src/hotspot/share/gc/cms/cmsCardTable.cpp
branchaefimov-dns-client-branch
changeset 59099 fcdb8e7ead8f
parent 58984 15e026239a6c
parent 59075 355f4f42dda5
child 59100 b92aac38b046
equal deleted inserted replaced
58984:15e026239a6c 59099:fcdb8e7ead8f
     1 /*
       
     2  * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "gc/cms/cmsCardTable.hpp"
       
    27 #include "gc/cms/cmsHeap.hpp"
       
    28 #include "gc/shared/cardTableBarrierSet.hpp"
       
    29 #include "gc/shared/cardTableRS.hpp"
       
    30 #include "gc/shared/collectedHeap.hpp"
       
    31 #include "gc/shared/space.inline.hpp"
       
    32 #include "memory/allocation.inline.hpp"
       
    33 #include "memory/virtualspace.hpp"
       
    34 #include "oops/oop.inline.hpp"
       
    35 #include "runtime/java.hpp"
       
    36 #include "runtime/mutexLocker.hpp"
       
    37 #include "runtime/orderAccess.hpp"
       
    38 #include "runtime/vmThread.hpp"
       
    39 
       
    40 CMSCardTable::CMSCardTable(MemRegion whole_heap) :
       
    41     CardTableRS(whole_heap, CMSPrecleaningEnabled /* scanned_concurrently */) {
       
    42 }
       
    43 
       
    44 // Returns the number of chunks necessary to cover "mr".
       
    45 size_t CMSCardTable::chunks_to_cover(MemRegion mr) {
       
    46   return (size_t)(addr_to_chunk_index(mr.last()) -
       
    47                   addr_to_chunk_index(mr.start()) + 1);
       
    48 }
       
    49 
       
    50 // Returns the index of the chunk in a stride which
       
    51 // covers the given address.
       
    52 uintptr_t CMSCardTable::addr_to_chunk_index(const void* addr) {
       
    53   uintptr_t card = (uintptr_t) byte_for(addr);
       
    54   return card / ParGCCardsPerStrideChunk;
       
    55 }
       
    56 
       
    57 void CMSCardTable::
       
    58 non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
       
    59                                      OopsInGenClosure* cl,
       
    60                                      CardTableRS* ct,
       
    61                                      uint n_threads) {
       
    62   assert(n_threads > 0, "expected n_threads > 0");
       
    63   assert(n_threads <= ParallelGCThreads,
       
    64          "n_threads: %u > ParallelGCThreads: %u", n_threads, ParallelGCThreads);
       
    65 
       
    66   // Make sure the LNC array is valid for the space.
       
    67   CardValue** lowest_non_clean;
       
    68   uintptr_t   lowest_non_clean_base_chunk_index;
       
    69   size_t      lowest_non_clean_chunk_size;
       
    70   get_LNC_array_for_space(sp, lowest_non_clean,
       
    71                           lowest_non_clean_base_chunk_index,
       
    72                           lowest_non_clean_chunk_size);
       
    73 
       
    74   uint n_strides = n_threads * ParGCStridesPerThread;
       
    75   SequentialSubTasksDone* pst = sp->par_seq_tasks();
       
    76   // Sets the condition for completion of the subtask (how many threads
       
    77   // need to finish in order to be done).
       
    78   pst->set_n_threads(n_threads);
       
    79   pst->set_n_tasks(n_strides);
       
    80 
       
    81   uint stride = 0;
       
    82   while (pst->try_claim_task(/* reference */ stride)) {
       
    83     process_stride(sp, mr, stride, n_strides,
       
    84                    cl, ct,
       
    85                    lowest_non_clean,
       
    86                    lowest_non_clean_base_chunk_index,
       
    87                    lowest_non_clean_chunk_size);
       
    88   }
       
    89   if (pst->all_tasks_completed()) {
       
    90     // Clear lowest_non_clean array for next time.
       
