src/hotspot/share/runtime/simpleThresholdPolicy.cpp
changeset 51369 f32e61253792
parent 51368 adcb0bb3d1e9
child 51370 fbb62267e5e9
equal deleted inserted replaced
51368:adcb0bb3d1e9 51369:f32e61253792
     1 /*
       
     2  * Copyright (c) 2010, 2018, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "compiler/compileBroker.hpp"
       
    27 #include "memory/resourceArea.hpp"
       
    28 #include "runtime/arguments.hpp"
       
    29 #include "runtime/handles.inline.hpp"
       
    30 #include "runtime/safepointVerifiers.hpp"
       
    31 #include "runtime/simpleThresholdPolicy.hpp"
       
    32 #include "runtime/simpleThresholdPolicy.inline.hpp"
       
    33 #include "code/scopeDesc.hpp"
       
    34 #if INCLUDE_JVMCI
       
    35 #include "jvmci/jvmciRuntime.hpp"
       
    36 #endif
       
    37 
       
    38 #ifdef TIERED
       
    39 
       
    40 void SimpleThresholdPolicy::print_counters(const char* prefix, const methodHandle& mh) {
       
    41   int invocation_count = mh->invocation_count();
       
    42   int backedge_count = mh->backedge_count();
       
    43   MethodData* mdh = mh->method_data();
       
    44   int mdo_invocations = 0, mdo_backedges = 0;
       
    45   int mdo_invocations_start = 0, mdo_backedges_start = 0;
       
    46   if (mdh != NULL) {
       
    47     mdo_invocations = mdh->invocation_count();
       
    48     mdo_backedges = mdh->backedge_count();
       
    49     mdo_invocations_start = mdh->invocation_count_start();
       
    50     mdo_backedges_start = mdh->backedge_count_start();
       
    51   }
       
    52   tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix,
       
    53       invocation_count, backedge_count, prefix,
       
    54       mdo_invocations, mdo_invocations_start,
       
    55       mdo_backedges, mdo_backedges_start);
       
    56   tty->print(" %smax levels=%d,%d", prefix,
       
    57       mh->highest_comp_level(), mh->highest_osr_comp_level());
       
    58 }
       
    59 
       
    60 // Print an event.
       
    61 void SimpleThresholdPolicy::print_event(EventType type, const methodHandle& mh, const methodHandle& imh,
       
    62                                         int bci, CompLevel level) {
       
    63   bool inlinee_event = mh() != imh();
       
    64 
       
    65   ttyLocker tty_lock;
       
    66   tty->print("%lf: [", os::elapsedTime());
       
    67 
       
    68   switch(type) {
       
    69   case CALL:
       
    70     tty->print("call");
       
    71     break;
       
    72   case LOOP:
       
    73     tty->print("loop");
       
    74     break;
       
    75   case COMPILE:
       
    76     tty->print("compile");
       
    77     break;
       
    78   case REMOVE_FROM_QUEUE:
       
    79     tty->print("remove-from-queue");
       
    80     break;
       
    81   case UPDATE_IN_QUEUE:
       
    82     tty->print("update-in-queue");
       
    83     break;
       
    84   case REPROFILE:
       
    85     tty->print("reprofile");
       
    86     break;
       
    87   case MAKE_NOT_ENTRANT:
       
    88     tty->print("make-not-entrant");
       
    89     break;
       
    90   default:
       
    91     tty->print("unknown");
       
    92   }
       
    93 
       
    94   tty->print(" level=%d ", level);
       
    95 
       
    96   ResourceMark rm;
       
    97   char *method_name = mh->name_and_sig_as_C_string();
       
    98   tty->print("[%s", method_name);
       
    99   if (inlinee_event) {
       
   100     char *inlinee_name = imh->name_and_sig_as_C_string();
       
   101     tty->print(" [%s]] ", inlinee_name);
       
   102   }
       
   103   else tty->print("] ");
       
   104   tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
       
   105                                       CompileBroker::queue_size(CompLevel_full_optimization));
       
   106 
       
   107   print_specific(type, mh, imh, bci, level);
       
   108 
       
   109   if (type != COMPILE) {
       
   110     print_counters("", mh);
       
   111     if (inlinee_event) {
       
   112       print_counters("inlinee ", imh);
       
   113     }
       
   114     tty->print(" compilable=");
       
   115     bool need_comma = false;
       
   116     if (!mh->is_not_compilable(CompLevel_full_profile)) {
       
   117       tty->print("c1");
       
   118       need_comma = true;
       
   119     }
       
   120     if (!mh->is_not_osr_compilable(CompLevel_full_profile)) {
       
   121       if (need_comma) tty->print(",");
       
