hotspot/src/share/vm/opto/loopTransform.cpp
changeset 9124 f60dee480d49
parent 8921 14bfe81f2a9d
parent 9121 704ece791737
child 9434 56d7158be6dc
equal deleted inserted replaced
9093:62b8e328f8c8 9124:f60dee480d49
    58 // Put loop body on igvn work list
    58 // Put loop body on igvn work list
    59 void IdealLoopTree::record_for_igvn() {
    59 void IdealLoopTree::record_for_igvn() {
    60   for( uint i = 0; i < _body.size(); i++ ) {
    60   for( uint i = 0; i < _body.size(); i++ ) {
    61     Node *n = _body.at(i);
    61     Node *n = _body.at(i);
    62     _phase->_igvn._worklist.push(n);
    62     _phase->_igvn._worklist.push(n);
       
    63   }
       
    64 }
       
    65 
       
    66 //------------------------------compute_exact_trip_count-----------------------
       
    67 // Compute loop exact trip count if possible. Do not recalculate trip count for
       
    68 // split loops (pre-main-post) which have their limits and inits behind Opaque node.
       
    69 void IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
       
    70   if (!_head->as_Loop()->is_valid_counted_loop()) {
       
    71     return;
       
    72   }
       
    73   CountedLoopNode* cl = _head->as_CountedLoop();
       
    74   // Trip count may become nonexact for iteration split loops since
       
    75   // RCE modifies limits. Note, _trip_count value is not reset since
       
    76   // it is used to limit unrolling of main loop.
       
    77   cl->set_nonexact_trip_count();
       
    78 
       
    79   // Loop's test should be part of loop.
       
    80   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
       
    81     return; // Infinite loop
       
    82 
       
    83 #ifdef ASSERT
       
    84   BoolTest::mask bt = cl->loopexit()->test_trip();
       
    85   assert(bt == BoolTest::lt || bt == BoolTest::gt ||
       
    86          bt == BoolTest::ne, "canonical test is expected");
       
    87 #endif
       
    88 
       
    89   Node* init_n = cl->init_trip();
       
    90   Node* limit_n = cl->limit();
       
    91   if (init_n  != NULL &&  init_n->is_Con() &&
       
    92       limit_n != NULL && limit_n->is_Con()) {
       
    93     // Use longs to avoid integer overflow.
       
    94     int stride_con  = cl->stride_con();
       
    95     long init_con   = cl->init_trip()->get_int();
       
    96     long limit_con  = cl->limit()->get_int();
       
    97     int stride_m    = stride_con - (stride_con > 0 ? 1 : -1);
       
    98     long trip_count = (limit_con - init_con + stride_m)/stride_con;
       
    99     if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
       
   100       // Set exact trip count.
       
   101       cl->set_exact_trip_count((uint)trip_count);
       
   102     }
    63   }
   103   }
    64 }
   104 }
    65 
   105 
    66 //------------------------------compute_profile_trip_cnt----------------------------
   106 //------------------------------compute_profile_trip_cnt----------------------------
    67 // Compute loop trip count from profile data as
   107 // Compute loop trip count from profile data as
   299 //         backedges) and then map to the new peeled iteration.  This leaves
   339 //         backedges) and then map to the new peeled iteration.  This leaves
   300 //         the pre-loop with only 1 user (the new peeled iteration), but the
   340 //         the pre-loop with only 1 user (the new peeled iteration), but the
   301 //         peeled-loop backedge has 2 users.
   341 //         peeled-loop backedge has 2 users.
   302 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   342 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   303 //         extra backedge user.
   343 //         extra backedge user.
       
   344 //
       
   345 //                   orig
       
   346 //
       
   347 //                  stmt1
       
   348 //                    |
       
   349 //                    v
       
   350 //              loop predicate
       
   351 //                    |
       
   352 //                    v
       
   353 //                   loop<----+
       
   354 //                     |      |
       
   355 //                   stmt2    |
       
   356 //                     |      |
       
   357 //                     v      |
       
   358 //                    if      ^
       
   359 //                   / \      |
       
   360 //                  /   \     |
       
   361 //                 v     v    |
       
   362 //               false true   |
       
   363 //               /       \    |
       
   364 //              /         ----+
       
   365 //             |
       
   366 //             v
       
   367 //           exit
       
   368 //
       
   369 //
       
   370 //            after clone loop
       
   371 //
       
   372 //                   stmt1
       
   373 //                     |
       
   374 //                     v
       
   375 //               loop predicate
       
   376 //                 /       \
       
   377 //        clone   /         \   orig
       
   378 //               /           \
       
   379 //              /             \
       
   380 //             v               v
       
   381 //   +---->loop clone          loop<----+
       
   382 //   |      |                    |      |
       
   383 //   |    stmt2 clone          stmt2    |
       
   384 //   |      |                    |      |
       
   385 //   |      v                    v      |
       
   386 //   ^      if clone            If      ^
       
   387 //   |      / \                / \      |
       
   388 //   |     /   \              /   \     |
       
   389 //   |    v     v            v     v    |
       
   390 //   |    true  false      false true   |
       
   391 //   |    /         \      /       \    |
       
   392 //   +----           \    /         ----+
       
   393 //                    \  /
       
   394 //                    1v v2
       
   395 //                  region
       
   396 //                     |
       
   397 //                     v
       
   398 //                   exit
       
   399 //
       
   400 //
       
   401 //         after peel and predicate move
       
   402 //
       
   403 //                   stmt1
       
   404 //                    /
       
   405 //                   /
       
   406 //        clone     /            orig
       
   407 //                 /
       
   408 //                /              +----------+
       
   409 //               /               |          |
       
   410 //              /          loop predicate   |
       
   411 //             /                 |          |
       
   412 //            v                  v          |
       
   413 //   TOP-->loop clone          loop<----+   |
       
   414 //          |                    |      |   |
       
   415 //        stmt2 clone          stmt2    |   |
       
   416 //          |                    |      |   ^
       
   417 //          v                    v      |   |
       
   418 //          if clone            If      ^   |
       
   419 //          / \                / \      |   |
       
   420 //         /   \              /   \     |   |
       
   421 //        v     v            v     v    |   |
       
   422 //      true   false      false  true   |   |
       
   423 //        |         \      /       \    |   |
       
   424 //        |          \    /         ----+   ^
       
   425 //        |           \  /                  |
       
   426 //        |           1v v2                 |
       
   427 //        v         region                  |
       
   428 //        |            |                    |
       
   429 //        |            v                    |
       
   430 //        |          exit                   |
       
   431 //        |                                 |
       
   432 //        +--------------->-----------------+
       
   433 //
       
   434 //
       
   435 //              final graph
       
   436 //
       
   437 //                  stmt1
       
   438 //                    |
       
   439 //                    v
       
   440 //                  stmt2 clone
       
   441 //                    |
       
   442 //                    v
       
   443 //                   if clone
       
   444 //                  / |
       
   445 //                 /  |
       
   446 //                v   v
       
   447 //            false  true
       
   448 //             |      |
       
   449 //             |      v
       
   450 //             | loop predicate
       
   451 //             |      |
       
   452 //             |      v
       
   453 //             |     loop<----+
       
   454 //             |      |       |
       
   455 //             |    stmt2     |
       
   456 //             |      |       |
       
   457 //             |      v       |
       
   458 //             v      if      ^
       
   459 //             |     /  \     |
       
   460 //             |    /    \    |
       
   461 //             |   v     v    |
       
   462 //             | false  true  |
       
   463 //             |  |        \  |
       
   464 //             v  v         --+
       
   465 //            region
       
   466 //              |
       
   467 //              v
       
   468 //             exit
       
   469 //
   304 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
   470 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
   305 
   471 
   306   C->set_major_progress();
   472   C->set_major_progress();
   307   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
   473   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
   308   // 'pre' loop from the main and the 'pre' can no longer have it's
   474   // 'pre' loop from the main and the 'pre' can no longer have it's
   313   if (TraceLoopOpts) {
   479   if (TraceLoopOpts) {
   314     tty->print("Peel         ");
   480     tty->print("Peel         ");
   315     loop->dump_head();
   481     loop->dump_head();
   316   }
   482   }
   317 #endif
   483 #endif
   318   Node *h = loop->_head;
   484   Node* head = loop->_head;
   319   if (h->is_CountedLoop()) {
   485   bool counted_loop = head->is_CountedLoop();
   320     CountedLoopNode *cl = h->as_CountedLoop();
   486   if (counted_loop) {
       