    91     intptr_t first_chunk_index = addr_to_chunk_index(mr.start());
       
    92     uintptr_t last_chunk_index  = addr_to_chunk_index(mr.last());
       
    93     for (uintptr_t ch = first_chunk_index; ch <= last_chunk_index; ch++) {
       
    94       intptr_t ind = ch - lowest_non_clean_base_chunk_index;
       
    95       assert(0 <= ind && ind < (intptr_t)lowest_non_clean_chunk_size,
       
    96              "Bounds error");
       
    97       lowest_non_clean[ind] = NULL;
       
    98     }
       
    99   }
       
   100 }
       
   101 
       
   102 void
       
   103 CMSCardTable::
       
   104 process_stride(Space* sp,
       
   105                MemRegion used,
       
   106                jint stride, int n_strides,
       
   107                OopsInGenClosure* cl,
       
   108                CardTableRS* ct,
       
   109                CardValue** lowest_non_clean,
       
   110                uintptr_t lowest_non_clean_base_chunk_index,
       
   111                size_t    lowest_non_clean_chunk_size) {
       
   112   // We go from higher to lower addresses here; it wouldn't help that much
       
   113   // because of the strided parallelism pattern used here.
       
   114 
       
   115   // Find the first card address of the first chunk in the stride that is
       
   116   // at least "bottom" of the used region.
       
   117   CardValue* start_card  = byte_for(used.start());
       
   118   CardValue* end_card    = byte_after(used.last());
       
   119   uintptr_t start_chunk = addr_to_chunk_index(used.start());
       
   120   uintptr_t start_chunk_stride_num = start_chunk % n_strides;
       
   121   CardValue* chunk_card_start;
       
   122 
       
   123   if ((uintptr_t)stride >= start_chunk_stride_num) {
       
   124     chunk_card_start = (start_card +
       
   125                         (stride - start_chunk_stride_num) * ParGCCardsPerStrideChunk);
       
   126   } else {
       
   127     // Go ahead to the next chunk group boundary, then to the requested stride.
       
   128     chunk_card_start = (start_card +
       
   129                         (n_strides - start_chunk_stride_num + stride) * ParGCCardsPerStrideChunk);
       
   130   }
       
   131 
       
   132   while (chunk_card_start < end_card) {
       
   133     // Even though we go from lower to higher addresses below, the
       
   134     // strided parallelism can interleave the actual processing of the
       
   135     // dirty pages in various ways. For a specific chunk within this
       
   136     // stride, we take care to avoid double scanning or missing a card
       
   137     // by suitably initializing the "min_done" field in process_chunk_boundaries()
       
   138     // below, together with the dirty region extension accomplished in
       
   139     // DirtyCardToOopClosure::do_MemRegion().
       
   140     CardValue* chunk_card_end = chunk_card_start + ParGCCardsPerStrideChunk;
       
   141     // Invariant: chunk_mr should be fully contained within the "used" region.
       
   142     MemRegion chunk_mr = MemRegion(addr_for(chunk_card_start),
       
   143                                    chunk_card_end >= end_card ?
       
   144                                    used.end() : addr_for(chunk_card_end));
       
   145     assert(chunk_mr.word_size() > 0, "[chunk_card_start > used_end)");
       
   146     assert(used.contains(chunk_mr), "chunk_mr should be subset of used");
       
   147 
       
   148     // This function is used by the parallel card table iteration.
       
   149     const bool parallel = true;
       
   150 
       
   151     DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
       
   152                                                      cl->gen_boundary(),
       
   153                                                      parallel);
       
   154     ClearNoncleanCardWrapper clear_cl(dcto_cl, ct, parallel);
       
   155 
       
   156 
       
   157     // Process the chunk.
       
   158     process_chunk_boundaries(sp,
       
   159                              dcto_cl,
       
   160                              chunk_mr,
       
   161                              used,
       
   162                              lowest_non_clean,
       
   163                              lowest_non_clean_base_chunk_index,
       
   164                              lowest_non_clean_chunk_size);
       
   165 
       
   166     // We want the LNC array updates above in process_chunk_boundaries
       
   167     // to be visible before any of the card table value changes as a
       
   168     // result of the dirty card iteration below.
       
   169     OrderAccess::storestore();
       
   170 
       
   171     // We want to clear the cards: clear_cl here does the work of finding
       
   172     // contiguous dirty ranges of cards to process and clear.
       
   173     clear_cl.do_MemRegion(chunk_mr);
       
   174 
       
   175     // Find the next chunk of the stride.
       
