(gc)("bailing out to foreground collection");
       
  2955   }
       
  2956   verify_overflow_empty();
       
  2957   return res;
       
  2958 }
       
  2959 
       
  2960 bool CMSCollector::markFromRootsWork() {
       
  2961   // iterate over marked bits in bit map, doing a full scan and mark
       
  2962   // from these roots using the following algorithm:
       
  2963   // . if oop is to the right of the current scan pointer,
       
  2964   //   mark corresponding bit (we'll process it later)
       
  2965   // . else (oop is to left of current scan pointer)
       
  2966   //   push oop on marking stack
       
  2967   // . drain the marking stack
       
  2968 
       
  2969   // Note that when we do a marking step we need to hold the
       
  2970   // bit map lock -- recall that direct allocation (by mutators)
       
  2971   // and promotion (by the young generation collector) is also
       
  2972   // marking the bit map. [the so-called allocate live policy.]
       
  2973   // Because the implementation of bit map marking is not
       
  2974   // robust wrt simultaneous marking of bits in the same word,
       
  2975   // we need to make sure that there is no such interference
       
  2976   // between concurrent such updates.
       
  2977 
       
  2978   // already have locks
       
  2979   assert_lock_strong(bitMapLock());
       
  2980 
       
  2981   verify_work_stacks_empty();
       
  2982   verify_overflow_empty();
       
  2983   bool result = false;
       
  2984   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
       
  2985     result = do_marking_mt();
       
  2986   } else {
       
  2987     result = do_marking_st();
       
  2988   }
       
  2989   return result;
       
  2990 }
       
  2991 
       
  2992 // Forward decl
       
  2993 class CMSConcMarkingTask;
       
  2994 
       
  2995 class CMSConcMarkingParallelTerminator: public ParallelTaskTerminator {
       
  2996   CMSCollector*       _collector;
       
  2997   CMSConcMarkingTask* _task;
       
  2998  public:
       
  2999   virtual void yield();
       
  3000 
       
  3001   // "n_threads" is the number of threads to be terminated.
       
  3002   // "queue_set" is a set of work queues of other threads.
       
  3003   // "collector" is the CMS collector associated with this task terminator.
       
  3004   // "yield" indicates whether we need the gang as a whole to yield.
       
  3005   CMSConcMarkingParallelTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
       
  3006     ParallelTaskTerminator(n_threads, queue_set),
       
  3007     _collector(collector) { }
       
  3008 
       
  3009   void set_task(CMSConcMarkingTask* task) {
       
  3010     _task = task;
       
  3011   }
       
  3012 };
       
  3013 
       
  3014 class CMSConcMarkingOWSTTerminator: public OWSTTaskTerminator {
       
  3015   CMSCollector*       _collector;
       
  3016   CMSConcMarkingTask* _task;
       
  3017  public:
       
  3018   virtual void yield();
       
  3019 
       
  3020   // "n_threads" is the number of threads to be terminated.
       
  3021   // "queue_set" is a set of work queues of other threads.
       
  3022   // "collector" is the CMS collector associated with this task terminator.
       
  3023   // "yield" indicates whether we need the gang as a whole to yield.
       
  3024   CMSConcMarkingOWSTTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
       
  3025     OWSTTaskTerminator(n_threads, queue_set),
       
  3026     _collector(collector) { }
       
  3027 
       
  3028   void set_task(CMSConcMarkingTask* task) {
       
  3029     _task = task;
       
  3030   }
       
  3031 };
       
  3032 
       
  3033 class CMSConcMarkingTaskTerminator {
       
  3034  private:
       
  3035   ParallelTaskTerminator* _term;
       
  3036  public:
       
  3037   CMSConcMarkingTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) {
       
  3038     if (UseOWSTTaskTerminator) {
       
  3039       _term = new CMSConcMarkingOWSTTerminator(n_threads, queue_set, collector);
       
  3040     } else {
       
  3041       _term = new CMSConcMarkingParallelTerminator(n_threads, queue_set, collector);
       
  3042     }
       
  3043   }
       
  3044   ~CMSConcMarkingTaskTerminator() {
       
  3045     assert(_term != NULL, "Must not be NULL");
       
  3046     delete _term;
       
  3047   }
       
  3048 
       
  3049   void set_task(CMSConcMarkingTask* task);
       
  3050   ParallelTaskTerminator* terminator() const { return _term; }
       
  3051 };
       
  3052 
       
  3053 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
       
  3054   CMSConcMarkingTask* _task;
       
  3055  public:
       
  3056   bool should_exit_termination();
       
  3057   void set_task(CMSConcMarkingTask* task) {
       
  3058     _task = task;
       
  3059   }
       
  3060 };
       
  3061 
       
  3062 // MT Concurrent Marking Task
       
  3063 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
       
  3064   CMSCollector*             _collector;
       
  3065   uint                      _n_workers;      // requested/desired # workers
       
  3066   bool                      _result;
       
  3067   CompactibleFreeListSpace* _cms_space;
       
  3068   char                      _pad_front[64];   // padding to ...
       
  3069   HeapWord* volatile        _global_finger;   // ... avoid sharing cache line
       
  3070   char                      _pad_back[64];
       
  3071   HeapWord*                 _restart_addr;
       
  3072 
       
  3073   //  Exposed here for yielding support
       
  3074   Mutex* const _bit_map_lock;
       
  3075 
       
  3076   // The per thread work queues, available here for stealing
       
  3077   OopTaskQueueSet*  _task_queues;
       
  3078 
       
  3079   // Termination (and yielding) support
       
  3080   CMSConcMarkingTaskTerminator       _term;
       
  3081   CMSConcMarkingTerminatorTerminator _term_term;
       
  3082 
       
  3083  public:
       
  3084   CMSConcMarkingTask(CMSCollector* collector,
       
  3085                  CompactibleFreeListSpace* cms_space,
       
  3086                  YieldingFlexibleWorkGang* workers,
       
  3087                  OopTaskQueueSet* task_queues):
       
  3088     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
       
  3089     _collector(collector),
       
  3090     _n_workers(0),
       
  3091     _result(true),
       
  3092     _cms_space(cms_space),
       
  3093     _bit_map_lock(collector->bitMapLock()),
       
  3094     _task_queues(task_queues),
       
  3095     _term(_n_workers, task_queues, _collector)
       
  3096   {
       
  3097     _requested_size = _n_workers;
       
  3098     _term.set_task(this);
       
  3099     _term_term.set_task(this);
       
  3100     _restart_addr = _global_finger = _cms_space->bottom();
       
  3101   }
       
  3102 
       
  3103 
       
  3104   OopTaskQueueSet* task_queues()  { return _task_queues; }
       
  3105 
       
  3106   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
       
  3107 
       
  3108   HeapWord* volatile* global_finger_addr() { return &_global_finger; }
       
  3109 
       
  3110   ParallelTaskTerminator* terminator() { return _term.terminator(); }
       
  3111 
       
  3112   virtual void set_for_termination(uint active_workers) {
       
  3113     terminator()->reset_for_reuse(active_workers);
       
  3114   }
       
  3115 
       
  3116   void work(uint worker_id);
       
  3117   bool should_yield() {
       
  3118     return    ConcurrentMarkSweepThread::should_yield()
       
  3119            && !_collector->foregroundGCIsActive();
       
  3120   }
       
  3121 
       
  3122   virtual void coordinator_yield();  // stuff done by coordinator
       
  3123   bool result() { return _result; }
       
  3124 
       
  3125   void reset(HeapWord* ra) {
       
  3126     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
       
  3127     _restart_addr = _global_finger = ra;
       
  3128     _term.terminator()->reset_for_reuse();
       
  3129   }
       
  3130 
       
  3131   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
       
  3132                                            OopTaskQueue* work_q);
       
  3133 
       
  3134  private:
       
  3135   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
       
  3136   void do_work_steal(int i);
       
  3137   void bump_global_finger(HeapWord* f);
       
  3138 };
       
  3139 
       
  3140 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
       
  3141   assert(_task != NULL, "Error");
       
  3142   return _task->yielding();
       
  3143   // Note that we do not need the disjunct || _task->should_yield() above
       
  3144   // because we want terminating threads to yield only if the task
       
  3145   // is already in the midst of yielding, which happens only after at least one
       
  3146   // thread has yielded.
       
  3147 }
       
  3148 
       
  3149 void CMSConcMarkingParallelTerminator::yield() {
       
  3150   if (_task->should_yield()) {
       
  3151     _task->yield();
       
  3152   } else {
       
  3153     ParallelTaskTerminator::yield();
       
  3154   }
       
  3155 }
       
  3156 
       
  3157 void CMSConcMarkingOWSTTerminator::yield() {
       
  3158   if (_task->should_yield()) {
       
  3159     _task->yield();
       
  3160   } else {
       
  3161     OWSTTaskTerminator::yield();
       
  3162   }
       
  3163 }
       
  3164 
       
  3165 void CMSConcMarkingTaskTerminator::set_task(CMSConcMarkingTask* task) {
       
  3166   if (UseOWSTTaskTerminator) {
       
  3167     ((CMSConcMarkingOWSTTerminator*)_term)->set_task(task);
       
  3168   } else {
       
  3169     ((CMSConcMarkingParallelTerminator*)_term)->set_task(task);
       
  3170   }
       
  3171 }
       
  3172 
       
  3173 ////////////////////////////////////////////////////////////////
       
  3174 // Concurrent Marking Algorithm Sketch
       
  3175 ////////////////////////////////////////////////////////////////
       
  3176 // Until all tasks exhausted (both spaces):
       
  3177 // -- claim next available chunk
       
  3178 // -- bump global finger via CAS
       
  3179 // -- find first object that starts in this chunk
       
  3180 //    and start scanning bitmap from that position
       
  3181 // -- scan marked objects for oops
       
  3182 // -- CAS-mark target, and if successful:
       
  3183 //    . if target oop is above global finger (volatile read)
       
  3184 //      nothing to do
       
  3185 //    . if target oop is in chunk and above local finger
       
  3186 //        then nothing to do
       
  3187 //    . else push on work-queue
       
  3188 // -- Deal with possible overflow issues:
       
  3189 //    . local work-queue overflow causes stuff to be pushed on
       
  3190 //      global (common) overflow queue
       
  3191 //    . always first empty local work queue
       
  3192 //    . then get a batch of oops from global work queue if any
       
  3193 //    . then do work stealing
       
  3194 // -- When all tasks claimed (both spaces)
       
  3195 //    and local work queue empty,
       
  3196 //    then in a loop do:
       
  3197 //    . check global overflow stack; steal a batch of oops and trace
       
  3198 //    . try to steal from other threads oif GOS is empty
       
  3199 //    . if neither is available, offer termination
       
  3200 // -- Terminate and return result
       
  3201 //
       
  3202 void CMSConcMarkingTask::work(uint worker_id) {
       
  3203   elapsedTimer _timer;
       
  3204   ResourceMark rm;
       
  3205   HandleMark hm;
       
  3206 
       
  3207   DEBUG_ONLY(_collector->verify_overflow_empty();)
       
  3208 
       
  3209   // Before we begin work, our work queue should be empty
       
  3210   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
       
  3211   // Scan the bitmap covering _cms_space, tracing through grey objects.
       
  3212   _timer.start();
       
  3213   do_scan_and_mark(worker_id, _cms_space);
       
  3214   _timer.stop();
       
  3215   log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
       
  3216 
       
  3217   // ... do work stealing
       
  3218   _timer.reset();
       
  3219   _timer.start();
       
  3220   do_work_steal(worker_id);
       
  3221   _timer.stop();
       
  3222   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
       
  3223   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
       
  3224   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
       
  3225   // Note that under the current task protocol, the
       
  3226   // following assertion is true even of the spaces
       
  3227   // expanded since the completion of the concurrent
       
  3228   // marking. XXX This will likely change under a strict
       
  3229   // ABORT semantics.
       
  3230   // After perm removal the comparison was changed to
       
  3231   // greater than or equal to from strictly greater than.
       
  3232   // Before perm removal the highest address sweep would
       
  3233   // have been at the end of perm gen but now is at the
       
  3234   // end of the tenured gen.
       
  3235   assert(_global_finger >=  _cms_space->end(),
       
  3236          "All tasks have been completed");
       
  3237   DEBUG_ONLY(_collector->verify_overflow_empty();)
       
  3238 }
       
  3239 
       
  3240 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
       
  3241   HeapWord* read = _global_finger;
       
  3242   HeapWord* cur  = read;
       
  3243   while (f > read) {
       
  3244     cur = read;
       
  3245     read = Atomic::cmpxchg(f, &_global_finger, cur);
       
  3246     if (cur == read) {
       
  3247       // our cas succeeded
       
  3248       assert(_global_finger >= f, "protocol consistency");
       
  3249       break;
       
  3250     }
       
  3251   }
       
  3252 }
       
  3253 
       
  3254 // This is really inefficient, and should be redone by
       
  3255 // using (not yet available) block-read and -write interfaces to the
       
  3256 // stack and the work_queue. XXX FIX ME !!!
       
  3257 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
       
  3258                                                       OopTaskQueue* work_q) {
       
  3259   // Fast lock-free check
       
  3260   if (ovflw_stk->length() == 0) {
       
  3261     return false;
       
  3262   }
       
  3263   assert(work_q->size() == 0, "Shouldn't steal");
       
  3264   MutexLocker ml(ovflw_stk->par_lock(),
       
  3265                  Mutex::_no_safepoint_check_flag);
       
  3266   // Grab up to 1/4 the size of the work queue
       
  3267   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
       
  3268                     (size_t)ParGCDesiredObjsFromOverflowList);
       
  3269   num = MIN2(num, ovflw_stk->length());
       
  3270   for (int i = (int) num; i > 0; i--) {
       
  3271     oop cur = ovflw_stk->pop();
       
  3272     assert(cur != NULL, "Counted wrong?");
       
  3273     work_q->push(cur);
       
  3274   }
       
  3275   return num > 0;
       
  3276 }
       
  3277 
       
  3278 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
       
  3279   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
       
  3280   int n_tasks = pst->n_tasks();
       
  3281   // We allow that there may be no tasks to do here because
       
  3282   // we are restarting after a stack overflow.
       
  3283   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
       
  3284   uint nth_task = 0;
       
  3285 
       
  3286   HeapWord* aligned_start = sp->bottom();
       
  3287   if (sp->used_region().contains(_restart_addr)) {
       
  3288     // Align down to a card boundary for the start of 0th task
       
  3289     // for this space.
       
  3290     aligned_start = align_down(_restart_addr, CardTable::card_size);
       
  3291   }
       
  3292 
       
  3293   size_t chunk_size = sp->marking_task_size();
       
  3294   while (pst->try_claim_task(/* reference */ nth_task)) {
       
  3295     // Having claimed the nth task in this space,
       
  3296     // compute the chunk that it corresponds to:
       
  3297     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
       
  3298                                aligned_start + (nth_task+1)*chunk_size);
       
  3299     // Try and bump the global finger via a CAS;
       
  3300     // note that we need to do the global finger bump
       
  3301     // _before_ taking the intersection below, because
       
  3302     // the task corresponding to that region will be
       
  3303     // deemed done even if the used_region() expands
       
  3304     // because of allocation -- as it almost certainly will
       
  3305     // during start-up while the threads yield in the
       
  3306     // closure below.
       
  3307     HeapWord* finger = span.end();
       
  3308     bump_global_finger(finger);   // atomically
       
  3309     // There are null tasks here corresponding to chunks
       
  3310     // beyond the "top" address of the space.
       
  3311     span = span.intersection(sp->used_region());
       
  3312     if (!span.is_empty()) {  // Non-null task
       
  3313       HeapWord* prev_obj;
       
  3314       assert(!span.contains(_restart_addr) || nth_task == 0,
       
  3315              "Inconsistency");
       
  3316       if (nth_task == 0) {
       
  3317         // For the 0th task, we'll not need to compute a block_start.
       
  3318         if (span.contains(_restart_addr)) {
       
  3319           // In the case of a restart because of stack overflow,
       
  3320           // we might additionally skip a chunk prefix.
       
  3321           prev_obj = _restart_addr;
       
  3322         } else {
       
  3323           prev_obj = span.start();
       
  3324         }
       
  3325       } else {
       
  3326         // We want to skip the first object because
       
  3327         // the protocol is to scan any object in its entirety
       
  3328         // that _starts_ in this span; a fortiori, any
       
  3329         // object starting in an earlier span is scanned
       
  3330         // as part of an earlier claimed task.
       
  3331         // Below we use the "careful" version of block_start
       
  3332         // so we do not try to navigate uninitialized objects.
       
  3333         prev_obj = sp->block_start_careful(span.start());
       
  3334         // Below we use a variant of block_size that uses the
       
  3335         // Printezis bits to avoid waiting for allocated
       
  3336         // objects to become initialized/parsable.
       
  3337         while (prev_obj < span.start()) {
       
  3338           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
       
  3339           if (sz > 0) {
       
  3340             prev_obj += sz;
       
  3341           } else {
       
  3342             // In this case we may end up doing a bit of redundant
       
  3343             // scanning, but that appears unavoidable, short of
       
  3344             // locking the free list locks; see bug 6324141.
       
  3345             break;
       
  3346           }
       
  3347         }
       
  3348       }
       
  3349       if (prev_obj < span.end()) {
       
  3350         MemRegion my_span = MemRegion(prev_obj, span.end());
       
  3351         // Do the marking work within a non-empty span --
       
  3352         // the last argument to the constructor indicates whether the
       
  3353         // iteration should be incremental with periodic yields.
       
  3354         ParMarkFromRootsClosure cl(this, _collector, my_span,
       
  3355                                    &_collector->_markBitMap,
       
  3356                                    work_queue(i),
       
  3357                                    &_collector->_markStack);
       
  3358         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
       
  3359       } // else nothing to do for this task
       
  3360     }   // else nothing to do for this task
       
  3361   }
       
  3362   // We'd be tempted to assert here that since there are no
       
  3363   // more tasks left to claim in this space, the global_finger
       
  3364   // must exceed space->top() and a fortiori space->end(). However,
       
  3365   // that would not quite be correct because the bumping of
       
  3366   // global_finger occurs strictly after the claiming of a task,
       
  3367   // so by the time we reach here the global finger may not yet
       
  3368   // have been bumped up by the thread that claimed the last
       
  3369   // task.
       
  3370   pst->all_tasks_completed();
       
  3371 }
       
  3372 
       
  3373 class ParConcMarkingClosure: public MetadataVisitingOopIterateClosure {
       
  3374  private:
       
  3375   CMSCollector* _collector;
       
  3376   CMSConcMarkingTask* _task;
       
  3377   MemRegion     _span;
       
  3378   CMSBitMap*    _bit_map;
       
  3379   CMSMarkStack* _overflow_stack;
       
  3380   OopTaskQueue* _work_queue;
       
  3381  protected:
       
  3382   DO_OOP_WORK_DEFN
       
  3383  public:
       
  3384   ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
       
  3385                         CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
       
  3386     MetadataVisitingOopIterateClosure(collector->ref_processor()),
       
  3387     _collector(collector),
       
  3388     _task(task),
       
  3389     _span(collector->_span),
       
  3390     _bit_map(bit_map),
       
  3391     _overflow_stack(overflow_stack),
       
  3392     _work_queue(work_queue)
       
  3393   { }
       
  3394   virtual void do_oop(oop* p);
       
  3395   virtual void do_oop(narrowOop* p);
       
  3396 
       
  3397   void trim_queue(size_t max);
       
  3398   void handle_stack_overflow(HeapWord* lost);
       
  3399   void do_yield_check() {
       
  3400     if (_task->should_yield()) {
       
  3401       _task->yield();
       
  3402     }
       
  3403   }
       
  3404 };
       
  3405 
       
  3406 DO_OOP_WORK_IMPL(ParConcMarkingClosure)
       
  3407 
       
  3408 // Grey object scanning during work stealing phase --
       
  3409 // the salient assumption here is that any references
       
  3410 // that are in these stolen objects being scanned must
       
  3411 // already have been initialized (else they would not have
       
  3412 // been published), so we do not need to check for
       
  3413 // uninitialized objects before pushing here.
       
  3414 void ParConcMarkingClosure::do_oop(oop obj) {
       
  3415   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
       
  3416   HeapWord* addr = (HeapWord*)obj;
       
  3417   // Check if oop points into the CMS generation
       
  3418   // and is not marked
       
  3419   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
       
  3420     // a white object ...
       
  3421     // If we manage to "claim" the object, by being the
       
  3422     // first thread to mark it, then we push it on our
       
  3423     // marking stack
       
  3424     if (_bit_map->par_mark(addr)) {     // ... now grey
       
  3425       // push on work queue (grey set)
       
  3426       bool simulate_overflow = false;
       
  3427       NOT_PRODUCT(
       
  3428         if (CMSMarkStackOverflowALot &&
       
  3429             _collector->simulate_overflow()) {
       
  3430           // simulate a stack overflow
       
  3431           simulate_overflow = true;
       
  3432         }
       
  3433       )
       
  3434       if (simulate_overflow ||
       
  3435           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
       
  3436         // stack overflow
       
  3437         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
       
  3438         // We cannot assert that the overflow stack is full because
       
  3439         // it may have been emptied since.
       
  3440         assert(simulate_overflow ||
       
  3441                _work_queue->size() == _work_queue->max_elems(),
       
  3442               "Else push should have succeeded");
       
  3443         handle_stack_overflow(addr);
       
  3444       }
       
  3445     } // Else, some other thread got there first
       
  3446     do_yield_check();
       
  3447   }
       
  3448 }
       
  3449 
       
  3450 void ParConcMarkingClosure::trim_queue(size_t max) {
       
  3451   while (_work_queue->size() > max) {
       
  3452     oop new_oop;
       
  3453     if (_work_queue->pop_local(new_oop)) {
       
  3454       assert(oopDesc::is_oop(new_oop), "Should be an oop");
       
  3455       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
       
  3456       assert(_span.contains((HeapWord*)new_oop), "Not in span");
       
  3457       new_oop->oop_iterate(this);  // do_oop() above
       
  3458       do_yield_check();
       
  3459     }
       
  3460   }
       
  3461 }
       
  3462 
       
  3463 // Upon stack overflow, we discard (part of) the stack,
       
  3464 // remembering the least address amongst those discarded
       
  3465 // in CMSCollector's _restart_address.
       
  3466 void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
       
  3467   // We need to do this under a mutex to prevent other
       
  3468   // workers from interfering with the work done below.
       
  3469   MutexLocker ml(_overflow_stack->par_lock(),
       
  3470                  Mutex::_no_safepoint_check_flag);
       
  3471   // Remember the least grey address discarded
       
  3472   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
       
  3473   _collector->lower_restart_addr(ra);
       
  3474   _overflow_stack->reset();  // discard stack contents
       
  3475   _overflow_stack->expand(); // expand the stack if possible
       
  3476 }
       
  3477 
       
  3478 
       
  3479 void CMSConcMarkingTask::do_work_steal(int i) {
       
  3480   OopTaskQueue* work_q = work_queue(i);
       
  3481   oop obj_to_scan;
       
  3482   CMSBitMap* bm = &(_collector->_markBitMap);
       
  3483   CMSMarkStack* ovflw = &(_collector->_markStack);
       
  3484   ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
       
  3485   while (true) {
       
  3486     cl.trim_queue(0);
       
  3487     assert(work_q->size() == 0, "Should have been emptied above");
       
  3488     if (get_work_from_overflow_stack(ovflw, work_q)) {
       
  3489       // Can't assert below because the work obtained from the
       
  3490       // overflow stack may already have been stolen from us.
       
  3491       // assert(work_q->size() > 0, "Work from overflow stack");
       
  3492       continue;
       
  3493     } else if (task_queues()->steal(i, /* reference */ obj_to_scan)) {
       
  3494       assert(oopDesc::is_oop(obj_to_scan), "Should be an oop");
       
  3495       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
       
  3496       obj_to_scan->oop_iterate(&cl);
       
  3497     } else if (terminator()->offer_termination(&_term_term)) {
       
  3498       assert(work_q->size() == 0, "Impossible!");
       
  3499       break;
       
  3500     } else if (yielding() || should_yield()) {
       
  3501       yield();
       
  3502     }
       
  3503   }
       
  3504 }
       
  3505 
       
  3506 // This is run by the CMS (coordinator) thread.
       
  3507 void CMSConcMarkingTask::coordinator_yield() {
       
  3508   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
       
  3509          "CMS thread should hold CMS token");
       
  3510   // First give up the locks, then yield, then re-lock
       
  3511   // We should probably use a constructor/destructor idiom to
       
  3512   // do this unlock/lock or modify the MutexUnlocker class to
       
  3513   // serve our purpose. XXX
       
  3514   assert_lock_strong(_bit_map_lock);
       
  3515   _bit_map_lock->unlock();
       
  3516   ConcurrentMarkSweepThread::desynchronize(true);
       
  3517   _collector->stopTimer();
       
  3518   _collector->incrementYields();
       
  3519 
       
  3520   // It is possible for whichever thread initiated the yield request
       
  3521   // not to get a chance to wake up and take the bitmap lock between
       
  3522   // this thread releasing it and reacquiring it. So, while the
       
  3523   // should_yield() flag is on, let's sleep for a bit to give the
       
  3524   // other thread a chance to wake up. The limit imposed on the number
       
  3525   // of iterations is defensive, to avoid any unforseen circumstances
       
  3526   // putting us into an infinite loop. Since it's always been this
       
  3527   // (coordinator_yield()) method that was observed to cause the
       
  3528   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
       
  3529   // which is by default non-zero. For the other seven methods that
       
  3530   // also perform the yield operation, as are using a different
       
  3531   // parameter (CMSYieldSleepCount) which is by default zero. This way we
       
  3532   // can enable the sleeping for those methods too, if necessary.
       
  3533   // See 6442774.
       
  3534   //
       
  3535   // We really need to reconsider the synchronization between the GC
       
  3536   // thread and the yield-requesting threads in the future and we
       
  3537   // should really use wait/notify, which is the recommended
       
  3538   // way of doing this type of interaction. Additionally, we should
       
  3539   // consolidate the eight methods that do the yield operation and they
       
  3540   // are almost identical into one for better maintainability and
       
  3541   // readability. See 6445193.
       
  3542   //
       
  3543   // Tony 2006.06.29
       
  3544   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
       
  3545                    ConcurrentMarkSweepThread::should_yield() &&
       
  3546                    !CMSCollector::foregroundGCIsActive(); ++i) {
       
  3547     os::naked_short_sleep(1);
       
  3548   }
       
  3549 
       
  3550   ConcurrentMarkSweepThread::synchronize(true);
       
  3551   _bit_map_lock->lock_without_safepoint_check();
       
  3552   _collector->startTimer();
       
  3553 }
       
  3554 
       
  3555 bool CMSCollector::do_marking_mt() {
       
  3556   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
       
  3557   uint num_workers = WorkerPolicy::calc_active_conc_workers(conc_workers()->total_workers(),
       
  3558                                                             conc_workers()->active_workers(),
       
  3559                                                             Threads::number_of_non_daemon_threads());
       
  3560   num_workers = conc_workers()->update_active_workers(num_workers);
       
  3561   log_info(gc,task)("Using %u workers of %u for marking", num_workers, conc_workers()->total_workers());
       
  3562 
       
  3563   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
       
  3564 
       
  3565   CMSConcMarkingTask tsk(this,
       
  3566                          cms_space,
       
  3567                          conc_workers(),
       
  3568                          task_queues());
       
  3569 
       
  3570   // Since the actual number of workers we get may be different
       
  3571   // from the number we requested above, do we need to do anything different
       
  3572   // below? In particular, may be we need to subclass the SequantialSubTasksDone
       
  3573   // class?? XXX
       
  3574   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
       
  3575 
       
  3576   // Refs discovery is already non-atomic.
       
  3577   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
       
  3578   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
       
  3579   conc_workers()->start_task(&tsk);
       
  3580   while (tsk.yielded()) {
       
  3581     tsk.coordinator_yield();
       
  3582     conc_workers()->continue_task(&tsk);
       
  3583   }
       
  3584   // If the task was aborted, _restart_addr will be non-NULL
       
  3585   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
       
  3586   while (_restart_addr != NULL) {
       
  3587     // XXX For now we do not make use of ABORTED state and have not
       
  3588     // yet implemented the right abort semantics (even in the original
       
  3589     // single-threaded CMS case). That needs some more investigation
       
  3590     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
       
  3591     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
       
  3592     // If _restart_addr is non-NULL, a marking stack overflow
       
  3593     // occurred; we need to do a fresh marking iteration from the
       
  3594     // indicated restart address.
       
  3595     if (_foregroundGCIsActive) {
       
  3596       // We may be running into repeated stack overflows, having
       
  3597       // reached the limit of the stack size, while making very
       
  3598       // slow forward progress. It may be best to bail out and
       
  3599       // let the foreground collector do its job.
       
  3600       // Clear _restart_addr, so that foreground GC
       
  3601       // works from scratch. This avoids the headache of
       
  3602       // a "rescan" which would otherwise be needed because
       
  3603       // of the dirty mod union table & card table.
       