   487     CountedLoopNode *cl = head->as_CountedLoop();
   321     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
   488     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
   322     cl->set_trip_count(cl->trip_count() - 1);
   489     cl->set_trip_count(cl->trip_count() - 1);
   323     if (cl->is_main_loop()) {
   490     if (cl->is_main_loop()) {
   324       cl->set_normal_loop();
   491       cl->set_normal_loop();
   325 #ifndef PRODUCT
   492 #ifndef PRODUCT
   328         loop->dump_head();
   495         loop->dump_head();
   329       }
   496       }
   330 #endif
   497 #endif
   331     }
   498     }
   332   }
   499   }
       
   500   Node* entry = head->in(LoopNode::EntryControl);
   333 
   501 
   334   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   502   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   335   //         The pre-loop illegally has 2 control users (old & new loops).
   503   //         The pre-loop illegally has 2 control users (old & new loops).
   336   clone_loop( loop, old_new, dom_depth(loop->_head) );
   504   clone_loop( loop, old_new, dom_depth(head) );
   337 
       
   338 
   505 
   339   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   506   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   340   //         Do this by making the old-loop fall-in edges act as if they came
   507   //         Do this by making the old-loop fall-in edges act as if they came
   341   //         around the loopback from the prior iteration (follow the old-loop
   508   //         around the loopback from the prior iteration (follow the old-loop
   342   //         backedges) and then map to the new peeled iteration.  This leaves
   509   //         backedges) and then map to the new peeled iteration.  This leaves
   343   //         the pre-loop with only 1 user (the new peeled iteration), but the
   510   //         the pre-loop with only 1 user (the new peeled iteration), but the
   344   //         peeled-loop backedge has 2 users.
   511   //         peeled-loop backedge has 2 users.
   345   for (DUIterator_Fast jmax, j = loop->_head->fast_outs(jmax); j < jmax; j++) {
   512   Node* new_exit_value = old_new[head->in(LoopNode::LoopBackControl)->_idx];
   346     Node* old = loop->_head->fast_out(j);
   513   new_exit_value = move_loop_predicates(entry, new_exit_value);
   347     if( old->in(0) == loop->_head && old->req() == 3 &&
   514   _igvn.hash_delete(head);
   348         (old->is_Loop() || old->is_Phi()) ) {
   515   head->set_req(LoopNode::EntryControl, new_exit_value);
   349       Node *new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
   516   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
   350       if( !new_exit_value )     // Backedge value is ALSO loop invariant?
   517     Node* old = head->fast_out(j);
       
   518     if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
       
   519       new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
       
   520       if (!new_exit_value )     // Backedge value is ALSO loop invariant?
   351         // Then loop body backedge value remains the same.
   521         // Then loop body backedge value remains the same.
   352         new_exit_value = old->in(LoopNode::LoopBackControl);
   522         new_exit_value = old->in(LoopNode::LoopBackControl);
   353       _igvn.hash_delete(old);
   523       _igvn.hash_delete(old);
   354       old->set_req(LoopNode::EntryControl, new_exit_value);
   524       old->set_req(LoopNode::EntryControl, new_exit_value);
   355     }
   525     }
   356   }
   526   }
   357 
   527 
   358 
   528 
   359   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   529   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   360   //         extra backedge user.
   530   //         extra backedge user.
   361   Node *nnn = old_new[loop->_head->_idx];
   531   Node* new_head = old_new[head->_idx];
   362   _igvn.hash_delete(nnn);
   532   _igvn.hash_delete(new_head);
   363   nnn->set_req(LoopNode::LoopBackControl, C->top());
   533   new_head->set_req(LoopNode::LoopBackControl, C->top());
   364   for (DUIterator_Fast j2max, j2 = nnn->fast_outs(j2max); j2 < j2max; j2++) {
   534   for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
   365     Node* use = nnn->fast_out(j2);
   535     Node* use = new_head->fast_out(j2);
   366     if( use->in(0) == nnn && use->req() == 3 && use->is_Phi() ) {
   536     if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
   367       _igvn.hash_delete(use);
   537       _igvn.hash_delete(use);
   368       use->set_req(LoopNode::LoopBackControl, C->top());
   538       use->set_req(LoopNode::LoopBackControl, C->top());
   369     }
   539     }
   370   }
   540   }
   371 
   541 
   372 
   542 
   373   // Step 4: Correct dom-depth info.  Set to loop-head depth.
   543   // Step 4: Correct dom-depth info.  Set to loop-head depth.
   374   int dd = dom_depth(loop->_head);
   544   int dd = dom_depth(head);
   375   set_idom(loop->_head, loop->_head->in(1), dd);
   545   set_idom(head, head->in(1), dd);
   376   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
   546   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
   377     Node *old = loop->_body.at(j3);
   547     Node *old = loop->_body.at(j3);
   378     Node *nnn = old_new[old->_idx];
   548     Node *nnn = old_new[old->_idx];
   379     if (!has_ctrl(nnn))
   549     if (!has_ctrl(nnn))
   380       set_idom(nnn, idom(nnn), dd-1);
   550       set_idom(nnn, idom(nnn), dd-1);
   381     // While we're at it, remove any SafePoints from the peeled code
   551     // While we're at it, remove any SafePoints from the peeled code
   382     if( old->Opcode() == Op_SafePoint ) {
   552     if (old->Opcode() == Op_SafePoint) {
   383       Node *nnn = old_new[old->_idx];
   553       Node *nnn = old_new[old->_idx];
   384       lazy_replace(nnn,nnn->in(TypeFunc::Control));
   554       lazy_replace(nnn,nnn->in(TypeFunc::Control));
   385     }
   555     }
   386   }
   556   }
   387 
   557 
   390   peeled_dom_test_elim(loop,old_new);
   560   peeled_dom_test_elim(loop,old_new);
   391 
   561 
   392   loop->record_for_igvn();
   562   loop->record_for_igvn();
   393 }
   563 }
   394 
   564 
       
   565 #define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
       
   566 
   395 //------------------------------policy_maximally_unroll------------------------
   567 //------------------------------policy_maximally_unroll------------------------
   396 // Return exact loop trip count, or 0 if not maximally unrolling
   568 // Calculate exact loop trip count and return true if loop can be maximally
       
   569 // unrolled.
   397 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
   570 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
   398   CountedLoopNode *cl = _head->as_CountedLoop();
   571   CountedLoopNode *cl = _head->as_CountedLoop();
   399   assert(cl->is_normal_loop(), "");
   572   assert(cl->is_normal_loop(), "");
   400 
   573   if (!cl->is_valid_counted_loop())
   401   Node *init_n = cl->init_trip();
   574     return false; // Malformed counted loop
   402   Node *limit_n = cl->limit();
   575 
   403 
   576   if (!cl->has_exact_trip_count()) {
   404   // Non-constant bounds
   577     // Trip count is not exact.
   405   if (init_n   == NULL || !init_n->is_Con()  ||
       
   406       limit_n  == NULL || !limit_n->is_Con() ||
       
   407       // protect against stride not being a constant
       
   408       !cl->stride_is_con()) {
       
   409     return false;
   578     return false;
   410   }
   579   }
   411   int init   = init_n->get_int();
   580 
   412   int limit  = limit_n->get_int();
   581   uint trip_count = cl->trip_count();
   413   int span   = limit - init;
   582   // Note, max_juint is used to indicate unknown trip count.
   414   int stride = cl->stride_con();
   583   assert(trip_count > 1, "one iteration loop should be optimized out already");
   415 
   584   assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
   416   if (init >= limit || stride > span) {
       
   417     // return a false (no maximally unroll) and the regular unroll/peel
       
   418     // route will make a small mess which CCP will fold away.
       
   419     return false;
       
   420   }
       
   421   uint trip_count = span/stride;   // trip_count can be greater than 2 Gig.
       
   422   assert( (int)trip_count*stride == span, "must divide evenly" );
       
   423 
   585 
   424   // Real policy: if we maximally unroll, does it get too big?
   586   // Real policy: if we maximally unroll, does it get too big?
   425   // Allow the unrolled mess to get larger than standard loop
   587   // Allow the unrolled mess to get larger than standard loop
   426   // size.  After all, it will no longer be a loop.
   588   // size.  After all, it will no longer be a loop.
   427   uint body_size    = _body.size();
   589   uint body_size    = _body.size();
   428   uint unroll_limit = (uint)LoopUnrollLimit * 4;
   590   uint unroll_limit = (uint)LoopUnrollLimit * 4;
   429   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
   591   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
   430   cl->set_trip_count(trip_count);
       
   431   if (trip_count > unroll_limit || body_size > unroll_limit) {
   592   if (trip_count > unroll_limit || body_size > unroll_limit) {
       
   593     return false;
       
   594   }
       
   595 
       
   596   // Take into account that after unroll conjoined heads and tails will fold,
       
   597   // otherwise policy_unroll() may allow more unrolling than max unrolling.
       