   176     chunk_card_start += ParGCCardsPerStrideChunk * n_strides;
       
   177   }
       
   178 }
       
   179 
       
   180 void
       
   181 CMSCardTable::
       
   182 process_chunk_boundaries(Space* sp,
       
   183                          DirtyCardToOopClosure* dcto_cl,
       
   184                          MemRegion chunk_mr,
       
   185                          MemRegion used,
       
   186                          CardValue** lowest_non_clean,
       
   187                          uintptr_t lowest_non_clean_base_chunk_index,
       
   188                          size_t    lowest_non_clean_chunk_size)
       
   189 {
       
   190   // We must worry about non-array objects that cross chunk boundaries,
       
   191   // because such objects are both precisely and imprecisely marked:
       
   192   // .. if the head of such an object is dirty, the entire object
       
   193   //    needs to be scanned, under the interpretation that this
       
   194   //    was an imprecise mark
       
   195   // .. if the head of such an object is not dirty, we can assume
       
   196   //    precise marking and it's efficient to scan just the dirty
       
   197   //    cards.
       
   198   // In either case, each scanned reference must be scanned precisely
       
   199   // once so as to avoid cloning of a young referent. For efficiency,
       
   200   // our closures depend on this property and do not protect against
       
   201   // double scans.
       
   202 
       
   203   uintptr_t start_chunk_index = addr_to_chunk_index(chunk_mr.start());
       
   204   assert(start_chunk_index >= lowest_non_clean_base_chunk_index, "Bounds error.");
       
   205   uintptr_t cur_chunk_index   = start_chunk_index - lowest_non_clean_base_chunk_index;
       
   206 
       
   207   // First, set "our" lowest_non_clean entry, which would be
       
   208   // used by the thread scanning an adjoining left chunk with
       
   209   // a non-array object straddling the mutual boundary.
       
   210   // Find the object that spans our boundary, if one exists.
       
   211   // first_block is the block possibly straddling our left boundary.
       
   212   HeapWord* first_block = sp->block_start(chunk_mr.start());
       
   213   assert((chunk_mr.start() != used.start()) || (first_block == chunk_mr.start()),
       
   214          "First chunk should always have a co-initial block");
       
   215   // Does the block straddle the chunk's left boundary, and is it
       
   216   // a non-array object?
       
   217   if (first_block < chunk_mr.start()        // first block straddles left bdry
       
   218       && sp->block_is_obj(first_block)      // first block is an object
       
   219       && !(oop(first_block)->is_objArray()  // first block is not an array (arrays are precisely dirtied)
       
   220            || oop(first_block)->is_typeArray())) {
       
   221     // Find our least non-clean card, so that a left neighbor
       
   222     // does not scan an object straddling the mutual boundary
       
   223     // too far to the right, and attempt to scan a portion of
       
   224     // that object twice.
       
   225     CardValue* first_dirty_card = NULL;
       
   226     CardValue* last_card_of_first_obj =
       
   227         byte_for(first_block + sp->block_size(first_block) - 1);
       
   228     CardValue* first_card_of_cur_chunk = byte_for(chunk_mr.start());
       
   229     CardValue* last_card_of_cur_chunk = byte_for(chunk_mr.last());
       
   230     CardValue* last_card_to_check = MIN2(last_card_of_cur_chunk, last_card_of_first_obj);
       
   231     // Note that this does not need to go beyond our last card
       
   232     // if our first object completely straddles this chunk.
       
   233     for (CardValue* cur = first_card_of_cur_chunk;
       
   234          cur <= last_card_to_check; cur++) {
       
   235       CardValue val = *cur;
       
   236       if (card_will_be_scanned(val)) {
       
   237         first_dirty_card = cur;
       
   238         break;
       
   239       } else {
       
   240         assert(!card_may_have_been_dirty(val), "Error");
       
   241       }
       
   242     }
       
   243     if (first_dirty_card != NULL) {
       
   244       assert(cur_chunk_index < lowest_non_clean_chunk_size, "Bounds error.");
       
   245       assert(lowest_non_clean[cur_chunk_index] == NULL,
       
   246              "Write exactly once : value should be stable hereafter for this round");
       
   247       lowest_non_clean[cur_chunk_index] = first_dirty_card;
       
   248     }
       
   249   } else {
       
   250     // In this case we can help our neighbor by just asking them
       
   251     // to stop at our first card (even though it may not be dirty).
       