  3604       _restart_addr = NULL;
       
  3605       return false;
       
  3606     }
       
  3607     // Adjust the task to restart from _restart_addr
       
  3608     tsk.reset(_restart_addr);
       
  3609     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
       
  3610                   _restart_addr);
       
  3611     _restart_addr = NULL;
       
  3612     // Get the workers going again
       
  3613     conc_workers()->start_task(&tsk);
       
  3614     while (tsk.yielded()) {
       
  3615       tsk.coordinator_yield();
       
  3616       conc_workers()->continue_task(&tsk);
       
  3617     }
       
  3618   }
       
  3619   assert(tsk.completed(), "Inconsistency");
       
  3620   assert(tsk.result() == true, "Inconsistency");
       
  3621   return true;
       
  3622 }
       
  3623 
       
  3624 bool CMSCollector::do_marking_st() {
       
  3625   ResourceMark rm;
       
  3626   HandleMark   hm;
       
  3627 
       
  3628   // Temporarily make refs discovery single threaded (non-MT)
       
  3629   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
       
  3630   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
       
  3631     &_markStack, CMSYield);
       
  3632   // the last argument to iterate indicates whether the iteration
       
  3633   // should be incremental with periodic yields.
       
  3634   _markBitMap.iterate(&markFromRootsClosure);
       
  3635   // If _restart_addr is non-NULL, a marking stack overflow
       
  3636   // occurred; we need to do a fresh iteration from the
       
  3637   // indicated restart address.
       
  3638   while (_restart_addr != NULL) {
       
  3639     if (_foregroundGCIsActive) {
       
  3640       // We may be running into repeated stack overflows, having
       
  3641       // reached the limit of the stack size, while making very
       
  3642       // slow forward progress. It may be best to bail out and
       
  3643       // let the foreground collector do its job.
       
  3644       // Clear _restart_addr, so that foreground GC
       
  3645       // works from scratch. This avoids the headache of
       
  3646       // a "rescan" which would otherwise be needed because
       
  3647       // of the dirty mod union table & card table.
       
  3648       _restart_addr = NULL;
       
  3649       return false;  // indicating failure to complete marking
       
  3650     }
       
  3651     // Deal with stack overflow:
       
  3652     // we restart marking from _restart_addr
       
  3653     HeapWord* ra = _restart_addr;
       
  3654     markFromRootsClosure.reset(ra);
       
  3655     _restart_addr = NULL;
       
  3656     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
       
  3657   }
       
  3658   return true;
       
  3659 }
       
  3660 
       
  3661 void CMSCollector::preclean() {
       
  3662   check_correct_thread_executing();
       
  3663   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
       
  3664   verify_work_stacks_empty();
       
  3665   verify_overflow_empty();
       
  3666   _abort_preclean = false;
       
  3667   if (CMSPrecleaningEnabled) {
       
  3668     if (!CMSEdenChunksRecordAlways) {
       
  3669       _eden_chunk_index = 0;
       
  3670     }
       
  3671     size_t used = get_eden_used();
       
  3672     size_t capacity = get_eden_capacity();
       
  3673     // Don't start sampling unless we will get sufficiently
       
  3674     // many samples.
       
  3675     if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100)
       
  3676                 * CMSScheduleRemarkEdenPenetration)) {
       
  3677       _start_sampling = true;
       
  3678     } else {
       
  3679       _start_sampling = false;
       
  3680     }
       
  3681     GCTraceCPUTime tcpu;
       
  3682     CMSPhaseAccounting pa(this, "Concurrent Preclean");
       
  3683     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
       
  3684   }
       
  3685   CMSTokenSync x(true); // is cms thread
       
  3686   if (CMSPrecleaningEnabled) {
       
  3687     sample_eden();
       
  3688     _collectorState = AbortablePreclean;
       
  3689   } else {
       
  3690     _collectorState = FinalMarking;
       
  3691   }
       
  3692   verify_work_stacks_empty();
       
  3693   verify_overflow_empty();
       
  3694 }
       
  3695 
       
  3696 // Try and schedule the remark such that young gen
       
  3697 // occupancy is CMSScheduleRemarkEdenPenetration %.
       
  3698 void CMSCollector::abortable_preclean() {
       
  3699   check_correct_thread_executing();
       
  3700   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
       
  3701   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
       
  3702 
       
  3703   // If Eden's current occupancy is below this threshold,
       
  3704   // immediately schedule the remark; else preclean
       
  3705   // past the next scavenge in an effort to
       
  3706   // schedule the pause as described above. By choosing
       
  3707   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
       
  3708   // we will never do an actual abortable preclean cycle.
       
  3709   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
       
  3710     GCTraceCPUTime tcpu;
       
  3711     CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
       
  3712     // We need more smarts in the abortable preclean
       
  3713     // loop below to deal with cases where allocation
       
  3714     // in young gen is very very slow, and our precleaning
       
  3715     // is running a losing race against a horde of
       
  3716     // mutators intent on flooding us with CMS updates
       
  3717     // (dirty cards).
       
  3718     // One, admittedly dumb, strategy is to give up
       
  3719     // after a certain number of abortable precleaning loops
       
  3720     // or after a certain maximum time. We want to make
       
  3721     // this smarter in the next iteration.
       
  3722     // XXX FIX ME!!! YSR
       
  3723     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
       
  3724     while (!(should_abort_preclean() ||
       
  3725              ConcurrentMarkSweepThread::cmst()->should_terminate())) {
       
  3726       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
       
  3727       cumworkdone += workdone;
       
  3728       loops++;
       
  3729       // Voluntarily terminate abortable preclean phase if we have
       
  3730       // been at it for too long.
       
  3731       if ((CMSMaxAbortablePrecleanLoops != 0) &&
       
  3732           loops >= CMSMaxAbortablePrecleanLoops) {
       
  3733         log_debug(gc)(" CMS: abort preclean due to loops ");
       
  3734         break;
       
  3735       }
       
  3736       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
       
  3737         log_debug(gc)(" CMS: abort preclean due to time ");
       
  3738         break;
       
  3739       }
       
  3740       // If we are doing little work each iteration, we should
       
  3741       // take a short break.
       
  3742       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
       
  3743         // Sleep for some time, waiting for work to accumulate
       
  3744         stopTimer();
       
  3745         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
       
  3746         startTimer();
       
  3747         waited++;
       
  3748       }
       
  3749     }
       
  3750     log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
       
  3751                                loops, waited, cumworkdone);
       
  3752   }
       
  3753   CMSTokenSync x(true); // is cms thread
       
  3754   if (_collectorState != Idling) {
       
  3755     assert(_collectorState == AbortablePreclean,
       
  3756            "Spontaneous state transition?");
       
  3757     _collectorState = FinalMarking;
       
  3758   } // Else, a foreground collection completed this CMS cycle.
       
  3759   return;
       
  3760 }
       
  3761 
       
  3762 // Respond to an Eden sampling opportunity
       
  3763 void CMSCollector::sample_eden() {
       
  3764   // Make sure a young gc cannot sneak in between our
       
  3765   // reading and recording of a sample.
       
  3766   assert(Thread::current()->is_ConcurrentGC_thread(),
       
  3767          "Only the cms thread may collect Eden samples");
       
  3768   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
       
  3769          "Should collect samples while holding CMS token");
       
  3770   if (!_start_sampling) {
       
  3771     return;
       
  3772   }
       
  3773   // When CMSEdenChunksRecordAlways is true, the eden chunk array
       
  3774   // is populated by the young generation.
       
  3775   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
       
  3776     if (_eden_chunk_index < _eden_chunk_capacity) {
       
  3777       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
       
  3778       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
       
  3779              "Unexpected state of Eden");
       
  3780       // We'd like to check that what we just sampled is an oop-start address;
       
  3781       // however, we cannot do that here since the object may not yet have been
       
  3782       // initialized. So we'll instead do the check when we _use_ this sample
       
  3783       // later.
       
  3784       if (_eden_chunk_index == 0 ||
       
  3785           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
       
  3786                          _eden_chunk_array[_eden_chunk_index-1])
       
  3787            >= CMSSamplingGrain)) {
       
  3788         _eden_chunk_index++;  // commit sample
       
  3789       }
       
  3790     }
       
  3791   }
       
  3792   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
       
  3793     size_t used = get_eden_used();
       
  3794     size_t capacity = get_eden_capacity();
       
  3795     assert(used <= capacity, "Unexpected state of Eden");
       
  3796     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
       
  3797       _abort_preclean = true;
       
  3798     }
       
  3799   }
       
  3800 }
       
  3801 
       
  3802 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
       
  3803   assert(_collectorState == Precleaning ||
       
  3804          _collectorState == AbortablePreclean, "incorrect state");
       
  3805   ResourceMark rm;
       
  3806   HandleMark   hm;
       
  3807 
       
  3808   // Precleaning is currently not MT but the reference processor
       
  3809   // may be set for MT.  Disable it temporarily here.
       
  3810   ReferenceProcessor* rp = ref_processor();
       
  3811   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
       
  3812 
       
  3813   // Do one pass of scrubbing the discovered reference lists
       
  3814   // to remove any reference objects with strongly-reachable
       
  3815   // referents.
       
  3816   if (clean_refs) {
       
  3817     CMSPrecleanRefsYieldClosure yield_cl(this);
       
  3818     assert(_span_based_discoverer.span().equals(_span), "Spans should be equal");
       
  3819     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
       
  3820                                    &_markStack, true /* preclean */);
       
  3821     CMSDrainMarkingStackClosure complete_trace(this,
       
  3822                                    _span, &_markBitMap, &_markStack,
       
  3823                                    &keep_alive, true /* preclean */);
       
  3824 
       
  3825     // We don't want this step to interfere with a young
       
  3826     // collection because we don't want to take CPU
       
  3827     // or memory bandwidth away from the young GC threads
       
  3828     // (which may be as many as there are CPUs).
       
  3829     // Note that we don't need to protect ourselves from
       
  3830     // interference with mutators because they can't
       
  3831     // manipulate the discovered reference lists nor affect
       
  3832     // the computed reachability of the referents, the
       
  3833     // only properties manipulated by the precleaning
       
  3834     // of these reference lists.
       
  3835     stopTimer();
       
  3836     CMSTokenSyncWithLocks x(true /* is cms thread */,
       
  3837                             bitMapLock());
       
  3838     startTimer();
       
  3839     sample_eden();
       
  3840 
       
  3841     // The following will yield to allow foreground
       
  3842     // collection to proceed promptly. XXX YSR:
       
  3843     // The code in this method may need further
       
  3844     // tweaking for better performance and some restructuring
       
  3845     // for cleaner interfaces.
       
  3846     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
       
  3847     rp->preclean_discovered_references(
       
  3848           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
       
  3849           gc_timer);
       
  3850   }
       
  3851 
       
  3852   if (clean_survivor) {  // preclean the active survivor space(s)
       
  3853     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
       
  3854                              &_markBitMap, &_modUnionTable,
       
  3855                              &_markStack, true /* precleaning phase */);
       
  3856     stopTimer();
       
  3857     CMSTokenSyncWithLocks ts(true /* is cms thread */,
       
  3858                              bitMapLock());
       
  3859     startTimer();
       
  3860     unsigned int before_count =
       
  3861       CMSHeap::heap()->total_collections();
       
  3862     SurvivorSpacePrecleanClosure
       
  3863       sss_cl(this, _span, &_markBitMap, &_markStack,
       
  3864              &pam_cl, before_count, CMSYield);
       
  3865     _young_gen->from()->object_iterate_careful(&sss_cl);
       
  3866     _young_gen->to()->object_iterate_careful(&sss_cl);
       
  3867   }
       
  3868   MarkRefsIntoAndScanClosure
       
  3869     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
       
  3870              &_markStack, this, CMSYield,
       
  3871              true /* precleaning phase */);
       
  3872   // CAUTION: The following closure has persistent state that may need to
       
  3873   // be reset upon a decrease in the sequence of addresses it
       
  3874   // processes.
       
  3875   ScanMarkedObjectsAgainCarefullyClosure
       
  3876     smoac_cl(this, _span,
       
  3877       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
       
  3878 
       
  3879   // Preclean dirty cards in ModUnionTable and CardTable using
       
  3880   // appropriate convergence criterion;
       
  3881   // repeat CMSPrecleanIter times unless we find that
       
  3882   // we are losing.
       
  3883   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
       
  3884   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
       
  3885          "Bad convergence multiplier");
       
  3886   assert(CMSPrecleanThreshold >= 100,
       
  3887          "Unreasonably low CMSPrecleanThreshold");
       
  3888 
       
  3889   size_t numIter, cumNumCards, lastNumCards, curNumCards;
       
  3890   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
       
  3891        numIter < CMSPrecleanIter;
       
  3892        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
       
  3893     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
       
  3894     log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
       
  3895     // Either there are very few dirty cards, so re-mark
       
  3896     // pause will be small anyway, or our pre-cleaning isn't
       
  3897     // that much faster than the rate at which cards are being
       
  3898     // dirtied, so we might as well stop and re-mark since
       
  3899     // precleaning won't improve our re-mark time by much.
       
  3900     if (curNumCards <= CMSPrecleanThreshold ||
       
  3901         (numIter > 0 &&
       
  3902          (curNumCards * CMSPrecleanDenominator >
       
  3903          lastNumCards * CMSPrecleanNumerator))) {
       
  3904       numIter++;
       
  3905       cumNumCards += curNumCards;
       
  3906       break;
       
  3907     }
       
  3908   }
       
  3909 
       
  3910   preclean_cld(&mrias_cl, _cmsGen->freelistLock());
       
  3911 
       
  3912   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
       
  3913   cumNumCards += curNumCards;
       
  3914   log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
       
  3915                              curNumCards, cumNumCards, numIter);
       
  3916   return cumNumCards;   // as a measure of useful work done
       
  3917 }
       
  3918 
       
  3919 // PRECLEANING NOTES:
       
  3920 // Precleaning involves:
       
  3921 // . reading the bits of the modUnionTable and clearing the set bits.
       
  3922 // . For the cards corresponding to the set bits, we scan the
       
  3923 //   objects on those cards. This means we need the free_list_lock
       
  3924 //   so that we can safely iterate over the CMS space when scanning
       
  3925 //   for oops.
       
  3926 // . When we scan the objects, we'll be both reading and setting
       
  3927 //   marks in the marking bit map, so we'll need the marking bit map.
       
  3928 // . For protecting _collector_state transitions, we take the CGC_lock.
       
  3929 //   Note that any races in the reading of of card table entries by the
       
  3930 //   CMS thread on the one hand and the clearing of those entries by the
       
  3931 //   VM thread or the setting of those entries by the mutator threads on the
       
  3932 //   other are quite benign. However, for efficiency it makes sense to keep
       
  3933 //   the VM thread from racing with the CMS thread while the latter is
       
  3934 //   dirty card info to the modUnionTable. We therefore also use the
       
  3935 //   CGC_lock to protect the reading of the card table and the mod union
       
  3936 //   table by the CM thread.
       
  3937 // . We run concurrently with mutator updates, so scanning
       
  3938 //   needs to be done carefully  -- we should not try to scan
       
  3939 //   potentially uninitialized objects.
       
  3940 //
       
  3941 // Locking strategy: While holding the CGC_lock, we scan over and
       
  3942 // reset a maximal dirty range of the mod union / card tables, then lock
       
  3943 // the free_list_lock and bitmap lock to do a full marking, then
       
  3944 // release these locks; and repeat the cycle. This allows for a
       
  3945 // certain amount of fairness in the sharing of these locks between
       
  3946 // the CMS collector on the one hand, and the VM thread and the
       
  3947 // mutators on the other.
       
  3948 
       
  3949 // NOTE: preclean_mod_union_table() and preclean_card_table()
       
  3950 // further below are largely identical; if you need to modify
       
  3951 // one of these methods, please check the other method too.
       
  3952 
       
  3953 size_t CMSCollector::preclean_mod_union_table(
       
  3954   ConcurrentMarkSweepGeneration* old_gen,
       
  3955   ScanMarkedObjectsAgainCarefullyClosure* cl) {
       
  3956   verify_work_stacks_empty();
       
  3957   verify_overflow_empty();
       
  3958 
       
  3959   // strategy: starting with the first card, accumulate contiguous
       
  3960   // ranges of dirty cards; clear these cards, then scan the region
       
  3961   // covered by these cards.
       
  3962 
       
  3963   // Since all of the MUT is committed ahead, we can just use
       
  3964   // that, in case the generations expand while we are precleaning.
       
  3965   // It might also be fine to just use the committed part of the
       
  3966   // generation, but we might potentially miss cards when the
       
  3967   // generation is rapidly expanding while we are in the midst
       
  3968   // of precleaning.
       
  3969   HeapWord* startAddr = old_gen->reserved().start();
       
  3970   HeapWord* endAddr   = old_gen->reserved().end();
       
  3971 
       
  3972   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
       
  3973 
       
  3974   size_t numDirtyCards, cumNumDirtyCards;
       
  3975   HeapWord *nextAddr, *lastAddr;
       
  3976   for (cumNumDirtyCards = numDirtyCards = 0,
       
  3977        nextAddr = lastAddr = startAddr;
       
  3978        nextAddr < endAddr;
       
  3979        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
       
  3980 
       
  3981     ResourceMark rm;
       
  3982     HandleMark   hm;
       
  3983 
       
  3984     MemRegion dirtyRegion;
       
  3985     {
       
  3986       stopTimer();
       
  3987       // Potential yield point
       
  3988       CMSTokenSync ts(true);
       
  3989       startTimer();
       
  3990       sample_eden();
       
  3991       // Get dirty region starting at nextOffset (inclusive),
       
  3992       // simultaneously clearing it.
       
  3993       dirtyRegion =
       
  3994         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
       
  3995       assert(dirtyRegion.start() >= nextAddr,
       
  3996              "returned region inconsistent?");
       
  3997     }
       
  3998     // Remember where the next search should begin.
       
  3999     // The returned region (if non-empty) is a right open interval,
       
  4000     // so lastOffset is obtained from the right end of that
       
  4001     // interval.
       
  4002     lastAddr = dirtyRegion.end();
       
  4003     // Should do something more transparent and less hacky XXX
       
  4004     numDirtyCards =
       
  4005       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
       
  4006 
       
  4007     // We'll scan the cards in the dirty region (with periodic
       
  4008     // yields for foreground GC as needed).
       
  4009     if (!dirtyRegion.is_empty()) {
       
  4010       assert(numDirtyCards > 0, "consistency check");
       
  4011       HeapWord* stop_point = NULL;
       
  4012       stopTimer();
       
  4013       // Potential yield point
       
  4014       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
       
  4015                                bitMapLock());
       
  4016       startTimer();
       
  4017       {
       
  4018         verify_work_stacks_empty();
       
  4019         verify_overflow_empty();
       
  4020         sample_eden();
       
  4021         stop_point =
       
  4022           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
       
  4023       }
       
  4024       if (stop_point != NULL) {
       
  4025         // The careful iteration stopped early either because it found an
       
  4026         // uninitialized object, or because we were in the midst of an
       
  4027         // "abortable preclean", which should now be aborted. Redirty
       
  4028         // the bits corresponding to the partially-scanned or unscanned
       
  4029         // cards. We'll either restart at the next block boundary or
       
  4030         // abort the preclean.
       
  4031         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
       
  4032                "Should only be AbortablePreclean.");
       
  4033         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
       
  4034         if (should_abort_preclean()) {
       
  4035           break; // out of preclean loop
       
  4036         } else {
       
  4037           // Compute the next address at which preclean should pick up;
       
  4038           // might need bitMapLock in order to read P-bits.
       
  4039           lastAddr = next_card_start_after_block(stop_point);
       
  4040         }
       
  4041       }
       
  4042     } else {
       
  4043       assert(lastAddr == endAddr, "consistency check");
       
  4044       assert(numDirtyCards == 0, "consistency check");
       
  4045       break;
       
  4046     }
       
  4047   }
       
  4048   verify_work_stacks_empty();
       
  4049   verify_overflow_empty();
       
  4050   return cumNumDirtyCards;
       
  4051 }
       
  4052 
       
  4053 // NOTE: preclean_mod_union_table() above and preclean_card_table()
       
  4054 // below are largely identical; if you need to modify
       
  4055 // one of these methods, please check the other method too.
       
  4056 
       
  4057 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
       
  4058   ScanMarkedObjectsAgainCarefullyClosure* cl) {
       
  4059   // strategy: it's similar to precleamModUnionTable above, in that
       
  4060   // we accumulate contiguous ranges of dirty cards, mark these cards
       
  4061   // precleaned, then scan the region covered by these cards.
       
  4062   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
       
  4063   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
       
  4064 
       
  4065   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
       
  4066 
       
  4067   size_t numDirtyCards, cumNumDirtyCards;
       
  4068   HeapWord *lastAddr, *nextAddr;
       
  4069 
       
  4070   for (cumNumDirtyCards = numDirtyCards = 0,
       
  4071        nextAddr = lastAddr = startAddr;
       
  4072        nextAddr < endAddr;
       
  4073        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
       
  4074 
       
  4075     ResourceMark rm;
       
  4076     HandleMark   hm;
       
  4077 
       
  4078     MemRegion dirtyRegion;
       
  4079     {
       
  4080       // See comments in "Precleaning notes" above on why we
       
  4081       // do this locking. XXX Could the locking overheads be
       
  4082       // too high when dirty cards are sparse? [I don't think so.]
       
  4083       stopTimer();
       
  4084       CMSTokenSync x(true); // is cms thread
       
  4085       startTimer();
       
  4086       sample_eden();
       
  4087       // Get and clear dirty region from card table
       
  4088       dirtyRegion = _ct->dirty_card_range_after_reset(MemRegion(nextAddr, endAddr),
       
  4089                                                       true,
       
  4090                                                       CardTable::precleaned_card_val());
       
  4091 
       
  4092       assert(dirtyRegion.start() >= nextAddr,
       
  4093              "returned region inconsistent?");
       
  4094     }
       
  4095     lastAddr = dirtyRegion.end();
       
  4096     numDirtyCards =
       
  4097       dirtyRegion.word_size()/CardTable::card_size_in_words;
       
  4098 
       
  4099     if (!dirtyRegion.is_empty()) {
       
  4100       stopTimer();
       
  4101       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
       
  4102       startTimer();
       
  4103       sample_eden();
       
  4104       verify_work_stacks_empty();
       
  4105       verify_overflow_empty();
       
  4106       HeapWord* stop_point =
       
  4107         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
       
  4108       if (stop_point != NULL) {
       
  4109         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
       
  4110                "Should only be AbortablePreclean.");
       
  4111         _ct->invalidate(MemRegion(stop_point, dirtyRegion.end()));
       
  4112         if (should_abort_preclean()) {
       
  4113           break; // out of preclean loop
       
  4114         } else {
       
  4115           // Compute the next address at which preclean should pick up.
       
  4116           lastAddr = next_card_start_after_block(stop_point);
       
  4117         }
       
  4118       }
       
  4119     } else {
       
  4120       break;
       
  4121     }
       
  4122   }
       
  4123   verify_work_stacks_empty();
       
  4124   verify_overflow_empty();
       
  4125   return cumNumDirtyCards;
       
  4126 }
       
  4127 
       
  4128 class PrecleanCLDClosure : public CLDClosure {
       
  4129   MetadataVisitingOopsInGenClosure* _cm_closure;
       
  4130  public:
       
  4131   PrecleanCLDClosure(MetadataVisitingOopsInGenClosure* oop_closure) : _cm_closure(oop_closure) {}
       
  4132   void do_cld(ClassLoaderData* cld) {
       
  4133     if (cld->has_accumulated_modified_oops()) {
       
  4134       cld->clear_accumulated_modified_oops();
       
  4135 
       
  4136       _cm_closure->do_cld(cld);
       
  4137     }
       
  4138   }
       
  4139 };
       
  4140 
       
  4141 // The freelist lock is needed to prevent asserts, is it really needed?
       
  4142 void CMSCollector::preclean_cld(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
       
  4143   // Needed to walk CLDG
       
  4144   MutexLocker ml(ClassLoaderDataGraph_lock);
       
  4145 
       
  4146   cl->set_freelistLock(freelistLock);
       
  4147 
       
  4148   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
       
  4149 
       
  4150   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
       
  4151   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
       
  4152   PrecleanCLDClosure preclean_closure(cl);
       
  4153   ClassLoaderDataGraph::cld_do(&preclean_closure);
       
  4154 
       
  4155   verify_work_stacks_empty();
       
  4156   verify_overflow_empty();
       
  4157 }
       
  4158 
       
  4159 void CMSCollector::checkpointRootsFinal() {
       
  4160   assert(_collectorState == FinalMarking, "incorrect state transition?");
       
  4161   check_correct_thread_executing();
       
  4162   // world is stopped at this checkpoint
       
  4163   assert(SafepointSynchronize::is_at_safepoint(),
       
  4164          "world should be stopped");
       
  4165   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
       
  4166 
       
  4167   verify_work_stacks_empty();
       
  4168   verify_overflow_empty();
       
  4169 
       
  4170   log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
       
  4171                 _young_gen->used() / K, _young_gen->capacity() / K);
       
  4172   {
       
  4173     if (CMSScavengeBeforeRemark) {
       
  4174       CMSHeap* heap = CMSHeap::heap();
       
  4175       // Temporarily set flag to false, GCH->do_collection will
       
  4176       // expect it to be false and set to true
       
  4177       FlagSetting fl(heap->_is_gc_active, false);
       
  4178 
       
  4179       heap->do_collection(true,                      // full (i.e. force, see below)
       
  4180                           false,                     // !clear_all_soft_refs
       
  4181                           0,                         // size
       
  4182                           false,                     // is_tlab
       
  4183                           GenCollectedHeap::YoungGen // type
       
  4184         );
       
  4185     }
       
  4186     FreelistLocker x(this);
       
  4187     MutexLocker y(bitMapLock(),
       
  4188                   Mutex::_no_safepoint_check_flag);
       
  4189     checkpointRootsFinalWork();
       
  4190     _cmsGen->cmsSpace()->recalculate_used_stable();
       
  4191   }
       
  4192   verify_work_stacks_empty();
       
  4193   verify_overflow_empty();
       
  4194 }
       
  4195 
       
  4196 void CMSCollector::checkpointRootsFinalWork() {
       
  4197   GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
       
  4198 
       
  4199   assert(haveFreelistLocks(), "must have free list locks");
       
  4200   assert_lock_strong(bitMapLock());
       
  4201 
       
  4202   ResourceMark rm;
       
  4203   HandleMark   hm;
       
  4204 
       
  4205   CMSHeap* heap = CMSHeap::heap();
       
  4206 
       
  4207   assert(haveFreelistLocks(), "must have free list locks");
       
  4208   assert_lock_strong(bitMapLock());
       
  4209 
       
  4210   // We might assume that we need not fill TLAB's when
       
  4211   // CMSScavengeBeforeRemark is set, because we may have just done
       
  4212   // a scavenge which would have filled all TLAB's -- and besides
       
  4213   // Eden would be empty. This however may not always be the case --
       
  4214   // for instance although we asked for a scavenge, it may not have
       
  4215   // happened because of a JNI critical section. We probably need
       
  4216   // a policy for deciding whether we can in that case wait until
       
  4217   // the critical section releases and then do the remark following
       
  4218   // the scavenge, and skip it here. In the absence of that policy,
       
  4219   // or of an indication of whether the scavenge did indeed occur,
       
  4220   // we cannot rely on TLAB's having been filled and must do
       
  4221   // so here just in case a scavenge did not happen.
       
  4222   heap->ensure_parsability(false);  // fill TLAB's, but no need to retire them
       
  4223   // Update the saved marks which may affect the root scans.
       
  4224   heap->save_marks();
       
  4225 
       
  4226   print_eden_and_survivor_chunk_arrays();
       
  4227 
       
  4228   {
       
  4229 #if COMPILER2_OR_JVMCI
       
  4230     DerivedPointerTableDeactivate dpt_deact;
       
  4231 #endif
       
  4232 
       
  4233     // Note on the role of the mod union table:
       
  4234     // Since the marker in "markFromRoots" marks concurrently with
       
  4235     // mutators, it is possible for some reachable objects not to have been
       
  4236     // scanned. For instance, an only reference to an object A was
       
  4237     // placed in object B after the marker scanned B. Unless B is rescanned,
       
  4238     // A would be collected. Such updates to references in marked objects
       
  4239     // are detected via the mod union table which is the set of all cards
       
  4240     // dirtied since the first checkpoint in this GC cycle and prior to
       
  4241     // the most recent young generation GC, minus those cleaned up by the
       
  4242     // concurrent precleaning.
       
  4243     if (CMSParallelRemarkEnabled) {
       
  4244       GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
       
  4245       do_remark_parallel();
       
  4246     } else {
       
  4247       GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
       
  4248       do_remark_non_parallel();
       
  4249     }
       
  4250   }
       
  4251   verify_work_stacks_empty();
       
  4252   verify_overflow_empty();
       
  4253 
       
  4254   {
       
  4255     GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
       
  4256     refProcessingWork();
       
  4257   }
       
  4258   verify_work_stacks_empty();
       
  4259   verify_overflow_empty();
       
  4260 
       
  4261   if (should_unload_classes()) {
       
  4262     heap->prune_scavengable_nmethods();
       
  4263   }
       
  4264 
       
  4265   // If we encountered any (marking stack / work queue) overflow
       
  4266   // events during the current CMS cycle, take appropriate
       
  4267   // remedial measures, where possible, so as to try and avoid
       
  4268   // recurrence of that condition.
       
