|
1 /* ********************************************************************* |
|
2 * |
|
3 * Sun elects to have this file available under and governed by the |
|
4 * Mozilla Public License Version 1.1 ("MPL") (see |
|
5 * http://www.mozilla.org/MPL/ for full license text). For the avoidance |
|
6 * of doubt and subject to the following, Sun also elects to allow |
|
7 * licensees to use this file under the MPL, the GNU General Public |
|
8 * License version 2 only or the Lesser General Public License version |
|
9 * 2.1 only. Any references to the "GNU General Public License version 2 |
|
10 * or later" or "GPL" in the following shall be construed to mean the |
|
11 * GNU General Public License version 2 only. Any references to the "GNU |
|
12 * Lesser General Public License version 2.1 or later" or "LGPL" in the |
|
13 * following shall be construed to mean the GNU Lesser General Public |
|
14 * License version 2.1 only. However, the following notice accompanied |
|
15 * the original version of this file: |
|
16 * |
|
17 * |
|
18 * Arbitrary precision integer arithmetic library |
|
19 * |
|
20 * Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
|
21 * |
|
22 * The contents of this file are subject to the Mozilla Public License Version |
|
23 * 1.1 (the "License"); you may not use this file except in compliance with |
|
24 * the License. You may obtain a copy of the License at |
|
25 * http://www.mozilla.org/MPL/ |
|
26 * |
|
27 * Software distributed under the License is distributed on an "AS IS" basis, |
|
28 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
|
29 * for the specific language governing rights and limitations under the |
|
30 * License. |
|
31 * |
|
32 * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library. |
|
33 * |
|
34 * The Initial Developer of the Original Code is |
|
35 * Michael J. Fromberger. |
|
36 * Portions created by the Initial Developer are Copyright (C) 1998 |
|
37 * the Initial Developer. All Rights Reserved. |
|
38 * |
|
39 * Contributor(s): |
|
40 * Netscape Communications Corporation |
|
41 * Douglas Stebila <douglas@stebila.ca> of Sun Laboratories. |
|
42 * |
|
43 * Alternatively, the contents of this file may be used under the terms of |
|
44 * either the GNU General Public License Version 2 or later (the "GPL"), or |
|
45 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
|
46 * in which case the provisions of the GPL or the LGPL are applicable instead |
|
47 * of those above. If you wish to allow use of your version of this file only |
|
48 * under the terms of either the GPL or the LGPL, and not to allow others to |
|
49 * use your version of this file under the terms of the MPL, indicate your |
|
50 * decision by deleting the provisions above and replace them with the notice |
|
51 * and other provisions required by the GPL or the LGPL. If you do not delete |
|
52 * the provisions above, a recipient may use your version of this file under |
|
53 * the terms of any one of the MPL, the GPL or the LGPL. |
|
54 * |
|
55 *********************************************************************** */ |
|
56 /* |
|
57 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. |
|
58 * Use is subject to license terms. |
|
59 */ |
|
60 |
|
61 #pragma ident "%Z%%M% %I% %E% SMI" |
|
62 |
|
63 /* $Id: mpi.c,v 1.45 2006/09/29 20:12:21 alexei.volkov.bugs%sun.com Exp $ */ |
|
64 |
|
65 #include "mpi-priv.h" |
|
66 #if defined(OSF1) |
|
67 #include <c_asm.h> |
|
68 #endif |
|
69 |
|
70 #if MP_LOGTAB |
|
71 /* |
|
72 A table of the logs of 2 for various bases (the 0 and 1 entries of |
|
73 this table are meaningless and should not be referenced). |
|
74 |
|
75 This table is used to compute output lengths for the mp_toradix() |
|
76 function. Since a number n in radix r takes up about log_r(n) |
|
77 digits, we estimate the output size by taking the least integer |
|
78 greater than log_r(n), where: |
|
79 |
|
80 log_r(n) = log_2(n) * log_r(2) |
|
81 |
|
82 This table, therefore, is a table of log_r(2) for 2 <= r <= 36, |
|
83 which are the output bases supported. |
|
84 */ |
|
85 #include "logtab.h" |
|
86 #endif |
|
87 |
|
88 /* {{{ Constant strings */ |
|
89 |
|
90 /* Constant strings returned by mp_strerror() */ |
|
91 static const char *mp_err_string[] = { |
|
92 "unknown result code", /* say what? */ |
|
93 "boolean true", /* MP_OKAY, MP_YES */ |
|
94 "boolean false", /* MP_NO */ |
|
95 "out of memory", /* MP_MEM */ |
|
96 "argument out of range", /* MP_RANGE */ |
|
97 "invalid input parameter", /* MP_BADARG */ |
|
98 "result is undefined" /* MP_UNDEF */ |
|
99 }; |
|
100 |
|
101 /* Value to digit maps for radix conversion */ |
|
102 |
|
103 /* s_dmap_1 - standard digits and letters */ |
|
104 static const char *s_dmap_1 = |
|
105 "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"; |
|
106 |
|
107 /* }}} */ |
|
108 |
|
109 unsigned long mp_allocs; |
|
110 unsigned long mp_frees; |
|
111 unsigned long mp_copies; |
|
112 |
|
113 /* {{{ Default precision manipulation */ |
|
114 |
|
115 /* Default precision for newly created mp_int's */ |
|
116 static mp_size s_mp_defprec = MP_DEFPREC; |
|
117 |
|
118 mp_size mp_get_prec(void) |
|
119 { |
|
120 return s_mp_defprec; |
|
121 |
|
122 } /* end mp_get_prec() */ |
|
123 |
|
124 void mp_set_prec(mp_size prec) |
|
125 { |
|
126 if(prec == 0) |
|
127 s_mp_defprec = MP_DEFPREC; |
|
128 else |
|
129 s_mp_defprec = prec; |
|
130 |
|
131 } /* end mp_set_prec() */ |
|
132 |
|
133 /* }}} */ |
|
134 |
|
135 /*------------------------------------------------------------------------*/ |
|
136 /* {{{ mp_init(mp, kmflag) */ |
|
137 |
|
138 /* |
|
139 mp_init(mp, kmflag) |
|
140 |
|
141 Initialize a new zero-valued mp_int. Returns MP_OKAY if successful, |
|
142 MP_MEM if memory could not be allocated for the structure. |
|
143 */ |
|
144 |
|
145 mp_err mp_init(mp_int *mp, int kmflag) |
|
146 { |
|
147 return mp_init_size(mp, s_mp_defprec, kmflag); |
|
148 |
|
149 } /* end mp_init() */ |
|
150 |
|
151 /* }}} */ |
|
152 |
|
153 /* {{{ mp_init_size(mp, prec, kmflag) */ |
|
154 |
|
155 /* |
|
156 mp_init_size(mp, prec, kmflag) |
|
157 |
|