   122       tty->print("c1-osr");
       
   123       need_comma = true;
       
   124     }
       
   125     if (!mh->is_not_compilable(CompLevel_full_optimization)) {
       
   126       if (need_comma) tty->print(",");
       
   127       tty->print("c2");
       
   128       need_comma = true;
       
   129     }
       
   130     if (!mh->is_not_osr_compilable(CompLevel_full_optimization)) {
       
   131       if (need_comma) tty->print(",");
       
   132       tty->print("c2-osr");
       
   133     }
       
   134     tty->print(" status=");
       
   135     if (mh->queued_for_compilation()) {
       
   136       tty->print("in-queue");
       
   137     } else tty->print("idle");
       
   138   }
       
   139   tty->print_cr("]");
       
   140 }
       
   141 
       
   142 void SimpleThresholdPolicy::initialize() {
       
   143   int count = CICompilerCount;
       
   144 #ifdef _LP64
       
   145   // Turn on ergonomic compiler count selection
       
   146   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
       
   147     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
       
   148   }
       
   149   if (CICompilerCountPerCPU) {
       
   150     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
       
   151     int log_cpu = log2_intptr(os::active_processor_count());
       
   152     int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
       
   153     count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2);
       
   154     FLAG_SET_ERGO(intx, CICompilerCount, count);
       
   155   }
       
   156 #else
       
   157   // On 32-bit systems, the number of compiler threads is limited to 3.
       
   158   // On these systems, the virtual address space available to the JVM
       
   159   // is usually limited to 2-4 GB (the exact value depends on the platform).
       
   160   // As the compilers (especially C2) can consume a large amount of
       
   161   // memory, scaling the number of compiler threads with the number of
       
   162   // available cores can result in the exhaustion of the address space
       
   163   /// available to the VM and thus cause the VM to crash.
       
   164   if (FLAG_IS_DEFAULT(CICompilerCount)) {
       
   165     count = 3;
       
   166     FLAG_SET_ERGO(intx, CICompilerCount, count);
       
   167   }
       
   168 #endif
       
   169 
       
   170   if (TieredStopAtLevel < CompLevel_full_optimization) {
       
   171     // No C2 compiler thread required
       
   172     set_c1_count(count);
       
   173   } else {
       
   174     set_c1_count(MAX2(count / 3, 1));
       
   175     set_c2_count(MAX2(count - c1_count(), 1));
       
   176   }
       
   177   assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
       
   178 
       
   179   // Some inlining tuning
       
   180 #ifdef X86
       
   181   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
       
   182     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
       
   183   }
       
   184 #endif
       
   185 
       
   186 #if defined SPARC || defined AARCH64
       
   187   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
       
   188     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
       
   189   }
       
   190 #endif
       
   191 
       
   192   set_increase_threshold_at_ratio();
       
   193   set_start_time(os::javaTimeMillis());
       
   194 }
       
   195 
       
   196 void SimpleThresholdPolicy::set_carry_if_necessary(InvocationCounter *counter) {
       
   197   if (!counter->carry() && counter->count() > InvocationCounter::count_limit / 2) {
       
   198     counter->set_carry_flag();
       
   199   }
       
   200 }
       
   201 
       
   202 // Set carry flags on the counters if necessary
       
   203 void SimpleThresholdPolicy::handle_counter_overflow(Method* method) {
       
   204   MethodCounters *mcs = method->method_counters();
       
   205   if (mcs != NULL) {
       
   206     set_carry_if_necessary(mcs->invocation_counter());
       
   207     set_carry_if_necessary(mcs->backedge_counter());
       
   208   }
       
   209   MethodData* mdo = method->method_data();
       
   210   if (mdo != NULL) {
       
   211     set_carry_if_necessary(mdo->invocation_counter());
       
   212     set_carry_if_necessary(mdo->backedge_counter());
       
   213   }
       
   214 }
       
   215 
       
   216 // Called with the queue locked and with at least one element
       
   217 CompileTask* SimpleThresholdPolicy::select_task(CompileQueue* compile_queue) {
       
   218   CompileTask *max_blocking_task = NULL;
       
   219   CompileTask *max_task = NULL;
       
   220   Method* max_method = NULL;
       
   221   jlong t = os::javaTimeMillis();
       
   222   // Iterate through the queue and find a method with a maximum rate.
       
   223   for (CompileTask* task = compile_queue->first(); task != NULL;) {
       
   224     CompileTask* next_task = task->next();
       
   225     Method* method = task->method();
       
   226     update_rate(t, method);
       
   227     if (max_task == NULL) {
       
   228       max_task = task;
       
   229       max_method = method;
       
   230     } else {
       
   231       // If a method has been stale for some time, remove it from the queue.
       