   252     assert(lowest_non_clean[cur_chunk_index] == NULL, "Write once : value should be stable hereafter");
       
   253     CardValue* first_card_of_cur_chunk = byte_for(chunk_mr.start());
       
   254     lowest_non_clean[cur_chunk_index] = first_card_of_cur_chunk;
       
   255   }
       
   256 
       
   257   // Next, set our own max_to_do, which will strictly/exclusively bound
       
   258   // the highest address that we will scan past the right end of our chunk.
       
   259   HeapWord* max_to_do = NULL;
       
   260   if (chunk_mr.end() < used.end()) {
       
   261     // This is not the last chunk in the used region.
       
   262     // What is our last block? We check the first block of
       
   263     // the next (right) chunk rather than strictly check our last block
       
   264     // because it's potentially more efficient to do so.
       
   265     HeapWord* const last_block = sp->block_start(chunk_mr.end());
       
   266     assert(last_block <= chunk_mr.end(), "In case this property changes.");
       
   267     if ((last_block == chunk_mr.end())     // our last block does not straddle boundary
       
   268         || !sp->block_is_obj(last_block)   // last_block isn't an object
       
   269         || oop(last_block)->is_objArray()  // last_block is an array (precisely marked)
       
   270         || oop(last_block)->is_typeArray()) {
       
   271       max_to_do = chunk_mr.end();
       
   272     } else {
       
   273       assert(last_block < chunk_mr.end(), "Tautology");
       
   274       // It is a non-array object that straddles the right boundary of this chunk.
       
   275       // last_obj_card is the card corresponding to the start of the last object
       
   276       // in the chunk.  Note that the last object may not start in
       
   277       // the chunk.
       
   278       CardValue* const last_obj_card = byte_for(last_block);
       
   279       const CardValue val = *last_obj_card;
       
   280       if (!card_will_be_scanned(val)) {
       
   281         assert(!card_may_have_been_dirty(val), "Error");
       
   282         // The card containing the head is not dirty.  Any marks on
       
   283         // subsequent cards still in this chunk must have been made
       
   284         // precisely; we can cap processing at the end of our chunk.
       
   285         max_to_do = chunk_mr.end();
       
   286       } else {
       
   287         // The last object must be considered dirty, and extends onto the
       
   288         // following chunk.  Look for a dirty card in that chunk that will
       
   289         // bound our processing.
       
   290         CardValue* limit_card = NULL;
       
   291         const size_t last_block_size = sp->block_size(last_block);
       
   292         CardValue* const last_card_of_last_obj =
       
   293           byte_for(last_block + last_block_size - 1);
       
   294         CardValue* const first_card_of_next_chunk = byte_for(chunk_mr.end());
       
   295         // This search potentially goes a long distance looking
       
   296         // for the next card that will be scanned, terminating
       
   297         // at the end of the last_block, if no earlier dirty card
       
   298         // is found.
       
   299         assert(byte_for(chunk_mr.end()) - byte_for(chunk_mr.start()) == ParGCCardsPerStrideChunk,
       
   300                "last card of next chunk may be wrong");
       
   301         for (CardValue* cur = first_card_of_next_chunk;
       
   302              cur <= last_card_of_last_obj; cur++) {
       
   303           const CardValue val = *cur;
       
   304           if (card_will_be_scanned(val)) {
       
   305             limit_card = cur; break;
       
   306           } else {
       
   307             assert(!card_may_have_been_dirty(val), "Error: card can't be skipped");
       
   308           }
       
   309         }
       
   310         if (limit_card != NULL) {
       
   311           max_to_do = addr_for(limit_card);
       
   312           assert(limit_card != NULL && max_to_do != NULL, "Error");
       
   313         } else {
       
   314           // The following is a pessimistic value, because it's possible
       
   315           // that a dirty card on a subsequent chunk has been cleared by
       
   316           // the time we get to look at it; we'll correct for that further below,
       
   317           // using the LNC array which records the least non-clean card
       
   318           // before cards were cleared in a particular chunk.
       
   319           limit_card = last_card_of_last_obj;
       
   320           max_to_do = last_block + last_block_size;
       
   321           assert(limit_card != NULL && max_to_do != NULL, "Error");
       
   322         }
       
   323         assert(0 < cur_chunk_index+1 && cur_chunk_index+1 < lowest_non_clean_chunk_size,
       
   324                "Bounds error.");
       
   325         // It is possible that a dirty card for the last object may have been
       
   326         // cleared before we had a chance to examine it. In that case, the value
       
   327         // will have been logged in the LNC for that chunk.
       