  4269   assert(_markStack.isEmpty(), "No grey objects");
       
  4270   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
       
  4271                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
       
  4272   if (ser_ovflw > 0) {
       
  4273     log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
       
  4274                          _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
       
  4275     _markStack.expand();
       
  4276     _ser_pmc_remark_ovflw = 0;
       
  4277     _ser_pmc_preclean_ovflw = 0;
       
  4278     _ser_kac_preclean_ovflw = 0;
       
  4279     _ser_kac_ovflw = 0;
       
  4280   }
       
  4281   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
       
  4282      log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
       
  4283                           _par_pmc_remark_ovflw, _par_kac_ovflw);
       
  4284      _par_pmc_remark_ovflw = 0;
       
  4285     _par_kac_ovflw = 0;
       
  4286   }
       
  4287    if (_markStack._hit_limit > 0) {
       
  4288      log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
       
  4289                           _markStack._hit_limit);
       
  4290    }
       
  4291    if (_markStack._failed_double > 0) {
       
  4292      log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
       
  4293                           _markStack._failed_double, _markStack.capacity());
       
  4294    }
       
  4295   _markStack._hit_limit = 0;
       
  4296   _markStack._failed_double = 0;
       
  4297 
       
  4298   if ((VerifyAfterGC || VerifyDuringGC) &&
       
  4299       CMSHeap::heap()->total_collections() >= VerifyGCStartAt) {
       
  4300     verify_after_remark();
       
  4301   }
       
  4302 
       
  4303   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
       
  4304 
       
  4305   // Change under the freelistLocks.
       
  4306   _collectorState = Sweeping;
       
  4307   // Call isAllClear() under bitMapLock
       
  4308   assert(_modUnionTable.isAllClear(),
       
  4309       "Should be clear by end of the final marking");
       
  4310   assert(_ct->cld_rem_set()->mod_union_is_clear(),
       
  4311       "Should be clear by end of the final marking");
       
  4312 }
       
  4313 
       
  4314 void CMSParInitialMarkTask::work(uint worker_id) {
       
  4315   elapsedTimer _timer;
       
  4316   ResourceMark rm;
       
  4317   HandleMark   hm;
       
  4318 
       
  4319   // ---------- scan from roots --------------
       
  4320   _timer.start();
       
  4321   CMSHeap* heap = CMSHeap::heap();
       
  4322   ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
       
  4323 
       
  4324   // ---------- young gen roots --------------
       
  4325   {
       
  4326     work_on_young_gen_roots(&par_mri_cl);
       
  4327     _timer.stop();
       
  4328     log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
       
  4329   }
       
  4330 
       
  4331   // ---------- remaining roots --------------
       
  4332   _timer.reset();
       
  4333   _timer.start();
       
  4334 
       
  4335   CLDToOopClosure cld_closure(&par_mri_cl, ClassLoaderData::_claim_strong);
       
  4336 
       
  4337   heap->cms_process_roots(_strong_roots_scope,
       
  4338                           false,     // yg was scanned above
       
  4339                           GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
       
  4340                           _collector->should_unload_classes(),
       
  4341                           &par_mri_cl,
       
  4342                           &cld_closure);
       
  4343 
       
  4344   assert(_collector->should_unload_classes()
       
  4345          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
       
  4346          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
       
  4347   _timer.stop();
       
  4348   log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
       
  4349 }
       
  4350 
       
  4351 // Parallel remark task
       
  4352 class CMSParRemarkTask: public CMSParMarkTask {
       
  4353   CompactibleFreeListSpace* _cms_space;
       
  4354 
       
  4355   // The per-thread work queues, available here for stealing.
       
  4356   OopTaskQueueSet*       _task_queues;
       
  4357   TaskTerminator         _term;
       
  4358   StrongRootsScope*      _strong_roots_scope;
       
  4359 
       
  4360  public:
       
  4361   // A value of 0 passed to n_workers will cause the number of
       
  4362   // workers to be taken from the active workers in the work gang.
       
  4363   CMSParRemarkTask(CMSCollector* collector,
       
  4364                    CompactibleFreeListSpace* cms_space,
       
  4365                    uint n_workers, WorkGang* workers,
       
  4366                    OopTaskQueueSet* task_queues,
       
  4367                    StrongRootsScope* strong_roots_scope):
       
  4368     CMSParMarkTask("Rescan roots and grey objects in parallel",
       
  4369                    collector, n_workers),
       
  4370     _cms_space(cms_space),
       
  4371     _task_queues(task_queues),
       
  4372     _term(n_workers, task_queues),
       
  4373     _strong_roots_scope(strong_roots_scope) { }
       
  4374 
       
  4375   OopTaskQueueSet* task_queues() { return _task_queues; }
       
  4376 
       
  4377   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
       
  4378 
       
  4379   ParallelTaskTerminator* terminator() { return _term.terminator(); }
       
  4380   uint n_workers() { return _n_workers; }
       
  4381 
       
  4382   void work(uint worker_id);
       
  4383 
       
  4384  private:
       
  4385   // ... of  dirty cards in old space
       
  4386   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
       
  4387                                   ParMarkRefsIntoAndScanClosure* cl);
       
  4388 
       
  4389   // ... work stealing for the above
       
  4390   void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl);
       
  4391 };
       
  4392 
       
  4393 class RemarkCLDClosure : public CLDClosure {
       
  4394   CLDToOopClosure _cm_closure;
       
  4395  public:
       
  4396   RemarkCLDClosure(OopClosure* oop_closure) : _cm_closure(oop_closure, ClassLoaderData::_claim_strong) {}
       
  4397   void do_cld(ClassLoaderData* cld) {
       
  4398     // Check if we have modified any oops in the CLD during the concurrent marking.
       
  4399     if (cld->has_accumulated_modified_oops()) {
       
  4400       cld->clear_accumulated_modified_oops();
       
  4401 
       
  4402       // We could have transfered the current modified marks to the accumulated marks,
       
  4403       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
       
  4404     } else if (cld->has_modified_oops()) {
       
  4405       // Don't clear anything, this info is needed by the next young collection.
       
  4406     } else {
       
  4407       // No modified oops in the ClassLoaderData.
       
  4408       return;
       
  4409     }
       
  4410 
       
  4411     // The klass has modified fields, need to scan the klass.
       
  4412     _cm_closure.do_cld(cld);
       
  4413   }
       
  4414 };
       
  4415 
       
  4416 void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) {
       
  4417   ParNewGeneration* young_gen = _collector->_young_gen;
       
  4418   ContiguousSpace* eden_space = young_gen->eden();
       
  4419   ContiguousSpace* from_space = young_gen->from();
       
  4420   ContiguousSpace* to_space   = young_gen->to();
       
  4421 
       
  4422   HeapWord** eca = _collector->_eden_chunk_array;
       
  4423   size_t     ect = _collector->_eden_chunk_index;
       
  4424   HeapWord** sca = _collector->_survivor_chunk_array;
       
  4425   size_t     sct = _collector->_survivor_chunk_index;
       
  4426 
       
  4427   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
       
  4428   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
       
  4429 
       
  4430   do_young_space_rescan(cl, to_space, NULL, 0);
       
  4431   do_young_space_rescan(cl, from_space, sca, sct);
       
  4432   do_young_space_rescan(cl, eden_space, eca, ect);
       
  4433 }
       
  4434 
       
  4435 // work_queue(i) is passed to the closure
       
  4436 // ParMarkRefsIntoAndScanClosure.  The "i" parameter
       
  4437 // also is passed to do_dirty_card_rescan_tasks() and to
       
  4438 // do_work_steal() to select the i-th task_queue.
       
  4439 
       
  4440 void CMSParRemarkTask::work(uint worker_id) {
       
  4441   elapsedTimer _timer;
       
  4442   ResourceMark rm;
       
  4443   HandleMark   hm;
       
  4444 
       
  4445   // ---------- rescan from roots --------------
       
  4446   _timer.start();
       
  4447   CMSHeap* heap = CMSHeap::heap();
       
  4448   ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
       
  4449     _collector->_span, _collector->ref_processor(),
       
  4450     &(_collector->_markBitMap),
       
  4451     work_queue(worker_id));
       
  4452 
       
  4453   // Rescan young gen roots first since these are likely
       
  4454   // coarsely partitioned and may, on that account, constitute
       
  4455   // the critical path; thus, it's best to start off that
       
  4456   // work first.
       
  4457   // ---------- young gen roots --------------
       
  4458   {
       
  4459     work_on_young_gen_roots(&par_mrias_cl);
       
  4460     _timer.stop();
       
  4461     log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
       
  4462   }
       
  4463 
       
  4464   // ---------- remaining roots --------------
       
  4465   _timer.reset();
       
  4466   _timer.start();
       
  4467   heap->cms_process_roots(_strong_roots_scope,
       
  4468                           false,     // yg was scanned above
       
  4469                           GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
       
  4470                           _collector->should_unload_classes(),
       
  4471                           &par_mrias_cl,
       
  4472                           NULL);     // The dirty klasses will be handled below
       
  4473 
       
  4474   assert(_collector->should_unload_classes()
       
  4475          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
       
  4476          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
       
  4477   _timer.stop();
       
  4478   log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
       
  4479 
       
  4480   // ---------- unhandled CLD scanning ----------
       
  4481   if (worker_id == 0) { // Single threaded at the moment.
       
  4482     _timer.reset();
       
  4483     _timer.start();
       
  4484 
       
  4485     // Scan all new class loader data objects and new dependencies that were
       
  4486     // introduced during concurrent marking.
       
  4487     ResourceMark rm;
       
  4488     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
       
  4489     for (int i = 0; i < array->length(); i++) {
       
  4490       Devirtualizer::do_cld(&par_mrias_cl, array->at(i));
       
  4491     }
       
  4492 
       
  4493     // We don't need to keep track of new CLDs anymore.
       
  4494     ClassLoaderDataGraph::remember_new_clds(false);
       
  4495 
       
  4496     _timer.stop();
       
  4497     log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
       
  4498   }
       
  4499 
       
  4500   // We might have added oops to ClassLoaderData::_handles during the
       
  4501   // concurrent marking phase. These oops do not always point to newly allocated objects
       
  4502   // that are guaranteed to be kept alive.  Hence,
       
  4503   // we do have to revisit the _handles block during the remark phase.
       
  4504 
       
  4505   // ---------- dirty CLD scanning ----------
       
  4506   if (worker_id == 0) { // Single threaded at the moment.
       
  4507     _timer.reset();
       
  4508     _timer.start();
       
  4509 
       
  4510     // Scan all classes that was dirtied during the concurrent marking phase.
       
  4511     RemarkCLDClosure remark_closure(&par_mrias_cl);
       
  4512     ClassLoaderDataGraph::cld_do(&remark_closure);
       
  4513 
       
  4514     _timer.stop();
       
  4515     log_trace(gc, task)("Finished dirty CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
       
  4516   }
       
  4517 
       
  4518 
       
  4519   // ---------- rescan dirty cards ------------
       
  4520   _timer.reset();
       
  4521   _timer.start();
       
  4522 
       
  4523   // Do the rescan tasks for each of the two spaces
       
  4524   // (cms_space) in turn.
       
  4525   // "worker_id" is passed to select the task_queue for "worker_id"
       
  4526   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
       
  4527   _timer.stop();
       
  4528   log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
       
  4529 
       
  4530   // ---------- steal work from other threads ...
       
  4531   // ---------- ... and drain overflow list.
       
  4532   _timer.reset();
       
  4533   _timer.start();
       
  4534   do_work_steal(worker_id, &par_mrias_cl);
       
  4535   _timer.stop();
       
  4536   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
       
  4537 }
       
  4538 
       
  4539 void
       
  4540 CMSParMarkTask::do_young_space_rescan(
       
  4541   OopsInGenClosure* cl, ContiguousSpace* space,
       
  4542   HeapWord** chunk_array, size_t chunk_top) {
       
  4543   // Until all tasks completed:
       
  4544   // . claim an unclaimed task
       
  4545   // . compute region boundaries corresponding to task claimed
       
  4546   //   using chunk_array
       
  4547   // . par_oop_iterate(cl) over that region
       
  4548 
       
  4549   ResourceMark rm;
       
  4550   HandleMark   hm;
       
  4551 
       
  4552   SequentialSubTasksDone* pst = space->par_seq_tasks();
       
  4553 
       
  4554   uint nth_task = 0;
       
  4555   uint n_tasks  = pst->n_tasks();
       
  4556 
       
  4557   if (n_tasks > 0) {
       
  4558     assert(pst->valid(), "Uninitialized use?");
       
  4559     HeapWord *start, *end;
       
  4560     while (pst->try_claim_task(/* reference */ nth_task)) {
       
  4561       // We claimed task # nth_task; compute its boundaries.
       
  4562       if (chunk_top == 0) {  // no samples were taken
       
  4563         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
       
  4564         start = space->bottom();
       
  4565         end   = space->top();
       
  4566       } else if (nth_task == 0) {
       
  4567         start = space->bottom();
       
  4568         end   = chunk_array[nth_task];
       
  4569       } else if (nth_task < (uint)chunk_top) {
       
  4570         assert(nth_task >= 1, "Control point invariant");
       
  4571         start = chunk_array[nth_task - 1];
       
  4572         end   = chunk_array[nth_task];
       
  4573       } else {
       
  4574         assert(nth_task == (uint)chunk_top, "Control point invariant");
       
  4575         start = chunk_array[chunk_top - 1];
       
  4576         end   = space->top();
       
  4577       }
       
  4578       MemRegion mr(start, end);
       
  4579       // Verify that mr is in space
       
  4580       assert(mr.is_empty() || space->used_region().contains(mr),
       
  4581              "Should be in space");
       
  4582       // Verify that "start" is an object boundary
       
  4583       assert(mr.is_empty() || oopDesc::is_oop(oop(mr.start())),
       
  4584              "Should be an oop");
       
  4585       space->par_oop_iterate(mr, cl);
       
  4586     }
       
  4587     pst->all_tasks_completed();
       
  4588   }
       
  4589 }
       
  4590 
       
  4591 void
       
  4592 CMSParRemarkTask::do_dirty_card_rescan_tasks(
       
  4593   CompactibleFreeListSpace* sp, int i,
       
  4594   ParMarkRefsIntoAndScanClosure* cl) {
       
  4595   // Until all tasks completed:
       
  4596   // . claim an unclaimed task
       
  4597   // . compute region boundaries corresponding to task claimed
       
  4598   // . transfer dirty bits ct->mut for that region
       
  4599   // . apply rescanclosure to dirty mut bits for that region
       
  4600 
       
  4601   ResourceMark rm;
       
  4602   HandleMark   hm;
       
  4603 
       
  4604   OopTaskQueue* work_q = work_queue(i);
       
  4605   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
       
  4606   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
       
  4607   // CAUTION: This closure has state that persists across calls to
       
  4608   // the work method dirty_range_iterate_clear() in that it has
       
  4609   // embedded in it a (subtype of) UpwardsObjectClosure. The
       
  4610   // use of that state in the embedded UpwardsObjectClosure instance
       
  4611   // assumes that the cards are always iterated (even if in parallel
       
  4612   // by several threads) in monotonically increasing order per each
       
  4613   // thread. This is true of the implementation below which picks
       
  4614   // card ranges (chunks) in monotonically increasing order globally
       
  4615   // and, a-fortiori, in monotonically increasing order per thread
       
  4616   // (the latter order being a subsequence of the former).
       
  4617   // If the work code below is ever reorganized into a more chaotic
       
  4618   // work-partitioning form than the current "sequential tasks"
       
  4619   // paradigm, the use of that persistent state will have to be
       
  4620   // revisited and modified appropriately. See also related
       
  4621   // bug 4756801 work on which should examine this code to make
       
  4622   // sure that the changes there do not run counter to the
       
  4623   // assumptions made here and necessary for correctness and
       
  4624   // efficiency. Note also that this code might yield inefficient
       
  4625   // behavior in the case of very large objects that span one or
       
  4626   // more work chunks. Such objects would potentially be scanned
       
  4627   // several times redundantly. Work on 4756801 should try and
       
  4628   // address that performance anomaly if at all possible. XXX
       
  4629   MemRegion  full_span  = _collector->_span;
       
  4630   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
       
  4631   MarkFromDirtyCardsClosure
       
  4632     greyRescanClosure(_collector, full_span, // entire span of interest
       
  4633                       sp, bm, work_q, cl);
       
  4634 
       
  4635   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
       
  4636   assert(pst->valid(), "Uninitialized use?");
       
  4637   uint nth_task = 0;
       
  4638   const int alignment = CardTable::card_size * BitsPerWord;
       
  4639   MemRegion span = sp->used_region();
       
  4640   HeapWord* start_addr = span.start();
       
  4641   HeapWord* end_addr = align_up(span.end(), alignment);
       
  4642   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
       
  4643   assert(is_aligned(start_addr, alignment), "Check alignment");
       
  4644   assert(is_aligned(chunk_size, alignment), "Check alignment");
       
  4645 
       
  4646   while (pst->try_claim_task(/* reference */ nth_task)) {
       
  4647     // Having claimed the nth_task, compute corresponding mem-region,
       
  4648     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
       
  4649     // The alignment restriction ensures that we do not need any
       
  4650     // synchronization with other gang-workers while setting or
       
  4651     // clearing bits in thus chunk of the MUT.
       
  4652     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
       
  4653                                     start_addr + (nth_task+1)*chunk_size);
       
  4654     // The last chunk's end might be way beyond end of the
       
  4655     // used region. In that case pull back appropriately.
       
  4656     if (this_span.end() > end_addr) {
       
  4657       this_span.set_end(end_addr);
       
  4658       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
       
  4659     }
       
  4660     // Iterate over the dirty cards covering this chunk, marking them
       
  4661     // precleaned, and setting the corresponding bits in the mod union
       
  4662     // table. Since we have been careful to partition at Card and MUT-word
       
  4663     // boundaries no synchronization is needed between parallel threads.
       
  4664     _collector->_ct->dirty_card_iterate(this_span,
       
  4665                                                  &modUnionClosure);
       
  4666 
       
  4667     // Having transferred these marks into the modUnionTable,
       
  4668     // rescan the marked objects on the dirty cards in the modUnionTable.
       
  4669     // Even if this is at a synchronous collection, the initial marking
       
  4670     // may have been done during an asynchronous collection so there
       
  4671     // may be dirty bits in the mod-union table.
       
  4672     _collector->_modUnionTable.dirty_range_iterate_clear(
       
  4673                   this_span, &greyRescanClosure);
       
  4674     _collector->_modUnionTable.verifyNoOneBitsInRange(
       
  4675                                  this_span.start(),
       
  4676                                  this_span.end());
       
  4677   }
       
  4678   pst->all_tasks_completed();  // declare that i am done
       
  4679 }
       
  4680 
       
  4681 // . see if we can share work_queues with ParNew? XXX
       
  4682 void
       
  4683 CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl) {
       
  4684   OopTaskQueue* work_q = work_queue(i);
       
  4685   NOT_PRODUCT(int num_steals = 0;)
       
  4686   oop obj_to_scan;
       
  4687   CMSBitMap* bm = &(_collector->_markBitMap);
       
  4688 
       
  4689   while (true) {
       
  4690     // Completely finish any left over work from (an) earlier round(s)
       
  4691     cl->trim_queue(0);
       
  4692     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
       
  4693                                          (size_t)ParGCDesiredObjsFromOverflowList);
       
  4694     // Now check if there's any work in the overflow list
       
  4695     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
       
  4696     // only affects the number of attempts made to get work from the
       
  4697     // overflow list and does not affect the number of workers.  Just
       
  4698     // pass ParallelGCThreads so this behavior is unchanged.
       
  4699     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
       
  4700                                                 work_q,
       
  4701                                                 ParallelGCThreads)) {
       
  4702       // found something in global overflow list;
       
  4703       // not yet ready to go stealing work from others.
       
  4704       // We'd like to assert(work_q->size() != 0, ...)
       
  4705       // because we just took work from the overflow list,
       
  4706       // but of course we can't since all of that could have
       
  4707       // been already stolen from us.
       
  4708       // "He giveth and He taketh away."
       
  4709       continue;
       
  4710     }
       
  4711     // Verify that we have no work before we resort to stealing
       
  4712     assert(work_q->size() == 0, "Have work, shouldn't steal");
       
  4713     // Try to steal from other queues that have work
       
  4714     if (task_queues()->steal(i, /* reference */ obj_to_scan)) {
       
  4715       NOT_PRODUCT(num_steals++;)
       
  4716       assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!");
       
  4717       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
       
  4718       // Do scanning work
       
  4719       obj_to_scan->oop_iterate(cl);
       
  4720       // Loop around, finish this work, and try to steal some more
       
  4721     } else if (terminator()->offer_termination()) {
       
  4722         break;  // nirvana from the infinite cycle
       
  4723     }
       
  4724   }
       
  4725   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
       
  4726   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
       
  4727          "Else our work is not yet done");
       
  4728 }
       
  4729 
       
  4730 // Record object boundaries in _eden_chunk_array by sampling the eden
       
  4731 // top in the slow-path eden object allocation code path and record
       
  4732 // the boundaries, if CMSEdenChunksRecordAlways is true. If
       
  4733 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
       
  4734 // sampling in sample_eden() that activates during the part of the
       
  4735 // preclean phase.
       
  4736 void CMSCollector::sample_eden_chunk() {
       
  4737   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
       
  4738     if (_eden_chunk_lock->try_lock()) {
       
  4739       // Record a sample. This is the critical section. The contents
       
  4740       // of the _eden_chunk_array have to be non-decreasing in the
       
  4741       // address order.
       
  4742       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
       
  4743       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
       
  4744              "Unexpected state of Eden");
       
  4745       if (_eden_chunk_index == 0 ||
       
  4746           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
       
  4747            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
       
  4748                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
       
  4749         _eden_chunk_index++;  // commit sample
       
  4750       }
       
  4751       _eden_chunk_lock->unlock();
       
  4752     }
       
  4753   }
       
  4754 }
       
  4755 
       
  4756 // Return a thread-local PLAB recording array, as appropriate.
       
  4757 void* CMSCollector::get_data_recorder(int thr_num) {
       
  4758   if (_survivor_plab_array != NULL &&
       
  4759       (CMSPLABRecordAlways ||
       
  4760        (_collectorState > Marking && _collectorState < FinalMarking))) {
       
  4761     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
       
  4762     ChunkArray* ca = &_survivor_plab_array[thr_num];
       
  4763     ca->reset();   // clear it so that fresh data is recorded
       
  4764     return (void*) ca;
       
  4765   } else {
       
  4766     return NULL;
       
  4767   }
       
  4768 }
       
  4769 
       
  4770 // Reset all the thread-local PLAB recording arrays
       
  4771 void CMSCollector::reset_survivor_plab_arrays() {
       
  4772   for (uint i = 0; i < ParallelGCThreads; i++) {
       
  4773     _survivor_plab_array[i].reset();
       
  4774   }
       
  4775 }
       
  4776 
       
  4777 // Merge the per-thread plab arrays into the global survivor chunk
       
  4778 // array which will provide the partitioning of the survivor space
       
  4779 // for CMS initial scan and rescan.
       
  4780 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
       
  4781                                               int no_of_gc_threads) {
       
  4782   assert(_survivor_plab_array  != NULL, "Error");
       
  4783   assert(_survivor_chunk_array != NULL, "Error");
       
  4784   assert(_collectorState == FinalMarking ||
       
  4785          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
       
  4786   for (int j = 0; j < no_of_gc_threads; j++) {
       
  4787     _cursor[j] = 0;
       
  4788   }
       
  4789   HeapWord* top = surv->top();
       
  4790   size_t i;
       
  4791   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
       
  4792     HeapWord* min_val = top;          // Higher than any PLAB address
       
  4793     uint      min_tid = 0;            // position of min_val this round
       
  4794     for (int j = 0; j < no_of_gc_threads; j++) {
       
  4795       ChunkArray* cur_sca = &_survivor_plab_array[j];
       
  4796       if (_cursor[j] == cur_sca->end()) {
       
  4797         continue;
       
  4798       }
       
  4799       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
       
  4800       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
       
  4801       assert(surv->used_region().contains(cur_val), "Out of bounds value");
       
  4802       if (cur_val < min_val) {
       
  4803         min_tid = j;
       
  4804         min_val = cur_val;
       
  4805       } else {
       
  4806         assert(cur_val < top, "All recorded addresses should be less");
       
  4807       }
       
  4808     }
       
  4809     // At this point min_val and min_tid are respectively
       
  4810     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
       
  4811     // and the thread (j) that witnesses that address.
       
  4812     // We record this address in the _survivor_chunk_array[i]
       
  4813     // and increment _cursor[min_tid] prior to the next round i.
       
  4814     if (min_val == top) {
       
  4815       break;
       
  4816     }
       
  4817     _survivor_chunk_array[i] = min_val;
       
  4818     _cursor[min_tid]++;
       
  4819   }
       
  4820   // We are all done; record the size of the _survivor_chunk_array
       
  4821   _survivor_chunk_index = i; // exclusive: [0, i)
       
  4822   log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
       
  4823   // Verify that we used up all the recorded entries
       
  4824   #ifdef ASSERT
       
  4825     size_t total = 0;
       
  4826     for (int j = 0; j < no_of_gc_threads; j++) {
       
  4827       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
       
  4828       total += _cursor[j];
       
  4829     }
       
  4830     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
       
  4831     // Check that the merged array is in sorted order
       
  4832     if (total > 0) {
       
  4833       for (size_t i = 0; i < total - 1; i++) {
       
  4834         log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
       
  4835                                      i, p2i(_survivor_chunk_array[i]));
       
  4836         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
       
  4837                "Not sorted");
       
  4838       }
       
  4839     }
       
  4840   #endif // ASSERT
       
  4841 }
       
  4842 
       
  4843 // Set up the space's par_seq_tasks structure for work claiming
       
  4844 // for parallel initial scan and rescan of young gen.
       
  4845 // See ParRescanTask where this is currently used.
       
  4846 void
       
  4847 CMSCollector::
       
  4848 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
       
  4849   assert(n_threads > 0, "Unexpected n_threads argument");
       
  4850 
       
  4851   // Eden space
       
  4852   if (!_young_gen->eden()->is_empty()) {
       
  4853     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
       
  4854     assert(!pst->valid(), "Clobbering existing data?");
       
  4855     // Each valid entry in [0, _eden_chunk_index) represents a task.
       
  4856     size_t n_tasks = _eden_chunk_index + 1;
       
  4857     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
       
  4858     // Sets the condition for completion of the subtask (how many threads
       
  4859     // need to finish in order to be done).
       
  4860     pst->set_n_threads(n_threads);
       
  4861     pst->set_n_tasks((int)n_tasks);
       
  4862   }
       
  4863 
       
  4864   // Merge the survivor plab arrays into _survivor_chunk_array
       
  4865   if (_survivor_plab_array != NULL) {
       
  4866     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
       
  4867   } else {
       
  4868     assert(_survivor_chunk_index == 0, "Error");
       
  4869   }
       
  4870 
       
  4871   // To space
       
  4872   {
       
  4873     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
       
  4874     assert(!pst->valid(), "Clobbering existing data?");
       
  4875     // Sets the condition for completion of the subtask (how many threads
       
  4876     // need to finish in order to be done).
       
  4877     pst->set_n_threads(n_threads);
       
  4878     pst->set_n_tasks(1);
       
  4879     assert(pst->valid(), "Error");
       
  4880   }
       
  4881 
       
  4882   // From space
       
  4883   {
       
  4884     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
       
  4885     assert(!pst->valid(), "Clobbering existing data?");
       
  4886     size_t n_tasks = _survivor_chunk_index + 1;
       
  4887     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
       
  4888     // Sets the condition for completion of the subtask (how many threads
       
  4889     // need to finish in order to be done).
       
  4890     pst->set_n_threads(n_threads);
       
  4891     pst->set_n_tasks((int)n_tasks);
       
  4892     assert(pst->valid(), "Error");
       
  4893   }
       
  4894 }
       
  4895 
       
  4896 // Parallel version of remark
       
  4897 void CMSCollector::do_remark_parallel() {
       
  4898   CMSHeap* heap = CMSHeap::heap();
       
  4899   WorkGang* workers = heap->workers();
       
  4900   assert(workers != NULL, "Need parallel worker threads.");
       
  4901   // Choose to use the number of GC workers most recently set
       
  4902   // into "active_workers".
       
  4903   uint n_workers = workers->active_workers();
       
  4904 
       
  4905   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
       
  4906 
       
  4907   StrongRootsScope srs(n_workers);
       
  4908 
       
  4909   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
       
  4910 
       
  4911   // We won't be iterating over the cards in the card table updating
       
  4912   // the younger_gen cards, so we shouldn't call the following else
       
  4913   // the verification code as well as subsequent younger_refs_iterate
       
  4914   // code would get confused. XXX
       
  4915   // heap->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
       
  4916 
       
  4917   // The young gen rescan work will not be done as part of
       
  4918   // process_roots (which currently doesn't know how to
       
  4919   // parallelize such a scan), but rather will be broken up into
       
  4920   // a set of parallel tasks (via the sampling that the [abortable]
       
  4921   // preclean phase did of eden, plus the [two] tasks of
       
  4922   // scanning the [two] survivor spaces. Further fine-grain
       
  4923   // parallelization of the scanning of the survivor spaces
       
  4924   // themselves, and of precleaning of the young gen itself
       
  4925   // is deferred to the future.
       
  4926   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
       
  4927 
       
  4928   // The dirty card rescan work is broken up into a "sequence"
       
  4929   // of parallel tasks (per constituent space) that are dynamically
       
  4930   // claimed by the parallel threads.
       