   232       // Blocking tasks and tasks submitted from whitebox API don't become stale
       
   233       if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
       
   234         if (PrintTieredEvents) {
       
   235           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
       
   236         }
       
   237         compile_queue->remove_and_mark_stale(task);
       
   238         method->clear_queued_for_compilation();
       
   239         task = next_task;
       
   240         continue;
       
   241       }
       
   242 
       
   243       // Select a method with a higher rate
       
   244       if (compare_methods(method, max_method)) {
       
   245         max_task = task;
       
   246         max_method = method;
       
   247       }
       
   248     }
       
   249 
       
   250     if (task->is_blocking()) {
       
   251       if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
       
   252         max_blocking_task = task;
       
   253       }
       
   254     }
       
   255 
       
   256     task = next_task;
       
   257   }
       
   258 
       
   259   if (max_blocking_task != NULL) {
       
   260     // In blocking compilation mode, the CompileBroker will make
       
   261     // compilations submitted by a JVMCI compiler thread non-blocking. These
       
   262     // compilations should be scheduled after all blocking compilations
       
   263     // to service non-compiler related compilations sooner and reduce the
       
   264     // chance of such compilations timing out.
       
   265     max_task = max_blocking_task;
       
   266     max_method = max_task->method();
       
   267   }
       
   268 
       
   269   if (max_task != NULL && max_task->comp_level() == CompLevel_full_profile &&
       
   270       TieredStopAtLevel > CompLevel_full_profile &&
       
   271       max_method != NULL && is_method_profiled(max_method)) {
       
   272     max_task->set_comp_level(CompLevel_limited_profile);
       
   273     if (PrintTieredEvents) {
       
   274       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
       
   275     }
       
   276   }
       
   277 
       
   278   return max_task;
       
   279 }
       
   280 
       
   281 void SimpleThresholdPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
       
   282   for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) {
       
   283     if (PrintTieredEvents) {
       
   284       methodHandle mh(sd->method());
       
   285       print_event(REPROFILE, mh, mh, InvocationEntryBci, CompLevel_none);
       
   286     }
       
   287     MethodData* mdo = sd->method()->method_data();
       
   288     if (mdo != NULL) {
       
   289       mdo->reset_start_counters();
       
   290     }
       
   291     if (sd->is_top()) break;
       
   292   }
       
   293 }
       
   294 
       
   295 nmethod* SimpleThresholdPolicy::event(const methodHandle& method, const methodHandle& inlinee,
       
   296                                       int branch_bci, int bci, CompLevel comp_level, CompiledMethod* nm, JavaThread* thread) {
       
   297   if (comp_level == CompLevel_none &&
       
   298       JvmtiExport::can_post_interpreter_events() &&
       
   299       thread->is_interp_only_mode()) {
       
   300     return NULL;
       
   301   }
       
   302   if (CompileTheWorld || ReplayCompiles) {
       
   303     // Don't trigger other compiles in testing mode
       
   304     return NULL;
       
   305   }
       
   306 
       
   307   handle_counter_overflow(method());
       
   308   if (method() != inlinee()) {
       
   309     handle_counter_overflow(inlinee());
       
   310   }
       
   311 
       
   312   if (PrintTieredEvents) {
       
   313     print_event(bci == InvocationEntryBci ? CALL : LOOP, method, inlinee, bci, comp_level);
       
   314   }
       
   315 
       
   316   if (bci == InvocationEntryBci) {
       
   317     method_invocation_event(method, inlinee, comp_level, nm, thread);
       
   318   } else {
       
   319     // method == inlinee if the event originated in the main method
       
   320     method_back_branch_event(method, inlinee, bci, comp_level, nm, thread);
       
   321     // Check if event led to a higher level OSR compilation
       
   322     nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, comp_level, false);
       
   323     if (osr_nm != NULL && osr_nm->comp_level() > comp_level) {
       
   324       // Perform OSR with new nmethod
       
   325       return osr_nm;
       
   326     }
       
   327   }
       
   328   return NULL;
       
   329 }
       
   330 
       
   331 // Check if the method can be compiled, change level if necessary
       
   332 void SimpleThresholdPolicy::compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
       
   333   assert(level <= TieredStopAtLevel, "Invalid compilation level");
       
   334   if (level == CompLevel_none) {
       
   335     return;
       
   336   }
       
   337   if (level == CompLevel_aot) {
       
   338     if (mh->has_aot_code()) {
       
   339       if (PrintTieredEvents) {
       
   340         print_event(COMPILE, mh, mh, bci, level);
       