   328         // We need to examine as many chunks to the right as this object
       
   329         // covers. However, we need to bound this checking to the largest
       
   330         // entry in the LNC array: this is because the heap may expand
       
   331         // after the LNC array has been created but before we reach this point,
       
   332         // and the last block in our chunk may have been expanded to include
       
   333         // the expansion delta (and possibly subsequently allocated from, so
       
   334         // it wouldn't be sufficient to check whether that last block was
       
   335         // or was not an object at this point).
       
   336         uintptr_t last_chunk_index_to_check = addr_to_chunk_index(last_block + last_block_size - 1)
       
   337                                               - lowest_non_clean_base_chunk_index;
       
   338         const uintptr_t last_chunk_index    = addr_to_chunk_index(used.last())
       
   339                                               - lowest_non_clean_base_chunk_index;
       
   340         if (last_chunk_index_to_check > last_chunk_index) {
       
   341           assert(last_block + last_block_size > used.end(),
       
   342                  "Inconsistency detected: last_block [" PTR_FORMAT "," PTR_FORMAT "]"
       
   343                  " does not exceed used.end() = " PTR_FORMAT ","
       
   344                  " yet last_chunk_index_to_check " INTPTR_FORMAT
       
   345                  " exceeds last_chunk_index " INTPTR_FORMAT,
       
   346                  p2i(last_block), p2i(last_block + last_block_size),
       
   347                  p2i(used.end()),
       
   348                  last_chunk_index_to_check, last_chunk_index);
       
   349           assert(sp->used_region().end() > used.end(),
       
   350                  "Expansion did not happen: "
       
   351                  "[" PTR_FORMAT "," PTR_FORMAT ") -> [" PTR_FORMAT "," PTR_FORMAT ")",
       
   352                  p2i(sp->used_region().start()), p2i(sp->used_region().end()),
       
   353                  p2i(used.start()), p2i(used.end()));
       
   354           last_chunk_index_to_check = last_chunk_index;
       
   355         }
       
   356         for (uintptr_t lnc_index = cur_chunk_index + 1;
       
   357              lnc_index <= last_chunk_index_to_check;
       
   358              lnc_index++) {
       
   359           CardValue* lnc_card = lowest_non_clean[lnc_index];
       
   360           if (lnc_card != NULL) {
       
   361             // we can stop at the first non-NULL entry we find
       
   362             if (lnc_card <= limit_card) {
       
   363               limit_card = lnc_card;
       
   364               max_to_do = addr_for(limit_card);
       
   365               assert(limit_card != NULL && max_to_do != NULL, "Error");
       
   366             }
       
   367             // In any case, we break now
       
   368             break;
       
   369           }  // else continue to look for a non-NULL entry if any
       
   370         }
       
   371         assert(limit_card != NULL && max_to_do != NULL, "Error");
       
   372       }
       
   373       assert(max_to_do != NULL, "OOPS 1 !");
       
   374     }
       
   375     assert(max_to_do != NULL, "OOPS 2!");
       
   376   } else {
       
   377     max_to_do = used.end();
       
   378   }
       
   379   assert(max_to_do != NULL, "OOPS 3!");
       
   380   // Now we can set the closure we're using so it doesn't to beyond
       
   381   // max_to_do.
       
   382   dcto_cl->set_min_done(max_to_do);
       
   383 #ifndef PRODUCT
       
   384   dcto_cl->set_last_bottom(max_to_do);
       
   385 #endif
       
   386 }
       
   387 
       
   388 void
       
   389 CMSCardTable::
       
   390 get_LNC_array_for_space(Space* sp,
       
   391                         CardValue**& lowest_non_clean,
       
   392                         uintptr_t& lowest_non_clean_base_chunk_index,
       
   393                         size_t& lowest_non_clean_chunk_size) {
       
   394 
       
   395   int       i        = find_covering_region_containing(sp->bottom());
       
   396   MemRegion covered  = _covered[i];
       
   397   size_t    n_chunks = chunks_to_cover(covered);
       
   398 
       
   399   // Only the first thread to obtain the lock will resize the
       
   400   // LNC array for the covered region.  Any later expansion can't affect
       
   401   // the used_at_save_marks region.
       