   598   uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
       
   599   uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
       
   600   if (body_size != tst_body_size) // Check for int overflow
       
   601     return false;
       
   602   if (new_body_size > unroll_limit ||
       
   603       // Unrolling can result in a large amount of node construction
       
   604       new_body_size >= MaxNodeLimit - phase->C->unique()) {
   432     return false;
   605     return false;
   433   }
   606   }
   434 
   607 
   435   // Currently we don't have policy to optimize one iteration loops.
   608   // Currently we don't have policy to optimize one iteration loops.
   436   // Maximally unrolling transformation is used for that:
   609   // Maximally unrolling transformation is used for that:
   437   // it is peeled and the original loop become non reachable (dead).
   610   // it is peeled and the original loop become non reachable (dead).
   438   if (trip_count == 1)
   611   // Also fully unroll a loop with few iterations regardless next
       
   612   // conditions since following loop optimizations will split
       
   613   // such loop anyway (pre-main-post).
       
   614   if (trip_count <= 3)
   439     return true;
   615     return true;
   440 
   616 
   441   // Do not unroll a loop with String intrinsics code.
   617   // Do not unroll a loop with String intrinsics code.
   442   // String intrinsics are large and have loops.
   618   // String intrinsics are large and have loops.
   443   for (uint k = 0; k < _body.size(); k++) {
   619   for (uint k = 0; k < _body.size(); k++) {
   450         return false;
   626         return false;
   451       }
   627       }
   452     } // switch
   628     } // switch
   453   }
   629   }
   454 
   630 
   455   if (body_size <= unroll_limit) {
   631   return true; // Do maximally unroll
   456     uint new_body_size = body_size * trip_count;
       
   457     if (new_body_size <= unroll_limit &&
       
   458         body_size == new_body_size / trip_count &&
       
   459         // Unrolling can result in a large amount of node construction
       
   460         new_body_size < MaxNodeLimit - phase->C->unique()) {
       
   461       return true;    // maximally unroll
       
   462     }
       
   463   }
       
   464 
       
   465   return false;               // Do not maximally unroll
       
   466 }
   632 }
   467 
   633 
   468 
   634 
   469 //------------------------------policy_unroll----------------------------------
   635 //------------------------------policy_unroll----------------------------------
   470 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
   636 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
   472 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
   638 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
   473 
   639 
   474   CountedLoopNode *cl = _head->as_CountedLoop();
   640   CountedLoopNode *cl = _head->as_CountedLoop();
   475   assert(cl->is_normal_loop() || cl->is_main_loop(), "");
   641   assert(cl->is_normal_loop() || cl->is_main_loop(), "");
   476 
   642 
   477   // protect against stride not being a constant
   643   if (!cl->is_valid_counted_loop())
   478   if (!cl->stride_is_con()) return false;
   644     return false; // Malformed counted loop
   479 
   645 
   480   // protect against over-unrolling
   646   // protect against over-unrolling
   481   if (cl->trip_count() <= 1) return false;
   647   if (cl->trip_count() <= 1) return false;
       
   648 
       
   649   // Check for stride being a small enough constant
       
   650   if (abs(cl->stride_con()) > (1<<3)) return false;
   482 
   651 
   483   int future_unroll_ct = cl->unrolled_count() * 2;
   652   int future_unroll_ct = cl->unrolled_count() * 2;
   484 
   653 
   485   // Don't unroll if the next round of unrolling would push us
   654   // Don't unroll if the next round of unrolling would push us
   486   // over the expected trip count of the loop.  One is subtracted
   655   // over the expected trip count of the loop.  One is subtracted
   558     if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
   727     if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
   559     // Normal case: loop too big
   728     // Normal case: loop too big
   560     return false;
   729     return false;
   561   }
   730   }
   562 
   731 
   563   // Check for stride being a small enough constant
       
   564   if (abs(cl->stride_con()) > (1<<3)) return false;
       
   565 
       
   566   // Unroll once!  (Each trip will soon do double iterations)
   732   // Unroll once!  (Each trip will soon do double iterations)
   567   return true;
   733   return true;
   568 }
   734 }
   569 
   735 
   570 //------------------------------policy_align-----------------------------------
   736 //------------------------------policy_align-----------------------------------
   954 #ifndef PRODUCT
  1120 #ifndef PRODUCT
   955   if (PrintOpto && VerifyLoopOptimizations) {
  1121   if (PrintOpto && VerifyLoopOptimizations) {
   956     tty->print("Unrolling ");
  1122     tty->print("Unrolling ");
   957     loop->dump_head();
  1123     loop->dump_head();
   958   } else if (TraceLoopOpts) {
  1124   } else if (TraceLoopOpts) {
   959     tty->print("Unroll     %d ", loop_head->unrolled_count()*2);
  1125     if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
       
  1126       tty->print("Unroll  %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
       
  1127     } else {
       
  1128       tty->print("Unroll  %d     ", loop_head->unrolled_count()*2);
       
  1129     }
   960     loop->dump_head();
  1130     loop->dump_head();
   961   }
  1131   }
   962 #endif
  1132 #endif
   963 
  1133 
   964   // Remember loop node count before unrolling to detect
  1134   // Remember loop node count before unrolling to detect
  1629 // Micro-benchmark spamming.  Policy is to always remove empty loops.
  1799 // Micro-benchmark spamming.  Policy is to always remove empty loops.
  1630 // The 'DO' part is to replace the trip counter with the value it will
  1800 // The 'DO' part is to replace the trip counter with the value it will
  1631 // have on the last iteration.  This will break the loop.
  1801 // have on the last iteration.  This will break the loop.
  1632 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
  1802 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
  1633   // Minimum size must be empty loop
  1803   // Minimum size must be empty loop
  1634   if (_body.size() > 7/*number of nodes in an empty loop*/)
  1804   if (_body.size() > EMPTY_LOOP_SIZE)
  1635     return false;
  1805     return false;
  1636 
  1806 
  1637   if (!_head->is_CountedLoop())
  1807   if (!_head->is_CountedLoop())
  1638     return false;     // Dead loop
  1808     return false;     // Dead loop
  1639   CountedLoopNode *cl = _head->as_CountedLoop();
  1809   CountedLoopNode *cl = _head->as_CountedLoop();
  1656 #endif
  1826 #endif
  1657 
  1827 
  1658   // main and post loops have explicitly created zero trip guard
  1828   // main and post loops have explicitly created zero trip guard
  1659   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
  1829   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
  1660   if (needs_guard) {
  1830   if (needs_guard) {
       
  1831     // Skip guard if values not overlap.
       
  1832     const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
       
  1833     const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
       
  1834     int  stride_con = cl->stride_con();
       
  1835     if (stride_con > 0) {
       
  1836       needs_guard = (init_t->_hi >= limit_t->_lo);
       
  1837     } else {
       
  1838       needs_guard = (init_t->_lo <= limit_t->_hi);
       
  1839     }
       
  1840   }
       
  1841   if (needs_guard) {
  1661     // Check for an obvious zero trip guard.
  1842     // Check for an obvious zero trip guard.
  1662     Node* inctrl = cl->in(LoopNode::EntryControl);
  1843     Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
  1663     if (inctrl->Opcode() == Op_IfTrue) {
  1844     if (inctrl->Opcode() == Op_IfTrue) {
  1664       // The test should look like just the backedge of a CountedLoop
  1845       // The test should look like just the backedge of a CountedLoop
  1665       Node* iff = inctrl->in(0);
  1846       Node* iff = inctrl->in(0);
  1666       if (iff->is_If()) {
  1847       if (iff->is_If()) {
  1667         Node* bol = iff->in(1);
  1848         Node* bol = iff->in(1);
  1700   phase->_igvn.replace_node(phi,final);
  1881   phase->_igvn.replace_node(phi,final);
  1701   phase->C->set_major_progress();
  1882   phase->C->set_major_progress();
  1702   return true;
  1883   return true;
  1703 }
  1884 }
  1704 
  1885 
       
  1886 //------------------------------policy_do_one_iteration_loop-------------------
       
  1887 // Convert one iteration loop into normal code.
       
  1888 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
       
  1889   if (!_head->as_Loop()->is_valid_counted_loop())
       
  1890     return false; // Only for counted loop
       
  1891 
       
  1892   CountedLoopNode *cl = _head->as_CountedLoop();
       
  1893   if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
       
  1894     return false;
       
  1895   }
       
  1896 
       
  1897 #ifndef PRODUCT
       
  1898   if(TraceLoopOpts) {
       
  1899     tty->print("OneIteration ");
       
  1900     this->dump_head();
       
  1901   }
       
  1902 #endif
       
  1903 
       
  1904   Node *init_n = cl->init_trip();
       
  1905 #ifdef ASSERT
       
  1906   // Loop boundaries should be constant since trip count is exact.
       
  1907   assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
       
  1908 #endif
       
  1909   // Replace the phi at loop head with the value of the init_trip.
       