  4931   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
       
  4932 
       
  4933   // It turns out that even when we're using 1 thread, doing the work in a
       
  4934   // separate thread causes wide variance in run times.  We can't help this
       
  4935   // in the multi-threaded case, but we special-case n=1 here to get
       
  4936   // repeatable measurements of the 1-thread overhead of the parallel code.
       
  4937   if (n_workers > 1) {
       
  4938     // Make refs discovery MT-safe, if it isn't already: it may not
       
  4939     // necessarily be so, since it's possible that we are doing
       
  4940     // ST marking.
       
  4941     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
       
  4942     workers->run_task(&tsk);
       
  4943   } else {
       
  4944     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
       
  4945     tsk.work(0);
       
  4946   }
       
  4947 
       
  4948   // restore, single-threaded for now, any preserved marks
       
  4949   // as a result of work_q overflow
       
  4950   restore_preserved_marks_if_any();
       
  4951 }
       
  4952 
       
  4953 // Non-parallel version of remark
       
  4954 void CMSCollector::do_remark_non_parallel() {
       
  4955   ResourceMark rm;
       
  4956   HandleMark   hm;
       
  4957   CMSHeap* heap = CMSHeap::heap();
       
  4958   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
       
  4959 
       
  4960   MarkRefsIntoAndScanClosure
       
  4961     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
       
  4962              &_markStack, this,
       
  4963              false /* should_yield */, false /* not precleaning */);
       
  4964   MarkFromDirtyCardsClosure
       
  4965     markFromDirtyCardsClosure(this, _span,
       
  4966                               NULL,  // space is set further below
       
  4967                               &_markBitMap, &_markStack, &mrias_cl);
       
  4968   {
       
  4969     GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
       
  4970     // Iterate over the dirty cards, setting the corresponding bits in the
       
  4971     // mod union table.
       
  4972     {
       
  4973       ModUnionClosure modUnionClosure(&_modUnionTable);
       
  4974       _ct->dirty_card_iterate(_cmsGen->used_region(),
       
  4975                               &modUnionClosure);
       
  4976     }
       
  4977     // Having transferred these marks into the modUnionTable, we just need
       
  4978     // to rescan the marked objects on the dirty cards in the modUnionTable.
       
  4979     // The initial marking may have been done during an asynchronous
       
  4980     // collection so there may be dirty bits in the mod-union table.
       
  4981     const int alignment = CardTable::card_size * BitsPerWord;
       
  4982     {
       
  4983       // ... First handle dirty cards in CMS gen
       
  4984       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
       
  4985       MemRegion ur = _cmsGen->used_region();
       
  4986       HeapWord* lb = ur.start();
       
  4987       HeapWord* ub = align_up(ur.end(), alignment);
       
  4988       MemRegion cms_span(lb, ub);
       
  4989       _modUnionTable.dirty_range_iterate_clear(cms_span,
       
  4990                                                &markFromDirtyCardsClosure);
       
  4991       verify_work_stacks_empty();
       
  4992       log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
       
  4993     }
       
  4994   }
       
  4995   if (VerifyDuringGC &&
       
  4996       CMSHeap::heap()->total_collections() >= VerifyGCStartAt) {
       
  4997     HandleMark hm;  // Discard invalid handles created during verification
       
  4998     Universe::verify();
       
  4999   }
       
  5000   {
       
  5001     GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
       
  5002 
       
  5003     verify_work_stacks_empty();
       
  5004 
       
  5005     heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
       
  5006     StrongRootsScope srs(1);
       
  5007 
       
  5008     heap->cms_process_roots(&srs,
       
  5009                             true,  // young gen as roots
       
  5010                             GenCollectedHeap::ScanningOption(roots_scanning_options()),
       
  5011                             should_unload_classes(),
       
  5012                             &mrias_cl,
       
  5013                             NULL); // The dirty klasses will be handled below
       
  5014 
       
  5015     assert(should_unload_classes()
       
  5016            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
       
  5017            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
       
  5018   }
       
  5019 
       
  5020   {
       
  5021     GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
       
  5022 
       
  5023     verify_work_stacks_empty();
       
  5024 
       
  5025     // Scan all class loader data objects that might have been introduced
       
  5026     // during concurrent marking.
       
  5027     ResourceMark rm;
       
  5028     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
       
  5029     for (int i = 0; i < array->length(); i++) {
       
  5030       Devirtualizer::do_cld(&mrias_cl, array->at(i));
       
  5031     }
       
  5032 
       
  5033     // We don't need to keep track of new CLDs anymore.
       
  5034     ClassLoaderDataGraph::remember_new_clds(false);
       
  5035 
       
  5036     verify_work_stacks_empty();
       
  5037   }
       
  5038 
       
  5039   // We might have added oops to ClassLoaderData::_handles during the
       
  5040   // concurrent marking phase. These oops do not point to newly allocated objects
       
  5041   // that are guaranteed to be kept alive.  Hence,
       
  5042   // we do have to revisit the _handles block during the remark phase.
       
  5043   {
       
  5044     GCTraceTime(Trace, gc, phases) t("Dirty CLD Scan", _gc_timer_cm);
       
  5045 
       
  5046     verify_work_stacks_empty();
       
  5047 
       
  5048     RemarkCLDClosure remark_closure(&mrias_cl);
       
  5049     ClassLoaderDataGraph::cld_do(&remark_closure);
       
  5050 
       
  5051     verify_work_stacks_empty();
       
  5052   }
       
  5053 
       
  5054   verify_work_stacks_empty();
       
  5055   // Restore evacuated mark words, if any, used for overflow list links
       
  5056   restore_preserved_marks_if_any();
       
  5057 
       
  5058   verify_overflow_empty();
       
  5059 }
       
  5060 
       
  5061 ////////////////////////////////////////////////////////
       
  5062 // Parallel Reference Processing Task Proxy Class
       
  5063 ////////////////////////////////////////////////////////
       
  5064 class AbstractGangTaskWOopQueues : public AbstractGangTask {
       
  5065   OopTaskQueueSet*       _queues;
       
  5066   TaskTerminator         _terminator;
       
  5067  public:
       
  5068   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
       
  5069     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
       
  5070   ParallelTaskTerminator* terminator() { return _terminator.terminator(); }
       
  5071   OopTaskQueueSet* queues() { return _queues; }
       
  5072 };
       
  5073 
       
  5074 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
       
  5075   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
       
  5076   CMSCollector*          _collector;
       
  5077   CMSBitMap*             _mark_bit_map;
       
  5078   const MemRegion        _span;
       
  5079   ProcessTask&           _task;
       
  5080 
       
  5081 public:
       
  5082   CMSRefProcTaskProxy(ProcessTask&     task,
       
  5083                       CMSCollector*    collector,
       
  5084                       const MemRegion& span,
       
  5085                       CMSBitMap*       mark_bit_map,
       
  5086                       AbstractWorkGang* workers,
       
  5087                       OopTaskQueueSet* task_queues):
       
  5088     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
       
  5089       task_queues,
       
  5090       workers->active_workers()),
       
  5091     _collector(collector),
       
  5092     _mark_bit_map(mark_bit_map),
       
  5093     _span(span),
       
  5094     _task(task)
       
  5095   {
       
  5096     assert(_collector->_span.equals(_span) && !_span.is_empty(),
       
  5097            "Inconsistency in _span");
       
  5098   }
       
  5099 
       
  5100   OopTaskQueueSet* task_queues() { return queues(); }
       
  5101 
       
  5102   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
       
  5103 
       
  5104   void do_work_steal(int i,
       
  5105                      CMSParDrainMarkingStackClosure* drain,
       
  5106                      CMSParKeepAliveClosure* keep_alive);
       
  5107 
       
  5108   virtual void work(uint worker_id);
       
  5109 };
       
  5110 
       
  5111 void CMSRefProcTaskProxy::work(uint worker_id) {
       
  5112   ResourceMark rm;
       
  5113   HandleMark hm;
       
  5114   assert(_collector->_span.equals(_span), "Inconsistency in _span");
       
  5115   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
       
  5116                                         _mark_bit_map,
       
  5117                                         work_queue(worker_id));
       
  5118   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
       
  5119                                                  _mark_bit_map,
       
  5120                                                  work_queue(worker_id));
       
  5121   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
       
  5122   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
       
  5123   if (_task.marks_oops_alive()) {
       
  5124     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive);
       
  5125   }
       
  5126   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
       
  5127   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
       
  5128 }
       
  5129 
       
  5130 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
       
  5131   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
       
  5132    _span(span),
       
  5133    _work_queue(work_queue),
       
  5134    _bit_map(bit_map),
       
  5135    _mark_and_push(collector, span, bit_map, work_queue),
       
  5136    _low_water_mark(MIN2((work_queue->max_elems()/4),
       
  5137                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
       
  5138 { }
       
  5139 
       
  5140 // . see if we can share work_queues with ParNew? XXX
       
  5141 void CMSRefProcTaskProxy::do_work_steal(int i,
       
  5142   CMSParDrainMarkingStackClosure* drain,
       
  5143   CMSParKeepAliveClosure* keep_alive) {
       
  5144   OopTaskQueue* work_q = work_queue(i);
       
  5145   NOT_PRODUCT(int num_steals = 0;)
       
  5146   oop obj_to_scan;
       
  5147 
       
  5148   while (true) {
       
  5149     // Completely finish any left over work from (an) earlier round(s)
       
  5150     drain->trim_queue(0);
       
  5151     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
       
  5152                                          (size_t)ParGCDesiredObjsFromOverflowList);
       
  5153     // Now check if there's any work in the overflow list
       
  5154     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
       
  5155     // only affects the number of attempts made to get work from the
       
  5156     // overflow list and does not affect the number of workers.  Just
       
  5157     // pass ParallelGCThreads so this behavior is unchanged.
       
  5158     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
       
  5159                                                 work_q,
       
  5160                                                 ParallelGCThreads)) {
       
  5161       // Found something in global overflow list;
       
  5162       // not yet ready to go stealing work from others.
       
  5163       // We'd like to assert(work_q->size() != 0, ...)
       
  5164       // because we just took work from the overflow list,
       
  5165       // but of course we can't, since all of that might have
       
  5166       // been already stolen from us.
       
  5167       continue;
       
  5168     }
       
  5169     // Verify that we have no work before we resort to stealing
       
  5170     assert(work_q->size() == 0, "Have work, shouldn't steal");
       
  5171     // Try to steal from other queues that have work
       
  5172     if (task_queues()->steal(i, /* reference */ obj_to_scan)) {
       
  5173       NOT_PRODUCT(num_steals++;)
       
  5174       assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!");
       
  5175       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
       
  5176       // Do scanning work
       
  5177       obj_to_scan->oop_iterate(keep_alive);
       
  5178       // Loop around, finish this work, and try to steal some more
       
  5179     } else if (terminator()->offer_termination()) {
       
  5180       break;  // nirvana from the infinite cycle
       
  5181     }
       
  5182   }
       
  5183   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
       
  5184 }
       
  5185 
       
  5186 void CMSRefProcTaskExecutor::execute(ProcessTask& task, uint ergo_workers) {
       
  5187   CMSHeap* heap = CMSHeap::heap();
       
  5188   WorkGang* workers = heap->workers();
       
  5189   assert(workers != NULL, "Need parallel worker threads.");
       
  5190   assert(workers->active_workers() == ergo_workers,
       
  5191          "Ergonomically chosen workers (%u) must be equal to active workers (%u)",
       
  5192          ergo_workers, workers->active_workers());
       
  5193   CMSRefProcTaskProxy rp_task(task, &_collector,
       
  5194                               _collector.ref_processor_span(),
       
  5195                               _collector.markBitMap(),
       
  5196                               workers, _collector.task_queues());
       
  5197   workers->run_task(&rp_task, workers->active_workers());
       
  5198 }
       
  5199 
       
  5200 void CMSCollector::refProcessingWork() {
       
  5201   ResourceMark rm;
       
  5202   HandleMark   hm;
       
  5203 
       
  5204   ReferenceProcessor* rp = ref_processor();
       
  5205   assert(_span_based_discoverer.span().equals(_span), "Spans should be equal");
       
  5206   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
       
  5207   // Process weak references.
       
  5208   rp->setup_policy(false);
       
  5209   verify_work_stacks_empty();
       
  5210 
       
  5211   ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->max_num_queues());
       
  5212   {
       
  5213     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
       
  5214 
       
  5215     // Setup keep_alive and complete closures.
       
  5216     CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
       
  5217                                             &_markStack, false /* !preclean */);
       
  5218     CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
       
  5219                                   _span, &_markBitMap, &_markStack,
       
  5220                                   &cmsKeepAliveClosure, false /* !preclean */);
       
  5221 
       
  5222     ReferenceProcessorStats stats;
       
  5223     if (rp->processing_is_mt()) {
       
  5224       // Set the degree of MT here.  If the discovery is done MT, there
       
  5225       // may have been a different number of threads doing the discovery
       
  5226       // and a different number of discovered lists may have Ref objects.
       
  5227       // That is OK as long as the Reference lists are balanced (see
       
  5228       // balance_all_queues() and balance_queues()).
       
  5229       CMSHeap* heap = CMSHeap::heap();
       
  5230       uint active_workers = ParallelGCThreads;
       
  5231       WorkGang* workers = heap->workers();
       
  5232       if (workers != NULL) {
       
  5233         active_workers = workers->active_workers();
       
  5234         // The expectation is that active_workers will have already
       
  5235         // been set to a reasonable value.  If it has not been set,
       
  5236         // investigate.
       
  5237         assert(active_workers > 0, "Should have been set during scavenge");
       
  5238       }
       
  5239       rp->set_active_mt_degree(active_workers);
       
  5240       CMSRefProcTaskExecutor task_executor(*this);
       
  5241       stats = rp->process_discovered_references(&_is_alive_closure,
       
  5242                                         &cmsKeepAliveClosure,
       
  5243                                         &cmsDrainMarkingStackClosure,
       
  5244                                         &task_executor,
       
  5245                                         &pt);
       
  5246     } else {
       
  5247       stats = rp->process_discovered_references(&_is_alive_closure,
       
  5248                                         &cmsKeepAliveClosure,
       
  5249                                         &cmsDrainMarkingStackClosure,
       
  5250                                         NULL,
       
  5251                                         &pt);
       
  5252     }
       
  5253     _gc_tracer_cm->report_gc_reference_stats(stats);
       
  5254     pt.print_all_references();
       
  5255   }
       
  5256 
       
  5257   // This is the point where the entire marking should have completed.
       
  5258   verify_work_stacks_empty();
       
  5259 
       
  5260   {
       
  5261     GCTraceTime(Debug, gc, phases) t("Weak Processing", _gc_timer_cm);
       
  5262     WeakProcessor::weak_oops_do(&_is_alive_closure, &do_nothing_cl);
       
  5263   }
       
  5264 
       
  5265   if (should_unload_classes()) {
       
  5266     {
       
  5267       GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
       
  5268 
       
  5269       // Unload classes and purge the SystemDictionary.
       
  5270       bool purged_class = SystemDictionary::do_unloading(_gc_timer_cm);
       
  5271 
       
  5272       // Unload nmethods.
       
  5273       CodeCache::do_unloading(&_is_alive_closure, purged_class);
       
  5274 
       
  5275       // Prune dead klasses from subklass/sibling/implementor lists.
       
  5276       Klass::clean_weak_klass_links(purged_class);
       
  5277 
       
  5278       // Clean JVMCI metadata handles.
       
  5279       JVMCI_ONLY(JVMCI::do_unloading(purged_class));
       
  5280     }
       
  5281   }
       
  5282 
       
  5283   // Restore any preserved marks as a result of mark stack or
       
  5284   // work queue overflow
       
  5285   restore_preserved_marks_if_any();  // done single-threaded for now
       
  5286 
       
  5287   rp->set_enqueuing_is_done(true);
       
  5288   rp->verify_no_references_recorded();
       
  5289 }
       
  5290 
       
  5291 #ifndef PRODUCT
       
  5292 void CMSCollector::check_correct_thread_executing() {
       
  5293   Thread* t = Thread::current();
       
  5294   // Only the VM thread or the CMS thread should be here.
       
  5295   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
       
  5296          "Unexpected thread type");
       
  5297   // If this is the vm thread, the foreground process
       
  5298   // should not be waiting.  Note that _foregroundGCIsActive is
       
  5299   // true while the foreground collector is waiting.
       
  5300   if (_foregroundGCShouldWait) {
       
  5301     // We cannot be the VM thread
       
  5302     assert(t->is_ConcurrentGC_thread(),
       
  5303            "Should be CMS thread");
       
  5304   } else {
       
  5305     // We can be the CMS thread only if we are in a stop-world
       
  5306     // phase of CMS collection.
       
  5307     if (t->is_ConcurrentGC_thread()) {
       
  5308       assert(_collectorState == InitialMarking ||
       
  5309              _collectorState == FinalMarking,
       
  5310              "Should be a stop-world phase");
       
  5311       // The CMS thread should be holding the CMS_token.
       
  5312       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
       
  5313              "Potential interference with concurrently "
       
  5314              "executing VM thread");
       
  5315     }
       
  5316   }
       
  5317 }
       
  5318 #endif
       
  5319 
       
  5320 void CMSCollector::sweep() {
       
  5321   assert(_collectorState == Sweeping, "just checking");
       
  5322   check_correct_thread_executing();
       
  5323   verify_work_stacks_empty();
       
  5324   verify_overflow_empty();
       
  5325   increment_sweep_count();
       
  5326   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
       
  5327 
       
  5328   _inter_sweep_timer.stop();
       
  5329   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
       
  5330 
       
  5331   assert(!_intra_sweep_timer.is_active(), "Should not be active");
       
  5332   _intra_sweep_timer.reset();
       
  5333   _intra_sweep_timer.start();
       
  5334   {
       
  5335     GCTraceCPUTime tcpu;
       
  5336     CMSPhaseAccounting pa(this, "Concurrent Sweep");
       
  5337     // First sweep the old gen
       
  5338     {
       
  5339       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
       
  5340                                bitMapLock());
       
  5341       sweepWork(_cmsGen);
       
  5342     }
       
  5343 
       
  5344     // Update Universe::_heap_*_at_gc figures.
       
  5345     // We need all the free list locks to make the abstract state
       
  5346     // transition from Sweeping to Resetting. See detailed note
       
  5347     // further below.
       
  5348     {
       
  5349       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
       
  5350 
       
  5351       // Update heap occupancy information which is used as
       
  5352       // input to soft ref clearing policy at the next gc.
       
  5353       Universe::update_heap_info_at_gc();
       
  5354 
       
  5355       // recalculate CMS used space after CMS collection
       
  5356       _cmsGen->cmsSpace()->recalculate_used_stable();
       
  5357 
       
  5358       _collectorState = Resizing;
       
  5359     }
       
  5360   }
       
  5361   verify_work_stacks_empty();
       
  5362   verify_overflow_empty();
       
  5363 
       
  5364   if (should_unload_classes()) {
       
  5365     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
       
  5366     // requires that the virtual spaces are stable and not deleted.
       
  5367     ClassLoaderDataGraph::set_should_purge(true);
       
  5368   }
       
  5369 
       
  5370   _intra_sweep_timer.stop();
       
  5371   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
       
  5372 
       
  5373   _inter_sweep_timer.reset();
       
  5374   _inter_sweep_timer.start();
       
  5375 
       
  5376   // We need to use a monotonically non-decreasing time in ms
       
  5377   // or we will see time-warp warnings and os::javaTimeMillis()
       
  5378   // does not guarantee monotonicity.
       
  5379   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
       
  5380   update_time_of_last_gc(now);
       
  5381 
       
  5382   // NOTE on abstract state transitions:
       
  5383   // Mutators allocate-live and/or mark the mod-union table dirty
       
  5384   // based on the state of the collection.  The former is done in
       
  5385   // the interval [Marking, Sweeping] and the latter in the interval
       
  5386   // [Marking, Sweeping).  Thus the transitions into the Marking state
       
  5387   // and out of the Sweeping state must be synchronously visible
       
  5388   // globally to the mutators.
       
  5389   // The transition into the Marking state happens with the world
       
  5390   // stopped so the mutators will globally see it.  Sweeping is
       
  5391   // done asynchronously by the background collector so the transition
       
  5392   // from the Sweeping state to the Resizing state must be done
       
  5393   // under the freelistLock (as is the check for whether to
       
  5394   // allocate-live and whether to dirty the mod-union table).
       
  5395   assert(_collectorState == Resizing, "Change of collector state to"
       
  5396     " Resizing must be done under the freelistLocks (plural)");
       
  5397 
       
  5398   // Now that sweeping has been completed, we clear
       
  5399   // the incremental_collection_failed flag,
       
  5400   // thus inviting a younger gen collection to promote into
       
  5401   // this generation. If such a promotion may still fail,
       
  5402   // the flag will be set again when a young collection is
       
  5403   // attempted.
       
  5404   CMSHeap* heap = CMSHeap::heap();
       
  5405   heap->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
       
  5406   heap->update_full_collections_completed(_collection_count_start);
       
  5407 }
       
  5408 
       
  5409 // FIX ME!!! Looks like this belongs in CFLSpace, with
       
  5410 // CMSGen merely delegating to it.
       
  5411 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
       
  5412   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
       
  5413   HeapWord*  minAddr        = _cmsSpace->bottom();
       
  5414   HeapWord*  largestAddr    =
       
  5415     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
       
  5416   if (largestAddr == NULL) {
       
  5417     // The dictionary appears to be empty.  In this case
       
  5418     // try to coalesce at the end of the heap.
       
  5419     largestAddr = _cmsSpace->end();
       
  5420   }
       
  5421   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
       
  5422   size_t nearLargestOffset =
       
  5423     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
       
  5424   log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
       
  5425                           p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
       
  5426   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
       
  5427 }
       
  5428 
       
  5429 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
       
  5430   return addr >= _cmsSpace->nearLargestChunk();
       
  5431 }
       
  5432 
       
  5433 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
       
  5434   return _cmsSpace->find_chunk_at_end();
       
  5435 }
       
  5436 
       
  5437 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
       
  5438                                                     bool full) {
       
  5439   // If the young generation has been collected, gather any statistics
       
  5440   // that are of interest at this point.
       
  5441   bool current_is_young = CMSHeap::heap()->is_young_gen(current_generation);
       
  5442   if (!full && current_is_young) {
       
  5443     // Gather statistics on the young generation collection.
       
  5444     collector()->stats().record_gc0_end(used());
       
  5445   }
       
  5446   _cmsSpace->recalculate_used_stable();
       
  5447 }
       
  5448 
       
  5449 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
       
  5450   // We iterate over the space(s) underlying this generation,
       
  5451   // checking the mark bit map to see if the bits corresponding
       
  5452   // to specific blocks are marked or not. Blocks that are
       
  5453   // marked are live and are not swept up. All remaining blocks
       
  5454   // are swept up, with coalescing on-the-fly as we sweep up
       
  5455   // contiguous free and/or garbage blocks:
       
  5456   // We need to ensure that the sweeper synchronizes with allocators
       
  5457   // and stop-the-world collectors. In particular, the following
       
  5458   // locks are used:
       
  5459   // . CMS token: if this is held, a stop the world collection cannot occur
       
  5460   // . freelistLock: if this is held no allocation can occur from this
       
  5461   //                 generation by another thread
       
  5462   // . bitMapLock: if this is held, no other thread can access or update
       
  5463   //
       
  5464 
       
  5465   // Note that we need to hold the freelistLock if we use
       
  5466   // block iterate below; else the iterator might go awry if
       
  5467   // a mutator (or promotion) causes block contents to change
       
  5468   // (for instance if the allocator divvies up a block).
       
  5469   // If we hold the free list lock, for all practical purposes
       
  5470   // young generation GC's can't occur (they'll usually need to
       
  5471   // promote), so we might as well prevent all young generation
       
  5472   // GC's while we do a sweeping step. For the same reason, we might
       
  5473   // as well take the bit map lock for the entire duration
       
  5474 
       
  5475   // check that we hold the requisite locks
       
  5476   assert(have_cms_token(), "Should hold cms token");
       
  5477   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
       
  5478   assert_lock_strong(old_gen->freelistLock());
       
  5479   assert_lock_strong(bitMapLock());
       
  5480 
       
  5481   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
       
  5482   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
       
  5483   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
       
  5484                                           _inter_sweep_estimate.padded_average(),
       
  5485                                           _intra_sweep_estimate.padded_average());
       
  5486   old_gen->setNearLargestChunk();
       
  5487 
       
  5488   {
       
  5489     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
       
  5490     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
       
  5491     // We need to free-up/coalesce garbage/blocks from a
       
  5492     // co-terminal free run. This is done in the SweepClosure
       
  5493     // destructor; so, do not remove this scope, else the
       
  5494     // end-of-sweep-census below will be off by a little bit.
       
  5495   }
       
  5496   old_gen->cmsSpace()->sweep_completed();
       
  5497   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
       
  5498   if (should_unload_classes()) {                // unloaded classes this cycle,
       
  5499     _concurrent_cycles_since_last_unload = 0;   // ... reset count
       
  5500   } else {                                      // did not unload classes,
       
  5501     _concurrent_cycles_since_last_unload++;     // ... increment count
       
  5502   }
       
  5503 }
       
  5504 
       
  5505 // Reset CMS data structures (for now just the marking bit map)
       
  5506 // preparatory for the next cycle.
       
  5507 void CMSCollector::reset_concurrent() {
       
  5508   CMSTokenSyncWithLocks ts(true, bitMapLock());
       
  5509 
       
  5510   // If the state is not "Resetting", the foreground  thread
       
  5511   // has done a collection and the resetting.
       
  5512   if (_collectorState != Resetting) {
       
  5513     assert(_collectorState == Idling, "The state should only change"
       
  5514       " because the foreground collector has finished the collection");
       
  5515     return;
       
  5516   }
       
  5517 
       
  5518   {
       
  5519     // Clear the mark bitmap (no grey objects to start with)
       
  5520     // for the next cycle.
       
  5521     GCTraceCPUTime tcpu;
       
  5522     CMSPhaseAccounting cmspa(this, "Concurrent Reset");
       
  5523 
       
  5524     HeapWord* curAddr = _markBitMap.startWord();
       
  5525     while (curAddr < _markBitMap.endWord()) {
       
  5526       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
       
  5527       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
       
  5528       _markBitMap.clear_large_range(chunk);
       
  5529       if (ConcurrentMarkSweepThread::should_yield() &&
       
  5530           !foregroundGCIsActive() &&
       
  5531           CMSYield) {
       
  5532         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
       
  5533                "CMS thread should hold CMS token");
       
  5534         assert_lock_strong(bitMapLock());
       
  5535         bitMapLock()->unlock();
       
  5536         ConcurrentMarkSweepThread::desynchronize(true);
       
  5537         stopTimer();
       
  5538         incrementYields();
       
  5539 
       
  5540         // See the comment in coordinator_yield()
       
  5541         for (unsigned i = 0; i < CMSYieldSleepCount &&
       
  5542                          ConcurrentMarkSweepThread::should_yield() &&
       
  5543                          !CMSCollector::foregroundGCIsActive(); ++i) {
       
  5544           os::naked_short_sleep(1);
       
  5545         }
       
  5546 
       
  5547         ConcurrentMarkSweepThread::synchronize(true);
       
  5548         bitMapLock()->lock_without_safepoint_check();
       
  5549         startTimer();
       
  5550       }
       
  5551       curAddr = chunk.end();
       
  5552     }
       
  5553     // A successful mostly concurrent collection has been done.
       
  5554     // Because only the full (i.e., concurrent mode failure) collections
       
  5555     // are being measured for gc overhead limits, clean the "near" flag
       
  5556     // and count.
       
  5557     size_policy()->reset_gc_overhead_limit_count();
       
  5558     _collectorState = Idling;
       
  5559   }
       
  5560 
       
  5561   register_gc_end();
       
  5562 }
       
  5563 
       
  5564 // Same as above but for STW paths
       
  5565 void CMSCollector::reset_stw() {
       
  5566   // already have the lock
       
  5567   assert(_collectorState == Resetting, "just checking");
       
  5568   assert_lock_strong(bitMapLock());
       
  5569   GCIdMark gc_id_mark(_cmsThread->gc_id());
       
  5570   _markBitMap.clear_all();
       
  5571   _collectorState = Idling;
       
  5572   register_gc_end();
       
  5573 }
       
  5574 
       
  5575 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
       
  5576   GCTraceCPUTime tcpu;
       
  5577   TraceCollectorStats tcs_cgc(cgc_counters());
       
  5578 
       
  5579   switch (op) {
       
  5580     case CMS_op_checkpointRootsInitial: {
       
  5581       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
       
  5582       SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
       
  5583       checkpointRootsInitial();
       
  5584       break;
       
  5585     }
       
  5586     case CMS_op_checkpointRootsFinal: {
       
  5587       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
       
  5588       SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
       
  5589       checkpointRootsFinal();
       
  5590       break;
       
  5591     }
       
  5592     default:
       
  5593       fatal("No such CMS_op");
       
  5594   }
       
  5595 }
       
  5596 
       
  5597 #ifndef PRODUCT
       
  5598 size_t const CMSCollector::skip_header_HeapWords() {
       
  5599   return FreeChunk::header_size();
       
  5600 }
       
  5601 
       
  5602 // Try and collect here conditions that should hold when
       
  5603 // CMS thread is exiting. The idea is that the foreground GC
       
  5604 // thread should not be blocked if it wants to terminate
       
  5605 // the CMS thread and yet continue to run the VM for a while
       
  5606 // after that.
       