   341       }
       
   342       MutexLocker ml(Compile_lock);
       
   343       NoSafepointVerifier nsv;
       
   344       if (mh->has_aot_code() && mh->code() != mh->aot_code()) {
       
   345         mh->aot_code()->make_entrant();
       
   346         if (mh->has_compiled_code()) {
       
   347           mh->code()->make_not_entrant();
       
   348         }
       
   349         Method::set_code(mh, mh->aot_code());
       
   350       }
       
   351     }
       
   352     return;
       
   353   }
       
   354 
       
   355   // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling
       
   356   // in the interpreter and then compile with C2 (the transition function will request that,
       
   357   // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with
       
   358   // pure C1.
       
   359   if (!can_be_compiled(mh, level)) {
       
   360     if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) {
       
   361         compile(mh, bci, CompLevel_simple, thread);
       
   362     }
       
   363     return;
       
   364   }
       
   365   if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) {
       
   366     return;
       
   367   }
       
   368   if (!CompileBroker::compilation_is_in_queue(mh)) {
       
   369     if (PrintTieredEvents) {
       
   370       print_event(COMPILE, mh, mh, bci, level);
       
   371     }
       
   372     submit_compile(mh, bci, level, thread);
       
   373   }
       
   374 }
       
   375 
       
   376 // Update the rate and submit compile
       
   377 void SimpleThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
       
   378   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
       
   379   update_rate(os::javaTimeMillis(), mh());
       
   380   CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, thread);
       
   381 }
       
   382 
       
   383 // Print an event.
       
   384 void SimpleThresholdPolicy::print_specific(EventType type, const methodHandle& mh, const methodHandle& imh,
       
   385                                              int bci, CompLevel level) {
       
   386   tty->print(" rate=");
       
   387   if (mh->prev_time() == 0) tty->print("n/a");
       
   388   else tty->print("%f", mh->rate());
       
   389 
       
   390   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
       
   391                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
       
   392 
       
   393 }
       
   394 
       
   395 // update_rate() is called from select_task() while holding a compile queue lock.
       
   396 void SimpleThresholdPolicy::update_rate(jlong t, Method* m) {
       
   397   // Skip update if counters are absent.
       
   398   // Can't allocate them since we are holding compile queue lock.
       
   399   if (m->method_counters() == NULL)  return;
       
   400 
       
   401   if (is_old(m)) {
       
   402     // We don't remove old methods from the queue,
       
   403     // so we can just zero the rate.
       
   404     m->set_rate(0);
       
   405     return;
       
   406   }
       
   407 
       
   408   // We don't update the rate if we've just came out of a safepoint.
       
   409   // delta_s is the time since last safepoint in milliseconds.
       
   410   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
       
   411   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
       
   412   // How many events were there since the last time?
       
   413   int event_count = m->invocation_count() + m->backedge_count();
       
   414   int delta_e = event_count - m->prev_event_count();
       
   415 
       
   416   // We should be running for at least 1ms.
       
   417   if (delta_s >= TieredRateUpdateMinTime) {
       
   418     // And we must've taken the previous point at least 1ms before.
       
   419     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
       
   420       m->set_prev_time(t);
       
   421       m->set_prev_event_count(event_count);
       
   422       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
       
   423     } else {
       
   424       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
       
   425         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
       
   426         m->set_rate(0);
       
   427       }
       
   428     }
       
   429   }
       
   430 }
       
   431 
       
   432 // Check if this method has been stale from a given number of milliseconds.
       
   433 // See select_task().
       
   434 bool SimpleThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
       
   435   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
       
   436   jlong delta_t = t - m->prev_time();
       
   437   if (delta_t > timeout && delta_s > timeout) {
       
   438     int event_count = m->invocation_count() + m->backedge_count();
       
   439     int delta_e = event_count - m->prev_event_count();
       
   440     // Return true if there were no events.
       
   441     return delta_e == 0;
       
   442   }
       
   443   return false;
       
   444 }
       
   445 
       
   446 // We don't remove old methods from the compile queue even if they have
       
   447 // very low activity. See select_task().
       