  1910   // Then the CountedLoopEnd will collapse (backedge will not be taken)
       
  1911   // and all loop-invariant uses of the exit values will be correct.
       
  1912   phase->_igvn.replace_node(cl->phi(), cl->init_trip());
       
  1913   phase->C->set_major_progress();
       
  1914   return true;
       
  1915 }
  1705 
  1916 
  1706 //=============================================================================
  1917 //=============================================================================
  1707 //------------------------------iteration_split_impl---------------------------
  1918 //------------------------------iteration_split_impl---------------------------
  1708 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
  1919 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
       
  1920   // Compute exact loop trip count if possible.
       
  1921   compute_exact_trip_count(phase);
       
  1922 
       
  1923   // Convert one iteration loop into normal code.
       
  1924   if (policy_do_one_iteration_loop(phase))
       
  1925     return true;
       
  1926 
  1709   // Check and remove empty loops (spam micro-benchmarks)
  1927   // Check and remove empty loops (spam micro-benchmarks)
  1710   if( policy_do_remove_empty_loop(phase) )
  1928   if (policy_do_remove_empty_loop(phase))
  1711     return true;  // Here we removed an empty loop
  1929     return true;  // Here we removed an empty loop
  1712 
  1930 
  1713   bool should_peel = policy_peeling(phase); // Should we peel?
  1931   bool should_peel = policy_peeling(phase); // Should we peel?
  1714 
  1932 
  1715   bool should_unswitch = policy_unswitching(phase);
  1933   bool should_unswitch = policy_unswitching(phase);
  1716 
  1934 
  1717   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
  1935   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
  1718   // This removes loop-invariant tests (usually null checks).
  1936   // This removes loop-invariant tests (usually null checks).
  1719   if( !_head->is_CountedLoop() ) { // Non-counted loop
  1937   if (!_head->is_CountedLoop()) { // Non-counted loop
  1720     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
  1938     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
  1721       // Partial peel succeeded so terminate this round of loop opts
  1939       // Partial peel succeeded so terminate this round of loop opts
  1722       return false;
  1940       return false;
  1723     }
  1941     }
  1724     if( should_peel ) {            // Should we peel?
  1942     if (should_peel) {            // Should we peel?
  1725 #ifndef PRODUCT
  1943 #ifndef PRODUCT
  1726       if (PrintOpto) tty->print_cr("should_peel");
  1944       if (PrintOpto) tty->print_cr("should_peel");
  1727 #endif
  1945 #endif
  1728       phase->do_peeling(this,old_new);
  1946       phase->do_peeling(this,old_new);
  1729     } else if( should_unswitch ) {
  1947     } else if (should_unswitch) {
  1730       phase->do_unswitching(this, old_new);
  1948       phase->do_unswitching(this, old_new);
  1731     }
  1949     }
  1732     return true;
  1950     return true;
  1733   }
  1951   }
  1734   CountedLoopNode *cl = _head->as_CountedLoop();
  1952   CountedLoopNode *cl = _head->as_CountedLoop();
  1735 
  1953 
  1736   if( !cl->loopexit() ) return true; // Ignore various kinds of broken loops
  1954   if (!cl->loopexit()) return true; // Ignore various kinds of broken loops
  1737 
  1955 
  1738   // Do nothing special to pre- and post- loops
  1956   // Do nothing special to pre- and post- loops
  1739   if( cl->is_pre_loop() || cl->is_post_loop() ) return true;
  1957   if (cl->is_pre_loop() || cl->is_post_loop()) return true;
  1740 
  1958 
  1741   // Compute loop trip count from profile data
  1959   // Compute loop trip count from profile data
  1742   compute_profile_trip_cnt(phase);
  1960   compute_profile_trip_cnt(phase);
  1743 
  1961 
  1744   // Before attempting fancy unrolling, RCE or alignment, see if we want
  1962   // Before attempting fancy unrolling, RCE or alignment, see if we want
  1745   // to completely unroll this loop or do loop unswitching.
  1963   // to completely unroll this loop or do loop unswitching.
  1746   if( cl->is_normal_loop() ) {
  1964   if (cl->is_normal_loop()) {
  1747     if (should_unswitch) {
  1965     if (should_unswitch) {
  1748       phase->do_unswitching(this, old_new);
  1966       phase->do_unswitching(this, old_new);
  1749       return true;
  1967       return true;
  1750     }
  1968     }
  1751     bool should_maximally_unroll =  policy_maximally_unroll(phase);
  1969     bool should_maximally_unroll =  policy_maximally_unroll(phase);
  1752     if( should_maximally_unroll ) {
  1970     if (should_maximally_unroll) {
  1753       // Here we did some unrolling and peeling.  Eventually we will
  1971       // Here we did some unrolling and peeling.  Eventually we will
  1754       // completely unroll this loop and it will no longer be a loop.
  1972       // completely unroll this loop and it will no longer be a loop.
  1755       phase->do_maximally_unroll(this,old_new);
  1973       phase->do_maximally_unroll(this,old_new);
  1756       return true;
  1974       return true;
  1757     }
  1975     }
  1758   }
  1976   }
  1759 
  1977 
       
  1978   // Skip next optimizations if running low on nodes. Note that
       
  1979   // policy_unswitching and policy_maximally_unroll have this check.
       
  1980   uint nodes_left = MaxNodeLimit - phase->C->unique();
       
  1981   if ((2 * _body.size()) > nodes_left) {
       
  1982     return true;
       
  1983   }
  1760 
  1984 
  1761   // Counted loops may be peeled, may need some iterations run up
  1985   // Counted loops may be peeled, may need some iterations run up
  1762   // front for RCE, and may want to align loop refs to a cache
  1986   // front for RCE, and may want to align loop refs to a cache
  1763   // line.  Thus we clone a full loop up front whose trip count is
  1987   // line.  Thus we clone a full loop up front whose trip count is
  1764   // at least 1 (if peeling), but may be several more.
  1988   // at least 1 (if peeling), but may be several more.
  1785   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
  2009   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
  1786 
  2010 
  1787   // If we have any of these conditions (RCE, alignment, unrolling) met, then
  2011   // If we have any of these conditions (RCE, alignment, unrolling) met, then
  1788   // we switch to the pre-/main-/post-loop model.  This model also covers
  2012   // we switch to the pre-/main-/post-loop model.  This model also covers
  1789   // peeling.
  2013   // peeling.
  1790   if( should_rce || should_align || should_unroll ) {
  2014   if (should_rce || should_align || should_unroll) {
  1791     if( cl->is_normal_loop() )  // Convert to 'pre/main/post' loops
  2015     if (cl->is_normal_loop())  // Convert to 'pre/main/post' loops
  1792       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
  2016       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
  1793 
  2017 
  1794     // Adjust the pre- and main-loop limits to let the pre and post loops run
  2018     // Adjust the pre- and main-loop limits to let the pre and post loops run
  1795     // with full checks, but the main-loop with no checks.  Remove said
  2019     // with full checks, but the main-loop with no checks.  Remove said
  1796     // checks from the main body.
  2020     // checks from the main body.
  1797     if( should_rce )
  2021     if (should_rce)
  1798       phase->do_range_check(this,old_new);
  2022       phase->do_range_check(this,old_new);
  1799 
  2023 
  1800     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
  2024     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
  1801     // twice as many iterations as before) and the main body limit (only do
  2025     // twice as many iterations as before) and the main body limit (only do
  1802     // an even number of trips).  If we are peeling, we might enable some RCE
  2026     // an even number of trips).  If we are peeling, we might enable some RCE
  1803     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
  2027     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
  1804     // peeling.
  2028     // peeling.
  1805       if( should_unroll && !should_peel )
  2029     if (should_unroll && !should_peel)
  1806         phase->do_unroll(this,old_new, true);
  2030       phase->do_unroll(this,old_new, true);
  1807 
  2031 
  1808     // Adjust the pre-loop limits to align the main body
  2032     // Adjust the pre-loop limits to align the main body
  1809     // iterations.
  2033     // iterations.
  1810     if( should_align )
  2034     if (should_align)
  1811       Unimplemented();
  2035       Unimplemented();
  1812 
  2036 
  1813   } else {                      // Else we have an unchanged counted loop
  2037   } else {                      // Else we have an unchanged counted loop
  1814     if( should_peel )           // Might want to peel but do nothing else
  2038     if (should_peel)           // Might want to peel but do nothing else
  1815       phase->do_peeling(this,old_new);
  2039       phase->do_peeling(this,old_new);
  1816   }
  2040   }
  1817   return true;
  2041   return true;
  1818 }
  2042 }
  1819 
  2043 
  1859   if (_next && !_next->iteration_split(phase, old_new))
  2083   if (_next && !_next->iteration_split(phase, old_new))
  1860     return false;
  2084     return false;
  1861   return true;
  2085   return true;
  1862 }
  2086 }
  1863 
  2087 
  1864 //-------------------------------is_uncommon_trap_proj----------------------------
  2088 
  1865 // Return true if proj is the form of "proj->[region->..]call_uct"
  2089 //=============================================================================
  1866 bool PhaseIdealLoop::is_uncommon_trap_proj(ProjNode* proj, Deoptimization::DeoptReason reason) {
       