158 Initialize a new zero-valued mp_int with at least the given |
|
159 precision; returns MP_OKAY if successful, or MP_MEM if memory could |
|
160 not be allocated for the structure. |
|
161 */ |
|
162 |
|
163 mp_err mp_init_size(mp_int *mp, mp_size prec, int kmflag) |
|
164 { |
|
165 ARGCHK(mp != NULL && prec > 0, MP_BADARG); |
|
166 |
|
167 prec = MP_ROUNDUP(prec, s_mp_defprec); |
|
168 if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit), kmflag)) == NULL) |
|
169 return MP_MEM; |
|
170 |
|
171 SIGN(mp) = ZPOS; |
|
172 USED(mp) = 1; |
|
173 ALLOC(mp) = prec; |
|
174 |
|
175 return MP_OKAY; |
|
176 |
|
177 } /* end mp_init_size() */ |
|
178 |
|
179 /* }}} */ |
|
180 |
|
181 /* {{{ mp_init_copy(mp, from) */ |
|
182 |
|
183 /* |
|
184 mp_init_copy(mp, from) |
|
185 |
|
186 Initialize mp as an exact copy of from. Returns MP_OKAY if |
|
187 successful, MP_MEM if memory could not be allocated for the new |
|
188 structure. |
|
189 */ |
|
190 |
|
191 mp_err mp_init_copy(mp_int *mp, const mp_int *from) |
|
192 { |
|
193 ARGCHK(mp != NULL && from != NULL, MP_BADARG); |
|
194 |
|
195 if(mp == from) |
|
196 return MP_OKAY; |
|
197 |
|
198 if((DIGITS(mp) = s_mp_alloc(ALLOC(from), sizeof(mp_digit), FLAG(from))) == NULL) |
|
199 return MP_MEM; |
|
200 |
|
201 s_mp_copy(DIGITS(from), DIGITS(mp), USED(from)); |
|
202 USED(mp) = USED(from); |
|
203 ALLOC(mp) = ALLOC(from); |
|
204 SIGN(mp) = SIGN(from); |
|
205 |
|
206 #ifndef _WIN32 |
|
207 FLAG(mp) = FLAG(from); |
|
208 #endif /* _WIN32 */ |
|
209 |
|
210 return MP_OKAY; |
|
211 |
|
212 } /* end mp_init_copy() */ |
|
213 |
|
214 /* }}} */ |
|
215 |
|
216 /* {{{ mp_copy(from, to) */ |
|
217 |
|
218 /* |
|
219 mp_copy(from, to) |
|
220 |
|
221 Copies the mp_int 'from' to the mp_int 'to'. It is presumed that |
|
222 'to' has already been initialized (if not, use mp_init_copy() |
|
223 instead). If 'from' and 'to' are identical, nothing happens. |
|
224 */ |
|
225 |
|
226 mp_err mp_copy(const mp_int *from, mp_int *to) |
|
227 { |
|
228 ARGCHK(from != NULL && to != NULL, MP_BADARG); |
|
229 |
|
230 if(from == to) |
|
231 return MP_OKAY; |
|
232 |
|
233 ++mp_copies; |
|
234 { /* copy */ |
|
235 mp_digit *tmp; |
|
236 |
|
237 /* |
|
238 If the allocated buffer in 'to' already has enough space to hold |
|
239 all the used digits of 'from', we'll re-use it to avoid hitting |
|
240 the memory allocater more than necessary; otherwise, we'd have |
|
241 to grow anyway, so we just allocate a hunk and make the copy as |
|
242 usual |
|
243 */ |
|
244 if(ALLOC(to) >= USED(from)) { |
|
245 s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from)); |
|
246 s_mp_copy(DIGITS(from), DIGITS(to), USED(from)); |
|
247 |
|
248 } else { |
|
249 if((tmp = s_mp_alloc(ALLOC(from), sizeof(mp_digit), FLAG(from))) == NULL) |
|
250 return MP_MEM; |
|
251 |
|
252 s_mp_copy(DIGITS(from), tmp, USED(from)); |
|
253 |
|
254 if(DIGITS(to) != NULL) { |
|
255 #if MP_CRYPTO |
|
256 s_mp_setz(DIGITS(to), ALLOC(to)); |
|
257 #endif |
|
258 s_mp_free(DIGITS(to), ALLOC(to)); |
|
259 } |
|
260 |
|
261 DIGITS(to) = tmp; |
|
262 ALLOC(to) = ALLOC(from); |
|
263 } |
|
264 |
|
265 /* Copy the precision and sign from the original */ |
|
266 USED(to) = USED(from); |
|
267 SIGN(to) = SIGN(from); |
|
268 } /* end copy */ |
|
269 |
|
270 return MP_OKAY; |
|
271 |
|
272 } /* end mp_copy() */ |
|
273 |
|
274 /* }}} */ |
|
275 |
|
276 /* {{{ mp_exch(mp1, mp2) */ |
|
277 |
|
278 /* |
|
279 mp_exch(mp1, mp2) |
|
280 |
|
281 Exchange mp1 and mp2 without allocating any intermediate memory |
|
282 (well, unless you count the stack space needed for this call and the |
|
283 locals it creates...). This cannot fail. |
|
284 */ |
|
285 |
|
286 void mp_exch(mp_int *mp1, mp_int *mp2) |
|
287 { |
|
288 #if MP_ARGCHK == 2 |
|
289 assert(mp1 != NULL && mp2 != NULL); |
|
290 #else |
|
291 if(mp1 == NULL || mp2 == NULL) |
|
292 return; |
|
293 #endif |
|
294 |
|
295 s_mp_exch(mp1, mp2); |
|
296 |
|
297 } /* end mp_exch() */ |
|
298 |
|
299 /* }}} */ |
|
300 |
|
301 /* {{{ mp_clear(mp) */ |
|
302 |
|
303 /* |
|
304 mp_clear(mp) |
|
305 |
|
306 Release the storage used by an mp_int, and void its fields so that |
|
307 if someone calls mp_clear() again for the same int later, we won't |
|
308 get tollchocked. |
|
309 */ |
|
310 |
|
311 void mp_clear(mp_int *mp) |
|
312 { |
|
313 if(mp == NULL) |
|
314 return; |
|
315 |
|
316 if(DIGITS(mp) != NULL) { |
|
317 #if MP_CRYPTO |
|
318 s_mp_setz(DIGITS(mp), ALLOC(mp)); |
|
319 #endif |
|
320 s_mp_free(DIGITS(mp), ALLOC(mp)); |
|
321 DIGITS(mp) = NULL; |
|
322 } |
|
323 |
|
324 USED(mp) = 0; |
|
325 ALLOC(mp) = 0; |
|
326 |
|
327 } /* end mp_clear() */ |
|
328 |
|
329 /* }}} */ |
|
330 |
|
331 /* {{{ mp_zero(mp) */ |
|
332 |
|
333 /* |
|
334 mp_zero(mp) |
|
335 |
|
336 Set mp to zero. Does not change the allocated size of the structure, |
|
337 and therefore cannot fail (except on a bad argument, which we ignore) |
|
338 */ |
|
339 void mp_zero(mp_int *mp) |
|
340 { |
|
341 if(mp == NULL) |
|
342 return; |
|
343 |
|
344 s_mp_setz(DIGITS(mp), ALLOC(mp)); |
|
345 USED(mp) = 1; |
|
346 SIGN(mp) = ZPOS; |
|
347 |
|
348 } /* end mp_zero() */ |
|
349 |
|
350 /* }}} */ |
|
351 |
|
352 /* {{{ mp_set(mp, d) */ |
|
353 |
|
354 void mp_set(mp_int *mp, mp_digit d) |
|
355 { |
|
356 if(mp == NULL) |
|
357 return; |
|
358 |
|
359 mp_zero(mp); |
|
360 DIGIT(mp, 0) = d; |
|
361 |
|
362 } /* end mp_set() */ |
|
363 |
|
364 /* }}} */ |
|
365 |
|
366 /* {{{ mp_set_int(mp, z) */ |
|
367 |
|
368 mp_err mp_set_int(mp_int *mp, long z) |
|
369 { |
|
370 int ix; |
|
371 unsigned long v = labs(z); |
|
372 mp_err res; |
|
373 |
|
374 ARGCHK(mp != NULL, MP_BADARG); |
|
375 |
|
376 mp_zero(mp); |
|
377 if(z == 0) |
|
378 return MP_OKAY; /* shortcut for zero */ |
|
379 |
|
380 if (sizeof v <= sizeof(mp_digit)) { |
|
381 DIGIT(mp,0) = v; |
|
382 } else { |
|
383 for (ix = sizeof(long) - 1; ix >= 0; ix--) { |
|
384 if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY) |
|
385 return res; |
|
386 |
|
387 res = s_mp_add_d(mp, (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX)); |
|
388 if (res != MP_OKAY) |
|
389 return res; |
|
390 } |
|
391 } |
|
392 if(z < 0) |
|