   448 bool SimpleThresholdPolicy::is_old(Method* method) {
       
   449   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
       
   450 }
       
   451 
       
   452 double SimpleThresholdPolicy::weight(Method* method) {
       
   453   return (double)(method->rate() + 1) *
       
   454     (method->invocation_count() + 1) * (method->backedge_count() + 1);
       
   455 }
       
   456 
       
   457 // Apply heuristics and return true if x should be compiled before y
       
   458 bool SimpleThresholdPolicy::compare_methods(Method* x, Method* y) {
       
   459   if (x->highest_comp_level() > y->highest_comp_level()) {
       
   460     // recompilation after deopt
       
   461     return true;
       
   462   } else
       
   463     if (x->highest_comp_level() == y->highest_comp_level()) {
       
   464       if (weight(x) > weight(y)) {
       
   465         return true;
       
   466       }
       
   467     }
       
   468   return false;
       
   469 }
       
   470 
       
   471 // Is method profiled enough?
       
   472 bool SimpleThresholdPolicy::is_method_profiled(Method* method) {
       
   473   MethodData* mdo = method->method_data();
       
   474   if (mdo != NULL) {
       
   475     int i = mdo->invocation_count_delta();
       
   476     int b = mdo->backedge_count_delta();
       
   477     return call_predicate_helper<CompLevel_full_profile>(i, b, 1, method);
       
   478   }
       
   479   return false;
       
   480 }
       
   481 
       
   482 double SimpleThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
       
   483   double queue_size = CompileBroker::queue_size(level);
       
   484   int comp_count = compiler_count(level);
       
   485   double k = queue_size / (feedback_k * comp_count) + 1;
       
   486 
       
   487   // Increase C1 compile threshold when the code cache is filled more
       
   488   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
       
   489   // The main intention is to keep enough free space for C2 compiled code
       
   490   // to achieve peak performance if the code cache is under stress.
       
   491   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
       
   492     double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
       
   493     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
       
   494       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
       
   495     }
       
   496   }
       
   497   return k;
       
   498 }
       
   499 
       
   500 // Call and loop predicates determine whether a transition to a higher
       
   501 // compilation level should be performed (pointers to predicate functions
       
   502 // are passed to common()).
       
   503 // Tier?LoadFeedback is basically a coefficient that determines of
       
   504 // how many methods per compiler thread can be in the queue before
       
   505 // the threshold values double.
       
   506 bool SimpleThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) {
       
   507   switch(cur_level) {
       
   508   case CompLevel_aot: {
       
   509     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
       
   510     return loop_predicate_helper<CompLevel_aot>(i, b, k, method);
       
   511   }
       
   512   case CompLevel_none:
       
   513   case CompLevel_limited_profile: {
       
   514     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
       
   515     return loop_predicate_helper<CompLevel_none>(i, b, k, method);
       
   516   }
       
   517   case CompLevel_full_profile: {
       
   518     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
       
   519     return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
       
   520   }
       
   521   default:
       
   522     return true;
       
   523   }
       
   524 }
       
   525 
       
   526 bool SimpleThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) {
       
   527   switch(cur_level) {
       
   528   case CompLevel_aot: {
       
   529     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
       
   530     return call_predicate_helper<CompLevel_aot>(i, b, k, method);
       
   531   }
       
   532   case CompLevel_none:
       
   533   case CompLevel_limited_profile: {
       
   534     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
       
   535     return call_predicate_helper<CompLevel_none>(i, b, k, method);
       
   536   }
       
   537   case CompLevel_full_profile: {
       
   538     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
       
   539     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method);
       
   540   }
       
   541   default:
       
   542     return true;
       
   543   }
       
   544 }
       
   545 
       
   546 // Determine is a method is mature.
       
   547 bool SimpleThresholdPolicy::is_mature(Method* method) {
       
   548   if (is_trivial(method)) return true;
       
   549   MethodData* mdo = method->method_data();
       
   550   if (mdo != NULL) {
       
   551     int i = mdo->invocation_count();
       
   552     int b = mdo->backedge_count();
       
   553     double k = ProfileMaturityPercentage / 100.0;
       
   554     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method) ||
       
   555            loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
       
   556   }
       
   557   return false;
       
   558 }
       
   559 
       
   560 // If a method is old enough and is still in the interpreter we would want to
       
   561 // start profiling without waiting for the compiled method to arrive.
       
   562 // We also take the load on compilers into the account.
       
   563 bool SimpleThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
       
   564   if (cur_level == CompLevel_none &&
       
   565       CompileBroker::queue_size(CompLevel_full_optimization) <=
       
   566       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
       
   567     int i = method->invocation_count();
       
   568     int b = method->backedge_count();
       
   569     double k = Tier0ProfilingStartPercentage / 100.0;
       
   570     return call_predicate_helper<CompLevel_none>(i, b, k, method) || loop_predicate_helper<CompLevel_none>(i, b, k, method);
       
   571   }
       
   572   return false;
       
   573 }
       
   574 
       
   575 // Inlining control: if we're compiling a profiled method with C1 and the callee
       
   576 // is known to have OSRed in a C2 version, don't inline it.
       