  1867   int path_limit = 10;
       
  1868   assert(proj, "invalid argument");
       
  1869   Node* out = proj;
       
  1870   for (int ct = 0; ct < path_limit; ct++) {
       
  1871     out = out->unique_ctrl_out();
       
  1872     if (out == NULL || out->is_Root() || out->is_Start())
       
  1873       return false;
       
  1874     if (out->is_CallStaticJava()) {
       
  1875       int req = out->as_CallStaticJava()->uncommon_trap_request();
       
  1876       if (req != 0) {
       
  1877         Deoptimization::DeoptReason trap_reason = Deoptimization::trap_request_reason(req);
       
  1878         if (trap_reason == reason || reason == Deoptimization::Reason_none) {
       
  1879            return true;
       
  1880         }
       
  1881       }
       
  1882       return false; // don't do further after call
       
  1883     }
       
  1884   }
       
  1885   return false;
       
  1886 }
       
  1887 
       
  1888 //-------------------------------is_uncommon_trap_if_pattern-------------------------
       
  1889 // Return true  for "if(test)-> proj -> ...
       
  1890 //                          |
       
  1891 //                          V
       
  1892 //                      other_proj->[region->..]call_uct"
       
  1893 //
       
  1894 // "must_reason_predicate" means the uct reason must be Reason_predicate
       
  1895 bool PhaseIdealLoop::is_uncommon_trap_if_pattern(ProjNode *proj, Deoptimization::DeoptReason reason) {
       
  1896   Node *in0 = proj->in(0);
       
  1897   if (!in0->is_If()) return false;
       
  1898   // Variation of a dead If node.
       
  1899   if (in0->outcnt() < 2)  return false;
       
  1900   IfNode* iff = in0->as_If();
       
  1901 
       
  1902   // we need "If(Conv2B(Opaque1(...)))" pattern for reason_predicate
       
  1903   if (reason != Deoptimization::Reason_none) {
       
  1904     if (iff->in(1)->Opcode() != Op_Conv2B ||
       
  1905        iff->in(1)->in(1)->Opcode() != Op_Opaque1) {
       
  1906       return false;
       
  1907     }
       
  1908   }
       
  1909 
       
  1910   ProjNode* other_proj = iff->proj_out(1-proj->_con)->as_Proj();
       
  1911   return is_uncommon_trap_proj(other_proj, reason);
       
  1912 }
       
  1913 
       
  1914 //-------------------------------register_control-------------------------
       
  1915 void PhaseIdealLoop::register_control(Node* n, IdealLoopTree *loop, Node* pred) {
       
  1916   assert(n->is_CFG(), "must be control node");
       
  1917   _igvn.register_new_node_with_optimizer(n);
       
  1918   loop->_body.push(n);
       
  1919   set_loop(n, loop);
       
  1920   // When called from beautify_loops() idom is not constructed yet.
       
  1921   if (_idom != NULL) {
       
  1922     set_idom(n, pred, dom_depth(pred));
       
  1923   }
       
  1924 }
       
  1925 
       
  1926 //------------------------------create_new_if_for_predicate------------------------
       
  1927 // create a new if above the uct_if_pattern for the predicate to be promoted.
       
  1928 //
       
  1929 //          before                                after
       
  1930 //        ----------                           ----------
       
  1931 //           ctrl                                 ctrl
       
  1932 //            |                                     |
       
  1933 //            |                                     |
       
  1934 //            v                                     v
       
  1935 //           iff                                 new_iff
       
  1936 //          /    \                                /      \
       
  1937 //         /      \                              /        \
       
  1938 //        v        v                            v          v
       
  1939 //  uncommon_proj cont_proj                   if_uct     if_cont
       
  1940 // \      |        |                           |          |
       
  1941 //  \     |        |                           |          |
       
  1942 //   v    v        v                           |          v
       
  1943 //     rgn       loop                          |         iff
       
  1944 //      |                                      |        /     \
       
  1945 //      |                                      |       /       \
       
  1946 //      v                                      |      v         v
       
  1947 // uncommon_trap                               | uncommon_proj cont_proj
       
  1948 //                                           \  \    |           |
       
  1949 //                                            \  \   |           |
       
  1950 //                                             v  v  v           v
       
  1951 //                                               rgn           loop
       
  1952 //                                                |
       
  1953 //                                                |
       
  1954 //                                                v
       
  1955 //                                           uncommon_trap
       
  1956 //
       
  1957 //
       
  1958 // We will create a region to guard the uct call if there is no one there.
       
  1959 // The true projecttion (if_cont) of the new_iff is returned.
       
  1960 // This code is also used to clone predicates to clonned loops.
       
  1961 ProjNode* PhaseIdealLoop::create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
       
  1962                                                       Deoptimization::DeoptReason reason) {
       
  1963   assert(is_uncommon_trap_if_pattern(cont_proj, reason), "must be a uct if pattern!");
       
  1964   IfNode* iff = cont_proj->in(0)->as_If();
       
  1965 
       
  1966   ProjNode *uncommon_proj = iff->proj_out(1 - cont_proj->_con);
       
  1967   Node     *rgn   = uncommon_proj->unique_ctrl_out();
       
  1968   assert(rgn->is_Region() || rgn->is_Call(), "must be a region or call uct");
       
  1969 
       
  1970   if (!rgn->is_Region()) { // create a region to guard the call
       
  1971     assert(rgn->is_Call(), "must be call uct");
       
  1972     CallNode* call = rgn->as_Call();
       
  1973     IdealLoopTree* loop = get_loop(call);
       
  1974     rgn = new (C, 1) RegionNode(1);
       
  1975     rgn->add_req(uncommon_proj);
       
  1976     register_control(rgn, loop, uncommon_proj);
       
  1977     _igvn.hash_delete(call);
       
  1978     call->set_req(0, rgn);
       
  1979     // When called from beautify_loops() idom is not constructed yet.
       
  1980     if (_idom != NULL) {
       
  1981       set_idom(call, rgn, dom_depth(rgn));
       
  1982     }
       
  1983   }
       
  1984 
       
  1985   Node* entry = iff->in(0);
       
  1986   if (new_entry != NULL) {
       
  1987     // Clonning the predicate to new location.
       
  1988     entry = new_entry;
       
  1989   }
       
  1990   // Create new_iff
       
  1991   IdealLoopTree* lp = get_loop(entry);
       
  1992   IfNode *new_iff = new (C, 2) IfNode(entry, NULL, iff->_prob, iff->_fcnt);
       
  1993   register_control(new_iff, lp, entry);
       
  1994   Node *if_cont = new (C, 1) IfTrueNode(new_iff);
       
  1995   Node *if_uct  = new (C, 1) IfFalseNode(new_iff);
       
  1996   if (cont_proj->is_IfFalse()) {
       
  1997     // Swap
       
  1998     Node* tmp = if_uct; if_uct = if_cont; if_cont = tmp;
       
  1999   }
       
  2000   register_control(if_cont, lp, new_iff);
       
  2001   register_control(if_uct, get_loop(rgn), new_iff);
       
  2002 
       
  2003   // if_uct to rgn
       
  2004   _igvn.hash_delete(rgn);
       
  2005   rgn->add_req(if_uct);
       
  2006   // When called from beautify_loops() idom is not constructed yet.
       
  2007   if (_idom != NULL) {
       
  2008     Node* ridom = idom(rgn);
       
  2009     Node* nrdom = dom_lca(ridom, new_iff);
       
  2010     set_idom(rgn, nrdom, dom_depth(rgn));
       
  2011   }
       
  2012   // rgn must have no phis
       
  2013   assert(!rgn->as_Region()->has_phi(), "region must have no phis");
       
  2014 
       
  2015   if (new_entry == NULL) {
       
  2016     // Attach if_cont to iff
       
  2017     _igvn.hash_delete(iff);
       
  2018     iff->set_req(0, if_cont);
       
  2019     if (_idom != NULL) {
       
  2020       set_idom(iff, if_cont, dom_depth(iff));
       
  2021     }
       
  2022   }
       
  2023   return if_cont->as_Proj();
       
  2024 }
       
  2025 
       
  2026 //--------------------------find_predicate_insertion_point-------------------
       
  2027 // Find a good location to insert a predicate
       
  2028 ProjNode* PhaseIdealLoop::find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason) {
       
  2029   if (start_c == NULL || !start_c->is_Proj())
       
  2030     return NULL;
       
  2031   if (is_uncommon_trap_if_pattern(start_c->as_Proj(), reason)) {
       
  2032     return start_c->as_Proj();
       
  2033   }
       
  2034   return NULL;
       
  2035 }
       
  2036 
       
  2037 //--------------------------find_predicate------------------------------------
       
  2038 // Find a predicate
       
  2039 Node* PhaseIdealLoop::find_predicate(Node* entry) {
       
  2040   Node* predicate = NULL;
       
  2041   if (UseLoopPredicate) {
       
  2042     predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
       
  2043     if (predicate != NULL) { // right pattern that can be used by loop predication
       
  2044       assert(entry->in(0)->in(1)->in(1)->Opcode()==Op_Opaque1, "must be");
       
  2045       return entry;
       
  2046     }
       
  2047   }
       
  2048   return NULL;
       
  2049 }
       
  2050 
       
  2051 //------------------------------Invariance-----------------------------------
       
  2052 // Helper class for loop_predication_impl to compute invariance on the fly and
       
  2053 // clone invariants.
       