  5607 void CMSCollector::verify_ok_to_terminate() const {
       
  5608   assert(Thread::current()->is_ConcurrentGC_thread(),
       
  5609          "should be called by CMS thread");
       
  5610   assert(!_foregroundGCShouldWait, "should be false");
       
  5611   // We could check here that all the various low-level locks
       
  5612   // are not held by the CMS thread, but that is overkill; see
       
  5613   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
       
  5614   // is checked.
       
  5615 }
       
  5616 #endif
       
  5617 
       
  5618 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
       
  5619    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
       
  5620           "missing Printezis mark?");
       
  5621   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
       
  5622   size_t size = pointer_delta(nextOneAddr + 1, addr);
       
  5623   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
       
  5624          "alignment problem");
       
  5625   assert(size >= 3, "Necessary for Printezis marks to work");
       
  5626   return size;
       
  5627 }
       
  5628 
       
  5629 // A variant of the above (block_size_using_printezis_bits()) except
       
  5630 // that we return 0 if the P-bits are not yet set.
       
  5631 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
       
  5632   if (_markBitMap.isMarked(addr + 1)) {
       
  5633     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
       
  5634     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
       
  5635     size_t size = pointer_delta(nextOneAddr + 1, addr);
       
  5636     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
       
  5637            "alignment problem");
       
  5638     assert(size >= 3, "Necessary for Printezis marks to work");
       
  5639     return size;
       
  5640   }
       
  5641   return 0;
       
  5642 }
       
  5643 
       
  5644 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
       
  5645   size_t sz = 0;
       
  5646   oop p = (oop)addr;
       
  5647   if (p->klass_or_null_acquire() != NULL) {
       
  5648     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
       
  5649   } else {
       
  5650     sz = block_size_using_printezis_bits(addr);
       
  5651   }
       
  5652   assert(sz > 0, "size must be nonzero");
       
  5653   HeapWord* next_block = addr + sz;
       
  5654   HeapWord* next_card  = align_up(next_block, CardTable::card_size);
       
  5655   assert(align_down((uintptr_t)addr,      CardTable::card_size) <
       
  5656          align_down((uintptr_t)next_card, CardTable::card_size),
       
  5657          "must be different cards");
       
  5658   return next_card;
       
  5659 }
       
  5660 
       
  5661 
       
  5662 // CMS Bit Map Wrapper /////////////////////////////////////////
       
  5663 
       
  5664 // Construct a CMS bit map infrastructure, but don't create the
       
  5665 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
       
  5666 // further below.
       
  5667 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
       
  5668   _shifter(shifter),
       
  5669   _bm(),
       
  5670   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
       
  5671                                     Monitor::_safepoint_check_never) : NULL)
       
  5672 {
       
  5673   _bmStartWord = 0;
       
  5674   _bmWordSize  = 0;
       
  5675 }
       
  5676 
       
  5677 bool CMSBitMap::allocate(MemRegion mr) {
       
  5678   _bmStartWord = mr.start();
       
  5679   _bmWordSize  = mr.word_size();
       
  5680   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
       
  5681                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
       
  5682   if (!brs.is_reserved()) {
       
  5683     log_warning(gc)("CMS bit map allocation failure");
       
  5684     return false;
       
  5685   }
       
  5686   // For now we'll just commit all of the bit map up front.
       
  5687   // Later on we'll try to be more parsimonious with swap.
       
  5688   if (!_virtual_space.initialize(brs, brs.size())) {
       
  5689     log_warning(gc)("CMS bit map backing store failure");
       
  5690     return false;
       
  5691   }
       
  5692   assert(_virtual_space.committed_size() == brs.size(),
       
  5693          "didn't reserve backing store for all of CMS bit map?");
       
  5694   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
       
  5695          _bmWordSize, "inconsistency in bit map sizing");
       
  5696   _bm = BitMapView((BitMap::bm_word_t*)_virtual_space.low(), _bmWordSize >> _shifter);
       
  5697 
       
  5698   // bm.clear(); // can we rely on getting zero'd memory? verify below
       
  5699   assert(isAllClear(),
       
  5700          "Expected zero'd memory from ReservedSpace constructor");
       
  5701   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
       
  5702          "consistency check");
       
  5703   return true;
       
  5704 }
       
  5705 
       
  5706 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
       
  5707   HeapWord *next_addr, *end_addr, *last_addr;
       
  5708   assert_locked();
       
  5709   assert(covers(mr), "out-of-range error");
       
  5710   // XXX assert that start and end are appropriately aligned
       
  5711   for (next_addr = mr.start(), end_addr = mr.end();
       
  5712        next_addr < end_addr; next_addr = last_addr) {
       
  5713     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
       
  5714     last_addr = dirty_region.end();
       
  5715     if (!dirty_region.is_empty()) {
       
  5716       cl->do_MemRegion(dirty_region);
       
  5717     } else {
       
  5718       assert(last_addr == end_addr, "program logic");
       
  5719       return;
       
  5720     }
       
  5721   }
       
  5722 }
       
  5723 
       
  5724 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
       
  5725   _bm.print_on_error(st, prefix);
       
  5726 }
       
  5727 
       
  5728 #ifndef PRODUCT
       
  5729 void CMSBitMap::assert_locked() const {
       
  5730   CMSLockVerifier::assert_locked(lock());
       
  5731 }
       
  5732 
       
  5733 bool CMSBitMap::covers(MemRegion mr) const {
       
  5734   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
       
  5735   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
       
  5736          "size inconsistency");
       
  5737   return (mr.start() >= _bmStartWord) &&
       
  5738          (mr.end()   <= endWord());
       
  5739 }
       
  5740 
       
  5741 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
       
  5742     return (start >= _bmStartWord && (start + size) <= endWord());
       
  5743 }
       
  5744 
       
  5745 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
       
  5746   // verify that there are no 1 bits in the interval [left, right)
       
  5747   FalseBitMapClosure falseBitMapClosure;
       
  5748   iterate(&falseBitMapClosure, left, right);
       
  5749 }
       
  5750 
       
  5751 void CMSBitMap::region_invariant(MemRegion mr)
       
  5752 {
       
  5753   assert_locked();
       
  5754   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
       
  5755   assert(!mr.is_empty(), "unexpected empty region");
       
  5756   assert(covers(mr), "mr should be covered by bit map");
       
  5757   // convert address range into offset range
       
  5758   size_t start_ofs = heapWordToOffset(mr.start());
       
  5759   // Make sure that end() is appropriately aligned
       
  5760   assert(mr.end() == align_up(mr.end(), (1 << (_shifter+LogHeapWordSize))),
       
  5761          "Misaligned mr.end()");
       
  5762   size_t end_ofs   = heapWordToOffset(mr.end());
       
  5763   assert(end_ofs > start_ofs, "Should mark at least one bit");
       
  5764 }
       
  5765 
       
  5766 #endif
       
  5767 
       
  5768 bool CMSMarkStack::allocate(size_t size) {
       
  5769   // allocate a stack of the requisite depth
       
  5770   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
       
  5771                    size * sizeof(oop)));
       
  5772   if (!rs.is_reserved()) {
       
  5773     log_warning(gc)("CMSMarkStack allocation failure");
       
  5774     return false;
       
  5775   }
       
  5776   if (!_virtual_space.initialize(rs, rs.size())) {
       
  5777     log_warning(gc)("CMSMarkStack backing store failure");
       
  5778     return false;
       
  5779   }
       
  5780   assert(_virtual_space.committed_size() == rs.size(),
       
  5781          "didn't reserve backing store for all of CMS stack?");
       
  5782   _base = (oop*)(_virtual_space.low());
       
  5783   _index = 0;
       
  5784   _capacity = size;
       
  5785   NOT_PRODUCT(_max_depth = 0);
       
  5786   return true;
       
  5787 }
       
  5788 
       
  5789 // XXX FIX ME !!! In the MT case we come in here holding a
       
  5790 // leaf lock. For printing we need to take a further lock
       
  5791 // which has lower rank. We need to recalibrate the two
       
  5792 // lock-ranks involved in order to be able to print the
       
  5793 // messages below. (Or defer the printing to the caller.
       
  5794 // For now we take the expedient path of just disabling the
       
  5795 // messages for the problematic case.)
       
  5796 void CMSMarkStack::expand() {
       
  5797   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
       
  5798   if (_capacity == MarkStackSizeMax) {
       
  5799     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
       
  5800       // We print a warning message only once per CMS cycle.
       
  5801       log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
       
  5802     }
       
  5803     return;
       
  5804   }
       
  5805   // Double capacity if possible
       
  5806   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
       
  5807   // Do not give up existing stack until we have managed to
       
  5808   // get the double capacity that we desired.
       
  5809   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
       
  5810                    new_capacity * sizeof(oop)));
       
  5811   if (rs.is_reserved()) {
       
  5812     // Release the backing store associated with old stack
       
  5813     _virtual_space.release();
       
  5814     // Reinitialize virtual space for new stack
       
  5815     if (!_virtual_space.initialize(rs, rs.size())) {
       
  5816       fatal("Not enough swap for expanded marking stack");
       
  5817     }
       
  5818     _base = (oop*)(_virtual_space.low());
       
  5819     _index = 0;
       
  5820     _capacity = new_capacity;
       
  5821   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
       
  5822     // Failed to double capacity, continue;
       
  5823     // we print a detail message only once per CMS cycle.
       
  5824     log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
       
  5825                         _capacity / K, new_capacity / K);
       
  5826   }
       
  5827 }
       
  5828 
       
  5829 
       
  5830 // Closures
       
  5831 // XXX: there seems to be a lot of code  duplication here;
       
  5832 // should refactor and consolidate common code.
       
  5833 
       
  5834 // This closure is used to mark refs into the CMS generation in
       
  5835 // the CMS bit map. Called at the first checkpoint. This closure
       
  5836 // assumes that we do not need to re-mark dirty cards; if the CMS
       
  5837 // generation on which this is used is not an oldest
       
  5838 // generation then this will lose younger_gen cards!
       
  5839 
       
  5840 MarkRefsIntoClosure::MarkRefsIntoClosure(
       
  5841   MemRegion span, CMSBitMap* bitMap):
       
  5842     _span(span),
       
  5843     _bitMap(bitMap)
       
  5844 {
       
  5845   assert(ref_discoverer() == NULL, "deliberately left NULL");
       
  5846   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
       
  5847 }
       
  5848 
       
  5849 void MarkRefsIntoClosure::do_oop(oop obj) {
       
  5850   // if p points into _span, then mark corresponding bit in _markBitMap
       
  5851   assert(oopDesc::is_oop(obj), "expected an oop");
       
  5852   HeapWord* addr = (HeapWord*)obj;
       
  5853   if (_span.contains(addr)) {
       
  5854     // this should be made more efficient
       
  5855     _bitMap->mark(addr);
       
  5856   }
       
  5857 }
       
  5858 
       
  5859 ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
       
  5860   MemRegion span, CMSBitMap* bitMap):
       
  5861     _span(span),
       
  5862     _bitMap(bitMap)
       
  5863 {
       
  5864   assert(ref_discoverer() == NULL, "deliberately left NULL");
       
  5865   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
       
  5866 }
       
  5867 
       
  5868 void ParMarkRefsIntoClosure::do_oop(oop obj) {
       
  5869   // if p points into _span, then mark corresponding bit in _markBitMap
       
  5870   assert(oopDesc::is_oop(obj), "expected an oop");
       
  5871   HeapWord* addr = (HeapWord*)obj;
       
  5872   if (_span.contains(addr)) {
       
  5873     // this should be made more efficient
       
  5874     _bitMap->par_mark(addr);
       
  5875   }
       
  5876 }
       
  5877 
       
  5878 // A variant of the above, used for CMS marking verification.
       
  5879 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
       
  5880   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
       
  5881     _span(span),
       
  5882     _verification_bm(verification_bm),
       
  5883     _cms_bm(cms_bm)
       
  5884 {
       
  5885   assert(ref_discoverer() == NULL, "deliberately left NULL");
       
  5886   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
       
  5887 }
       
  5888 
       
  5889 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
       
  5890   // if p points into _span, then mark corresponding bit in _markBitMap
       
  5891   assert(oopDesc::is_oop(obj), "expected an oop");
       
  5892   HeapWord* addr = (HeapWord*)obj;
       
  5893   if (_span.contains(addr)) {
       
  5894     _verification_bm->mark(addr);
       
  5895     if (!_cms_bm->isMarked(addr)) {
       
  5896       Log(gc, verify) log;
       
  5897       ResourceMark rm;
       
  5898       LogStream ls(log.error());
       
  5899       oop(addr)->print_on(&ls);
       
  5900       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
       
  5901       fatal("... aborting");
       
  5902     }
       
  5903   }
       
  5904 }
       
  5905 
       
  5906 //////////////////////////////////////////////////
       
  5907 // MarkRefsIntoAndScanClosure
       
  5908 //////////////////////////////////////////////////
       
  5909 
       
  5910 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
       
  5911                                                        ReferenceDiscoverer* rd,
       
  5912                                                        CMSBitMap* bit_map,
       
  5913                                                        CMSBitMap* mod_union_table,
       
  5914                                                        CMSMarkStack*  mark_stack,
       
  5915                                                        CMSCollector* collector,
       
  5916                                                        bool should_yield,
       
  5917                                                        bool concurrent_precleaning):
       
  5918   _span(span),
       
  5919   _bit_map(bit_map),
       
  5920   _mark_stack(mark_stack),
       
  5921   _pushAndMarkClosure(collector, span, rd, bit_map, mod_union_table,
       
  5922                       mark_stack, concurrent_precleaning),
       
  5923   _collector(collector),
       
  5924   _freelistLock(NULL),
       
  5925   _yield(should_yield),
       
  5926   _concurrent_precleaning(concurrent_precleaning)
       
  5927 {
       
  5928   // FIXME: Should initialize in base class constructor.
       
  5929   assert(rd != NULL, "ref_discoverer shouldn't be NULL");
       
  5930   set_ref_discoverer_internal(rd);
       
  5931 }
       
  5932 
       
  5933 // This closure is used to mark refs into the CMS generation at the
       
  5934 // second (final) checkpoint, and to scan and transitively follow
       
  5935 // the unmarked oops. It is also used during the concurrent precleaning
       
  5936 // phase while scanning objects on dirty cards in the CMS generation.
       
  5937 // The marks are made in the marking bit map and the marking stack is
       
  5938 // used for keeping the (newly) grey objects during the scan.
       
  5939 // The parallel version (Par_...) appears further below.
       
  5940 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
       
  5941   if (obj != NULL) {
       
  5942     assert(oopDesc::is_oop(obj), "expected an oop");
       
  5943     HeapWord* addr = (HeapWord*)obj;
       
  5944     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
       
  5945     assert(_collector->overflow_list_is_empty(),
       
  5946            "overflow list should be empty");
       
  5947     if (_span.contains(addr) &&
       
  5948         !_bit_map->isMarked(addr)) {
       
  5949       // mark bit map (object is now grey)
       
  5950       _bit_map->mark(addr);
       
  5951       // push on marking stack (stack should be empty), and drain the
       
  5952       // stack by applying this closure to the oops in the oops popped
       
  5953       // from the stack (i.e. blacken the grey objects)
       
  5954       bool res = _mark_stack->push(obj);
       
  5955       assert(res, "Should have space to push on empty stack");
       
  5956       do {
       
  5957         oop new_oop = _mark_stack->pop();
       
  5958         assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
       
  5959         assert(_bit_map->isMarked((HeapWord*)new_oop),
       
  5960                "only grey objects on this stack");
       
  5961         // iterate over the oops in this oop, marking and pushing
       
  5962         // the ones in CMS heap (i.e. in _span).
       
  5963         new_oop->oop_iterate(&_pushAndMarkClosure);
       
  5964         // check if it's time to yield
       
  5965         do_yield_check();
       
  5966       } while (!_mark_stack->isEmpty() ||
       
  5967                (!_concurrent_precleaning && take_from_overflow_list()));
       
  5968         // if marking stack is empty, and we are not doing this
       
  5969         // during precleaning, then check the overflow list
       
  5970     }
       
  5971     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
       
  5972     assert(_collector->overflow_list_is_empty(),
       
  5973            "overflow list was drained above");
       
  5974 
       
  5975     assert(_collector->no_preserved_marks(),
       
  5976            "All preserved marks should have been restored above");
       
  5977   }
       
  5978 }
       
  5979 
       
  5980 void MarkRefsIntoAndScanClosure::do_yield_work() {
       
  5981   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
       
  5982          "CMS thread should hold CMS token");
       
  5983   assert_lock_strong(_freelistLock);
       
  5984   assert_lock_strong(_bit_map->lock());
       
  5985   // relinquish the free_list_lock and bitMaplock()
       
  5986   _bit_map->lock()->unlock();
       
  5987   _freelistLock->unlock();
       
  5988   ConcurrentMarkSweepThread::desynchronize(true);
       
  5989   _collector->stopTimer();
       
  5990   _collector->incrementYields();
       
  5991 
       
  5992   // See the comment in coordinator_yield()
       
  5993   for (unsigned i = 0;
       
  5994        i < CMSYieldSleepCount &&
       
  5995        ConcurrentMarkSweepThread::should_yield() &&
       
  5996        !CMSCollector::foregroundGCIsActive();
       
  5997        ++i) {
       
  5998     os::naked_short_sleep(1);
       
  5999   }
       
  6000 
       
  6001   ConcurrentMarkSweepThread::synchronize(true);
       
  6002   _freelistLock->lock_without_safepoint_check();
       
  6003   _bit_map->lock()->lock_without_safepoint_check();
       
  6004   _collector->startTimer();
       
  6005 }
       
  6006 
       
  6007 ///////////////////////////////////////////////////////////
       
  6008 // ParMarkRefsIntoAndScanClosure: a parallel version of
       
  6009 //                                MarkRefsIntoAndScanClosure
       
  6010 ///////////////////////////////////////////////////////////
       
  6011 ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
       
  6012   CMSCollector* collector, MemRegion span, ReferenceDiscoverer* rd,
       
  6013   CMSBitMap* bit_map, OopTaskQueue* work_queue):
       
  6014   _span(span),
       
  6015   _bit_map(bit_map),
       
  6016   _work_queue(work_queue),
       
  6017   _low_water_mark(MIN2((work_queue->max_elems()/4),
       
  6018                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
       
  6019   _parPushAndMarkClosure(collector, span, rd, bit_map, work_queue)
       
  6020 {
       
  6021   // FIXME: Should initialize in base class constructor.
       
  6022   assert(rd != NULL, "ref_discoverer shouldn't be NULL");
       
  6023   set_ref_discoverer_internal(rd);
       
  6024 }
       
  6025 
       
  6026 // This closure is used to mark refs into the CMS generation at the
       
  6027 // second (final) checkpoint, and to scan and transitively follow
       
  6028 // the unmarked oops. The marks are made in the marking bit map and
       
  6029 // the work_queue is used for keeping the (newly) grey objects during
       
  6030 // the scan phase whence they are also available for stealing by parallel
       
  6031 // threads. Since the marking bit map is shared, updates are
       
  6032 // synchronized (via CAS).
       
  6033 void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
       
  6034   if (obj != NULL) {
       
  6035     // Ignore mark word because this could be an already marked oop
       
  6036     // that may be chained at the end of the overflow list.
       
  6037     assert(oopDesc::is_oop(obj, true), "expected an oop");
       
  6038     HeapWord* addr = (HeapWord*)obj;
       
  6039     if (_span.contains(addr) &&
       
  6040         !_bit_map->isMarked(addr)) {
       
  6041       // mark bit map (object will become grey):
       
  6042       // It is possible for several threads to be
       
  6043       // trying to "claim" this object concurrently;
       
  6044       // the unique thread that succeeds in marking the
       
  6045       // object first will do the subsequent push on
       
  6046       // to the work queue (or overflow list).
       
  6047       if (_bit_map->par_mark(addr)) {
       
  6048         // push on work_queue (which may not be empty), and trim the
       
  6049         // queue to an appropriate length by applying this closure to
       
  6050         // the oops in the oops popped from the stack (i.e. blacken the
       
  6051         // grey objects)
       
  6052         bool res = _work_queue->push(obj);
       
  6053         assert(res, "Low water mark should be less than capacity?");
       
  6054         trim_queue(_low_water_mark);
       
  6055       } // Else, another thread claimed the object
       
  6056     }
       
  6057   }
       
  6058 }
       
  6059 
       
  6060 // This closure is used to rescan the marked objects on the dirty cards
       
  6061 // in the mod union table and the card table proper.
       
  6062 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
       
  6063   oop p, MemRegion mr) {
       
  6064 
       
  6065   size_t size = 0;
       
  6066   HeapWord* addr = (HeapWord*)p;
       
  6067   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
       
  6068   assert(_span.contains(addr), "we are scanning the CMS generation");
       
  6069   // check if it's time to yield
       
  6070   if (do_yield_check()) {
       
  6071     // We yielded for some foreground stop-world work,
       
  6072     // and we have been asked to abort this ongoing preclean cycle.
       
  6073     return 0;
       
  6074   }
       
  6075   if (_bitMap->isMarked(addr)) {
       
  6076     // it's marked; is it potentially uninitialized?
       
  6077     if (p->klass_or_null_acquire() != NULL) {
       
  6078         // an initialized object; ignore mark word in verification below
       
  6079         // since we are running concurrent with mutators
       
  6080         assert(oopDesc::is_oop(p, true), "should be an oop");
       
  6081         if (p->is_objArray()) {
       
  6082           // objArrays are precisely marked; restrict scanning
       
  6083           // to dirty cards only.
       
  6084           size = CompactibleFreeListSpace::adjustObjectSize(
       
  6085                    p->oop_iterate_size(_scanningClosure, mr));
       
  6086         } else {
       
  6087           // A non-array may have been imprecisely marked; we need
       
  6088           // to scan object in its entirety.
       
  6089           size = CompactibleFreeListSpace::adjustObjectSize(
       
  6090                    p->oop_iterate_size(_scanningClosure));
       
  6091         }
       
  6092       #ifdef ASSERT
       
  6093         size_t direct_size =
       
  6094           CompactibleFreeListSpace::adjustObjectSize(p->size());
       
  6095         assert(size == direct_size, "Inconsistency in size");
       
  6096         assert(size >= 3, "Necessary for Printezis marks to work");
       
  6097         HeapWord* start_pbit = addr + 1;
       
  6098         HeapWord* end_pbit = addr + size - 1;
       
  6099         assert(_bitMap->isMarked(start_pbit) == _bitMap->isMarked(end_pbit),
       
  6100                "inconsistent Printezis mark");
       
  6101         // Verify inner mark bits (between Printezis bits) are clear,
       
  6102         // but don't repeat if there are multiple dirty regions for
       
  6103         // the same object, to avoid potential O(N^2) performance.
       
  6104         if (addr != _last_scanned_object) {
       
  6105           _bitMap->verifyNoOneBitsInRange(start_pbit + 1, end_pbit);
       
  6106           _last_scanned_object = addr;
       
  6107         }
       
  6108       #endif // ASSERT
       
  6109     } else {
       
  6110       // An uninitialized object.
       
  6111       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
       
  6112       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
       
  6113       size = pointer_delta(nextOneAddr + 1, addr);
       
  6114       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
       
  6115              "alignment problem");
       
  6116       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
       
  6117       // will dirty the card when the klass pointer is installed in the
       
  6118       // object (signaling the completion of initialization).
       
  6119     }
       
  6120   } else {
       
  6121     // Either a not yet marked object or an uninitialized object
       
  6122     if (p->klass_or_null_acquire() == NULL) {
       
  6123       // An uninitialized object, skip to the next card, since
       
  6124       // we may not be able to read its P-bits yet.
       
  6125       assert(size == 0, "Initial value");
       
  6126     } else {
       
  6127       // An object not (yet) reached by marking: we merely need to
       
  6128       // compute its size so as to go look at the next block.
       
  6129       assert(oopDesc::is_oop(p, true), "should be an oop");
       
  6130       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
       
  6131     }
       
  6132   }
       
  6133   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
       
  6134   return size;
       
  6135 }
       
  6136 
       
  6137 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
       
  6138   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
       
  6139          "CMS thread should hold CMS token");
       
  6140   assert_lock_strong(_freelistLock);
       
  6141   assert_lock_strong(_bitMap->lock());
       
  6142   // relinquish the free_list_lock and bitMaplock()
       
  6143   _bitMap->lock()->unlock();
       
  6144   _freelistLock->unlock();
       
  6145   ConcurrentMarkSweepThread::desynchronize(true);
       
  6146   _collector->stopTimer();
       
  6147   _collector->incrementYields();
       
  6148 
       
  6149   // See the comment in coordinator_yield()
       
  6150   for (unsigned i = 0; i < CMSYieldSleepCount &&
       
  6151                    ConcurrentMarkSweepThread::should_yield() &&
       
  6152                    !CMSCollector::foregroundGCIsActive(); ++i) {
       
  6153     os::naked_short_sleep(1);
       
  6154   }
       
  6155 
       
  6156   ConcurrentMarkSweepThread::synchronize(true);
       
  6157   _freelistLock->lock_without_safepoint_check();
       
  6158   _bitMap->lock()->lock_without_safepoint_check();
       
  6159   _collector->startTimer();
       
  6160 }
       
  6161 
       
  6162 
       
  6163 //////////////////////////////////////////////////////////////////
       
  6164 // SurvivorSpacePrecleanClosure
       
  6165 //////////////////////////////////////////////////////////////////
       
  6166 // This (single-threaded) closure is used to preclean the oops in
       
  6167 // the survivor spaces.
       
  6168 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
       
  6169 
       
  6170   HeapWord* addr = (HeapWord*)p;
       
  6171   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
       
  6172   assert(!_span.contains(addr), "we are scanning the survivor spaces");
       
  6173   assert(p->klass_or_null() != NULL, "object should be initialized");
       
  6174   // an initialized object; ignore mark word in verification below
       
  6175   // since we are running concurrent with mutators
       
  6176   assert(oopDesc::is_oop(p, true), "should be an oop");
       
  6177   // Note that we do not yield while we iterate over
       
  6178   // the interior oops of p, pushing the relevant ones
       
  6179   // on our marking stack.
       
  6180   size_t size = p->oop_iterate_size(_scanning_closure);
       
  6181   do_yield_check();
       
  6182   // Observe that below, we do not abandon the preclean
       
  6183   // phase as soon as we should; rather we empty the
       
  6184   // marking stack before returning. This is to satisfy
       
  6185   // some existing assertions. In general, it may be a
       
  6186   // good idea to abort immediately and complete the marking
       
  6187   // from the grey objects at a later time.
       
  6188   while (!_mark_stack->isEmpty()) {
       
  6189     oop new_oop = _mark_stack->pop();
       
  6190     assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
       
  6191     assert(_bit_map->isMarked((HeapWord*)new_oop),
       
  6192            "only grey objects on this stack");
       
  6193     // iterate over the oops in this oop, marking and pushing
       
  6194     // the ones in CMS heap (i.e. in _span).
       
  6195     new_oop->oop_iterate(_scanning_closure);
       
  6196     // check if it's time to yield
       
  6197     do_yield_check();
       
  6198   }
       
  6199   unsigned int after_count =
       
  6200     CMSHeap::heap()->total_collections();
       
  6201   bool abort = (_before_count != after_count) ||
       
  6202                _collector->should_abort_preclean();
       
  6203   return abort ? 0 : size;
       
  6204 }
       
  6205 
       
  6206 void SurvivorSpacePrecleanClosure::do_yield_work() {
       
  6207   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
       
  6208          "CMS thread should hold CMS token");
       
  6209   assert_lock_strong(_bit_map->lock());
       
  6210   // Relinquish the bit map lock
       
  6211   _bit_map->lock()->unlock();
       
  6212   ConcurrentMarkSweepThread::desynchronize(true);
       
  6213   _collector->stopTimer();
       
  6214   _collector->incrementYields();
       
  6215 
       
  6216   // See the comment in coordinator_yield()
       
  6217   for (unsigned i = 0; i < CMSYieldSleepCount &&
       
  6218                        ConcurrentMarkSweepThread::should_yield() &&
       
  6219                        !CMSCollector::foregroundGCIsActive(); ++i) {
       
  6220     os::naked_short_sleep(1);
       
  6221   }
       
  6222 
       
  6223   ConcurrentMarkSweepThread::synchronize(true);
       
  6224   _bit_map->lock()->lock_without_safepoint_check();
       
  6225   _collector->startTimer();
       
  6226 }
       
  6227 
       
  6228 // This closure is used to rescan the marked objects on the dirty cards
       
  6229 // in the mod union table and the card table proper. In the parallel
       
  6230 // case, although the bitMap is shared, we do a single read so the
       
  6231 // isMarked() query is "safe".
       
  6232 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
       
  6233   // Ignore mark word because we are running concurrent with mutators
       
  6234   assert(oopDesc::is_oop_or_null(p, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
       
  6235   HeapWord* addr = (HeapWord*)p;
       
  6236   assert(_span.contains(addr), "we are scanning the CMS generation");
       
  6237   bool is_obj_array = false;
       
  6238   #ifdef ASSERT
       
  6239     if (!_parallel) {
       
  6240       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
       
  6241       assert(_collector->overflow_list_is_empty(),
       
  6242              "overflow list should be empty");
       
  6243 
       
  6244     }
       
  6245   #endif // ASSERT
       
  6246   if (_bit_map->isMarked(addr)) {
       
  6247     // Obj arrays are precisely marked, non-arrays are not;
       
  6248     // so we scan objArrays precisely and non-arrays in their
       
  6249     // entirety.
       