393 SIGN(mp) = NEG; |
|
394 |
|
395 return MP_OKAY; |
|
396 |
|
397 } /* end mp_set_int() */ |
|
398 |
|
399 /* }}} */ |
|
400 |
|
401 /* {{{ mp_set_ulong(mp, z) */ |
|
402 |
|
403 mp_err mp_set_ulong(mp_int *mp, unsigned long z) |
|
404 { |
|
405 int ix; |
|
406 mp_err res; |
|
407 |
|
408 ARGCHK(mp != NULL, MP_BADARG); |
|
409 |
|
410 mp_zero(mp); |
|
411 if(z == 0) |
|
412 return MP_OKAY; /* shortcut for zero */ |
|
413 |
|
414 if (sizeof z <= sizeof(mp_digit)) { |
|
415 DIGIT(mp,0) = z; |
|
416 } else { |
|
417 for (ix = sizeof(long) - 1; ix >= 0; ix--) { |
|
418 if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY) |
|
419 return res; |
|
420 |
|
421 res = s_mp_add_d(mp, (mp_digit)((z >> (ix * CHAR_BIT)) & UCHAR_MAX)); |
|
422 if (res != MP_OKAY) |
|
423 return res; |
|
424 } |
|
425 } |
|
426 return MP_OKAY; |
|
427 } /* end mp_set_ulong() */ |
|
428 |
|
429 /* }}} */ |
|
430 |
|
431 /*------------------------------------------------------------------------*/ |
|
432 /* {{{ Digit arithmetic */ |
|
433 |
|
434 /* {{{ mp_add_d(a, d, b) */ |
|
435 |
|
436 /* |
|
437 mp_add_d(a, d, b) |
|
438 |
|
439 Compute the sum b = a + d, for a single digit d. Respects the sign of |
|
440 its primary addend (single digits are unsigned anyway). |
|
441 */ |
|
442 |
|
443 mp_err mp_add_d(const mp_int *a, mp_digit d, mp_int *b) |
|
444 { |
|
445 mp_int tmp; |
|
446 mp_err res; |
|
447 |
|
448 ARGCHK(a != NULL && b != NULL, MP_BADARG); |
|
449 |
|
450 if((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
|
451 return res; |
|
452 |
|
453 if(SIGN(&tmp) == ZPOS) { |
|
454 if((res = s_mp_add_d(&tmp, d)) != MP_OKAY) |
|
455 goto CLEANUP; |
|
456 } else if(s_mp_cmp_d(&tmp, d) >= 0) { |
|
457 if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY) |
|
458 goto CLEANUP; |
|
459 } else { |
|
460 mp_neg(&tmp, &tmp); |
|
461 |
|
462 DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0); |
|
463 } |
|
464 |
|
465 if(s_mp_cmp_d(&tmp, 0) == 0) |
|
466 SIGN(&tmp) = ZPOS; |
|
467 |
|
468 s_mp_exch(&tmp, b); |
|
469 |
|
470 CLEANUP: |
|
471 mp_clear(&tmp); |
|
472 return res; |
|
473 |
|
474 } /* end mp_add_d() */ |
|
475 |
|
476 /* }}} */ |
|
477 |
|
478 /* {{{ mp_sub_d(a, d, b) */ |
|
479 |
|
480 /* |
|
481 mp_sub_d(a, d, b) |
|
482 |
|
483 Compute the difference b = a - d, for a single digit d. Respects the |
|
484 sign of its subtrahend (single digits are unsigned anyway). |
|
485 */ |
|
486 |
|
487 mp_err mp_sub_d(const mp_int *a, mp_digit d, mp_int *b) |
|
488 { |
|
489 mp_int tmp; |
|
490 mp_err res; |
|
491 |
|
492 ARGCHK(a != NULL && b != NULL, MP_BADARG); |
|
493 |
|
494 if((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
|
495 return res; |
|
496 |
|
497 if(SIGN(&tmp) == NEG) { |
|
498 if((res = s_mp_add_d(&tmp, d)) != MP_OKAY) |
|
499 goto CLEANUP; |
|
500 } else if(s_mp_cmp_d(&tmp, d) >= 0) { |
|
501 if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY) |
|
502 goto CLEANUP; |
|
503 } else { |
|
504 mp_neg(&tmp, &tmp); |
|
505 |
|
506 DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0); |
|
507 SIGN(&tmp) = NEG; |
|
508 } |
|
509 |
|
510 if(s_mp_cmp_d(&tmp, 0) == 0) |
|
511 SIGN(&tmp) = ZPOS; |
|
512 |
|
513 s_mp_exch(&tmp, b); |
|
514 |
|
515 CLEANUP: |
|
516 mp_clear(&tmp); |
|
517 return res; |
|
518 |
|
519 } /* end mp_sub_d() */ |
|
520 |
|
521 /* }}} */ |
|
522 |
|
523 /* {{{ mp_mul_d(a, d, b) */ |
|
524 |
|
525 /* |
|
526 mp_mul_d(a, d, b) |
|
527 |
|
528 Compute the product b = a * d, for a single digit d. Respects the sign |
|
529 of its multiplicand (single digits are unsigned anyway) |
|
530 */ |
|
531 |
|
532 mp_err mp_mul_d(const mp_int *a, mp_digit d, mp_int *b) |
|
533 { |
|
534 mp_err res; |
|
535 |
|
536 ARGCHK(a != NULL && b != NULL, MP_BADARG); |
|
537 |
|
538 if(d == 0) { |
|
539 mp_zero(b); |
|
540 return MP_OKAY; |
|
541 } |
|
542 |
|
543 if((res = mp_copy(a, b)) != MP_OKAY) |
|
544 return res; |
|
545 |
|
546 res = s_mp_mul_d(b, d); |
|
547 |
|
548 return res; |
|
549 |
|
550 } /* end mp_mul_d() */ |
|
551 |
|
552 /* }}} */ |
|
553 |
|
554 /* {{{ mp_mul_2(a, c) */ |
|
555 |
|
556 mp_err mp_mul_2(const mp_int *a, mp_int *c) |
|
557 { |
|
558 mp_err res; |
|
559 |
|
560 ARGCHK(a != NULL && c != NULL, MP_BADARG); |
|
561 |
|
562 if((res = mp_copy(a, c)) != MP_OKAY) |
|
563 return res; |
|
564 |
|
565 return s_mp_mul_2(c); |
|
566 |
|
567 } /* end mp_mul_2() */ |
|
568 |
|
569 /* }}} */ |
|
570 |
|
571 /* {{{ mp_div_d(a, d, q, r) */ |
|
572 |
|
573 /* |
|
574 mp_div_d(a, d, q, r) |
|
575 |
|
576 Compute the quotient q = a / d and remainder r = a mod d, for a |
|
577 single digit d. Respects the sign of its divisor (single digits are |
|
578 unsigned anyway). |
|
579 */ |
|
580 |
|
581 mp_err mp_div_d(const mp_int *a, mp_digit d, mp_int *q, mp_digit *r) |
|
582 { |
|
583 mp_err res; |
|
584 mp_int qp; |
|
585 mp_digit rem; |
|
586 int pow; |
|
587 |
|
588 ARGCHK(a != NULL, MP_BADARG); |
|
589 |
|
590 if(d == 0) |
|
591 return MP_RANGE; |
|
592 |
|
593 /* Shortcut for powers of two ... */ |
|
594 if((pow = s_mp_ispow2d(d)) >= 0) { |
|
595 mp_digit mask; |
|
596 |
|
597 mask = ((mp_digit)1 << pow) - 1; |
|
598 rem = DIGIT(a, 0) & mask; |
|
599 |
|
600 if(q) { |
|
601 mp_copy(a, q); |
|
602 s_mp_div_2d(q, pow); |
|
603 } |
|
604 |
|
605 if(r) |
|
606 *r = rem; |
|
607 |
|
608 return MP_OKAY; |
|
609 } |
|
610 |
|
611 if((res = mp_init_copy(&qp, a)) != MP_OKAY) |
|
612 return res; |
|
613 |
|
614 res = s_mp_div_d(&qp, d, &rem); |
|
615 |
|
616 if(s_mp_cmp_d(&qp, 0) == 0) |
|
617 SIGN(q) = ZPOS; |
|
618 |
|
619 if(r) |
|
620 *r = rem; |
|
621 |
|
622 if(q) |
|
623 s_mp_exch(&qp, q); |
|
624 |
|
625 mp_clear(&qp); |
|
626 return res; |
|
627 |
|
628 } /* end mp_div_d() */ |
|
629 |
|
630 /* }}} */ |
|
631 |
|
632 /* {{{ mp_div_2(a, c) */ |
|
633 |
|
634 /* |
|
635 mp_div_2(a, c) |
|
636 |
|
637 Compute c = a / 2, disregarding the remainder. |
|
638 */ |
|
639 |
|
640 mp_err mp_div_2(const mp_int *a, mp_int *c) |
|
641 { |
|
642 mp_err res; |
|
643 |
|
644 ARGCHK(a != NULL && c != NULL, MP_BADARG); |
|
645 |
|
646 if((res = mp_copy(a, c)) != MP_OKAY) |
|
647 return res; |
|
648 |
|
649 s_mp_div_2(c); |
|
650 |
|