   402   // (I observed a bug in which the first thread to execute this would
       
   403   // resize, and then it would cause "expand_and_allocate" that would
       
   404   // increase the number of chunks in the covered region.  Then a second
       
   405   // thread would come and execute this, see that the size didn't match,
       
   406   // and free and allocate again.  So the first thread would be using a
       
   407   // freed "_lowest_non_clean" array.)
       
   408 
       
   409   // Do a dirty read here. If we pass the conditional then take the rare
       
   410   // event lock and do the read again in case some other thread had already
       
   411   // succeeded and done the resize.
       
   412   int cur_collection = CMSHeap::heap()->total_collections();
       
   413   // Updated _last_LNC_resizing_collection[i] must not be visible before
       
   414   // _lowest_non_clean and friends are visible. Therefore use acquire/release
       
   415   // to guarantee this on non TSO architecures.
       
   416   if (OrderAccess::load_acquire(&_last_LNC_resizing_collection[i]) != cur_collection) {
       
   417     MutexLocker x(ParGCRareEvent_lock);
       
   418     // This load_acquire is here for clarity only. The MutexLocker already fences.
       
   419     if (OrderAccess::load_acquire(&_last_LNC_resizing_collection[i]) != cur_collection) {
       
   420       if (_lowest_non_clean[i] == NULL ||
       
   421           n_chunks != _lowest_non_clean_chunk_size[i]) {
       
   422 
       
   423         // Should we delete the old?
       
   424         if (_lowest_non_clean[i] != NULL) {
       
   425           assert(n_chunks != _lowest_non_clean_chunk_size[i],
       
   426                  "logical consequence");
       
   427           FREE_C_HEAP_ARRAY(CardPtr, _lowest_non_clean[i]);
       
   428           _lowest_non_clean[i] = NULL;
       
   429         }
       
   430         // Now allocate a new one if necessary.
       
   431         if (_lowest_non_clean[i] == NULL) {
       
   432           _lowest_non_clean[i]                  = NEW_C_HEAP_ARRAY(CardPtr, n_chunks, mtGC);
       
   433           _lowest_non_clean_chunk_size[i]       = n_chunks;
       
   434           _lowest_non_clean_base_chunk_index[i] = addr_to_chunk_index(covered.start());
       
   435           for (int j = 0; j < (int)n_chunks; j++)
       
   436             _lowest_non_clean[i][j] = NULL;
       
   437         }
       
   438       }
       
   439       // Make sure this gets visible only after _lowest_non_clean* was initialized
       
   440       OrderAccess::release_store(&_last_LNC_resizing_collection[i], cur_collection);
       
   441     }
       
   442   }
       
   443   // In any case, now do the initialization.
       
   444   lowest_non_clean                  = _lowest_non_clean[i];
       
   445   lowest_non_clean_base_chunk_index = _lowest_non_clean_base_chunk_index[i];
       
   446   lowest_non_clean_chunk_size       = _lowest_non_clean_chunk_size[i];
       
   447 }
       
   448 
       
   449 #ifdef ASSERT
       
   450 void CMSCardTable::verify_used_region_at_save_marks(Space* sp) const {
       
   451   MemRegion ur    = sp->used_region();
       
   452   MemRegion urasm = sp->used_region_at_save_marks();
       
   453 
       
   454   if (!ur.contains(urasm)) {
       
   455     log_warning(gc)("CMS+ParNew: Did you forget to call save_marks()? "
       
   456                     "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
       
   457                     "[" PTR_FORMAT ", " PTR_FORMAT ")",
       
   458                     p2i(urasm.start()), p2i(urasm.end()), p2i(ur.start()), p2i(ur.end()));
       
   459     MemRegion ur2 = sp->used_region();
       
   460     MemRegion urasm2 = sp->used_region_at_save_marks();
       
   461     if (!ur.equals(ur2)) {
       
   462       log_warning(gc)("CMS+ParNew: Flickering used_region()!!");
       
   463     }
       
   464     if (!urasm.equals(urasm2)) {
       
   465       log_warning(gc)("CMS+ParNew: Flickering used_region_at_save_marks()!!");
       
   466     }
       
   467     ShouldNotReachHere();
       
   468   }
       
   469 }
       
   470 #endif // ASSERT