  2054 class Invariance : public StackObj {
       
  2055   VectorSet _visited, _invariant;
       
  2056   Node_Stack _stack;
       
  2057   VectorSet _clone_visited;
       
  2058   Node_List _old_new; // map of old to new (clone)
       
  2059   IdealLoopTree* _lpt;
       
  2060   PhaseIdealLoop* _phase;
       
  2061 
       
  2062   // Helper function to set up the invariance for invariance computation
       
  2063   // If n is a known invariant, set up directly. Otherwise, look up the
       
  2064   // the possibility to push n onto the stack for further processing.
       
  2065   void visit(Node* use, Node* n) {
       
  2066     if (_lpt->is_invariant(n)) { // known invariant
       
  2067       _invariant.set(n->_idx);
       
  2068     } else if (!n->is_CFG()) {
       
  2069       Node *n_ctrl = _phase->ctrl_or_self(n);
       
  2070       Node *u_ctrl = _phase->ctrl_or_self(use); // self if use is a CFG
       
  2071       if (_phase->is_dominator(n_ctrl, u_ctrl)) {
       
  2072         _stack.push(n, n->in(0) == NULL ? 1 : 0);
       
  2073       }
       
  2074     }
       
  2075   }
       
  2076 
       
  2077   // Compute invariance for "the_node" and (possibly) all its inputs recursively
       
  2078   // on the fly
       
  2079   void compute_invariance(Node* n) {
       
  2080     assert(_visited.test(n->_idx), "must be");
       
  2081     visit(n, n);
       
  2082     while (_stack.is_nonempty()) {
       
  2083       Node*  n = _stack.node();
       
  2084       uint idx = _stack.index();
       
  2085       if (idx == n->req()) { // all inputs are processed
       
  2086         _stack.pop();
       
  2087         // n is invariant if it's inputs are all invariant
       
  2088         bool all_inputs_invariant = true;
       
  2089         for (uint i = 0; i < n->req(); i++) {
       
  2090           Node* in = n->in(i);
       
  2091           if (in == NULL) continue;
       
  2092           assert(_visited.test(in->_idx), "must have visited input");
       
  2093           if (!_invariant.test(in->_idx)) { // bad guy
       
  2094             all_inputs_invariant = false;
       
  2095             break;
       
  2096           }
       
  2097         }
       
  2098         if (all_inputs_invariant) {
       
  2099           _invariant.set(n->_idx); // I am a invariant too
       
  2100         }
       
  2101       } else { // process next input
       
  2102         _stack.set_index(idx + 1);
       
  2103         Node* m = n->in(idx);
       
  2104         if (m != NULL && !_visited.test_set(m->_idx)) {
       
  2105           visit(n, m);
       
  2106         }
       
  2107       }
       
  2108     }
       
  2109   }
       
  2110 
       
  2111   // Helper function to set up _old_new map for clone_nodes.
       
  2112   // If n is a known invariant, set up directly ("clone" of n == n).
       
  2113   // Otherwise, push n onto the stack for real cloning.
       
  2114   void clone_visit(Node* n) {
       
  2115     assert(_invariant.test(n->_idx), "must be invariant");
       
  2116     if (_lpt->is_invariant(n)) { // known invariant
       
  2117       _old_new.map(n->_idx, n);
       
  2118     } else{ // to be cloned
       
  2119       assert (!n->is_CFG(), "should not see CFG here");
       
  2120       _stack.push(n, n->in(0) == NULL ? 1 : 0);
       
  2121     }
       
  2122   }
       
  2123 
       
  2124   // Clone "n" and (possibly) all its inputs recursively
       
  2125   void clone_nodes(Node* n, Node* ctrl) {
       
  2126     clone_visit(n);
       
  2127     while (_stack.is_nonempty()) {
       
  2128       Node*  n = _stack.node();
       
  2129       uint idx = _stack.index();
       
  2130       if (idx == n->req()) { // all inputs processed, clone n!
       
  2131         _stack.pop();
       
  2132         // clone invariant node
       
  2133         Node* n_cl = n->clone();
       
  2134         _old_new.map(n->_idx, n_cl);
       
  2135         _phase->register_new_node(n_cl, ctrl);
       
  2136         for (uint i = 0; i < n->req(); i++) {
       
  2137           Node* in = n_cl->in(i);
       
  2138           if (in == NULL) continue;
       
  2139           n_cl->set_req(i, _old_new[in->_idx]);
       
  2140         }
       
  2141       } else { // process next input
       
  2142         _stack.set_index(idx + 1);
       
  2143         Node* m = n->in(idx);
       
  2144         if (m != NULL && !_clone_visited.test_set(m->_idx)) {
       
  2145           clone_visit(m); // visit the input
       
  2146         }
       
  2147       }
       
  2148     }
       
  2149   }
       
  2150 
       
  2151  public:
       
  2152   Invariance(Arena* area, IdealLoopTree* lpt) :
       
  2153     _lpt(lpt), _phase(lpt->_phase),
       
  2154     _visited(area), _invariant(area), _stack(area, 10 /* guess */),
       
  2155     _clone_visited(area), _old_new(area)
       
  2156   {}
       
  2157 
       
  2158   // Map old to n for invariance computation and clone
       
  2159   void map_ctrl(Node* old, Node* n) {
       
  2160     assert(old->is_CFG() && n->is_CFG(), "must be");
       
  2161     _old_new.map(old->_idx, n); // "clone" of old is n
       
  2162     _invariant.set(old->_idx);  // old is invariant
       
  2163     _clone_visited.set(old->_idx);
       
  2164   }
       
  2165 
       
  2166   // Driver function to compute invariance
       
  2167   bool is_invariant(Node* n) {
       
  2168     if (!_visited.test_set(n->_idx))
       
  2169       compute_invariance(n);
       
  2170     return (_invariant.test(n->_idx) != 0);
       
  2171   }
       
  2172 
       
  2173   // Driver function to clone invariant
       
  2174   Node* clone(Node* n, Node* ctrl) {
       
  2175     assert(ctrl->is_CFG(), "must be");
       
  2176     assert(_invariant.test(n->_idx), "must be an invariant");
       
  2177     if (!_clone_visited.test(n->_idx))
       
  2178       clone_nodes(n, ctrl);
       
  2179     return _old_new[n->_idx];
       
  2180   }
       
  2181 };
       
  2182 
       
  2183 //------------------------------is_range_check_if -----------------------------------
       
  2184 // Returns true if the predicate of iff is in "scale*iv + offset u< load_range(ptr)" format
       
  2185 // Note: this function is particularly designed for loop predication. We require load_range
       
  2186 //       and offset to be loop invariant computed on the fly by "invar"
       
  2187 bool IdealLoopTree::is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const {
       
  2188   if (!is_loop_exit(iff)) {
       
  2189     return false;
       
  2190   }
       
  2191   if (!iff->in(1)->is_Bool()) {
       
  2192     return false;
       
  2193   }
       
  2194   const BoolNode *bol = iff->in(1)->as_Bool();
       
  2195   if (bol->_test._test != BoolTest::lt) {
       
  2196     return false;
       
  2197   }
       
  2198   if (!bol->in(1)->is_Cmp()) {
       
  2199     return false;
       
  2200   }
       
  2201   const CmpNode *cmp = bol->in(1)->as_Cmp();
       
  2202   if (cmp->Opcode() != Op_CmpU ) {
       
  2203     return false;
       
  2204   }
       
  2205   Node* range = cmp->in(2);
       
  2206   if (range->Opcode() != Op_LoadRange) {
       
  2207     const TypeInt* tint = phase->_igvn.type(range)->isa_int();
       
  2208     if (!OptimizeFill || tint == NULL || tint->empty() || tint->_lo < 0) {
       
  2209       // Allow predication on positive values that aren't LoadRanges.
       