651 return MP_OKAY; |
|
652 |
|
653 } /* end mp_div_2() */ |
|
654 |
|
655 /* }}} */ |
|
656 |
|
657 /* {{{ mp_expt_d(a, d, b) */ |
|
658 |
|
659 mp_err mp_expt_d(const mp_int *a, mp_digit d, mp_int *c) |
|
660 { |
|
661 mp_int s, x; |
|
662 mp_err res; |
|
663 |
|
664 ARGCHK(a != NULL && c != NULL, MP_BADARG); |
|
665 |
|
666 if((res = mp_init(&s, FLAG(a))) != MP_OKAY) |
|
667 return res; |
|
668 if((res = mp_init_copy(&x, a)) != MP_OKAY) |
|
669 goto X; |
|
670 |
|
671 DIGIT(&s, 0) = 1; |
|
672 |
|
673 while(d != 0) { |
|
674 if(d & 1) { |
|
675 if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
|
676 goto CLEANUP; |
|
677 } |
|
678 |
|
679 d /= 2; |
|
680 |
|
681 if((res = s_mp_sqr(&x)) != MP_OKAY) |
|
682 goto CLEANUP; |
|
683 } |
|
684 |
|
685 s_mp_exch(&s, c); |
|
686 |
|
687 CLEANUP: |
|
688 mp_clear(&x); |
|
689 X: |
|
690 mp_clear(&s); |
|
691 |
|
692 return res; |
|
693 |
|
694 } /* end mp_expt_d() */ |
|
695 |
|
696 /* }}} */ |
|
697 |
|
698 /* }}} */ |
|
699 |
|
700 /*------------------------------------------------------------------------*/ |
|
701 /* {{{ Full arithmetic */ |
|
702 |
|
703 /* {{{ mp_abs(a, b) */ |
|
704 |
|
705 /* |
|
706 mp_abs(a, b) |
|
707 |
|
708 Compute b = |a|. 'a' and 'b' may be identical. |
|
709 */ |
|
710 |
|
711 mp_err mp_abs(const mp_int *a, mp_int *b) |
|
712 { |
|
713 mp_err res; |
|
714 |
|
715 ARGCHK(a != NULL && b != NULL, MP_BADARG); |
|
716 |
|
717 if((res = mp_copy(a, b)) != MP_OKAY) |
|
718 return res; |
|
719 |
|
720 SIGN(b) = ZPOS; |
|
721 |
|
722 return MP_OKAY; |
|
723 |
|
724 } /* end mp_abs() */ |
|
725 |
|
726 /* }}} */ |
|
727 |
|
728 /* {{{ mp_neg(a, b) */ |
|
729 |
|
730 /* |
|
731 mp_neg(a, b) |
|
732 |
|
733 Compute b = -a. 'a' and 'b' may be identical. |
|
734 */ |
|
735 |
|
736 mp_err mp_neg(const mp_int *a, mp_int *b) |
|
737 { |
|
738 mp_err res; |
|
739 |
|
740 ARGCHK(a != NULL && b != NULL, MP_BADARG); |
|
741 |
|
742 if((res = mp_copy(a, b)) != MP_OKAY) |
|
743 return res; |
|
744 |
|
745 if(s_mp_cmp_d(b, 0) == MP_EQ) |
|
746 SIGN(b) = ZPOS; |
|
747 else |
|
748 SIGN(b) = (SIGN(b) == NEG) ? ZPOS : NEG; |
|
749 |
|
750 return MP_OKAY; |
|
751 |
|
752 } /* end mp_neg() */ |
|
753 |
|
754 /* }}} */ |
|
755 |
|
756 /* {{{ mp_add(a, b, c) */ |
|
757 |
|
758 /* |
|
759 mp_add(a, b, c) |
|
760 |
|
761 Compute c = a + b. All parameters may be identical. |
|
762 */ |
|
763 |
|
764 mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c) |
|
765 { |
|
766 mp_err res; |
|
767 |
|
768 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
|
769 |
|
770 if(SIGN(a) == SIGN(b)) { /* same sign: add values, keep sign */ |
|
771 MP_CHECKOK( s_mp_add_3arg(a, b, c) ); |
|
772 } else if(s_mp_cmp(a, b) >= 0) { /* different sign: |a| >= |b| */ |
|
773 MP_CHECKOK( s_mp_sub_3arg(a, b, c) ); |
|
774 } else { /* different sign: |a| < |b| */ |
|
775 MP_CHECKOK( s_mp_sub_3arg(b, a, c) ); |
|
776 } |
|
777 |
|
778 if (s_mp_cmp_d(c, 0) == MP_EQ) |
|
779 SIGN(c) = ZPOS; |
|
780 |
|
781 CLEANUP: |
|
782 return res; |
|
783 |
|
784 } /* end mp_add() */ |
|
785 |
|
786 /* }}} */ |
|
787 |
|
788 /* {{{ mp_sub(a, b, c) */ |
|
789 |
|
790 /* |
|
791 mp_sub(a, b, c) |
|
792 |
|
793 Compute c = a - b. All parameters may be identical. |
|
794 */ |
|
795 |
|
796 mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c) |
|
797 { |
|
798 mp_err res; |
|
799 int magDiff; |
|
800 |
|
801 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
|
802 |
|
803 if (a == b) { |
|
804 mp_zero(c); |
|
805 return MP_OKAY; |
|
806 } |
|
807 |
|
808 if (MP_SIGN(a) != MP_SIGN(b)) { |
|
809 MP_CHECKOK( s_mp_add_3arg(a, b, c) ); |
|
810 } else if (!(magDiff = s_mp_cmp(a, b))) { |
|
811 mp_zero(c); |
|
812 res = MP_OKAY; |
|
813 } else if (magDiff > 0) { |
|
814 MP_CHECKOK( s_mp_sub_3arg(a, b, c) ); |
|
815 } else { |
|
816 MP_CHECKOK( s_mp_sub_3arg(b, a, c) ); |
|
817 MP_SIGN(c) = !MP_SIGN(a); |
|
818 } |
|
819 |
|
820 if (s_mp_cmp_d(c, 0) == MP_EQ) |
|
821 MP_SIGN(c) = MP_ZPOS; |
|
822 |
|
823 CLEANUP: |
|
824 return res; |
|
825 |
|
826 } /* end mp_sub() */ |
|
827 |
|
828 /* }}} */ |
|
829 |
|
830 /* {{{ mp_mul(a, b, c) */ |
|
831 |
|
832 /* |
|
833 mp_mul(a, b, c) |
|
834 |
|
835 Compute c = a * b. All parameters may be identical. |
|
836 */ |
|
837 mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int * c) |
|
838 { |
|
839 mp_digit *pb; |
|
840 mp_int tmp; |
|
841 mp_err res; |
|
842 mp_size ib; |
|
843 mp_size useda, usedb; |
|
844 |
|
845 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
|
846 |
|
847 if (a == c) { |
|
848 if ((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
|
849 return res; |
|
850 if (a == b) |
|
851 b = &tmp; |
|
852 a = &tmp; |
|
853 } else if (b == c) { |
|
854 if ((res = mp_init_copy(&tmp, b)) != MP_OKAY) |
|
855 return res; |
|
856 b = &tmp; |
|
857 } else { |
|
858 MP_DIGITS(&tmp) = 0; |
|
859 } |
|
860 |
|
861 if (MP_USED(a) < MP_USED(b)) { |
|
862 const mp_int *xch = b; /* switch a and b, to do fewer outer loops */ |
|
863 b = a; |
|
864 a = xch; |
|
865 } |
|
866 |
|
867 MP_USED(c) = 1; MP_DIGIT(c, 0) = 0; |
|
868 if((res = s_mp_pad(c, USED(a) + USED(b))) != MP_OKAY) |
|
869 goto CLEANUP; |
|
870 |
|
871 #ifdef NSS_USE_COMBA |
|
872 if ((MP_USED(a) == MP_USED(b)) && IS_POWER_OF_2(MP_USED(b))) { |
|
873 if (MP_USED(a) == 4) { |
|
874 s_mp_mul_comba_4(a, b, c); |
|
875 goto CLEANUP; |
|
876 } |
|
877 if (MP_USED(a) == 8) { |
|
878 s_mp_mul_comba_8(a, b, c); |
|
879 goto CLEANUP; |
|
880 } |
|
881 if (MP_USED(a) == 16) { |
|
882 s_mp_mul_comba_16(a, b, c); |
|
883 goto CLEANUP; |
|
884 } |
|
885 if (MP_USED(a) == 32) { |
|
886 s_mp_mul_comba_32(a, b, c); |
|
887 goto CLEANUP; |
|
888 } |
|
889 } |
|
890 #endif |
|
891 |
|
892 pb = MP_DIGITS(b); |
|
893 s_mpv_mul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c)); |
|
894 |
|
895 /* Outer loop: Digits of b */ |
|
896 useda = MP_USED(a); |
|
897 usedb = MP_USED(b); |
|
898 for (ib = 1; ib < usedb; ib++) { |
|
899 mp_digit b_i = *pb++; |
|
900 |
|
901 /* Inner product: Digits of a */ |
|
902 if (b_i) |
|
903 s_mpv_mul_d_add(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib); |
|
904 else |
|
905 MP_DIGIT(c, ib + useda) = b_i; |