   577 bool SimpleThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
       
   578   CompLevel comp_level = (CompLevel)env->comp_level();
       
   579   if (comp_level == CompLevel_full_profile ||
       
   580       comp_level == CompLevel_limited_profile) {
       
   581     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
       
   582   }
       
   583   return false;
       
   584 }
       
   585 
       
   586 // Create MDO if necessary.
       
   587 void SimpleThresholdPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) {
       
   588   if (mh->is_native() ||
       
   589       mh->is_abstract() ||
       
   590       mh->is_accessor() ||
       
   591       mh->is_constant_getter()) {
       
   592     return;
       
   593   }
       
   594   if (mh->method_data() == NULL) {
       
   595     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
       
   596   }
       
   597 }
       
   598 
       
   599 
       
   600 /*
       
   601  * Method states:
       
   602  *   0 - interpreter (CompLevel_none)
       
   603  *   1 - pure C1 (CompLevel_simple)
       
   604  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
       
   605  *   3 - C1 with full profiling (CompLevel_full_profile)
       
   606  *   4 - C2 (CompLevel_full_optimization)
       
   607  *
       
   608  * Common state transition patterns:
       
   609  * a. 0 -> 3 -> 4.
       
   610  *    The most common path. But note that even in this straightforward case
       
   611  *    profiling can start at level 0 and finish at level 3.
       
   612  *
       
   613  * b. 0 -> 2 -> 3 -> 4.
       
   614  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
       
   615  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
       
   616  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
       
   617  *
       
   618  * c. 0 -> (3->2) -> 4.
       
   619  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
       
   620  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
       
   621  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
       
   622  *    without full profiling while c2 is compiling.
       
   623  *
       
   624  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
       
   625  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
       
   626  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
       
   627  *
       
   628  * e. 0 -> 4.
       
   629  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
       
   630  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
       
   631  *    the compiled version already exists).
       
   632  *
       
   633  * Note that since state 0 can be reached from any other state via deoptimization different loops
       
   634  * are possible.
       
   635  *
       
   636  */
       
   637 
       
   638 // Common transition function. Given a predicate determines if a method should transition to another level.
       
   639 CompLevel SimpleThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
       
   640   CompLevel next_level = cur_level;
       
   641   int i = method->invocation_count();
       
   642   int b = method->backedge_count();
       
   643 
       
   644   if (is_trivial(method)) {
       
   645     next_level = CompLevel_simple;
       
   646   } else {
       
   647     switch(cur_level) {
       
   648       default: break;
       
   649       case CompLevel_aot: {
       
   650       // If we were at full profile level, would we switch to full opt?
       
   651       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
       
   652         next_level = CompLevel_full_optimization;
       
   653       } else if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
       
   654                                Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
       
   655                                (this->*p)(i, b, cur_level, method))) {
       
   656         next_level = CompLevel_full_profile;
       
   657       }
       
   658     }
       
   659     break;
       
   660     case CompLevel_none:
       
   661       // If we were at full profile level, would we switch to full opt?
       
   662       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
       
   663         next_level = CompLevel_full_optimization;
       
   664       } else if ((this->*p)(i, b, cur_level, method)) {
       
   665 #if INCLUDE_JVMCI
       
   666         if (EnableJVMCI && UseJVMCICompiler) {
       
   667           // Since JVMCI takes a while to warm up, its queue inevitably backs up during
       
   668           // early VM execution. As of 2014-06-13, JVMCI's inliner assumes that the root
       
   669           // compilation method and all potential inlinees have mature profiles (which
       
   670           // includes type profiling). If it sees immature profiles, JVMCI's inliner
       
   671           // can perform pathologically bad (e.g., causing OutOfMemoryErrors due to
       
   672           // exploring/inlining too many graphs). Since a rewrite of the inliner is
       
   673           // in progress, we simply disable the dialing back heuristic for now and will
       
   674           // revisit this decision once the new inliner is completed.
       
   675           next_level = CompLevel_full_profile;
       
   676         } else
       
   677 #endif
       
   678         {
       
   679           // C1-generated fully profiled code is about 30% slower than the limited profile
       
   680           // code that has only invocation and backedge counters. The observation is that
       
   681           // if C2 queue is large enough we can spend too much time in the fully profiled code
       
   682           // while waiting for C2 to pick the method from the queue. To alleviate this problem
       
   683           // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
       
   684           // we choose to compile a limited profiled version and then recompile with full profiling
       
   685           // when the load on C2 goes down.
       