  2210       // This allows optimization of loops where the length of the
       
  2211       // array is a known value and doesn't need to be loaded back
       
  2212       // from the array.
       
  2213       return false;
       
  2214     }
       
  2215   }
       
  2216   if (!invar.is_invariant(range)) {
       
  2217     return false;
       
  2218   }
       
  2219   Node *iv     = _head->as_CountedLoop()->phi();
       
  2220   int   scale  = 0;
       
  2221   Node *offset = NULL;
       
  2222   if (!phase->is_scaled_iv_plus_offset(cmp->in(1), iv, &scale, &offset)) {
       
  2223     return false;
       
  2224   }
       
  2225   if(offset && !invar.is_invariant(offset)) { // offset must be invariant
       
  2226     return false;
       
  2227   }
       
  2228   return true;
       
  2229 }
       
  2230 
       
  2231 //------------------------------rc_predicate-----------------------------------
       
  2232 // Create a range check predicate
       
  2233 //
       
  2234 // for (i = init; i < limit; i += stride) {
       
  2235 //    a[scale*i+offset]
       
  2236 // }
       
  2237 //
       
  2238 // Compute max(scale*i + offset) for init <= i < limit and build the predicate
       
  2239 // as "max(scale*i + offset) u< a.length".
       
  2240 //
       
  2241 // There are two cases for max(scale*i + offset):
       
  2242 // (1) stride*scale > 0
       
  2243 //   max(scale*i + offset) = scale*(limit-stride) + offset
       
  2244 // (2) stride*scale < 0
       
  2245 //   max(scale*i + offset) = scale*init + offset
       
  2246 BoolNode* PhaseIdealLoop::rc_predicate(Node* ctrl,
       
  2247                                        int scale, Node* offset,
       
  2248                                        Node* init, Node* limit, Node* stride,
       
  2249                                        Node* range, bool upper) {
       
  2250   DEBUG_ONLY(ttyLocker ttyl);
       
  2251   if (TraceLoopPredicate) tty->print("rc_predicate ");
       
  2252 
       
  2253   Node* max_idx_expr  = init;
       
  2254   int stride_con = stride->get_int();
       
  2255   if ((stride_con > 0) == (scale > 0) == upper) {
       
  2256     max_idx_expr = new (C, 3) SubINode(limit, stride);
       
  2257     register_new_node(max_idx_expr, ctrl);
       
  2258     if (TraceLoopPredicate) tty->print("(limit - stride) ");
       
  2259   } else {
       
  2260     if (TraceLoopPredicate) tty->print("init ");
       
  2261   }
       
  2262 
       
  2263   if (scale != 1) {
       
  2264     ConNode* con_scale = _igvn.intcon(scale);
       
  2265     max_idx_expr = new (C, 3) MulINode(max_idx_expr, con_scale);
       
  2266     register_new_node(max_idx_expr, ctrl);
       
  2267     if (TraceLoopPredicate) tty->print("* %d ", scale);
       
  2268   }
       
  2269 
       
  2270   if (offset && (!offset->is_Con() || offset->get_int() != 0)){
       
  2271     max_idx_expr = new (C, 3) AddINode(max_idx_expr, offset);
       
  2272     register_new_node(max_idx_expr, ctrl);
       
  2273     if (TraceLoopPredicate)
       
  2274       if (offset->is_Con()) tty->print("+ %d ", offset->get_int());
       
  2275       else tty->print("+ offset ");
       
  2276   }
       
  2277 
       
  2278   CmpUNode* cmp = new (C, 3) CmpUNode(max_idx_expr, range);
       
  2279   register_new_node(cmp, ctrl);
       
  2280   BoolNode* bol = new (C, 2) BoolNode(cmp, BoolTest::lt);
       
  2281   register_new_node(bol, ctrl);
       
  2282 
       
  2283   if (TraceLoopPredicate) tty->print_cr("<u range");
       
  2284   return bol;
       
  2285 }
       
  2286 
       
  2287 //------------------------------ loop_predication_impl--------------------------
       
  2288 // Insert loop predicates for null checks and range checks
       
  2289 bool PhaseIdealLoop::loop_predication_impl(IdealLoopTree *loop) {
       
  2290   if (!UseLoopPredicate) return false;
       
  2291 
       
  2292   if (!loop->_head->is_Loop()) {
       
  2293     // Could be a simple region when irreducible loops are present.
       
  2294     return false;
       
  2295   }
       
  2296 
       
  2297   if (loop->_head->unique_ctrl_out()->Opcode() == Op_NeverBranch) {
       
  2298     // do nothing for infinite loops
       
  2299     return false;
       
  2300   }
       
  2301 
       
  2302   CountedLoopNode *cl = NULL;
       
  2303   if (loop->_head->is_CountedLoop()) {
       
  2304     cl = loop->_head->as_CountedLoop();
       
  2305     // do nothing for iteration-splitted loops
       
  2306     if (!cl->is_normal_loop()) return false;
       
  2307   }
       
  2308 
       
  2309   LoopNode *lpn  = loop->_head->as_Loop();
       
  2310   Node* entry = lpn->in(LoopNode::EntryControl);
       
  2311 
       
  2312   ProjNode *predicate_proj = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
       
  2313   if (!predicate_proj) {
       
  2314 #ifndef PRODUCT
       
  2315     if (TraceLoopPredicate) {
       
  2316       tty->print("missing predicate:");
       
  2317       loop->dump_head();
       
  2318       lpn->dump(1);
       
  2319     }
       
  2320 #endif
       
  2321     return false;
       
  2322   }
       
  2323   ConNode* zero = _igvn.intcon(0);
       
  2324   set_ctrl(zero, C->root());
       
  2325 
       
  2326   ResourceArea *area = Thread::current()->resource_area();
       
  2327   Invariance invar(area, loop);
       
  2328 
       
  2329   // Create list of if-projs such that a newer proj dominates all older
       
  2330   // projs in the list, and they all dominate loop->tail()
       
  2331   Node_List if_proj_list(area);
       
  2332   LoopNode *head  = loop->_head->as_Loop();
       
  2333   Node *current_proj = loop->tail(); //start from tail
       
  2334   while ( current_proj != head ) {
       
  2335     if (loop == get_loop(current_proj) && // still in the loop ?
       
  2336         current_proj->is_Proj()        && // is a projection  ?
       
  2337         current_proj->in(0)->Opcode() == Op_If) { // is a if projection ?
       
  2338       if_proj_list.push(current_proj);
       
  2339     }
       
  2340     current_proj = idom(current_proj);
       
  2341   }
       
  2342 
       
  2343   bool hoisted = false; // true if at least one proj is promoted
       
  2344   while (if_proj_list.size() > 0) {
       
  2345     // Following are changed to nonnull when a predicate can be hoisted
       
  2346     ProjNode* new_predicate_proj = NULL;
       
  2347 
       
  2348     ProjNode* proj = if_proj_list.pop()->as_Proj();
       
  2349     IfNode*   iff  = proj->in(0)->as_If();
       
  2350 
       
  2351     if (!is_uncommon_trap_if_pattern(proj, Deoptimization::Reason_none)) {
       
  2352       if (loop->is_loop_exit(iff)) {
       
  2353         // stop processing the remaining projs in the list because the execution of them
       
  2354         // depends on the condition of "iff" (iff->in(1)).
       
  2355         break;
       
  2356       } else {
       
  2357         // Both arms are inside the loop. There are two cases:
       
  2358         // (1) there is one backward branch. In this case, any remaining proj
       
  2359         //     in the if_proj list post-dominates "iff". So, the condition of "iff"
       
  2360         //     does not determine the execution the remining projs directly, and we
       
  2361         //     can safely continue.
       
  2362         // (2) both arms are forwarded, i.e. a diamond shape. In this case, "proj"
       
  2363         //     does not dominate loop->tail(), so it can not be in the if_proj list.
       
  2364         continue;
       
  2365       }
       
  2366     }
       
  2367 
       
  2368     Node*     test = iff->in(1);
       
  2369     if (!test->is_Bool()){ //Conv2B, ...
       