|
906 } |
|
907 |
|
908 s_mp_clamp(c); |
|
909 |
|
910 if(SIGN(a) == SIGN(b) || s_mp_cmp_d(c, 0) == MP_EQ) |
|
911 SIGN(c) = ZPOS; |
|
912 else |
|
913 SIGN(c) = NEG; |
|
914 |
|
915 CLEANUP: |
|
916 mp_clear(&tmp); |
|
917 return res; |
|
918 } /* end mp_mul() */ |
|
919 |
|
920 /* }}} */ |
|
921 |
|
922 /* {{{ mp_sqr(a, sqr) */ |
|
923 |
|
924 #if MP_SQUARE |
|
925 /* |
|
926 Computes the square of a. This can be done more |
|
927 efficiently than a general multiplication, because many of the |
|
928 computation steps are redundant when squaring. The inner product |
|
929 step is a bit more complicated, but we save a fair number of |
|
930 iterations of the multiplication loop. |
|
931 */ |
|
932 |
|
933 /* sqr = a^2; Caller provides both a and tmp; */ |
|
934 mp_err mp_sqr(const mp_int *a, mp_int *sqr) |
|
935 { |
|
936 mp_digit *pa; |
|
937 mp_digit d; |
|
938 mp_err res; |
|
939 mp_size ix; |
|
940 mp_int tmp; |
|
941 int count; |
|
942 |
|
943 ARGCHK(a != NULL && sqr != NULL, MP_BADARG); |
|
944 |
|
945 if (a == sqr) { |
|
946 if((res = mp_init_copy(&tmp, a)) != MP_OKAY) |
|
947 return res; |
|
948 a = &tmp; |
|
949 } else { |
|
950 DIGITS(&tmp) = 0; |
|
951 res = MP_OKAY; |
|
952 } |
|
953 |
|
954 ix = 2 * MP_USED(a); |
|
955 if (ix > MP_ALLOC(sqr)) { |
|
956 MP_USED(sqr) = 1; |
|
957 MP_CHECKOK( s_mp_grow(sqr, ix) ); |
|
958 } |
|
959 MP_USED(sqr) = ix; |
|
960 MP_DIGIT(sqr, 0) = 0; |
|
961 |
|
962 #ifdef NSS_USE_COMBA |
|
963 if (IS_POWER_OF_2(MP_USED(a))) { |
|
964 if (MP_USED(a) == 4) { |
|
965 s_mp_sqr_comba_4(a, sqr); |
|
966 goto CLEANUP; |
|
967 } |
|
968 if (MP_USED(a) == 8) { |
|
969 s_mp_sqr_comba_8(a, sqr); |
|
970 goto CLEANUP; |
|
971 } |
|
972 if (MP_USED(a) == 16) { |
|
973 s_mp_sqr_comba_16(a, sqr); |
|
974 goto CLEANUP; |
|
975 } |
|
976 if (MP_USED(a) == 32) { |
|
977 s_mp_sqr_comba_32(a, sqr); |
|
978 goto CLEANUP; |
|
979 } |
|
980 } |
|
981 #endif |
|
982 |
|
983 pa = MP_DIGITS(a); |
|
984 count = MP_USED(a) - 1; |
|
985 if (count > 0) { |
|
986 d = *pa++; |
|
987 s_mpv_mul_d(pa, count, d, MP_DIGITS(sqr) + 1); |
|
988 for (ix = 3; --count > 0; ix += 2) { |
|
989 d = *pa++; |
|
990 s_mpv_mul_d_add(pa, count, d, MP_DIGITS(sqr) + ix); |
|
991 } /* for(ix ...) */ |
|
992 MP_DIGIT(sqr, MP_USED(sqr)-1) = 0; /* above loop stopped short of this. */ |
|
993 |
|
994 /* now sqr *= 2 */ |
|
995 s_mp_mul_2(sqr); |
|
996 } else { |
|
997 MP_DIGIT(sqr, 1) = 0; |
|
998 } |
|
999 |
|
1000 /* now add the squares of the digits of a to sqr. */ |
|
1001 s_mpv_sqr_add_prop(MP_DIGITS(a), MP_USED(a), MP_DIGITS(sqr)); |
|
1002 |
|
1003 SIGN(sqr) = ZPOS; |
|
1004 s_mp_clamp(sqr); |
|
1005 |
|
1006 CLEANUP: |
|
1007 mp_clear(&tmp); |
|
1008 return res; |
|
1009 |
|
1010 } /* end mp_sqr() */ |
|
1011 #endif |
|
1012 |
|
1013 /* }}} */ |
|
1014 |
|
1015 /* {{{ mp_div(a, b, q, r) */ |
|
1016 |
|
1017 /* |
|
1018 mp_div(a, b, q, r) |
|
1019 |
|
1020 Compute q = a / b and r = a mod b. Input parameters may be re-used |
|
1021 as output parameters. If q or r is NULL, that portion of the |
|
1022 computation will be discarded (although it will still be computed) |
|
1023 */ |
|
1024 mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r) |
|
1025 { |
|
1026 mp_err res; |
|
1027 mp_int *pQ, *pR; |
|
1028 mp_int qtmp, rtmp, btmp; |
|
1029 int cmp; |
|
1030 mp_sign signA; |
|
1031 mp_sign signB; |
|
1032 |
|
1033 ARGCHK(a != NULL && b != NULL, MP_BADARG); |
|
1034 |
|
1035 signA = MP_SIGN(a); |
|
1036 signB = MP_SIGN(b); |
|
1037 |
|
1038 if(mp_cmp_z(b) == MP_EQ) |
|
1039 return MP_RANGE; |
|
1040 |
|
1041 DIGITS(&qtmp) = 0; |
|
1042 DIGITS(&rtmp) = 0; |
|
1043 DIGITS(&btmp) = 0; |
|
1044 |
|
1045 /* Set up some temporaries... */ |
|
1046 if (!r || r == a || r == b) { |
|
1047 MP_CHECKOK( mp_init_copy(&rtmp, a) ); |
|
1048 pR = &rtmp; |
|
1049 } else { |
|
1050 MP_CHECKOK( mp_copy(a, r) ); |
|
1051 pR = r; |
|
1052 } |
|
1053 |
|
1054 if (!q || q == a || q == b) { |
|
1055 MP_CHECKOK( mp_init_size(&qtmp, MP_USED(a), FLAG(a)) ); |
|
1056 pQ = &qtmp; |
|
1057 } else { |
|
1058 MP_CHECKOK( s_mp_pad(q, MP_USED(a)) ); |
|
1059 pQ = q; |
|
1060 mp_zero(pQ); |
|
1061 } |
|
1062 |
|
1063 /* |
|
1064 If |a| <= |b|, we can compute the solution without division; |
|
1065 otherwise, we actually do the work required. |
|
1066 */ |
|
1067 if ((cmp = s_mp_cmp(a, b)) <= 0) { |
|
1068 if (cmp) { |
|
1069 /* r was set to a above. */ |
|
1070 mp_zero(pQ); |
|
1071 } else { |
|
1072 mp_set(pQ, 1); |
|
1073 mp_zero(pR); |
|
1074 } |
|
1075 } else { |
|
1076 MP_CHECKOK( mp_init_copy(&btmp, b) ); |
|
1077 MP_CHECKOK( s_mp_div(pR, &btmp, pQ) ); |
|
1078 } |
|
1079 |
|
1080 /* Compute the signs for the output */ |
|
1081 MP_SIGN(pR) = signA; /* Sr = Sa */ |
|
1082 /* Sq = ZPOS if Sa == Sb */ /* Sq = NEG if Sa != Sb */ |
|
1083 MP_SIGN(pQ) = (signA == signB) ? ZPOS : NEG; |
|
1084 |
|
1085 if(s_mp_cmp_d(pQ, 0) == MP_EQ) |
|
1086 SIGN(pQ) = ZPOS; |
|
1087 if(s_mp_cmp_d(pR, 0) == MP_EQ) |
|
1088 SIGN(pR) = ZPOS; |
|
1089 |
|
1090 /* Copy output, if it is needed */ |
|
1091 if(q && q != pQ) |
|
1092 s_mp_exch(pQ, q); |
|
1093 |
|
1094 if(r && r != pR) |
|
1095 s_mp_exch(pR, r); |
|
1096 |
|
1097 CLEANUP: |
|
1098 mp_clear(&btmp); |
|
1099 mp_clear(&rtmp); |
|
1100 mp_clear(&qtmp); |
|
1101 |
|
1102 return res; |
|
1103 |
|
1104 } /* end mp_div() */ |
|
1105 |
|
1106 /* }}} */ |
|
1107 |
|
1108 /* {{{ mp_div_2d(a, d, q, r) */ |
|
1109 |
|
1110 mp_err mp_div_2d(const mp_int *a, mp_digit d, mp_int *q, mp_int *r) |
|
1111 { |
|
1112 mp_err res; |
|
1113 |
|
1114 ARGCHK(a != NULL, MP_BADARG); |
|
1115 |
|
1116 if(q) { |
|
1117 if((res = mp_copy(a, q)) != MP_OKAY) |
|
1118 return res; |
|
1119 } |
|
1120 if(r) { |
|
1121 if((res = mp_copy(a, r)) != MP_OKAY) |
|
1122 return res; |
|
1123 } |
|
1124 if(q) { |
|
1125 s_mp_div_2d(q, d); |
|
1126 } |
|
1127 if(r) { |
|
1128 s_mp_mod_2d(r, d); |
|
1129 } |
|
1130 |
|
1131 return MP_OKAY; |
|
1132 |
|
1133 } /* end mp_div_2d() */ |
|
1134 |
|
1135 /* }}} */ |
|
1136 |
|
1137 /* {{{ mp_expt(a, b, c) */ |
|
1138 |
|
1139 /* |
|
1140 mp_expt(a, b, c) |
|
1141 |
|
1142 Compute c = a ** b, that is, raise a to the b power. Uses a |