   686           if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
       
   687               Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
       
   688             next_level = CompLevel_limited_profile;
       
   689           } else {
       
   690             next_level = CompLevel_full_profile;
       
   691           }
       
   692         }
       
   693       }
       
   694       break;
       
   695     case CompLevel_limited_profile:
       
   696       if (is_method_profiled(method)) {
       
   697         // Special case: we got here because this method was fully profiled in the interpreter.
       
   698         next_level = CompLevel_full_optimization;
       
   699       } else {
       
   700         MethodData* mdo = method->method_data();
       
   701         if (mdo != NULL) {
       
   702           if (mdo->would_profile()) {
       
   703             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
       
   704                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
       
   705                                      (this->*p)(i, b, cur_level, method))) {
       
   706               next_level = CompLevel_full_profile;
       
   707             }
       
   708           } else {
       
   709             next_level = CompLevel_full_optimization;
       
   710           }
       
   711         } else {
       
   712           // If there is no MDO we need to profile
       
   713           if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
       
   714                                    Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
       
   715                                    (this->*p)(i, b, cur_level, method))) {
       
   716             next_level = CompLevel_full_profile;
       
   717           }
       
   718         }
       
   719       }
       
   720       break;
       
   721     case CompLevel_full_profile:
       
   722       {
       
   723         MethodData* mdo = method->method_data();
       
   724         if (mdo != NULL) {
       
   725           if (mdo->would_profile()) {
       
   726             int mdo_i = mdo->invocation_count_delta();
       
   727             int mdo_b = mdo->backedge_count_delta();
       
   728             if ((this->*p)(mdo_i, mdo_b, cur_level, method)) {
       
   729               next_level = CompLevel_full_optimization;
       
   730             }
       
   731           } else {
       
   732             next_level = CompLevel_full_optimization;
       
   733           }
       
   734         }
       
   735       }
       
   736       break;
       
   737     }
       
   738   }
       
   739   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
       
   740 }
       
   741 
       
   742 // Determine if a method should be compiled with a normal entry point at a different level.
       
   743 CompLevel SimpleThresholdPolicy::call_event(Method* method, CompLevel cur_level, JavaThread * thread) {
       
   744   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
       
   745                              common(&SimpleThresholdPolicy::loop_predicate, method, cur_level, true));
       
   746   CompLevel next_level = common(&SimpleThresholdPolicy::call_predicate, method, cur_level);
       
   747 
       
   748   // If OSR method level is greater than the regular method level, the levels should be
       
   749   // equalized by raising the regular method level in order to avoid OSRs during each
       
   750   // invocation of the method.
       
   751   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
       
   752     MethodData* mdo = method->method_data();
       
   753     guarantee(mdo != NULL, "MDO should not be NULL");
       
   754     if (mdo->invocation_count() >= 1) {
       
   755       next_level = CompLevel_full_optimization;
       
   756     }
       
   757   } else {
       
   758     next_level = MAX2(osr_level, next_level);
       
   759   }
       
   760 #if INCLUDE_JVMCI
       
   761   if (UseJVMCICompiler) {
       
   762     next_level = JVMCIRuntime::adjust_comp_level(method, false, next_level, thread);
       
   763   }
       
   764 #endif
       
   765   return next_level;
       
   766 }
       
   767 
       
   768 // Determine if we should do an OSR compilation of a given method.
       
   769 CompLevel SimpleThresholdPolicy::loop_event(Method* method, CompLevel cur_level, JavaThread* thread) {
       
   770   CompLevel next_level = common(&SimpleThresholdPolicy::loop_predicate, method, cur_level, true);
       
   771   if (cur_level == CompLevel_none) {
       
   772     // If there is a live OSR method that means that we deopted to the interpreter
       
   773     // for the transition.
       
   774     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
       
   775     if (osr_level > CompLevel_none) {
       
   776       return osr_level;
       
   777     }
       
   778   }
       
   779 #if INCLUDE_JVMCI
       
   780   if (UseJVMCICompiler) {
       
   781     next_level = JVMCIRuntime::adjust_comp_level(method, true, next_level, thread);
       
   782   }
       
   783 #endif
       
   784   return next_level;
       
   785 }
       
   786 
       
   787 bool SimpleThresholdPolicy::maybe_switch_to_aot(const methodHandle& mh, CompLevel cur_level, CompLevel next_level, JavaThread* thread) {
       
   788   if (UseAOT && !delay_compilation_during_startup()) {
       
   789     if (cur_level == CompLevel_full_profile || cur_level == CompLevel_none) {
       
   790       // If the current level is full profile or interpreter and we're switching to any other level,
       
   791       // activate the AOT code back first so that we won't waste time overprofiling.
       