  2370       continue;
       
  2371     }
       
  2372     BoolNode* bol = test->as_Bool();
       
  2373     if (invar.is_invariant(bol)) {
       
  2374       // Invariant test
       
  2375       new_predicate_proj = create_new_if_for_predicate(predicate_proj, NULL,
       
  2376                                                        Deoptimization::Reason_predicate);
       
  2377       Node* ctrl = new_predicate_proj->in(0)->as_If()->in(0);
       
  2378       BoolNode* new_predicate_bol = invar.clone(bol, ctrl)->as_Bool();
       
  2379 
       
  2380       // Negate test if necessary
       
  2381       bool negated = false;
       
  2382       if (proj->_con != predicate_proj->_con) {
       
  2383         new_predicate_bol = new (C, 2) BoolNode(new_predicate_bol->in(1), new_predicate_bol->_test.negate());
       
  2384         register_new_node(new_predicate_bol, ctrl);
       
  2385         negated = true;
       
  2386       }
       
  2387       IfNode* new_predicate_iff = new_predicate_proj->in(0)->as_If();
       
  2388       _igvn.hash_delete(new_predicate_iff);
       
  2389       new_predicate_iff->set_req(1, new_predicate_bol);
       
  2390 #ifndef PRODUCT
       
  2391       if (TraceLoopPredicate) {
       
  2392         tty->print("Predicate invariant if%s: %d ", negated ? " negated" : "", new_predicate_iff->_idx);
       
  2393         loop->dump_head();
       
  2394       } else if (TraceLoopOpts) {
       
  2395         tty->print("Predicate IC ");
       
  2396         loop->dump_head();
       
  2397       }
       
  2398 #endif
       
  2399     } else if (cl != NULL && loop->is_range_check_if(iff, this, invar)) {
       
  2400       assert(proj->_con == predicate_proj->_con, "must match");
       
  2401 
       
  2402       // Range check for counted loops
       
  2403       const Node*    cmp    = bol->in(1)->as_Cmp();
       
  2404       Node*          idx    = cmp->in(1);
       
  2405       assert(!invar.is_invariant(idx), "index is variant");
       
  2406       assert(cmp->in(2)->Opcode() == Op_LoadRange || OptimizeFill, "must be");
       
  2407       Node* rng = cmp->in(2);
       
  2408       assert(invar.is_invariant(rng), "range must be invariant");
       
  2409       int scale    = 1;
       
  2410       Node* offset = zero;
       
  2411       bool ok = is_scaled_iv_plus_offset(idx, cl->phi(), &scale, &offset);
       
  2412       assert(ok, "must be index expression");
       
  2413 
       
  2414       Node* init    = cl->init_trip();
       
  2415       Node* limit   = cl->limit();
       
  2416       Node* stride  = cl->stride();
       
  2417 
       
  2418       // Build if's for the upper and lower bound tests.  The
       
  2419       // lower_bound test will dominate the upper bound test and all
       
  2420       // cloned or created nodes will use the lower bound test as
       
  2421       // their declared control.
       
  2422       ProjNode* lower_bound_proj = create_new_if_for_predicate(predicate_proj, NULL, Deoptimization::Reason_predicate);
       
  2423       ProjNode* upper_bound_proj = create_new_if_for_predicate(predicate_proj, NULL, Deoptimization::Reason_predicate);
       
  2424       assert(upper_bound_proj->in(0)->as_If()->in(0) == lower_bound_proj, "should dominate");
       
  2425       Node *ctrl = lower_bound_proj->in(0)->as_If()->in(0);
       
  2426 
       
  2427       // Perform cloning to keep Invariance state correct since the
       
  2428       // late schedule will place invariant things in the loop.
       
  2429       rng = invar.clone(rng, ctrl);
       
  2430       if (offset && offset != zero) {
       
  2431         assert(invar.is_invariant(offset), "offset must be loop invariant");
       
  2432         offset = invar.clone(offset, ctrl);
       
  2433       }
       
  2434 
       
  2435       // Test the lower bound
       
  2436       Node*  lower_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, rng, false);
       
  2437       IfNode* lower_bound_iff = lower_bound_proj->in(0)->as_If();
       
  2438       _igvn.hash_delete(lower_bound_iff);
       
  2439       lower_bound_iff->set_req(1, lower_bound_bol);
       
  2440       if (TraceLoopPredicate) tty->print_cr("lower bound check if: %d", lower_bound_iff->_idx);
       
  2441 
       
  2442       // Test the upper bound
       
  2443       Node* upper_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, rng, true);
       
  2444       IfNode* upper_bound_iff = upper_bound_proj->in(0)->as_If();
       
  2445       _igvn.hash_delete(upper_bound_iff);
       
  2446       upper_bound_iff->set_req(1, upper_bound_bol);
       
  2447       if (TraceLoopPredicate) tty->print_cr("upper bound check if: %d", lower_bound_iff->_idx);
       
  2448 
       
  2449       // Fall through into rest of the clean up code which will move
       
  2450       // any dependent nodes onto the upper bound test.
       
  2451       new_predicate_proj = upper_bound_proj;
       
  2452 
       
  2453 #ifndef PRODUCT
       
  2454       if (TraceLoopOpts && !TraceLoopPredicate) {
       
  2455         tty->print("Predicate RC ");
       
  2456         loop->dump_head();
       
  2457       }
       
  2458 #endif
       
  2459     } else {
       
  2460       // Loop variant check (for example, range check in non-counted loop)
       
  2461       // with uncommon trap.
       
  2462       continue;
       
  2463     }
       
  2464     assert(new_predicate_proj != NULL, "sanity");
       
  2465     // Success - attach condition (new_predicate_bol) to predicate if
       
  2466     invar.map_ctrl(proj, new_predicate_proj); // so that invariance test can be appropriate
       
  2467 
       
  2468     // Eliminate the old If in the loop body
       
  2469     dominated_by( new_predicate_proj, iff, proj->_con != new_predicate_proj->_con );
       
  2470 
       
  2471     hoisted = true;
       
  2472     C->set_major_progress();
       
  2473   } // end while
       
  2474 
       
  2475 #ifndef PRODUCT
       
  2476   // report that the loop predication has been actually performed
       
  2477   // for this loop
       
  2478   if (TraceLoopPredicate && hoisted) {
       
  2479     tty->print("Loop Predication Performed:");
       
  2480     loop->dump_head();
       
  2481   }
       
  2482 #endif
       
  2483 
       
  2484   return hoisted;
       
  2485 }
       
  2486 
       
  2487 //------------------------------loop_predication--------------------------------
       
  2488 // driver routine for loop predication optimization
       
  2489 bool IdealLoopTree::loop_predication( PhaseIdealLoop *phase) {
       
  2490   bool hoisted = false;
       
  2491   // Recursively promote predicates
       
  2492   if ( _child ) {
       
  2493     hoisted = _child->loop_predication( phase);
       
  2494   }
       
  2495 
       
  2496   // self
       
  2497   if (!_irreducible && !tail()->is_top()) {
       
  2498     hoisted |= phase->loop_predication_impl(this);
       
  2499   }
       
  2500 
       
  2501   if ( _next ) { //sibling
       
  2502     hoisted |= _next->loop_predication( phase);
       
  2503   }
       
  2504 
       
  2505   return hoisted;
       
  2506 }
       
  2507 
       
  2508 
       
  2509 // Process all the loops in the loop tree and replace any fill
  2090 // Process all the loops in the loop tree and replace any fill
  2510 // patterns with an intrisc version.
  2091 // patterns with an intrisc version.
  2511 bool PhaseIdealLoop::do_intrinsify_fill() {
  2092 bool PhaseIdealLoop::do_intrinsify_fill() {
  2512   bool changed = false;
  2093   bool changed = false;
  2513   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2094   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2623       }
  2204       }
  2624 #endif
  2205 #endif
  2625       if (value != head->phi()) {
  2206       if (value != head->phi()) {
  2626         msg = "unhandled shift in address";
  2207         msg = "unhandled shift in address";
  2627       } else {
  2208       } else {
  2628         found_index = true;
  2209         if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
  2629         shift = n;
  2210           msg = "scale doesn't match";
  2630         assert(type2aelembytes(store->as_Mem()->memory_type(), true) == 1 << shift->in(2)->get_int(), "scale should match");
  2211         } else {
       
  2212           found_index = true;
       
  2213           shift = n;
       
  2214         }
  2631       }
  2215       }
  2632     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
  2216     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
  2633       if (n->in(1) == head->phi()) {
  2217       if (n->in(1) == head->phi()) {
  2634         found_index = true;
  2218         found_index = true;
  2635         conv = n;
  2219         conv = n;
  2759   Node* shift = NULL;
  2343   Node* shift = NULL;
  2760   Node* offset = NULL;
  2344   Node* offset = NULL;
  2761   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
  2345   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
  2762     return false;
  2346     return false;
  2763   }
  2347   }
       
  2348 
       
  2349 #ifndef PRODUCT
       
  2350   if (TraceLoopOpts) {
       
  2351     tty->print("ArrayFill    ");
       
  2352     lpt->dump_head();
       
  2353   }
       
  2354 #endif
  2764 
  2355 
  2765   // Now replace the whole loop body by a call to a fill routine that
  2356   // Now replace the whole loop body by a call to a fill routine that
  2766   // covers the same region as the loop.
  2357   // covers the same region as the loop.
  2767   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
  2358   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
  2768 
  2359