|
1143 standard iterative square-and-multiply technique. |
|
1144 */ |
|
1145 |
|
1146 mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c) |
|
1147 { |
|
1148 mp_int s, x; |
|
1149 mp_err res; |
|
1150 mp_digit d; |
|
1151 int dig, bit; |
|
1152 |
|
1153 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
|
1154 |
|
1155 if(mp_cmp_z(b) < 0) |
|
1156 return MP_RANGE; |
|
1157 |
|
1158 if((res = mp_init(&s, FLAG(a))) != MP_OKAY) |
|
1159 return res; |
|
1160 |
|
1161 mp_set(&s, 1); |
|
1162 |
|
1163 if((res = mp_init_copy(&x, a)) != MP_OKAY) |
|
1164 goto X; |
|
1165 |
|
1166 /* Loop over low-order digits in ascending order */ |
|
1167 for(dig = 0; dig < (USED(b) - 1); dig++) { |
|
1168 d = DIGIT(b, dig); |
|
1169 |
|
1170 /* Loop over bits of each non-maximal digit */ |
|
1171 for(bit = 0; bit < DIGIT_BIT; bit++) { |
|
1172 if(d & 1) { |
|
1173 if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
|
1174 goto CLEANUP; |
|
1175 } |
|
1176 |
|
1177 d >>= 1; |
|
1178 |
|
1179 if((res = s_mp_sqr(&x)) != MP_OKAY) |
|
1180 goto CLEANUP; |
|
1181 } |
|
1182 } |
|
1183 |
|
1184 /* Consider now the last digit... */ |
|
1185 d = DIGIT(b, dig); |
|
1186 |
|
1187 while(d) { |
|
1188 if(d & 1) { |
|
1189 if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
|
1190 goto CLEANUP; |
|
1191 } |
|
1192 |
|
1193 d >>= 1; |
|
1194 |
|
1195 if((res = s_mp_sqr(&x)) != MP_OKAY) |
|
1196 goto CLEANUP; |
|
1197 } |
|
1198 |
|
1199 if(mp_iseven(b)) |
|
1200 SIGN(&s) = SIGN(a); |
|
1201 |
|
1202 res = mp_copy(&s, c); |
|
1203 |
|
1204 CLEANUP: |
|
1205 mp_clear(&x); |
|
1206 X: |
|
1207 mp_clear(&s); |
|
1208 |
|
1209 return res; |
|
1210 |
|
1211 } /* end mp_expt() */ |
|
1212 |
|
1213 /* }}} */ |
|
1214 |
|
1215 /* {{{ mp_2expt(a, k) */ |
|
1216 |
|
1217 /* Compute a = 2^k */ |
|
1218 |
|
1219 mp_err mp_2expt(mp_int *a, mp_digit k) |
|
1220 { |
|
1221 ARGCHK(a != NULL, MP_BADARG); |
|
1222 |
|
1223 return s_mp_2expt(a, k); |
|
1224 |
|
1225 } /* end mp_2expt() */ |
|
1226 |
|
1227 /* }}} */ |
|
1228 |
|
1229 /* {{{ mp_mod(a, m, c) */ |
|
1230 |
|
1231 /* |
|
1232 mp_mod(a, m, c) |
|
1233 |
|
1234 Compute c = a (mod m). Result will always be 0 <= c < m. |
|
1235 */ |
|
1236 |
|
1237 mp_err mp_mod(const mp_int *a, const mp_int *m, mp_int *c) |
|
1238 { |
|
1239 mp_err res; |
|
1240 int mag; |
|
1241 |
|
1242 ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); |
|
1243 |
|
1244 if(SIGN(m) == NEG) |
|
1245 return MP_RANGE; |
|
1246 |
|
1247 /* |
|
1248 If |a| > m, we need to divide to get the remainder and take the |
|
1249 absolute value. |
|
1250 |
|
1251 If |a| < m, we don't need to do any division, just copy and adjust |
|
1252 the sign (if a is negative). |
|
1253 |
|
1254 If |a| == m, we can simply set the result to zero. |
|
1255 |
|
1256 This order is intended to minimize the average path length of the |
|
1257 comparison chain on common workloads -- the most frequent cases are |
|
1258 that |a| != m, so we do those first. |
|
1259 */ |
|
1260 if((mag = s_mp_cmp(a, m)) > 0) { |
|
1261 if((res = mp_div(a, m, NULL, c)) != MP_OKAY) |
|
1262 return res; |
|
1263 |
|
1264 if(SIGN(c) == NEG) { |
|
1265 if((res = mp_add(c, m, c)) != MP_OKAY) |
|
1266 return res; |
|
1267 } |
|
1268 |
|
1269 } else if(mag < 0) { |
|
1270 if((res = mp_copy(a, c)) != MP_OKAY) |
|
1271 return res; |
|
1272 |
|
1273 if(mp_cmp_z(a) < 0) { |
|
1274 if((res = mp_add(c, m, c)) != MP_OKAY) |
|
1275 return res; |
|
1276 |
|
1277 } |
|
1278 |
|
1279 } else { |
|
1280 mp_zero(c); |
|
1281 |
|
1282 } |
|
1283 |
|
1284 return MP_OKAY; |
|
1285 |
|
1286 } /* end mp_mod() */ |
|
1287 |
|
1288 /* }}} */ |
|
1289 |
|
1290 /* {{{ mp_mod_d(a, d, c) */ |
|
1291 |
|
1292 /* |
|
1293 mp_mod_d(a, d, c) |
|
1294 |
|
1295 Compute c = a (mod d). Result will always be 0 <= c < d |
|
1296 */ |
|
1297 mp_err mp_mod_d(const mp_int *a, mp_digit d, mp_digit *c) |
|
1298 { |
|
1299 mp_err res; |
|
1300 mp_digit rem; |
|
1301 |
|
1302 ARGCHK(a != NULL && c != NULL, MP_BADARG); |
|
1303 |
|
1304 if(s_mp_cmp_d(a, d) > 0) { |
|
1305 if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY) |
|
1306 return res; |
|
1307 |
|
1308 } else { |
|
1309 if(SIGN(a) == NEG) |
|
1310 rem = d - DIGIT(a, 0); |
|
1311 else |
|
1312 rem = DIGIT(a, 0); |
|
1313 } |
|
1314 |
|
1315 if(c) |
|
1316 *c = rem; |
|
1317 |
|
1318 return MP_OKAY; |
|
1319 |
|
1320 } /* end mp_mod_d() */ |
|
1321 |
|
1322 /* }}} */ |
|
1323 |
|
1324 /* {{{ mp_sqrt(a, b) */ |
|
1325 |
|
1326 /* |
|
1327 mp_sqrt(a, b) |
|
1328 |
|
1329 Compute the integer square root of a, and store the result in b. |
|
1330 Uses an integer-arithmetic version of Newton's iterative linear |
|
1331 approximation technique to determine this value; the result has the |
|
1332 following two properties: |
|
1333 |
|
1334 b^2 <= a |
|
1335 (b+1)^2 >= a |
|
1336 |
|
1337 It is a range error to pass a negative value. |
|
1338 */ |
|
1339 mp_err mp_sqrt(const mp_int *a, mp_int *b) |
|
1340 { |
|
1341 mp_int x, t; |
|
1342 mp_err res; |
|
1343 mp_size used; |
|
1344 |
|
1345 ARGCHK(a != NULL && b != NULL, MP_BADARG); |
|
1346 |
|
1347 /* Cannot take square root of a negative value */ |
|
1348 if(SIGN(a) == NEG) |
|
1349 return MP_RANGE; |
|
1350 |
|
1351 /* Special cases for zero and one, trivial */ |
|
1352 if(mp_cmp_d(a, 1) <= 0) |
|
1353 return mp_copy(a, b); |
|
1354 |
|
1355 /* Initialize the temporaries we'll use below */ |
|
1356 if((res = mp_init_size(&t, USED(a), FLAG(a))) != MP_OKAY) |
|
1357 return res; |
|
1358 |
|
1359 /* Compute an initial guess for the iteration as a itself */ |
|
1360 if((res = mp_init_copy(&x, a)) != MP_OKAY) |
|
1361 goto X; |
|
1362 |
|
1363 used = MP_USED(&x); |
|
1364 if (used > 1) { |
|
1365 s_mp_rshd(&x, used / 2); |
|
1366 } |
|
1367 |
|
1368 for(;;) { |
|
1369 /* t = (x * x) - a */ |
|
1370 mp_copy(&x, &t); /* can't fail, t is big enough for original x */ |
|
1371 if((res = mp_sqr(&t, &t)) != MP_OKAY || |
|
1372 (res = mp_sub(&t, a, &t)) != MP_OKAY) |
|
1373 goto CLEANUP; |
|
1374 |
|
1375 /* t = t / 2x */ |
|
1376 s_mp_mul_2(&x); |
|
1377 if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY) |
|
1378 goto CLEANUP; |