  6250     if (p->is_objArray()) {
       
  6251       is_obj_array = true;
       
  6252       if (_parallel) {
       
  6253         p->oop_iterate(_par_scan_closure, mr);
       
  6254       } else {
       
  6255         p->oop_iterate(_scan_closure, mr);
       
  6256       }
       
  6257     } else {
       
  6258       if (_parallel) {
       
  6259         p->oop_iterate(_par_scan_closure);
       
  6260       } else {
       
  6261         p->oop_iterate(_scan_closure);
       
  6262       }
       
  6263     }
       
  6264   }
       
  6265   #ifdef ASSERT
       
  6266     if (!_parallel) {
       
  6267       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
       
  6268       assert(_collector->overflow_list_is_empty(),
       
  6269              "overflow list should be empty");
       
  6270 
       
  6271     }
       
  6272   #endif // ASSERT
       
  6273   return is_obj_array;
       
  6274 }
       
  6275 
       
  6276 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
       
  6277                         MemRegion span,
       
  6278                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
       
  6279                         bool should_yield, bool verifying):
       
  6280   _collector(collector),
       
  6281   _span(span),
       
  6282   _bitMap(bitMap),
       
  6283   _mut(&collector->_modUnionTable),
       
  6284   _markStack(markStack),
       
  6285   _yield(should_yield),
       
  6286   _skipBits(0)
       
  6287 {
       
  6288   assert(_markStack->isEmpty(), "stack should be empty");
       
  6289   _finger = _bitMap->startWord();
       
  6290   _threshold = _finger;
       
  6291   assert(_collector->_restart_addr == NULL, "Sanity check");
       
  6292   assert(_span.contains(_finger), "Out of bounds _finger?");
       
  6293   DEBUG_ONLY(_verifying = verifying;)
       
  6294 }
       
  6295 
       
  6296 void MarkFromRootsClosure::reset(HeapWord* addr) {
       
  6297   assert(_markStack->isEmpty(), "would cause duplicates on stack");
       
  6298   assert(_span.contains(addr), "Out of bounds _finger?");
       
  6299   _finger = addr;
       
  6300   _threshold = align_up(_finger, CardTable::card_size);
       
  6301 }
       
  6302 
       
  6303 // Should revisit to see if this should be restructured for
       
  6304 // greater efficiency.
       
  6305 bool MarkFromRootsClosure::do_bit(size_t offset) {
       
  6306   if (_skipBits > 0) {
       
  6307     _skipBits--;
       
  6308     return true;
       
  6309   }
       
  6310   // convert offset into a HeapWord*
       
  6311   HeapWord* addr = _bitMap->startWord() + offset;
       
  6312   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
       
  6313          "address out of range");
       
  6314   assert(_bitMap->isMarked(addr), "tautology");
       
  6315   if (_bitMap->isMarked(addr+1)) {
       
  6316     // this is an allocated but not yet initialized object
       
  6317     assert(_skipBits == 0, "tautology");
       
  6318     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
       
  6319     oop p = oop(addr);
       
  6320     if (p->klass_or_null_acquire() == NULL) {
       
  6321       DEBUG_ONLY(if (!_verifying) {)
       
  6322         // We re-dirty the cards on which this object lies and increase
       
  6323         // the _threshold so that we'll come back to scan this object
       
  6324         // during the preclean or remark phase. (CMSCleanOnEnter)
       
  6325         if (CMSCleanOnEnter) {
       
  6326           size_t sz = _collector->block_size_using_printezis_bits(addr);
       
  6327           HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
       
  6328           MemRegion redirty_range = MemRegion(addr, end_card_addr);
       
  6329           assert(!redirty_range.is_empty(), "Arithmetical tautology");
       
  6330           // Bump _threshold to end_card_addr; note that
       
  6331           // _threshold cannot possibly exceed end_card_addr, anyhow.
       
  6332           // This prevents future clearing of the card as the scan proceeds
       
  6333           // to the right.
       
  6334           assert(_threshold <= end_card_addr,
       
  6335                  "Because we are just scanning into this object");
       
  6336           if (_threshold < end_card_addr) {
       
  6337             _threshold = end_card_addr;
       
  6338           }
       
  6339           if (p->klass_or_null_acquire() != NULL) {
       
  6340             // Redirty the range of cards...
       
  6341             _mut->mark_range(redirty_range);
       
  6342           } // ...else the setting of klass will dirty the card anyway.
       
  6343         }
       
  6344       DEBUG_ONLY(})
       
  6345       return true;
       
  6346     }
       
  6347   }
       
  6348   scanOopsInOop(addr);
       
  6349   return true;
       
  6350 }
       
  6351 
       
  6352 // We take a break if we've been at this for a while,
       
  6353 // so as to avoid monopolizing the locks involved.
       
  6354 void MarkFromRootsClosure::do_yield_work() {
       
  6355   // First give up the locks, then yield, then re-lock
       
  6356   // We should probably use a constructor/destructor idiom to
       
  6357   // do this unlock/lock or modify the MutexUnlocker class to
       
  6358   // serve our purpose. XXX
       
  6359   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
       
  6360          "CMS thread should hold CMS token");
       
  6361   assert_lock_strong(_bitMap->lock());
       
  6362   _bitMap->lock()->unlock();
       
  6363   ConcurrentMarkSweepThread::desynchronize(true);
       
  6364   _collector->stopTimer();
       
  6365   _collector->incrementYields();
       
  6366 
       
  6367   // See the comment in coordinator_yield()
       
  6368   for (unsigned i = 0; i < CMSYieldSleepCount &&
       
  6369                        ConcurrentMarkSweepThread::should_yield() &&
       
  6370                        !CMSCollector::foregroundGCIsActive(); ++i) {
       
  6371     os::naked_short_sleep(1);
       
  6372   }
       
  6373 
       
  6374   ConcurrentMarkSweepThread::synchronize(true);
       
  6375   _bitMap->lock()->lock_without_safepoint_check();
       
  6376   _collector->startTimer();
       
  6377 }
       
  6378 
       
  6379 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
       
  6380   assert(_bitMap->isMarked(ptr), "expected bit to be set");
       
  6381   assert(_markStack->isEmpty(),
       
  6382          "should drain stack to limit stack usage");
       
  6383   // convert ptr to an oop preparatory to scanning
       
  6384   oop obj = oop(ptr);
       
  6385   // Ignore mark word in verification below, since we
       
  6386   // may be running concurrent with mutators.
       
  6387   assert(oopDesc::is_oop(obj, true), "should be an oop");
       
  6388   assert(_finger <= ptr, "_finger runneth ahead");
       
  6389   // advance the finger to right end of this object
       
  6390   _finger = ptr + obj->size();
       
  6391   assert(_finger > ptr, "we just incremented it above");
       
  6392   // On large heaps, it may take us some time to get through
       
  6393   // the marking phase. During
       
  6394   // this time it's possible that a lot of mutations have
       
  6395   // accumulated in the card table and the mod union table --
       
  6396   // these mutation records are redundant until we have
       
  6397   // actually traced into the corresponding card.
       
  6398   // Here, we check whether advancing the finger would make
       
  6399   // us cross into a new card, and if so clear corresponding
       
  6400   // cards in the MUT (preclean them in the card-table in the
       
  6401   // future).
       
  6402 
       
  6403   DEBUG_ONLY(if (!_verifying) {)
       
  6404     // The clean-on-enter optimization is disabled by default,
       
  6405     // until we fix 6178663.
       
  6406     if (CMSCleanOnEnter && (_finger > _threshold)) {
       
  6407       // [_threshold, _finger) represents the interval
       
  6408       // of cards to be cleared  in MUT (or precleaned in card table).
       
  6409       // The set of cards to be cleared is all those that overlap
       
  6410       // with the interval [_threshold, _finger); note that
       
  6411       // _threshold is always kept card-aligned but _finger isn't
       
  6412       // always card-aligned.
       
  6413       HeapWord* old_threshold = _threshold;
       
  6414       assert(is_aligned(old_threshold, CardTable::card_size),
       
  6415              "_threshold should always be card-aligned");
       
  6416       _threshold = align_up(_finger, CardTable::card_size);
       
  6417       MemRegion mr(old_threshold, _threshold);
       
  6418       assert(!mr.is_empty(), "Control point invariant");
       
  6419       assert(_span.contains(mr), "Should clear within span");
       
  6420       _mut->clear_range(mr);
       
  6421     }
       
  6422   DEBUG_ONLY(})
       
  6423   // Note: the finger doesn't advance while we drain
       
  6424   // the stack below.
       
  6425   PushOrMarkClosure pushOrMarkClosure(_collector,
       
  6426                                       _span, _bitMap, _markStack,
       
  6427                                       _finger, this);
       
  6428   bool res = _markStack->push(obj);
       
  6429   assert(res, "Empty non-zero size stack should have space for single push");
       
  6430   while (!_markStack->isEmpty()) {
       
  6431     oop new_oop = _markStack->pop();
       
  6432     // Skip verifying header mark word below because we are
       
  6433     // running concurrent with mutators.
       
  6434     assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop");
       
  6435     // now scan this oop's oops
       
  6436     new_oop->oop_iterate(&pushOrMarkClosure);
       
  6437     do_yield_check();
       
  6438   }
       
  6439   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
       
  6440 }
       
  6441 
       
  6442 ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
       
  6443                        CMSCollector* collector, MemRegion span,
       
  6444                        CMSBitMap* bit_map,
       
  6445                        OopTaskQueue* work_queue,
       
  6446                        CMSMarkStack*  overflow_stack):
       
  6447   _collector(collector),
       
  6448   _whole_span(collector->_span),
       
  6449   _span(span),
       
  6450   _bit_map(bit_map),
       
  6451   _mut(&collector->_modUnionTable),
       
  6452   _work_queue(work_queue),
       
  6453   _overflow_stack(overflow_stack),
       
  6454   _skip_bits(0),
       
  6455   _task(task)
       
  6456 {
       
  6457   assert(_work_queue->size() == 0, "work_queue should be empty");
       
  6458   _finger = span.start();
       
  6459   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
       
  6460   assert(_span.contains(_finger), "Out of bounds _finger?");
       
  6461 }
       
  6462 
       
  6463 // Should revisit to see if this should be restructured for
       
  6464 // greater efficiency.
       
  6465 bool ParMarkFromRootsClosure::do_bit(size_t offset) {
       
  6466   if (_skip_bits > 0) {
       
  6467     _skip_bits--;
       
  6468     return true;
       
  6469   }
       
  6470   // convert offset into a HeapWord*
       
  6471   HeapWord* addr = _bit_map->startWord() + offset;
       
  6472   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
       
  6473          "address out of range");
       
  6474   assert(_bit_map->isMarked(addr), "tautology");
       
  6475   if (_bit_map->isMarked(addr+1)) {
       
  6476     // this is an allocated object that might not yet be initialized
       
  6477     assert(_skip_bits == 0, "tautology");
       
  6478     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
       
  6479     oop p = oop(addr);
       
  6480     if (p->klass_or_null_acquire() == NULL) {
       
  6481       // in the case of Clean-on-Enter optimization, redirty card
       
  6482       // and avoid clearing card by increasing  the threshold.
       
  6483       return true;
       
  6484     }
       
  6485   }
       
  6486   scan_oops_in_oop(addr);
       
  6487   return true;
       
  6488 }
       
  6489 
       
  6490 void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
       
  6491   assert(_bit_map->isMarked(ptr), "expected bit to be set");
       
  6492   // Should we assert that our work queue is empty or
       
  6493   // below some drain limit?
       
  6494   assert(_work_queue->size() == 0,
       
  6495          "should drain stack to limit stack usage");
       
  6496   // convert ptr to an oop preparatory to scanning
       
  6497   oop obj = oop(ptr);
       
  6498   // Ignore mark word in verification below, since we
       
  6499   // may be running concurrent with mutators.
       
  6500   assert(oopDesc::is_oop(obj, true), "should be an oop");
       
  6501   assert(_finger <= ptr, "_finger runneth ahead");
       
  6502   // advance the finger to right end of this object
       
  6503   _finger = ptr + obj->size();
       
  6504   assert(_finger > ptr, "we just incremented it above");
       
  6505   // On large heaps, it may take us some time to get through
       
  6506   // the marking phase. During
       
  6507   // this time it's possible that a lot of mutations have
       
  6508   // accumulated in the card table and the mod union table --
       
  6509   // these mutation records are redundant until we have
       
  6510   // actually traced into the corresponding card.
       
  6511   // Here, we check whether advancing the finger would make
       
  6512   // us cross into a new card, and if so clear corresponding
       
  6513   // cards in the MUT (preclean them in the card-table in the
       
  6514   // future).
       
  6515 
       
  6516   // The clean-on-enter optimization is disabled by default,
       
  6517   // until we fix 6178663.
       
  6518   if (CMSCleanOnEnter && (_finger > _threshold)) {
       
  6519     // [_threshold, _finger) represents the interval
       
  6520     // of cards to be cleared  in MUT (or precleaned in card table).
       
  6521     // The set of cards to be cleared is all those that overlap
       
  6522     // with the interval [_threshold, _finger); note that
       
  6523     // _threshold is always kept card-aligned but _finger isn't
       
  6524     // always card-aligned.
       
  6525     HeapWord* old_threshold = _threshold;
       
  6526     assert(is_aligned(old_threshold, CardTable::card_size),
       
  6527            "_threshold should always be card-aligned");
       
  6528     _threshold = align_up(_finger, CardTable::card_size);
       
  6529     MemRegion mr(old_threshold, _threshold);
       
  6530     assert(!mr.is_empty(), "Control point invariant");
       
  6531     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
       
  6532     _mut->clear_range(mr);
       
  6533   }
       
  6534 
       
  6535   // Note: the local finger doesn't advance while we drain
       
  6536   // the stack below, but the global finger sure can and will.
       
  6537   HeapWord* volatile* gfa = _task->global_finger_addr();
       
  6538   ParPushOrMarkClosure pushOrMarkClosure(_collector,
       
  6539                                          _span, _bit_map,
       
  6540                                          _work_queue,
       
  6541                                          _overflow_stack,
       
  6542                                          _finger,
       
  6543                                          gfa, this);
       
  6544   bool res = _work_queue->push(obj);   // overflow could occur here
       
  6545   assert(res, "Will hold once we use workqueues");
       
  6546   while (true) {
       
  6547     oop new_oop;
       
  6548     if (!_work_queue->pop_local(new_oop)) {
       
  6549       // We emptied our work_queue; check if there's stuff that can
       
  6550       // be gotten from the overflow stack.
       
  6551       if (CMSConcMarkingTask::get_work_from_overflow_stack(
       
  6552             _overflow_stack, _work_queue)) {
       
  6553         do_yield_check();
       
  6554         continue;
       
  6555       } else {  // done
       
  6556         break;
       
  6557       }
       
  6558     }
       
  6559     // Skip verifying header mark word below because we are
       
  6560     // running concurrent with mutators.
       
  6561     assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop");
       
  6562     // now scan this oop's oops
       
  6563     new_oop->oop_iterate(&pushOrMarkClosure);
       
  6564     do_yield_check();
       
  6565   }
       
  6566   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
       
  6567 }
       
  6568 
       
  6569 // Yield in response to a request from VM Thread or
       
  6570 // from mutators.
       
  6571 void ParMarkFromRootsClosure::do_yield_work() {
       
  6572   assert(_task != NULL, "sanity");
       
  6573   _task->yield();
       
  6574 }
       
  6575 
       
  6576 // A variant of the above used for verifying CMS marking work.
       
  6577 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
       
  6578                         MemRegion span,
       
  6579                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
       
  6580                         CMSMarkStack*  mark_stack):
       
  6581   _collector(collector),
       
  6582   _span(span),
       
  6583   _verification_bm(verification_bm),
       
  6584   _cms_bm(cms_bm),
       
  6585   _mark_stack(mark_stack),
       
  6586   _pam_verify_closure(collector, span, verification_bm, cms_bm,
       
  6587                       mark_stack)
       
  6588 {
       
  6589   assert(_mark_stack->isEmpty(), "stack should be empty");
       
  6590   _finger = _verification_bm->startWord();
       
  6591   assert(_collector->_restart_addr == NULL, "Sanity check");
       
  6592   assert(_span.contains(_finger), "Out of bounds _finger?");
       
  6593 }
       
  6594 
       
  6595 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
       
  6596   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
       
  6597   assert(_span.contains(addr), "Out of bounds _finger?");
       
  6598   _finger = addr;
       
  6599 }
       
  6600 
       
  6601 // Should revisit to see if this should be restructured for
       
  6602 // greater efficiency.
       
  6603 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
       
  6604   // convert offset into a HeapWord*
       
  6605   HeapWord* addr = _verification_bm->startWord() + offset;
       
  6606   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
       
  6607          "address out of range");
       
  6608   assert(_verification_bm->isMarked(addr), "tautology");
       
  6609   assert(_cms_bm->isMarked(addr), "tautology");
       
  6610 
       
  6611   assert(_mark_stack->isEmpty(),
       
  6612          "should drain stack to limit stack usage");
       
  6613   // convert addr to an oop preparatory to scanning
       
  6614   oop obj = oop(addr);
       
  6615   assert(oopDesc::is_oop(obj), "should be an oop");
       
  6616   assert(_finger <= addr, "_finger runneth ahead");
       
  6617   // advance the finger to right end of this object
       
  6618   _finger = addr + obj->size();
       
  6619   assert(_finger > addr, "we just incremented it above");
       
  6620   // Note: the finger doesn't advance while we drain
       
  6621   // the stack below.
       
  6622   bool res = _mark_stack->push(obj);
       
  6623   assert(res, "Empty non-zero size stack should have space for single push");
       
  6624   while (!_mark_stack->isEmpty()) {
       
  6625     oop new_oop = _mark_stack->pop();
       
  6626     assert(oopDesc::is_oop(new_oop), "Oops! expected to pop an oop");
       
  6627     // now scan this oop's oops
       
  6628     new_oop->oop_iterate(&_pam_verify_closure);
       
  6629   }
       
  6630   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
       
  6631   return true;
       
  6632 }
       
  6633 
       
  6634 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
       
  6635   CMSCollector* collector, MemRegion span,
       
  6636   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
       
  6637   CMSMarkStack*  mark_stack):
       
  6638   MetadataVisitingOopIterateClosure(collector->ref_processor()),
       
  6639   _collector(collector),
       
  6640   _span(span),
       
  6641   _verification_bm(verification_bm),
       
  6642   _cms_bm(cms_bm),
       
  6643   _mark_stack(mark_stack)
       
  6644 { }
       
  6645 
       
  6646 template <class T> void PushAndMarkVerifyClosure::do_oop_work(T *p) {
       
  6647   oop obj = RawAccess<>::oop_load(p);
       
  6648   do_oop(obj);
       
  6649 }
       
  6650 
       
  6651 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
       
  6652 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
       
  6653 
       
  6654 // Upon stack overflow, we discard (part of) the stack,
       
  6655 // remembering the least address amongst those discarded
       
  6656 // in CMSCollector's _restart_address.
       
  6657 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
       
  6658   // Remember the least grey address discarded
       
  6659   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
       
  6660   _collector->lower_restart_addr(ra);
       
  6661   _mark_stack->reset();  // discard stack contents
       
  6662   _mark_stack->expand(); // expand the stack if possible
       
  6663 }
       
  6664 
       
  6665 void PushAndMarkVerifyClosure::do_oop(oop obj) {
       
  6666   assert(oopDesc::is_oop_or_null(obj), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
       
  6667   HeapWord* addr = (HeapWord*)obj;
       
  6668   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
       
  6669     // Oop lies in _span and isn't yet grey or black
       
  6670     _verification_bm->mark(addr);            // now grey
       
  6671     if (!_cms_bm->isMarked(addr)) {
       
  6672       Log(gc, verify) log;
       
  6673       ResourceMark rm;
       
  6674       LogStream ls(log.error());
       
  6675       oop(addr)->print_on(&ls);
       
  6676       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
       
  6677       fatal("... aborting");
       
  6678     }
       
  6679 
       
  6680     if (!_mark_stack->push(obj)) { // stack overflow
       
  6681       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
       
  6682       assert(_mark_stack->isFull(), "Else push should have succeeded");
       
  6683       handle_stack_overflow(addr);
       
  6684     }
       
  6685     // anything including and to the right of _finger
       
  6686     // will be scanned as we iterate over the remainder of the
       
  6687     // bit map
       
  6688   }
       
  6689 }
       
  6690 
       
  6691 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
       
  6692                      MemRegion span,
       
  6693                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
       
  6694                      HeapWord* finger, MarkFromRootsClosure* parent) :
       
  6695   MetadataVisitingOopIterateClosure(collector->ref_processor()),
       
  6696   _collector(collector),
       
  6697   _span(span),
       
  6698   _bitMap(bitMap),
       
  6699   _markStack(markStack),
       
  6700   _finger(finger),
       
  6701   _parent(parent)
       
  6702 { }
       
  6703 
       
  6704 ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
       
  6705                                            MemRegion span,
       
  6706                                            CMSBitMap* bit_map,
       
  6707                                            OopTaskQueue* work_queue,
       
  6708                                            CMSMarkStack*  overflow_stack,
       
  6709                                            HeapWord* finger,
       
  6710                                            HeapWord* volatile* global_finger_addr,
       
  6711                                            ParMarkFromRootsClosure* parent) :
       
  6712   MetadataVisitingOopIterateClosure(collector->ref_processor()),
       
  6713   _collector(collector),
       
  6714   _whole_span(collector->_span),
       
  6715   _span(span),
       
  6716   _bit_map(bit_map),
       
  6717   _work_queue(work_queue),
       
  6718   _overflow_stack(overflow_stack),
       
  6719   _finger(finger),
       
  6720   _global_finger_addr(global_finger_addr),
       
  6721   _parent(parent)
       
  6722 { }
       
  6723 
       
  6724 // Assumes thread-safe access by callers, who are
       
  6725 // responsible for mutual exclusion.
       
  6726 void CMSCollector::lower_restart_addr(HeapWord* low) {
       
  6727   assert(_span.contains(low), "Out of bounds addr");
       
  6728   if (_restart_addr == NULL) {
       
  6729     _restart_addr = low;
       
  6730   } else {
       
  6731     _restart_addr = MIN2(_restart_addr, low);
       
  6732   }
       
  6733 }
       
  6734 
       
  6735 // Upon stack overflow, we discard (part of) the stack,
       
  6736 // remembering the least address amongst those discarded
       
  6737 // in CMSCollector's _restart_address.
       
  6738 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
       
  6739   // Remember the least grey address discarded
       
  6740   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
       
  6741   _collector->lower_restart_addr(ra);
       
  6742   _markStack->reset();  // discard stack contents
       
  6743   _markStack->expand(); // expand the stack if possible
       
  6744 }
       
  6745 
       
  6746 // Upon stack overflow, we discard (part of) the stack,
       
  6747 // remembering the least address amongst those discarded
       
  6748 // in CMSCollector's _restart_address.
       
  6749 void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
       
  6750   // We need to do this under a mutex to prevent other
       
  6751   // workers from interfering with the work done below.
       
  6752   MutexLocker ml(_overflow_stack->par_lock(),
       
  6753                  Mutex::_no_safepoint_check_flag);
       
  6754   // Remember the least grey address discarded
       
  6755   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
       
  6756   _collector->lower_restart_addr(ra);
       
  6757   _overflow_stack->reset();  // discard stack contents
       
  6758   _overflow_stack->expand(); // expand the stack if possible
       
  6759 }
       
  6760 
       
  6761 void PushOrMarkClosure::do_oop(oop obj) {
       
  6762   // Ignore mark word because we are running concurrent with mutators.
       
  6763   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
       
  6764   HeapWord* addr = (HeapWord*)obj;
       
  6765   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
       
  6766     // Oop lies in _span and isn't yet grey or black
       
  6767     _bitMap->mark(addr);            // now grey
       
  6768     if (addr < _finger) {
       
  6769       // the bit map iteration has already either passed, or
       
  6770       // sampled, this bit in the bit map; we'll need to
       
  6771       // use the marking stack to scan this oop's oops.
       
  6772       bool simulate_overflow = false;
       
  6773       NOT_PRODUCT(
       
  6774         if (CMSMarkStackOverflowALot &&
       
  6775             _collector->simulate_overflow()) {
       
  6776           // simulate a stack overflow
       
  6777           simulate_overflow = true;
       
  6778         }
       
  6779       )
       
  6780       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
       
  6781         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
       
  6782         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
       
  6783         handle_stack_overflow(addr);
       
  6784       }
       
  6785     }
       
  6786     // anything including and to the right of _finger
       
  6787     // will be scanned as we iterate over the remainder of the
       
  6788     // bit map
       
  6789     do_yield_check();
       
  6790   }
       
  6791 }
       
  6792 
       
  6793 void ParPushOrMarkClosure::do_oop(oop obj) {
       
  6794   // Ignore mark word because we are running concurrent with mutators.
       
  6795   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
       
  6796   HeapWord* addr = (HeapWord*)obj;
       
  6797   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
       
  6798     // Oop lies in _span and isn't yet grey or black
       
  6799     // We read the global_finger (volatile read) strictly after marking oop
       
  6800     bool res = _bit_map->par_mark(addr);    // now grey
       
  6801     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
       
  6802     // Should we push this marked oop on our stack?
       
  6803     // -- if someone else marked it, nothing to do
       
  6804     // -- if target oop is above global finger nothing to do
       
  6805     // -- if target oop is in chunk and above local finger
       
  6806     //      then nothing to do
       
  6807     // -- else push on work queue
       
  6808     if (   !res       // someone else marked it, they will deal with it
       
  6809         || (addr >= *gfa)  // will be scanned in a later task
       
  6810         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
       
  6811       return;
       
  6812     }
       
  6813     // the bit map iteration has already either passed, or
       
  6814     // sampled, this bit in the bit map; we'll need to
       
  6815     // use the marking stack to scan this oop's oops.
       
  6816     bool simulate_overflow = false;
       
  6817     NOT_PRODUCT(
       
  6818       if (CMSMarkStackOverflowALot &&
       
  6819           _collector->simulate_overflow()) {
       
  6820         // simulate a stack overflow
       
  6821         simulate_overflow = true;
       
  6822       }
       
  6823     )
       
  6824     if (simulate_overflow ||
       
  6825         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
       
  6826       // stack overflow
       
  6827       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
       
  6828       // We cannot assert that the overflow stack is full because
       
  6829       // it may have been emptied since.
       
  6830       assert(simulate_overflow ||
       
  6831              _work_queue->size() == _work_queue->max_elems(),
       
  6832             "Else push should have succeeded");
       
  6833       handle_stack_overflow(addr);
       
  6834     }
       
  6835     do_yield_check();
       
  6836   }
       
  6837 }
       
  6838 
       
  6839 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
       
  6840                                        MemRegion span,
       
  6841                                        ReferenceDiscoverer* rd,
       
  6842                                        CMSBitMap* bit_map,
       
  6843                                        CMSBitMap* mod_union_table,
       
  6844                                        CMSMarkStack*  mark_stack,
       
  6845                                        bool           concurrent_precleaning):
       
  6846   MetadataVisitingOopIterateClosure(rd),
       
  6847   _collector(collector),
       
  6848   _span(span),
       
  6849   _bit_map(bit_map),
       
  6850   _mod_union_table(mod_union_table),
       
  6851   _mark_stack(mark_stack),
       
  6852   _concurrent_precleaning(concurrent_precleaning)
       
  6853 {
       
  6854   assert(ref_discoverer() != NULL, "ref_discoverer shouldn't be NULL");
       
  6855 }
       
  6856 
       
  6857 // Grey object rescan during pre-cleaning and second checkpoint phases --
       
  6858 // the non-parallel version (the parallel version appears further below.)
       
  6859 void PushAndMarkClosure::do_oop(oop obj) {
       
  6860   // Ignore mark word verification. If during concurrent precleaning,
       
  6861   // the object monitor may be locked. If during the checkpoint
       
  6862   // phases, the object may already have been reached by a  different
       
  6863   // path and may be at the end of the global overflow list (so
       
  6864   // the mark word may be NULL).
       
  6865   assert(oopDesc::is_oop_or_null(obj, true /* ignore mark word */),
       
  6866          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
       
  6867   HeapWord* addr = (HeapWord*)obj;
       
  6868   // Check if oop points into the CMS generation
       
  6869   // and is not marked
       
  6870   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
       
  6871     // a white object ...
       
  6872     _bit_map->mark(addr);         // ... now grey
       
  6873     // push on the marking stack (grey set)
       
  6874     bool simulate_overflow = false;
       
  6875     NOT_PRODUCT(
       
  6876       if (CMSMarkStackOverflowALot &&
       
  6877           _collector->simulate_overflow()) {
       
  6878         // simulate a stack overflow
       
  6879         simulate_overflow = true;
       
  6880       }
       
  6881     )
       
  6882     if (simulate_overflow || !_mark_stack->push(obj)) {
       
  6883       if (_concurrent_precleaning) {
       
  6884          // During precleaning we can just dirty the appropriate card(s)
       
  6885          // in the mod union table, thus ensuring that the object remains
       
  6886          // in the grey set  and continue. In the case of object arrays
       
  6887          // we need to dirty all of the cards that the object spans,
       
  6888          // since the rescan of object arrays will be limited to the
       
  6889          // dirty cards.
       