   792       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
       
   793       // Fall through for JIT compilation.
       
   794     }
       
   795     if (next_level == CompLevel_limited_profile && cur_level != CompLevel_aot && mh->has_aot_code()) {
       
   796       // If the next level is limited profile, use the aot code (if there is any),
       
   797       // since it's essentially the same thing.
       
   798       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
       
   799       // Not need to JIT, we're done.
       
   800       return true;
       
   801     }
       
   802   }
       
   803   return false;
       
   804 }
       
   805 
       
   806 
       
   807 // Handle the invocation event.
       
   808 void SimpleThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
       
   809                                                       CompLevel level, CompiledMethod* nm, JavaThread* thread) {
       
   810   if (should_create_mdo(mh(), level)) {
       
   811     create_mdo(mh, thread);
       
   812   }
       
   813   CompLevel next_level = call_event(mh(), level, thread);
       
   814   if (next_level != level) {
       
   815     if (maybe_switch_to_aot(mh, level, next_level, thread)) {
       
   816       // No JITting necessary
       
   817       return;
       
   818     }
       
   819     if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
       
   820       compile(mh, InvocationEntryBci, next_level, thread);
       
   821     }
       
   822   }
       
   823 }
       
   824 
       
   825 // Handle the back branch event. Notice that we can compile the method
       
   826 // with a regular entry from here.
       
   827 void SimpleThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
       
   828                                                      int bci, CompLevel level, CompiledMethod* nm, JavaThread* thread) {
       
   829   if (should_create_mdo(mh(), level)) {
       
   830     create_mdo(mh, thread);
       
   831   }
       
   832   // Check if MDO should be created for the inlined method
       
   833   if (should_create_mdo(imh(), level)) {
       
   834     create_mdo(imh, thread);
       
   835   }
       
   836 
       
   837   if (is_compilation_enabled()) {
       
   838     CompLevel next_osr_level = loop_event(imh(), level, thread);
       
   839     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
       
   840     // At the very least compile the OSR version
       
   841     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
       
   842       compile(imh, bci, next_osr_level, thread);
       
   843     }
       
   844 
       
   845     // Use loop event as an opportunity to also check if there's been
       
   846     // enough calls.
       
   847     CompLevel cur_level, next_level;
       
   848     if (mh() != imh()) { // If there is an enclosing method
       
   849       if (level == CompLevel_aot) {
       
   850         // Recompile the enclosing method to prevent infinite OSRs. Stay at AOT level while it's compiling.
       
   851         if (max_osr_level != CompLevel_none && !CompileBroker::compilation_is_in_queue(mh)) {
       
   852           compile(mh, InvocationEntryBci, MIN2((CompLevel)TieredStopAtLevel, CompLevel_full_profile), thread);
       
   853         }
       
   854       } else {
       
   855         // Current loop event level is not AOT
       
   856         guarantee(nm != NULL, "Should have nmethod here");
       
   857         cur_level = comp_level(mh());
       
   858         next_level = call_event(mh(), cur_level, thread);
       
   859 
       
   860         if (max_osr_level == CompLevel_full_optimization) {
       
   861           // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
       
   862           bool make_not_entrant = false;
       
   863           if (nm->is_osr_method()) {
       
   864             // This is an osr method, just make it not entrant and recompile later if needed
       
   865             make_not_entrant = true;
       
   866           } else {
       
   867             if (next_level != CompLevel_full_optimization) {
       
   868               // next_level is not full opt, so we need to recompile the
       
   869               // enclosing method without the inlinee
       
   870               cur_level = CompLevel_none;
       
   871               make_not_entrant = true;
       
   872             }
       
   873           }
       
   874           if (make_not_entrant) {
       
   875             if (PrintTieredEvents) {
       
   876               int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
       
   877               print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
       
   878             }
       
   879             nm->make_not_entrant();
       
   880           }
       
   881         }
       
   882         // Fix up next_level if necessary to avoid deopts
       
   883         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
       
   884           next_level = CompLevel_full_profile;
       
   885         }
       
   886         if (cur_level != next_level) {
       
   887           if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
       
   888             compile(mh, InvocationEntryBci, next_level, thread);
       
   889           }
       
   890         }
       
   891       }
       
   892     } else {
       
   893       cur_level = comp_level(mh());
       
   894       next_level = call_event(mh(), cur_level, thread);
       
   895       if (next_level != cur_level) {
       
   896         if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
       
   897           compile(mh, InvocationEntryBci, next_level, thread);
       
   898         }
       
   899       }
       
   900     }
       
   901   }
       
   902 }
       
   903 
       
   904 #endif