|
1379 s_mp_div_2(&x); |
|
1380 |
|
1381 /* Terminate the loop, if the quotient is zero */ |
|
1382 if(mp_cmp_z(&t) == MP_EQ) |
|
1383 break; |
|
1384 |
|
1385 /* x = x - t */ |
|
1386 if((res = mp_sub(&x, &t, &x)) != MP_OKAY) |
|
1387 goto CLEANUP; |
|
1388 |
|
1389 } |
|
1390 |
|
1391 /* Copy result to output parameter */ |
|
1392 mp_sub_d(&x, 1, &x); |
|
1393 s_mp_exch(&x, b); |
|
1394 |
|
1395 CLEANUP: |
|
1396 mp_clear(&x); |
|
1397 X: |
|
1398 mp_clear(&t); |
|
1399 |
|
1400 return res; |
|
1401 |
|
1402 } /* end mp_sqrt() */ |
|
1403 |
|
1404 /* }}} */ |
|
1405 |
|
1406 /* }}} */ |
|
1407 |
|
1408 /*------------------------------------------------------------------------*/ |
|
1409 /* {{{ Modular arithmetic */ |
|
1410 |
|
1411 #if MP_MODARITH |
|
1412 /* {{{ mp_addmod(a, b, m, c) */ |
|
1413 |
|
1414 /* |
|
1415 mp_addmod(a, b, m, c) |
|
1416 |
|
1417 Compute c = (a + b) mod m |
|
1418 */ |
|
1419 |
|
1420 mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
|
1421 { |
|
1422 mp_err res; |
|
1423 |
|
1424 ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); |
|
1425 |
|
1426 if((res = mp_add(a, b, c)) != MP_OKAY) |
|
1427 return res; |
|
1428 if((res = mp_mod(c, m, c)) != MP_OKAY) |
|
1429 return res; |
|
1430 |
|
1431 return MP_OKAY; |
|
1432 |
|
1433 } |
|
1434 |
|
1435 /* }}} */ |
|
1436 |
|
1437 /* {{{ mp_submod(a, b, m, c) */ |
|
1438 |
|
1439 /* |
|
1440 mp_submod(a, b, m, c) |
|
1441 |
|
1442 Compute c = (a - b) mod m |
|
1443 */ |
|
1444 |
|
1445 mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
|
1446 { |
|
1447 mp_err res; |
|
1448 |
|
1449 ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); |
|
1450 |
|
1451 if((res = mp_sub(a, b, c)) != MP_OKAY) |
|
1452 return res; |
|
1453 if((res = mp_mod(c, m, c)) != MP_OKAY) |
|
1454 return res; |
|
1455 |
|
1456 return MP_OKAY; |
|
1457 |
|
1458 } |
|
1459 |
|
1460 /* }}} */ |
|
1461 |
|
1462 /* {{{ mp_mulmod(a, b, m, c) */ |
|
1463 |
|
1464 /* |
|
1465 mp_mulmod(a, b, m, c) |
|
1466 |
|
1467 Compute c = (a * b) mod m |
|
1468 */ |
|
1469 |
|
1470 mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
|
1471 { |
|
1472 mp_err res; |
|
1473 |
|
1474 ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG); |
|
1475 |
|
1476 if((res = mp_mul(a, b, c)) != MP_OKAY) |
|
1477 return res; |
|
1478 if((res = mp_mod(c, m, c)) != MP_OKAY) |
|
1479 return res; |
|
1480 |
|
1481 return MP_OKAY; |
|
1482 |
|
1483 } |
|
1484 |
|
1485 /* }}} */ |
|
1486 |
|
1487 /* {{{ mp_sqrmod(a, m, c) */ |
|
1488 |
|
1489 #if MP_SQUARE |
|
1490 mp_err mp_sqrmod(const mp_int *a, const mp_int *m, mp_int *c) |
|
1491 { |
|
1492 mp_err res; |
|
1493 |
|
1494 ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG); |
|
1495 |
|
1496 if((res = mp_sqr(a, c)) != MP_OKAY) |
|
1497 return res; |
|
1498 if((res = mp_mod(c, m, c)) != MP_OKAY) |
|
1499 return res; |
|
1500 |
|
1501 return MP_OKAY; |
|
1502 |
|
1503 } /* end mp_sqrmod() */ |
|
1504 #endif |
|
1505 |
|
1506 /* }}} */ |
|
1507 |
|
1508 /* {{{ s_mp_exptmod(a, b, m, c) */ |
|
1509 |
|
1510 /* |
|
1511 s_mp_exptmod(a, b, m, c) |
|
1512 |
|
1513 Compute c = (a ** b) mod m. Uses a standard square-and-multiply |
|
1514 method with modular reductions at each step. (This is basically the |
|
1515 same code as mp_expt(), except for the addition of the reductions) |
|
1516 |
|
1517 The modular reductions are done using Barrett's algorithm (see |
|
1518 s_mp_reduce() below for details) |
|
1519 */ |
|
1520 |
|
1521 mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c) |
|
1522 { |
|
1523 mp_int s, x, mu; |
|
1524 mp_err res; |
|
1525 mp_digit d; |
|
1526 int dig, bit; |
|
1527 |
|
1528 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
|
1529 |
|
1530 if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0) |
|
1531 return MP_RANGE; |
|
1532 |
|
1533 if((res = mp_init(&s, FLAG(a))) != MP_OKAY) |
|
1534 return res; |
|
1535 if((res = mp_init_copy(&x, a)) != MP_OKAY || |
|
1536 (res = mp_mod(&x, m, &x)) != MP_OKAY) |
|
1537 goto X; |
|
1538 if((res = mp_init(&mu, FLAG(a))) != MP_OKAY) |
|
1539 goto MU; |
|
1540 |
|
1541 mp_set(&s, 1); |
|
1542 |
|
1543 /* mu = b^2k / m */ |
|
1544 s_mp_add_d(&mu, 1); |
|
1545 s_mp_lshd(&mu, 2 * USED(m)); |
|
1546 if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY) |
|
1547 goto CLEANUP; |
|
1548 |
|
1549 /* Loop over digits of b in ascending order, except highest order */ |
|
1550 for(dig = 0; dig < (USED(b) - 1); dig++) { |
|
1551 d = DIGIT(b, dig); |
|
1552 |
|
1553 /* Loop over the bits of the lower-order digits */ |
|
1554 for(bit = 0; bit < DIGIT_BIT; bit++) { |
|
1555 if(d & 1) { |
|
1556 if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
|
1557 goto CLEANUP; |
|
1558 if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) |
|
1559 goto CLEANUP; |
|
1560 } |
|
1561 |
|
1562 d >>= 1; |
|
1563 |
|
1564 if((res = s_mp_sqr(&x)) != MP_OKAY) |
|
1565 goto CLEANUP; |
|
1566 if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) |
|
1567 goto CLEANUP; |
|
1568 } |
|
1569 } |
|
1570 |
|
1571 /* Now do the last digit... */ |
|
1572 d = DIGIT(b, dig); |
|
1573 |
|
1574 while(d) { |
|
1575 if(d & 1) { |
|
1576 if((res = s_mp_mul(&s, &x)) != MP_OKAY) |
|
1577 goto CLEANUP; |
|
1578 if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY) |
|
1579 goto CLEANUP; |
|
1580 } |
|
1581 |
|
1582 d >>= 1; |
|
1583 |
|
1584 if((res = s_mp_sqr(&x)) != MP_OKAY) |
|
1585 goto CLEANUP; |
|
1586 if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY) |
|
1587 goto CLEANUP; |
|
1588 } |
|
1589 |
|
1590 s_mp_exch(&s, c); |
|
1591 |
|
1592 CLEANUP: |
|
1593 mp_clear(&mu); |
|
1594 MU: |
|
1595 mp_clear(&x); |
|
1596 X: |
|
1597 mp_clear(&s); |
|
1598 |
|
1599 return res; |
|
1600 |
|
1601 } /* end s_mp_exptmod() */ |
|
1602 |
|
1603 /* }}} */ |
|
1604 |
|
1605 /* {{{ mp_exptmod_d(a, d, m, c) */ |
|
1606 |
|
1607 mp_err mp_exptmod_d(const mp_int *a, mp_digit d, const mp_int *m, mp_int *c) |
|
1608 { |
|
1609 mp_int s, x; |
|
1610 mp_err res; |
|
1611 |
|
1612 ARGCHK(a != NULL && c != NULL, MP_BADARG); |
|
1613 |
|
1614 if((res = mp_init(&s, FLAG(a))) != MP_OKAY) |
|
1615 return res; |
|
1616 if((res = mp_init_copy(&x, a)) != MP_OKAY) |