  6890          // Note that no one can be interfering with us in this action
       
  6891          // of dirtying the mod union table, so no locking or atomics
       
  6892          // are required.
       
  6893          if (obj->is_objArray()) {
       
  6894            size_t sz = obj->size();
       
  6895            HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
       
  6896            MemRegion redirty_range = MemRegion(addr, end_card_addr);
       
  6897            assert(!redirty_range.is_empty(), "Arithmetical tautology");
       
  6898            _mod_union_table->mark_range(redirty_range);
       
  6899          } else {
       
  6900            _mod_union_table->mark(addr);
       
  6901          }
       
  6902          _collector->_ser_pmc_preclean_ovflw++;
       
  6903       } else {
       
  6904          // During the remark phase, we need to remember this oop
       
  6905          // in the overflow list.
       
  6906          _collector->push_on_overflow_list(obj);
       
  6907          _collector->_ser_pmc_remark_ovflw++;
       
  6908       }
       
  6909     }
       
  6910   }
       
  6911 }
       
  6912 
       
  6913 ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
       
  6914                                              MemRegion span,
       
  6915                                              ReferenceDiscoverer* rd,
       
  6916                                              CMSBitMap* bit_map,
       
  6917                                              OopTaskQueue* work_queue):
       
  6918   MetadataVisitingOopIterateClosure(rd),
       
  6919   _collector(collector),
       
  6920   _span(span),
       
  6921   _bit_map(bit_map),
       
  6922   _work_queue(work_queue)
       
  6923 {
       
  6924   assert(ref_discoverer() != NULL, "ref_discoverer shouldn't be NULL");
       
  6925 }
       
  6926 
       
  6927 // Grey object rescan during second checkpoint phase --
       
  6928 // the parallel version.
       
  6929 void ParPushAndMarkClosure::do_oop(oop obj) {
       
  6930   // In the assert below, we ignore the mark word because
       
  6931   // this oop may point to an already visited object that is
       
  6932   // on the overflow stack (in which case the mark word has
       
  6933   // been hijacked for chaining into the overflow stack --
       
  6934   // if this is the last object in the overflow stack then
       
  6935   // its mark word will be NULL). Because this object may
       
  6936   // have been subsequently popped off the global overflow
       
  6937   // stack, and the mark word possibly restored to the prototypical
       
  6938   // value, by the time we get to examined this failing assert in
       
  6939   // the debugger, is_oop_or_null(false) may subsequently start
       
  6940   // to hold.
       
  6941   assert(oopDesc::is_oop_or_null(obj, true),
       
  6942          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
       
  6943   HeapWord* addr = (HeapWord*)obj;
       
  6944   // Check if oop points into the CMS generation
       
  6945   // and is not marked
       
  6946   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
       
  6947     // a white object ...
       
  6948     // If we manage to "claim" the object, by being the
       
  6949     // first thread to mark it, then we push it on our
       
  6950     // marking stack
       
  6951     if (_bit_map->par_mark(addr)) {     // ... now grey
       
  6952       // push on work queue (grey set)
       
  6953       bool simulate_overflow = false;
       
  6954       NOT_PRODUCT(
       
  6955         if (CMSMarkStackOverflowALot &&
       
  6956             _collector->par_simulate_overflow()) {
       
  6957           // simulate a stack overflow
       
  6958           simulate_overflow = true;
       
  6959         }
       
  6960       )
       
  6961       if (simulate_overflow || !_work_queue->push(obj)) {
       
  6962         _collector->par_push_on_overflow_list(obj);
       
  6963         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
       
  6964       }
       
  6965     } // Else, some other thread got there first
       
  6966   }
       
  6967 }
       
  6968 
       
  6969 void CMSPrecleanRefsYieldClosure::do_yield_work() {
       
  6970   Mutex* bml = _collector->bitMapLock();
       
  6971   assert_lock_strong(bml);
       
  6972   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
       
  6973          "CMS thread should hold CMS token");
       
  6974 
       
  6975   bml->unlock();
       
  6976   ConcurrentMarkSweepThread::desynchronize(true);
       
  6977 
       
  6978   _collector->stopTimer();
       
  6979   _collector->incrementYields();
       
  6980 
       
  6981   // See the comment in coordinator_yield()
       
  6982   for (unsigned i = 0; i < CMSYieldSleepCount &&
       
  6983                        ConcurrentMarkSweepThread::should_yield() &&
       
  6984                        !CMSCollector::foregroundGCIsActive(); ++i) {
       
  6985     os::naked_short_sleep(1);
       
  6986   }
       
  6987 
       
  6988   ConcurrentMarkSweepThread::synchronize(true);
       
  6989   bml->lock_without_safepoint_check();
       
  6990 
       
  6991   _collector->startTimer();
       
  6992 }
       
  6993 
       
  6994 bool CMSPrecleanRefsYieldClosure::should_return() {
       
  6995   if (ConcurrentMarkSweepThread::should_yield()) {
       
  6996     do_yield_work();
       
  6997   }
       
  6998   return _collector->foregroundGCIsActive();
       
  6999 }
       
  7000 
       
  7001 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
       
  7002   assert(((size_t)mr.start())%CardTable::card_size_in_words == 0,
       
  7003          "mr should be aligned to start at a card boundary");
       
  7004   // We'd like to assert:
       
  7005   // assert(mr.word_size()%CardTable::card_size_in_words == 0,
       
  7006   //        "mr should be a range of cards");
       
  7007   // However, that would be too strong in one case -- the last
       
  7008   // partition ends at _unallocated_block which, in general, can be
       
  7009   // an arbitrary boundary, not necessarily card aligned.
       
  7010   _num_dirty_cards += mr.word_size()/CardTable::card_size_in_words;
       
  7011   _space->object_iterate_mem(mr, &_scan_cl);
       
  7012 }
       
  7013 
       
  7014 SweepClosure::SweepClosure(CMSCollector* collector,
       
  7015                            ConcurrentMarkSweepGeneration* g,
       
  7016                            CMSBitMap* bitMap, bool should_yield) :
       
  7017   _collector(collector),
       
  7018   _g(g),
       
  7019   _sp(g->cmsSpace()),
       
  7020   _limit(_sp->sweep_limit()),
       
  7021   _freelistLock(_sp->freelistLock()),
       
  7022   _bitMap(bitMap),
       
  7023   _inFreeRange(false),           // No free range at beginning of sweep
       
  7024   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
       
  7025   _lastFreeRangeCoalesced(false),
       
  7026   _yield(should_yield),
       
  7027   _freeFinger(g->used_region().start())
       
  7028 {
       
  7029   NOT_PRODUCT(
       
  7030     _numObjectsFreed = 0;
       
  7031     _numWordsFreed   = 0;
       
  7032     _numObjectsLive = 0;
       
  7033     _numWordsLive = 0;
       
  7034     _numObjectsAlreadyFree = 0;
       
  7035     _numWordsAlreadyFree = 0;
       
  7036     _last_fc = NULL;
       
  7037 
       
  7038     _sp->initializeIndexedFreeListArrayReturnedBytes();
       
  7039     _sp->dictionary()->initialize_dict_returned_bytes();
       
  7040   )
       
  7041   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
       
  7042          "sweep _limit out of bounds");
       
  7043   log_develop_trace(gc, sweep)("====================");
       
  7044   log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
       
  7045 }
       
  7046 
       
  7047 void SweepClosure::print_on(outputStream* st) const {
       
  7048   st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
       
  7049                p2i(_sp->bottom()), p2i(_sp->end()));
       
  7050   st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
       
  7051   st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
       
  7052   NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
       
  7053   st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
       
  7054                _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
       
  7055 }
       
  7056 
       
  7057 #ifndef PRODUCT
       
  7058 // Assertion checking only:  no useful work in product mode --
       
  7059 // however, if any of the flags below become product flags,
       
  7060 // you may need to review this code to see if it needs to be
       
  7061 // enabled in product mode.
       
  7062 SweepClosure::~SweepClosure() {
       
  7063   assert_lock_strong(_freelistLock);
       
  7064   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
       
  7065          "sweep _limit out of bounds");
       
  7066   if (inFreeRange()) {
       
  7067     Log(gc, sweep) log;
       
  7068     log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
       
  7069     ResourceMark rm;
       
  7070     LogStream ls(log.error());
       
  7071     print_on(&ls);
       
  7072     ShouldNotReachHere();
       
  7073   }
       
  7074 
       
  7075   if (log_is_enabled(Debug, gc, sweep)) {
       
  7076     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
       
  7077                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
       
  7078     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
       
  7079                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
       
  7080     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
       
  7081     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
       
  7082   }
       
  7083 
       
  7084   if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
       
  7085     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
       
  7086     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
       
  7087     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
       
  7088     log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
       
  7089                          returned_bytes, indexListReturnedBytes, dict_returned_bytes);
       
  7090   }
       
  7091   log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
       
  7092   log_develop_trace(gc, sweep)("================");
       
  7093 }
       
  7094 #endif  // PRODUCT
       
  7095 
       
  7096 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
       
  7097     bool freeRangeInFreeLists) {
       
  7098   log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
       
  7099                                p2i(freeFinger), freeRangeInFreeLists);
       
  7100   assert(!inFreeRange(), "Trampling existing free range");
       
  7101   set_inFreeRange(true);
       
  7102   set_lastFreeRangeCoalesced(false);
       
  7103 
       
  7104   set_freeFinger(freeFinger);
       
  7105   set_freeRangeInFreeLists(freeRangeInFreeLists);
       
  7106   if (CMSTestInFreeList) {
       
  7107     if (freeRangeInFreeLists) {
       
  7108       FreeChunk* fc = (FreeChunk*) freeFinger;
       
  7109       assert(fc->is_free(), "A chunk on the free list should be free.");
       
  7110       assert(fc->size() > 0, "Free range should have a size");
       
  7111       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
       
  7112     }
       
  7113   }
       
  7114 }
       
  7115 
       
  7116 // Note that the sweeper runs concurrently with mutators. Thus,
       
  7117 // it is possible for direct allocation in this generation to happen
       
  7118 // in the middle of the sweep. Note that the sweeper also coalesces
       
  7119 // contiguous free blocks. Thus, unless the sweeper and the allocator
       
  7120 // synchronize appropriately freshly allocated blocks may get swept up.
       
  7121 // This is accomplished by the sweeper locking the free lists while
       
  7122 // it is sweeping. Thus blocks that are determined to be free are
       
  7123 // indeed free. There is however one additional complication:
       
  7124 // blocks that have been allocated since the final checkpoint and
       
  7125 // mark, will not have been marked and so would be treated as
       
  7126 // unreachable and swept up. To prevent this, the allocator marks
       
  7127 // the bit map when allocating during the sweep phase. This leads,
       
  7128 // however, to a further complication -- objects may have been allocated
       
  7129 // but not yet initialized -- in the sense that the header isn't yet
       
  7130 // installed. The sweeper can not then determine the size of the block
       
  7131 // in order to skip over it. To deal with this case, we use a technique
       
  7132 // (due to Printezis) to encode such uninitialized block sizes in the
       
  7133 // bit map. Since the bit map uses a bit per every HeapWord, but the
       
  7134 // CMS generation has a minimum object size of 3 HeapWords, it follows
       
  7135 // that "normal marks" won't be adjacent in the bit map (there will
       
  7136 // always be at least two 0 bits between successive 1 bits). We make use
       
  7137 // of these "unused" bits to represent uninitialized blocks -- the bit
       
  7138 // corresponding to the start of the uninitialized object and the next
       
  7139 // bit are both set. Finally, a 1 bit marks the end of the object that
       
  7140 // started with the two consecutive 1 bits to indicate its potentially
       
  7141 // uninitialized state.
       
  7142 
       
  7143 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
       
  7144   FreeChunk* fc = (FreeChunk*)addr;
       
  7145   size_t res;
       
  7146 
       
  7147   // Check if we are done sweeping. Below we check "addr >= _limit" rather
       
  7148   // than "addr == _limit" because although _limit was a block boundary when
       
  7149   // we started the sweep, it may no longer be one because heap expansion
       
  7150   // may have caused us to coalesce the block ending at the address _limit
       
  7151   // with a newly expanded chunk (this happens when _limit was set to the
       
  7152   // previous _end of the space), so we may have stepped past _limit:
       
  7153   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
       
  7154   if (addr >= _limit) { // we have swept up to or past the limit: finish up
       
  7155     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
       
  7156            "sweep _limit out of bounds");
       
  7157     assert(addr < _sp->end(), "addr out of bounds");
       
  7158     // Flush any free range we might be holding as a single
       
  7159     // coalesced chunk to the appropriate free list.
       
  7160     if (inFreeRange()) {
       
  7161       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
       
  7162              "freeFinger() " PTR_FORMAT " is out of bounds", p2i(freeFinger()));
       
  7163       flush_cur_free_chunk(freeFinger(),
       
  7164                            pointer_delta(addr, freeFinger()));
       
  7165       log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
       
  7166                                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
       
  7167                                    lastFreeRangeCoalesced() ? 1 : 0);
       
  7168     }
       
  7169 
       
  7170     // help the iterator loop finish
       
  7171     return pointer_delta(_sp->end(), addr);
       
  7172   }
       
  7173 
       
  7174   assert(addr < _limit, "sweep invariant");
       
  7175   // check if we should yield
       
  7176   do_yield_check(addr);
       
  7177   if (fc->is_free()) {
       
  7178     // Chunk that is already free
       
  7179     res = fc->size();
       
  7180     do_already_free_chunk(fc);
       
  7181     debug_only(_sp->verifyFreeLists());
       
  7182     // If we flush the chunk at hand in lookahead_and_flush()
       
  7183     // and it's coalesced with a preceding chunk, then the
       
  7184     // process of "mangling" the payload of the coalesced block
       
  7185     // will cause erasure of the size information from the
       
  7186     // (erstwhile) header of all the coalesced blocks but the
       
  7187     // first, so the first disjunct in the assert will not hold
       
  7188     // in that specific case (in which case the second disjunct
       
  7189     // will hold).
       
  7190     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
       
  7191            "Otherwise the size info doesn't change at this step");
       
  7192     NOT_PRODUCT(
       
  7193       _numObjectsAlreadyFree++;
       
  7194       _numWordsAlreadyFree += res;
       
  7195     )
       
  7196     NOT_PRODUCT(_last_fc = fc;)
       
  7197   } else if (!_bitMap->isMarked(addr)) {
       
  7198     // Chunk is fresh garbage
       
  7199     res = do_garbage_chunk(fc);
       
  7200     debug_only(_sp->verifyFreeLists());
       
  7201     NOT_PRODUCT(
       
  7202       _numObjectsFreed++;
       
  7203       _numWordsFreed += res;
       
  7204     )
       
  7205   } else {
       
  7206     // Chunk that is alive.
       
  7207     res = do_live_chunk(fc);
       
  7208     debug_only(_sp->verifyFreeLists());
       
  7209     NOT_PRODUCT(
       
  7210         _numObjectsLive++;
       
  7211         _numWordsLive += res;
       
  7212     )
       
  7213   }
       
  7214   return res;
       
  7215 }
       
  7216 
       
  7217 // For the smart allocation, record following
       
  7218 //  split deaths - a free chunk is removed from its free list because
       
  7219 //      it is being split into two or more chunks.
       
  7220 //  split birth - a free chunk is being added to its free list because
       
  7221 //      a larger free chunk has been split and resulted in this free chunk.
       
  7222 //  coal death - a free chunk is being removed from its free list because
       
  7223 //      it is being coalesced into a large free chunk.
       
  7224 //  coal birth - a free chunk is being added to its free list because
       
  7225 //      it was created when two or more free chunks where coalesced into
       
  7226 //      this free chunk.
       
  7227 //
       
  7228 // These statistics are used to determine the desired number of free
       
  7229 // chunks of a given size.  The desired number is chosen to be relative
       
  7230 // to the end of a CMS sweep.  The desired number at the end of a sweep
       
  7231 // is the
       
  7232 //      count-at-end-of-previous-sweep (an amount that was enough)
       
  7233 //              - count-at-beginning-of-current-sweep  (the excess)
       
  7234 //              + split-births  (gains in this size during interval)
       
  7235 //              - split-deaths  (demands on this size during interval)
       
  7236 // where the interval is from the end of one sweep to the end of the
       
  7237 // next.
       
  7238 //
       
  7239 // When sweeping the sweeper maintains an accumulated chunk which is
       
  7240 // the chunk that is made up of chunks that have been coalesced.  That
       
  7241 // will be termed the left-hand chunk.  A new chunk of garbage that
       
  7242 // is being considered for coalescing will be referred to as the
       
  7243 // right-hand chunk.
       
  7244 //
       
  7245 // When making a decision on whether to coalesce a right-hand chunk with
       
  7246 // the current left-hand chunk, the current count vs. the desired count
       
  7247 // of the left-hand chunk is considered.  Also if the right-hand chunk
       
  7248 // is near the large chunk at the end of the heap (see
       
  7249 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
       
  7250 // left-hand chunk is coalesced.
       
  7251 //
       
  7252 // When making a decision about whether to split a chunk, the desired count
       
  7253 // vs. the current count of the candidate to be split is also considered.
       
  7254 // If the candidate is underpopulated (currently fewer chunks than desired)
       
  7255 // a chunk of an overpopulated (currently more chunks than desired) size may
       
  7256 // be chosen.  The "hint" associated with a free list, if non-null, points
       
  7257 // to a free list which may be overpopulated.
       
  7258 //
       
  7259 
       
  7260 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
       
  7261   const size_t size = fc->size();
       
  7262   // Chunks that cannot be coalesced are not in the
       
  7263   // free lists.
       
  7264   if (CMSTestInFreeList && !fc->cantCoalesce()) {
       
  7265     assert(_sp->verify_chunk_in_free_list(fc),
       
  7266            "free chunk should be in free lists");
       
  7267   }
       
  7268   // a chunk that is already free, should not have been
       
  7269   // marked in the bit map
       
  7270   HeapWord* const addr = (HeapWord*) fc;
       
  7271   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
       
  7272   // Verify that the bit map has no bits marked between
       
  7273   // addr and purported end of this block.
       
  7274   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
       
  7275 
       
  7276   // Some chunks cannot be coalesced under any circumstances.
       
  7277   // See the definition of cantCoalesce().
       
  7278   if (!fc->cantCoalesce()) {
       
  7279     // This chunk can potentially be coalesced.
       
  7280     // All the work is done in
       
  7281     do_post_free_or_garbage_chunk(fc, size);
       
  7282     // Note that if the chunk is not coalescable (the else arm
       
  7283     // below), we unconditionally flush, without needing to do
       
  7284     // a "lookahead," as we do below.
       
  7285     if (inFreeRange()) lookahead_and_flush(fc, size);
       
  7286   } else {
       
  7287     // Code path common to both original and adaptive free lists.
       
  7288 
       
  7289     // cant coalesce with previous block; this should be treated
       
  7290     // as the end of a free run if any
       
  7291     if (inFreeRange()) {
       
  7292       // we kicked some butt; time to pick up the garbage
       
  7293       assert(freeFinger() < addr, "freeFinger points too high");
       
  7294       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
       
  7295     }
       
  7296     // else, nothing to do, just continue
       
  7297   }
       
  7298 }
       
  7299 
       
  7300 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
       
  7301   // This is a chunk of garbage.  It is not in any free list.
       
  7302   // Add it to a free list or let it possibly be coalesced into
       
  7303   // a larger chunk.
       
  7304   HeapWord* const addr = (HeapWord*) fc;
       
  7305   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
       
  7306 
       
  7307   // Verify that the bit map has no bits marked between
       
  7308   // addr and purported end of just dead object.
       
  7309   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
       
  7310   do_post_free_or_garbage_chunk(fc, size);
       
  7311 
       
  7312   assert(_limit >= addr + size,
       
  7313          "A freshly garbage chunk can't possibly straddle over _limit");
       
  7314   if (inFreeRange()) lookahead_and_flush(fc, size);
       
  7315   return size;
       
  7316 }
       
  7317 
       
  7318 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
       
  7319   HeapWord* addr = (HeapWord*) fc;
       
  7320   // The sweeper has just found a live object. Return any accumulated
       
  7321   // left hand chunk to the free lists.
       
  7322   if (inFreeRange()) {
       
  7323     assert(freeFinger() < addr, "freeFinger points too high");
       
  7324     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
       
  7325   }
       
  7326 
       
  7327   // This object is live: we'd normally expect this to be
       
  7328   // an oop, and like to assert the following:
       
  7329   // assert(oopDesc::is_oop(oop(addr)), "live block should be an oop");
       
  7330   // However, as we commented above, this may be an object whose
       
  7331   // header hasn't yet been initialized.
       
  7332   size_t size;
       
  7333   assert(_bitMap->isMarked(addr), "Tautology for this control point");
       
  7334   if (_bitMap->isMarked(addr + 1)) {
       
  7335     // Determine the size from the bit map, rather than trying to
       
  7336     // compute it from the object header.
       
  7337     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
       
  7338     size = pointer_delta(nextOneAddr + 1, addr);
       
  7339     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
       
  7340            "alignment problem");
       
  7341 
       
  7342 #ifdef ASSERT
       
  7343       if (oop(addr)->klass_or_null_acquire() != NULL) {
       
  7344         // Ignore mark word because we are running concurrent with mutators
       
  7345         assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop");
       
  7346         assert(size ==
       
  7347                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
       
  7348                "P-mark and computed size do not agree");
       
  7349       }
       
  7350 #endif
       
  7351 
       
  7352   } else {
       
  7353     // This should be an initialized object that's alive.
       
  7354     assert(oop(addr)->klass_or_null_acquire() != NULL,
       
  7355            "Should be an initialized object");
       
  7356     // Ignore mark word because we are running concurrent with mutators
       
  7357     assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop");
       
  7358     // Verify that the bit map has no bits marked between
       
  7359     // addr and purported end of this block.
       
  7360     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
       
  7361     assert(size >= 3, "Necessary for Printezis marks to work");
       
  7362     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
       
  7363     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
       
  7364   }
       
  7365   return size;
       
  7366 }
       
  7367 
       
  7368 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
       
  7369                                                  size_t chunkSize) {
       
  7370   // do_post_free_or_garbage_chunk() should only be called in the case
       
  7371   // of the adaptive free list allocator.
       
  7372   const bool fcInFreeLists = fc->is_free();
       
  7373   assert((HeapWord*)fc <= _limit, "sweep invariant");
       
  7374   if (CMSTestInFreeList && fcInFreeLists) {
       
  7375     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
       
  7376   }
       
  7377 
       
  7378   log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
       
  7379 
       
  7380   HeapWord* const fc_addr = (HeapWord*) fc;
       
  7381 
       
  7382   bool coalesce = false;
       
  7383   const size_t left  = pointer_delta(fc_addr, freeFinger());
       
  7384   const size_t right = chunkSize;
       
  7385   switch (FLSCoalescePolicy) {
       
  7386     // numeric value forms a coalition aggressiveness metric
       
  7387     case 0:  { // never coalesce
       
  7388       coalesce = false;
       
  7389       break;
       
  7390     }
       
  7391     case 1: { // coalesce if left & right chunks on overpopulated lists
       
  7392       coalesce = _sp->coalOverPopulated(left) &&
       
  7393                  _sp->coalOverPopulated(right);
       
  7394       break;
       
  7395     }
       
  7396     case 2: { // coalesce if left chunk on overpopulated list (default)
       
  7397       coalesce = _sp->coalOverPopulated(left);
       
  7398       break;
       
  7399     }
       
  7400     case 3: { // coalesce if left OR right chunk on overpopulated list
       
  7401       coalesce = _sp->coalOverPopulated(left) ||
       
  7402                  _sp->coalOverPopulated(right);
       
  7403       break;
       
  7404     }
       
  7405     case 4: { // always coalesce
       
  7406       coalesce = true;
       
  7407       break;
       
  7408     }
       
  7409     default:
       
  7410      ShouldNotReachHere();
       
  7411   }
       
  7412 
       
  7413   // Should the current free range be coalesced?
       
  7414   // If the chunk is in a free range and either we decided to coalesce above
       
  7415   // or the chunk is near the large block at the end of the heap
       
  7416   // (isNearLargestChunk() returns true), then coalesce this chunk.
       
  7417   const bool doCoalesce = inFreeRange()
       
  7418                           && (coalesce || _g->isNearLargestChunk(fc_addr));
       
  7419   if (doCoalesce) {
       
  7420     // Coalesce the current free range on the left with the new
       
  7421     // chunk on the right.  If either is on a free list,
       
  7422     // it must be removed from the list and stashed in the closure.
       
  7423     if (freeRangeInFreeLists()) {
       
  7424       FreeChunk* const ffc = (FreeChunk*)freeFinger();
       
  7425       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
       
  7426              "Size of free range is inconsistent with chunk size.");
       
  7427       if (CMSTestInFreeList) {
       
  7428         assert(_sp->verify_chunk_in_free_list(ffc),
       
  7429                "Chunk is not in free lists");
       
  7430       }
       
  7431       _sp->coalDeath(ffc->size());
       
  7432       _sp->removeFreeChunkFromFreeLists(ffc);
       
  7433       set_freeRangeInFreeLists(false);
       
  7434     }
       
  7435     if (fcInFreeLists) {
       
  7436       _sp->coalDeath(chunkSize);
       
  7437       assert(fc->size() == chunkSize,
       
  7438         "The chunk has the wrong size or is not in the free lists");
       
  7439       _sp->removeFreeChunkFromFreeLists(fc);
       
  7440     }
       
  7441     set_lastFreeRangeCoalesced(true);
       
  7442     print_free_block_coalesced(fc);
       
  7443   } else {  // not in a free range and/or should not coalesce
       
  7444     // Return the current free range and start a new one.
       
  7445     if (inFreeRange()) {
       
  7446       // In a free range but cannot coalesce with the right hand chunk.
       
  7447       // Put the current free range into the free lists.
       
  7448       flush_cur_free_chunk(freeFinger(),
       
  7449                            pointer_delta(fc_addr, freeFinger()));
       
  7450     }
       
  7451     // Set up for new free range.  Pass along whether the right hand
       
  7452     // chunk is in the free lists.
       
  7453     initialize_free_range((HeapWord*)fc, fcInFreeLists);
       
  7454   }
       
  7455 }
       
  7456 
       
  7457 // Lookahead flush:
       
  7458 // If we are tracking a free range, and this is the last chunk that
       
  7459 // we'll look at because its end crosses past _limit, we'll preemptively
       
  7460 // flush it along with any free range we may be holding on to. Note that
       
  7461 // this can be the case only for an already free or freshly garbage
       
  7462 // chunk. If this block is an object, it can never straddle
       
  7463 // over _limit. The "straddling" occurs when _limit is set at
       
  7464 // the previous end of the space when this cycle started, and
       
  7465 // a subsequent heap expansion caused the previously co-terminal
       
  7466 // free block to be coalesced with the newly expanded portion,
       
  7467 // thus rendering _limit a non-block-boundary making it dangerous
       
  7468 // for the sweeper to step over and examine.
       
  7469 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
       
  7470   assert(inFreeRange(), "Should only be called if currently in a free range.");
       
  7471   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
       
  7472   assert(_sp->used_region().contains(eob - 1),
       
  7473          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
       
  7474          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
       
  7475          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
       
  7476          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
       
  7477   if (eob >= _limit) {
       
  7478     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
       
  7479     log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
       
  7480                                  "[" PTR_FORMAT "," PTR_FORMAT ") in space "
       
  7481                                  "[" PTR_FORMAT "," PTR_FORMAT ")",
       
  7482                                  p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
       
  7483     // Return the storage we are tracking back into the free lists.
       
  7484     log_develop_trace(gc, sweep)("Flushing ... ");
       
  7485     assert(freeFinger() < eob, "Error");
       
  7486     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
       
  7487   }
       
  7488 }
       
  7489 
       
  7490 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
       
  7491   assert(inFreeRange(), "Should only be called if currently in a free range.");
       
  7492   assert(size > 0,
       
  7493     "A zero sized chunk cannot be added to the free lists.");
       
  7494   if (!freeRangeInFreeLists()) {
       
  7495     if (CMSTestInFreeList) {
       
  7496       FreeChunk* fc = (FreeChunk*) chunk;
       
  7497       fc->set_size(size);
       
  7498       assert(!_sp->verify_chunk_in_free_list(fc),
       
  7499              "chunk should not be in free lists yet");
       
  7500     }
       
  7501     log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
       
  7502     // A new free range is going to be starting.  The current
       
  7503     // free range has not been added to the free lists yet or
       
  7504     // was removed so add it back.
       
  7505     // If the current free range was coalesced, then the death
       
  7506     // of the free range was recorded.  Record a birth now.
       
  7507     if (lastFreeRangeCoalesced()) {
       
  7508       _sp->coalBirth(size);
       
  7509     }
       
  7510     _sp->addChunkAndRepairOffsetTable(chunk, size,
       
  7511             lastFreeRangeCoalesced());
       
  7512   } else {
       
  7513     log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
       
  7514   }
       
  7515   set_inFreeRange(false);
       
  7516   set_freeRangeInFreeLists(false);
       
  7517 }
       
  7518 
       
  7519 // We take a break if we've been at this for a while,
       
  7520 // so as to avoid monopolizing the locks involved.
       
  7521 void SweepClosure::do_yield_work(HeapWord* addr) {
       
  7522   // Return current free chunk being used for coalescing (if any)
       
  7523   // to the appropriate freelist.  After yielding, the next
       
  7524   // free block encountered will start a coalescing range of
       
  7525   // free blocks.  If the next free block is adjacent to the
       
  7526   // chunk just flushed, they will need to wait for the next
       
  7527   // sweep to be coalesced.
       
  7528   if (inFreeRange()) {
       
  7529     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
       
  7530   }
       
  7531 
       
  7532   // First give up the locks, then yield, then re-lock.
       
  7533   // We should probably use a constructor/destructor idiom to
       
  7534   // do this unlock/lock or modify the MutexUnlocker class to
       
  7535   // serve our purpose. XXX
       
  7536   assert_lock_strong(_bitMap->lock());
       
  7537   assert_lock_strong(_freelistLock);
       
  7538   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
       
  7539          "CMS thread should hold CMS token");
       
  7540   _bitMap->lock()->unlock();
       
  7541   _freelistLock->unlock();
       
  7542   ConcurrentMarkSweepThread::desynchronize(true);
       
  7543   _collector->stopTimer();
       
  7544   _collector->incrementYields();
       
  7545 
       
  7546   // See the comment in coordinator_yield()
       
  7547   for (unsigned i = 0; i < CMSYieldSleepCount &&
       
  7548                        ConcurrentMarkSweepThread::should_yield() &&
       
  7549                        !CMSCollector::foregroundGCIsActive(); ++i) {
       
  7550     os::naked_short_sleep(1);
       
  7551   }
       
  7552 
       
  7553   ConcurrentMarkSweepThread::synchronize(true);
       
  7554   _freelistLock->lock_without_safepoint_check();
       
  7555   _bitMap->lock()->lock_without_safepoint_check();
       
  7556   _collector->startTimer();
       
  7557 }
       
  7558 
       
  7559 #ifndef PRODUCT
       
  7560 // This is actually very useful in a product build if it can
       
  7561 // be called from the debugger.  Compile it into the product
       
  7562 // as needed.
       
  7563 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
       
  7564   return debug_cms_space->verify_chunk_in_free_list(fc);
       
  7565 }
       
  7566 #endif
       
  7567 
       
  7568 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
       
  7569   log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
       
  7570                                p2i(fc), fc->size());
       
  7571 }
       
  7572 
       
  7573 // CMSIsAliveClosure
       
  7574 bool CMSIsAliveClosure::do_object_b(oop obj) {
       
  7575   HeapWord* addr = (HeapWord*)obj;
       
  7576   return addr != NULL &&
       
  7577          (!_span.contains(addr) || _bit_map->isMarked(addr));
       
  7578 }
       
  7579 
       
  7580 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
       
  7581                       MemRegion span,
       
  7582                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
       
  7583                       bool cpc):
       
  7584   _collector(collector),
       
  7585   _span(span),
       
  7586   _mark_stack(mark_stack),
       
  7587   _bit_map(bit_map),
       
  7588   _concurrent_precleaning(cpc) {
       
  7589   assert(!_span.is_empty(), "Empty span could spell trouble");
       
  7590 }
       
  7591 
       
  7592 
       
  7593 // CMSKeepAliveClosure: the serial version
       
  7594 void CMSKeepAliveClosure::do_oop(oop obj) {
       
  7595   HeapWord* addr = (HeapWord*)obj;
       
  7596   if (_span.contains(addr) &&
       
  7597       !_bit_map->isMarked(addr)) {
       
  7598     _bit_map->mark(addr);
       
  7599     bool simulate_overflow = false;
       
  7600     NOT_PRODUCT(
       
  7601       if (CMSMarkStackOverflowALot &&
       
  7602           _collector->simulate_overflow()) {
       
  7603         // simulate a stack overflow
       
  7604         simulate_overflow = true;
       
  7605       }
       
  7606     )
       
  7607     if (simulate_overflow || !_mark_stack->push(obj)) {
       
  7608       if (_concurrent_precleaning) {
       
  7609         // We dirty the overflown object and let the remark
       
  7610         // phase deal with it.
       
  7611         assert(_collector->overflow_list_is_empty(), "Error");
       
  7612         // In the case of object arrays, we need to dirty all of
       
  7613         // the cards that the object spans. No locking or atomics
       
  7614         // are needed since no one else can be mutating the mod union
       
  7615         // table.
       
  7616         if (obj->is_objArray()) {
       
  7617           size_t sz = obj->size();
       
  7618           HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
       
  7619           MemRegion redirty_range = MemRegion(addr, end_card_addr);
       
  7620           assert(!redirty_range.is_empty(), "Arithmetical tautology");
       
  7621           _collector->_modUnionTable.mark_range(redirty_range);
       
  7622         } else {
       
  7623           _collector->_modUnionTable.mark(addr);
       
  7624         }
       
  7625         _collector->_ser_kac_preclean_ovflw++;
       
  7626       } else {
       
  7627         _collector->push_on_overflow_list(obj);
       
  7628         _collector->_ser_kac_ovflw++;
       
  7629       }
       
  7630     }
       
  7631   }
       
  7632 }
       
  7633 
       
  7634 // CMSParKeepAliveClosure: a parallel version of the above.
       
  7635 // The work queues are private to each closure (thread),
       
  7636 // but (may be) available for stealing by other threads.
       
  7637 void CMSParKeepAliveClosure::do_oop(oop obj) {
       
  7638   HeapWord* addr = (HeapWord*)obj;
       
  7639   if (_span.contains(addr) &&
       
  7640       !_bit_map->isMarked(addr)) {
       
  7641     // In general, during recursive tracing, several threads
       
  7642     // may be concurrently getting here; the first one to
       
  7643     // "tag" it, claims it.
       
  7644     if (_bit_map->par_mark(addr)) {
       
  7645       bool res = _work_queue->push(obj);
       
  7646       assert(res, "Low water mark should be much less than capacity");
       
  7647       // Do a recursive trim in the hope that this will keep
       
  7648       // stack usage lower, but leave some oops for potential stealers
       
  7649       trim_queue(_low_water_mark);
       
  7650     } // Else, another thread got there first
       
  7651   }
       
  7652 }
       
  7653 
       
  7654 void CMSParKeepAliveClosure::trim_queue(uint max) {
       
  7655   while (_work_queue->size() > max) {
       
  7656     oop new_oop;
       
  7657     if (_work_queue->pop_local(new_oop)) {
       
  7658       assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
       
  7659       assert(_bit_map->isMarked((HeapWord*)new_oop),
       
  7660              "no white objects on this stack!");
       
  7661       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
       
  7662       // iterate over the oops in this oop, marking and pushing
       
  7663       // the ones in CMS heap (i.e. in _span).
       
  7664       new_oop->oop_iterate(&_mark_and_push);
       
  7665     }
       
  7666   }
       
  7667 }
       
  7668 
       
  7669 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
       
  7670                                 CMSCollector* collector,
       
  7671                                 MemRegion span, CMSBitMap* bit_map,
       
  7672                                 OopTaskQueue* work_queue):
       
  7673   _collector(collector),
       
  7674   _span(span),
       
  7675   _work_queue(work_queue),
       
  7676   _bit_map(bit_map) { }
       
  7677 
       
  7678 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
       
  7679   HeapWord* addr = (HeapWord*)obj;
       
  7680   if (_span.contains(addr) &&
       
  7681       !_bit_map->isMarked(addr)) {
       
  7682     if (_bit_map->par_mark(addr)) {
       
  7683       bool simulate_overflow = false;
       
  7684       NOT_PRODUCT(
       
  7685         if (CMSMarkStackOverflowALot &&
       
  7686             _collector->par_simulate_overflow()) {
       
  7687           // simulate a stack overflow
       
  7688           simulate_overflow = true;
       
  7689         }
       
  7690       )
       
  7691       if (simulate_overflow || !_work_queue->push(obj)) {
       
  7692         _collector->par_push_on_overflow_list(obj);
       
  7693         _collector->_par_kac_ovflw++;
       
  7694       }
       
  7695     } // Else another thread got there already
       
  7696   }
       
  7697 }
       
  7698 
       
  7699 //////////////////////////////////////////////////////////////////
       
  7700 //  CMSExpansionCause                /////////////////////////////
       
  7701 //////////////////////////////////////////////////////////////////
       
  7702 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
       
  7703   switch (cause) {
       
  7704     case _no_expansion:
       
  7705       return "No expansion";
       
  7706     case _satisfy_free_ratio:
       
  7707       return "Free ratio";
       
  7708     case _satisfy_promotion:
       
  7709       return "Satisfy promotion";
       
  7710     case _satisfy_allocation:
       
  7711       return "allocation";
       
  7712     case _allocate_par_lab:
       
  7713       return "Par LAB";
       
  7714     case _allocate_par_spooling_space:
       
  7715       return "Par Spooling Space";
       
  7716     case _adaptive_size_policy:
       
  7717       return "Ergonomics";
       
  7718     default:
       
  7719       return "unknown";
       
  7720   }
       
  7721 }
       
  7722 
       
  7723 void CMSDrainMarkingStackClosure::do_void() {
       
  7724   // the max number to take from overflow list at a time
       
  7725   const size_t num = _mark_stack->capacity()/4;
       
  7726   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
       
  7727          "Overflow list should be NULL during concurrent phases");
       
  7728   while (!_mark_stack->isEmpty() ||
       
  7729          // if stack is empty, check the overflow list
       
  7730          _collector->take_from_overflow_list(num, _mark_stack)) {
       
  7731     oop obj = _mark_stack->pop();
       
  7732     HeapWord* addr = (HeapWord*)obj;
       
  7733     assert(_span.contains(addr), "Should be within span");
       
  7734     assert(_bit_map->isMarked(addr), "Should be marked");
       
  7735     assert(oopDesc::is_oop(obj), "Should be an oop");
       
  7736     obj->oop_iterate(_keep_alive);
       
  7737   }
       
  7738 }
       
  7739 
       
  7740 void CMSParDrainMarkingStackClosure::do_void() {
       
  7741   // drain queue
       
  7742   trim_queue(0);
       
  7743 }
       
  7744 
       
  7745 // Trim our work_queue so its length is below max at return
       
  7746 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
       
  7747   while (_work_queue->size() > max) {
       
  7748     oop new_oop;
       
  7749     if (_work_queue->pop_local(new_oop)) {
       
  7750       assert(oopDesc::is_oop(new_oop), "Expected an oop");
       
  7751       assert(_bit_map->isMarked((HeapWord*)new_oop),
       
  7752              "no white objects on this stack!");
       
  7753       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
       
  7754       // iterate over the oops in this oop, marking and pushing
       
  7755       // the ones in CMS heap (i.e. in _span).
       
  7756       new_oop->oop_iterate(&_mark_and_push);
       
  7757     }
       
  7758   }
       
  7759 }
       
  7760 
       
  7761 ////////////////////////////////////////////////////////////////////
       
  7762 // Support for Marking Stack Overflow list handling and related code
       
  7763 ////////////////////////////////////////////////////////////////////
       
  7764 // Much of the following code is similar in shape and spirit to the
       
  7765 // code used in ParNewGC. We should try and share that code
       
  7766 // as much as possible in the future.
       
  7767 
       
  7768 #ifndef PRODUCT
       
  7769 // Debugging support for CMSStackOverflowALot
       
  7770 
       
  7771 // It's OK to call this multi-threaded;  the worst thing
       
  7772 // that can happen is that we'll get a bunch of closely
       
  7773 // spaced simulated overflows, but that's OK, in fact
       
  7774 // probably good as it would exercise the overflow code
       
  7775 // under contention.
       
  7776 bool CMSCollector::simulate_overflow() {
       
  7777   if (_overflow_counter-- <= 0) { // just being defensive
       
  7778     _overflow_counter = CMSMarkStackOverflowInterval;
       
  7779     return true;
       
  7780   } else {
       
  7781     return false;
       
  7782   }
       
  7783 }
       
  7784 
       
  7785 bool CMSCollector::par_simulate_overflow() {
       
  7786   return simulate_overflow();
       
  7787 }
       
  7788 #endif
       
  7789 
       
  7790 // Single-threaded
       
  7791 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
       
  7792   assert(stack->isEmpty(), "Expected precondition");
       
  7793   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
       
  7794   size_t i = num;
       
  7795   oop  cur = _overflow_list;
       
  7796   const markWord proto = markWord::prototype();
       
  7797   NOT_PRODUCT(ssize_t n = 0;)
       
  7798   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
       
  7799     next = oop(cur->mark_raw().to_pointer());
       
  7800     cur->set_mark_raw(proto);   // until proven otherwise
       
  7801     assert(oopDesc::is_oop(cur), "Should be an oop");
       
  7802     bool res = stack->push(cur);
       
  7803     assert(res, "Bit off more than can chew?");
       
  7804     NOT_PRODUCT(n++;)
       
  7805   }
       
  7806   _overflow_list = cur;
       
  7807 #ifndef PRODUCT
       
  7808   assert(_num_par_pushes >= n, "Too many pops?");
       
  7809   _num_par_pushes -=n;
       
  7810 #endif
       
  7811   return !stack->isEmpty();
       
  7812 }
       
  7813 
       
  7814 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
       
  7815 // (MT-safe) Get a prefix of at most "num" from the list.
       
  7816 // The overflow list is chained through the mark word of
       
  7817 // each object in the list. We fetch the entire list,
       
  7818 // break off a prefix of the right size and return the
       
  7819 // remainder. If other threads try to take objects from
       
  7820 // the overflow list at that time, they will wait for
       
  7821 // some time to see if data becomes available. If (and
       
  7822 // only if) another thread places one or more object(s)
       
  7823 // on the global list before we have returned the suffix
       
  7824 // to the global list, we will walk down our local list
       
  7825 // to find its end and append the global list to
       
  7826 // our suffix before returning it. This suffix walk can
       
  7827 // prove to be expensive (quadratic in the amount of traffic)
       
  7828 // when there are many objects in the overflow list and
       
  7829 // there is much producer-consumer contention on the list.
       
  7830 // *NOTE*: The overflow list manipulation code here and
       
  7831 // in ParNewGeneration:: are very similar in shape,
       
  7832 // except that in the ParNew case we use the old (from/eden)
       
  7833 // copy of the object to thread the list via its klass word.
       
  7834 // Because of the common code, if you make any changes in
       
  7835 // the code below, please check the ParNew version to see if
       
  7836 // similar changes might be needed.
       
  7837 // CR 6797058 has been filed to consolidate the common code.
       
  7838 bool CMSCollector::par_take_from_overflow_list(size_t num,
       
  7839                                                OopTaskQueue* work_q,
       
  7840                                                int no_of_gc_threads) {
       
  7841   assert(work_q->size() == 0, "First empty local work queue");
       
  7842   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
       
  7843   if (_overflow_list == NULL) {
       
  7844     return false;
       
  7845   }
       
  7846   // Grab the entire list; we'll put back a suffix
       
  7847   oop prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
       
  7848   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
       
  7849   // set to ParallelGCThreads.
       
  7850   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
       
  7851   size_t sleep_time_millis = MAX2((size_t)1, num/100);
       
  7852   // If the list is busy, we spin for a short while,
       
  7853   // sleeping between attempts to get the list.
       
  7854   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
       
  7855     os::naked_sleep(sleep_time_millis);
       
  7856     if (_overflow_list == NULL) {
       
  7857       // Nothing left to take
       
  7858       return false;
       
  7859     } else if (_overflow_list != BUSY) {
       
  7860       // Try and grab the prefix
       
  7861       prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
       
  7862     }
       
  7863   }
       
  7864   // If the list was found to be empty, or we spun long
       
  7865   // enough, we give up and return empty-handed. If we leave
       
  7866   // the list in the BUSY state below, it must be the case that
       
  7867   // some other thread holds the overflow list and will set it
       
  7868   // to a non-BUSY state in the future.
       
  7869   if (prefix == NULL || prefix == BUSY) {
       
  7870      // Nothing to take or waited long enough
       
  7871      if (prefix == NULL) {
       
  7872        // Write back the NULL in case we overwrote it with BUSY above
       
  7873        // and it is still the same value.
       
  7874        Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
       
  7875      }
       
  7876      return false;
       
  7877   }
       
  7878   assert(prefix != NULL && prefix != BUSY, "Error");
       
  7879   size_t i = num;
       
  7880   oop cur = prefix;
       
  7881   // Walk down the first "num" objects, unless we reach the end.
       
  7882   for (; i > 1 && cur->mark_raw().to_pointer() != NULL; cur = oop(cur->mark_raw().to_pointer()), i--);
       
  7883   if (cur->mark_raw().to_pointer() == NULL) {
       
  7884     // We have "num" or fewer elements in the list, so there
       
  7885     // is nothing to return to the global list.
       
  7886     // Write back the NULL in lieu of the BUSY we wrote
       
  7887     // above, if it is still the same value.
       
  7888     if (_overflow_list == BUSY) {
       
  7889       Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
       
  7890     }
       
  7891   } else {
       
  7892     // Chop off the suffix and return it to the global list.
       
  7893     assert(cur->mark_raw().to_pointer() != (void*)BUSY, "Error");
       
  7894     oop suffix_head = oop(cur->mark_raw().to_pointer()); // suffix will be put back on global list
       
  7895     cur->set_mark_raw(markWord::from_pointer(NULL));     // break off suffix
       
  7896     // It's possible that the list is still in the empty(busy) state
       
  7897     // we left it in a short while ago; in that case we may be
       
  7898     // able to place back the suffix without incurring the cost
       
  7899     // of a walk down the list.
       
  7900     oop observed_overflow_list = _overflow_list;
       
  7901     oop cur_overflow_list = observed_overflow_list;
       
  7902     bool attached = false;
       
  7903     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
       
  7904       observed_overflow_list =
       
  7905         Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list);
       
  7906       if (cur_overflow_list == observed_overflow_list) {
       
  7907         attached = true;
       
  7908         break;
       
  7909       } else cur_overflow_list = observed_overflow_list;
       
  7910     }
       
  7911     if (!attached) {
       
  7912       // Too bad, someone else sneaked in (at least) an element; we'll need
       
  7913       // to do a splice. Find tail of suffix so we can prepend suffix to global
       
  7914       // list.
       
  7915       for (cur = suffix_head; cur->mark_raw().to_pointer() != NULL; cur = (oop)(cur->mark_raw().to_pointer()));
       
  7916       oop suffix_tail = cur;
       
  7917       assert(suffix_tail != NULL && suffix_tail->mark_raw().to_pointer() == NULL,
       
  7918              "Tautology");
       
  7919       observed_overflow_list = _overflow_list;
       
  7920       do {
       
  7921         cur_overflow_list = observed_overflow_list;
       
  7922         if (cur_overflow_list != BUSY) {
       
  7923           // Do the splice ...
       
  7924           suffix_tail->set_mark_raw(markWord::from_pointer((void*)cur_overflow_list));
       
  7925         } else { // cur_overflow_list == BUSY
       
  7926           suffix_tail->set_mark_raw(markWord::from_pointer(NULL));
       
  7927         }
       
  7928         // ... and try to place spliced list back on overflow_list ...
       
  7929         observed_overflow_list =
       
  7930           Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list);
       
  7931       } while (cur_overflow_list != observed_overflow_list);
       
  7932       // ... until we have succeeded in doing so.
       
  7933     }
       
  7934   }
       
  7935 
       
  7936   // Push the prefix elements on work_q
       
  7937   assert(prefix != NULL, "control point invariant");
       
  7938   const markWord proto = markWord::prototype();
       
  7939   oop next;
       
  7940   NOT_PRODUCT(ssize_t n = 0;)
       
  7941   for (cur = prefix; cur != NULL; cur = next) {
       
  7942     next = oop(cur->mark_raw().to_pointer());
       
  7943     cur->set_mark_raw(proto);   // until proven otherwise
       
  7944     assert(oopDesc::is_oop(cur), "Should be an oop");
       
  7945     bool res = work_q->push(cur);
       
  7946     assert(res, "Bit off more than we can chew?");
       
  7947     NOT_PRODUCT(n++;)
       
  7948   }
       
  7949 #ifndef PRODUCT
       
  7950   assert(_num_par_pushes >= n, "Too many pops?");
       
  7951   Atomic::sub(n, &_num_par_pushes);
       
  7952 #endif
       
  7953   return true;
       
  7954 }
       
  7955 
       
  7956 // Single-threaded
       
  7957 void CMSCollector::push_on_overflow_list(oop p) {
       
  7958   NOT_PRODUCT(_num_par_pushes++;)
       
  7959   assert(oopDesc::is_oop(p), "Not an oop");
       
  7960   preserve_mark_if_necessary(p);
       
  7961   p->set_mark_raw(markWord::from_pointer(_overflow_list));
       
  7962   _overflow_list = p;
       
  7963 }
       
  7964 
       
  7965 // Multi-threaded; use CAS to prepend to overflow list
       
  7966 void CMSCollector::par_push_on_overflow_list(oop p) {
       
  7967   NOT_PRODUCT(Atomic::inc(&_num_par_pushes);)
       
  7968   assert(oopDesc::is_oop(p), "Not an oop");
       
  7969   par_preserve_mark_if_necessary(p);
       
  7970   oop observed_overflow_list = _overflow_list;
       
  7971   oop cur_overflow_list;
       
  7972   do {
       
  7973     cur_overflow_list = observed_overflow_list;
       
  7974     if (cur_overflow_list != BUSY) {
       
  7975       p->set_mark_raw(markWord::from_pointer((void*)cur_overflow_list));
       
  7976     } else {
       
  7977       p->set_mark_raw(markWord::from_pointer(NULL));
       
  7978     }
       
  7979     observed_overflow_list =
       
  7980       Atomic::cmpxchg((oopDesc*)p, &_overflow_list, (oopDesc*)cur_overflow_list);
       
  7981   } while (cur_overflow_list != observed_overflow_list);
       
  7982 }
       
  7983 #undef BUSY
       
  7984 
       
  7985 // Single threaded
       
  7986 // General Note on GrowableArray: pushes may silently fail
       
  7987 // because we are (temporarily) out of C-heap for expanding
       
  7988 // the stack. The problem is quite ubiquitous and affects
       
  7989 // a lot of code in the JVM. The prudent thing for GrowableArray
       
  7990 // to do (for now) is to exit with an error. However, that may
       
  7991 // be too draconian in some cases because the caller may be
       
  7992 // able to recover without much harm. For such cases, we
       
  7993 // should probably introduce a "soft_push" method which returns
       
  7994 // an indication of success or failure with the assumption that
       
  7995 // the caller may be able to recover from a failure; code in
       
  7996 // the VM can then be changed, incrementally, to deal with such
       
  7997 // failures where possible, thus, incrementally hardening the VM
       
  7998 // in such low resource situations.
       
  7999 void CMSCollector::preserve_mark_work(oop p, markWord m) {
       
  8000   _preserved_oop_stack.push(p);
       
  8001   _preserved_mark_stack.push(m);
       
  8002   assert(m == p->mark_raw(), "Mark word changed");
       
  8003   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
       
  8004          "bijection");
       
  8005 }
       
  8006 
       
  8007 // Single threaded
       
  8008 void CMSCollector::preserve_mark_if_necessary(oop p) {
       
  8009   markWord m = p->mark_raw();
       
  8010   if (p->mark_must_be_preserved(m)) {
       
  8011     preserve_mark_work(p, m);
       
  8012   }
       
  8013 }
       
  8014 
       
  8015 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
       
  8016   markWord m = p->mark_raw();
       
  8017   if (p->mark_must_be_preserved(m)) {
       
  8018     MutexLocker x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
       
  8019     // Even though we read the mark word without holding
       
  8020     // the lock, we are assured that it will not change
       
  8021     // because we "own" this oop, so no other thread can
       
  8022     // be trying to push it on the overflow list; see
       
  8023     // the assertion in preserve_mark_work() that checks
       
  8024     // that m == p->mark_raw().
       
  8025     preserve_mark_work(p, m);
       
  8026   }
       
  8027 }
       
  8028 
       
  8029 // We should be able to do this multi-threaded,
       
  8030 // a chunk of stack being a task (this is
       
  8031 // correct because each oop only ever appears
       
  8032 // once in the overflow list. However, it's
       
  8033 // not very easy to completely overlap this with
       
  8034 // other operations, so will generally not be done
       
  8035 // until all work's been completed. Because we
       
  8036 // expect the preserved oop stack (set) to be small,
       
  8037 // it's probably fine to do this single-threaded.
       
  8038 // We can explore cleverer concurrent/overlapped/parallel
       
  8039 // processing of preserved marks if we feel the
       
  8040 // need for this in the future. Stack overflow should
       
  8041 // be so rare in practice and, when it happens, its
       
  8042 // effect on performance so great that this will
       
  8043 // likely just be in the noise anyway.
       
  8044 void CMSCollector::restore_preserved_marks_if_any() {
       
  8045   assert(SafepointSynchronize::is_at_safepoint(),
       
  8046          "world should be stopped");
       
  8047   assert(Thread::current()->is_ConcurrentGC_thread() ||
       
  8048          Thread::current()->is_VM_thread(),
       
  8049          "should be single-threaded");
       
  8050   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
       
  8051          "bijection");
       
  8052 
       
  8053   while (!_preserved_oop_stack.is_empty()) {
       
  8054     oop p = _preserved_oop_stack.pop();
       
  8055     assert(oopDesc::is_oop(p), "Should be an oop");
       
  8056     assert(_span.contains(p), "oop should be in _span");
       
  8057     assert(p->mark_raw() == markWord::prototype(),
       
  8058            "Set when taken from overflow list");
       
  8059     markWord m = _preserved_mark_stack.pop();
       
  8060     p->set_mark_raw(m);
       
  8061   }
       
  8062   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
       
  8063          "stacks were cleared above");
       
  8064 }
       
  8065 
       
  8066 #ifndef PRODUCT
       
  8067 bool CMSCollector::no_preserved_marks() const {
       
  8068   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
       
  8069 }
       
  8070 #endif
       
  8071 
       
  8072 // Transfer some number of overflown objects to usual marking
       
  8073 // stack. Return true if some objects were transferred.
       
  8074 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
       
  8075   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
       
  8076                     (size_t)ParGCDesiredObjsFromOverflowList);
       
  8077 
       
  8078   bool res = _collector->take_from_overflow_list(num, _mark_stack);
       
  8079   assert(_collector->overflow_list_is_empty() || res,
       
  8080          "If list is not empty, we should have taken something");
       
  8081   assert(!res || !_mark_stack->isEmpty(),
       
  8082          "If we took something, it should now be on our stack");
       
  8083   return res;
       
  8084 }
       
  8085 
       
  8086 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
       
  8087   size_t res = _sp->block_size_no_stall(addr, _collector);
       
  8088   if (_sp->block_is_obj(addr)) {
       
  8089     if (_live_bit_map->isMarked(addr)) {
       
  8090       // It can't have been dead in a previous cycle
       
  8091       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
       
  8092     } else {
       
  8093       _dead_bit_map->mark(addr);      // mark the dead object
       
  8094     }
       
  8095   }
       
  8096   // Could be 0, if the block size could not be computed without stalling.
       
  8097   return res;
       
  8098 }
       
  8099 
       
  8100 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
       
  8101   GCMemoryManager* manager = CMSHeap::heap()->old_manager();
       
  8102   switch (phase) {
       
  8103     case CMSCollector::InitialMarking:
       
  8104       initialize(manager /* GC manager */ ,
       
  8105                  cause   /* cause of the GC */,
       
  8106                  true    /* allMemoryPoolsAffected */,
       
  8107                  true    /* recordGCBeginTime */,
       
  8108                  true    /* recordPreGCUsage */,
       
  8109                  false   /* recordPeakUsage */,
       
  8110                  false   /* recordPostGCusage */,
       
  8111                  true    /* recordAccumulatedGCTime */,
       
  8112                  false   /* recordGCEndTime */,
       
  8113                  false   /* countCollection */  );
       
  8114       break;
       
  8115 
       
  8116     case CMSCollector::FinalMarking:
       
  8117       initialize(manager /* GC manager */ ,
       
  8118                  cause   /* cause of the GC */,
       
  8119                  true    /* allMemoryPoolsAffected */,
       
  8120                  false   /* recordGCBeginTime */,
       
  8121                  false   /* recordPreGCUsage */,
       
  8122                  false   /* recordPeakUsage */,
       
  8123                  false   /* recordPostGCusage */,
       
  8124                  true    /* recordAccumulatedGCTime */,
       
  8125                  false   /* recordGCEndTime */,
       
  8126                  false   /* countCollection */  );
       
  8127       break;
       
  8128 
       
  8129     case CMSCollector::Sweeping:
       
  8130       initialize(manager /* GC manager */ ,
       
  8131                  cause   /* cause of the GC */,
       
  8132                  true    /* allMemoryPoolsAffected */,
       
  8133                  false   /* recordGCBeginTime */,
       
  8134                  false   /* recordPreGCUsage */,
       
  8135                  true    /* recordPeakUsage */,
       
  8136                  true    /* recordPostGCusage */,
       
  8137                  false   /* recordAccumulatedGCTime */,
       
  8138                  true    /* recordGCEndTime */,
       
  8139                  true    /* countCollection */  );
       
  8140       break;
       
  8141 
       
  8142     default:
       
  8143       ShouldNotReachHere();
       
  8144   }
       
  8145 }