|
1617 goto X; |
|
1618 |
|
1619 mp_set(&s, 1); |
|
1620 |
|
1621 while(d != 0) { |
|
1622 if(d & 1) { |
|
1623 if((res = s_mp_mul(&s, &x)) != MP_OKAY || |
|
1624 (res = mp_mod(&s, m, &s)) != MP_OKAY) |
|
1625 goto CLEANUP; |
|
1626 } |
|
1627 |
|
1628 d /= 2; |
|
1629 |
|
1630 if((res = s_mp_sqr(&x)) != MP_OKAY || |
|
1631 (res = mp_mod(&x, m, &x)) != MP_OKAY) |
|
1632 goto CLEANUP; |
|
1633 } |
|
1634 |
|
1635 s_mp_exch(&s, c); |
|
1636 |
|
1637 CLEANUP: |
|
1638 mp_clear(&x); |
|
1639 X: |
|
1640 mp_clear(&s); |
|
1641 |
|
1642 return res; |
|
1643 |
|
1644 } /* end mp_exptmod_d() */ |
|
1645 |
|
1646 /* }}} */ |
|
1647 #endif /* if MP_MODARITH */ |
|
1648 |
|
1649 /* }}} */ |
|
1650 |
|
1651 /*------------------------------------------------------------------------*/ |
|
1652 /* {{{ Comparison functions */ |
|
1653 |
|
1654 /* {{{ mp_cmp_z(a) */ |
|
1655 |
|
1656 /* |
|
1657 mp_cmp_z(a) |
|
1658 |
|
1659 Compare a <=> 0. Returns <0 if a<0, 0 if a=0, >0 if a>0. |
|
1660 */ |
|
1661 |
|
1662 int mp_cmp_z(const mp_int *a) |
|
1663 { |
|
1664 if(SIGN(a) == NEG) |
|
1665 return MP_LT; |
|
1666 else if(USED(a) == 1 && DIGIT(a, 0) == 0) |
|
1667 return MP_EQ; |
|
1668 else |
|
1669 return MP_GT; |
|
1670 |
|
1671 } /* end mp_cmp_z() */ |
|
1672 |
|
1673 /* }}} */ |
|
1674 |
|
1675 /* {{{ mp_cmp_d(a, d) */ |
|
1676 |
|
1677 /* |
|
1678 mp_cmp_d(a, d) |
|
1679 |
|
1680 Compare a <=> d. Returns <0 if a<d, 0 if a=d, >0 if a>d |
|
1681 */ |
|
1682 |
|
1683 int mp_cmp_d(const mp_int *a, mp_digit d) |
|
1684 { |
|
1685 ARGCHK(a != NULL, MP_EQ); |
|
1686 |
|
1687 if(SIGN(a) == NEG) |
|
1688 return MP_LT; |
|
1689 |
|
1690 return s_mp_cmp_d(a, d); |
|
1691 |
|
1692 } /* end mp_cmp_d() */ |
|
1693 |
|
1694 /* }}} */ |
|
1695 |
|
1696 /* {{{ mp_cmp(a, b) */ |
|
1697 |
|
1698 int mp_cmp(const mp_int *a, const mp_int *b) |
|
1699 { |
|
1700 ARGCHK(a != NULL && b != NULL, MP_EQ); |
|
1701 |
|
1702 if(SIGN(a) == SIGN(b)) { |
|
1703 int mag; |
|
1704 |
|
1705 if((mag = s_mp_cmp(a, b)) == MP_EQ) |
|
1706 return MP_EQ; |
|
1707 |
|
1708 if(SIGN(a) == ZPOS) |
|
1709 return mag; |
|
1710 else |
|
1711 return -mag; |
|
1712 |
|
1713 } else if(SIGN(a) == ZPOS) { |
|
1714 return MP_GT; |
|
1715 } else { |
|
1716 return MP_LT; |
|
1717 } |
|
1718 |
|
1719 } /* end mp_cmp() */ |
|
1720 |
|
1721 /* }}} */ |
|
1722 |
|
1723 /* {{{ mp_cmp_mag(a, b) */ |
|
1724 |
|
1725 /* |
|
1726 mp_cmp_mag(a, b) |
|
1727 |
|
1728 Compares |a| <=> |b|, and returns an appropriate comparison result |
|
1729 */ |
|
1730 |
|
1731 int mp_cmp_mag(mp_int *a, mp_int *b) |
|
1732 { |
|
1733 ARGCHK(a != NULL && b != NULL, MP_EQ); |
|
1734 |
|
1735 return s_mp_cmp(a, b); |
|
1736 |
|
1737 } /* end mp_cmp_mag() */ |
|
1738 |
|
1739 /* }}} */ |
|
1740 |
|
1741 /* {{{ mp_cmp_int(a, z, kmflag) */ |
|
1742 |
|
1743 /* |
|
1744 This just converts z to an mp_int, and uses the existing comparison |
|
1745 routines. This is sort of inefficient, but it's not clear to me how |
|
1746 frequently this wil get used anyway. For small positive constants, |
|
1747 you can always use mp_cmp_d(), and for zero, there is mp_cmp_z(). |
|
1748 */ |
|
1749 int mp_cmp_int(const mp_int *a, long z, int kmflag) |
|
1750 { |
|
1751 mp_int tmp; |
|
1752 int out; |
|
1753 |
|
1754 ARGCHK(a != NULL, MP_EQ); |
|
1755 |
|
1756 mp_init(&tmp, kmflag); mp_set_int(&tmp, z); |
|
1757 out = mp_cmp(a, &tmp); |
|
1758 mp_clear(&tmp); |
|
1759 |
|
1760 return out; |
|
1761 |
|
1762 } /* end mp_cmp_int() */ |
|
1763 |
|
1764 /* }}} */ |
|
1765 |
|
1766 /* {{{ mp_isodd(a) */ |
|
1767 |
|
1768 /* |
|
1769 mp_isodd(a) |
|
1770 |
|
1771 Returns a true (non-zero) value if a is odd, false (zero) otherwise. |
|
1772 */ |
|
1773 int mp_isodd(const mp_int *a) |
|
1774 { |
|
1775 ARGCHK(a != NULL, 0); |
|
1776 |
|
1777 return (int)(DIGIT(a, 0) & 1); |
|
1778 |
|
1779 } /* end mp_isodd() */ |
|
1780 |
|
1781 /* }}} */ |
|
1782 |
|
1783 /* {{{ mp_iseven(a) */ |
|
1784 |
|
1785 int mp_iseven(const mp_int *a) |
|
1786 { |
|
1787 return !mp_isodd(a); |
|
1788 |
|
1789 } /* end mp_iseven() */ |
|
1790 |
|
1791 /* }}} */ |
|
1792 |
|
1793 /* }}} */ |
|
1794 |
|
1795 /*------------------------------------------------------------------------*/ |
|
1796 /* {{{ Number theoretic functions */ |
|
1797 |
|
1798 #if MP_NUMTH |
|
1799 /* {{{ mp_gcd(a, b, c) */ |
|
1800 |
|
1801 /* |
|
1802 Like the old mp_gcd() function, except computes the GCD using the |
|
1803 binary algorithm due to Josef Stein in 1961 (via Knuth). |
|
1804 */ |
|
1805 mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c) |
|
1806 { |
|
1807 mp_err res; |
|
1808 mp_int u, v, t; |
|
1809 mp_size k = 0; |
|
1810 |
|
1811 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
|
1812 |
|
1813 if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ) |
|
1814 return MP_RANGE; |
|
1815 if(mp_cmp_z(a) == MP_EQ) { |
|
1816 return mp_copy(b, c); |
|
1817 } else if(mp_cmp_z(b) == MP_EQ) { |
|
1818 return mp_copy(a, c); |
|
1819 } |
|
1820 |
|
1821 if((res = mp_init(&t, FLAG(a))) != MP_OKAY) |
|
1822 return res; |
|
1823 if((res = mp_init_copy(&u, a)) != MP_OKAY) |
|
1824 goto U; |
|
1825 if((res = mp_init_copy(&v, b)) != MP_OKAY) |
|
1826 goto V; |
|
1827 |
|
1828 SIGN(&u) = ZPOS; |
|
1829 SIGN(&v) = ZPOS; |
|
1830 |
|
1831 /* Divide out common factors of 2 until at least 1 of a, b is even */ |
|
1832 while(mp_iseven(&u) && mp_iseven(&v)) { |
|
1833 s_mp_div_2(&u); |
|
1834 s_mp_div_2(&v); |
|
1835 ++k; |
|
1836 } |
|
1837 |
|
1838 /* Initialize t */ |
|
1839 if(mp_isodd(&u)) { |
|
1840 if((res = mp_copy(&v, &t)) != MP_OKAY) |
|
1841 goto CLEANUP; |
|
1842 |
|
1843 /* t = -v */ |
|
1844 if(SIGN(&v) == ZPOS) |
|
1845 SIGN(&t) = NEG; |
|
1846 else |
|
1847 SIGN(&t) = ZPOS; |
|
1848 |
|
1849 } else { |
|
1850 if((res = mp_copy(&u, &t)) != MP_OKAY) |
|
1851 goto CLEANUP; |
|
1852 |
|
1853 } |
|
1854 |
|
1855 for(;;) { |
|
1856 while(mp_iseven(&t)) { |
|
1857 s_mp_div_2(&t); |
|
1858 } |
|
1859 |
|
1860 if(mp_cmp_z(&t) == MP_GT) { |
|
1861 if((res = mp_copy(&t, &u)) != MP_OKAY) |
|
1862 goto CLEANUP; |
|
1863 |
|
1864 } else { |
|
1865 if((res = mp_copy(&t, &v)) != MP_OKAY) |
|
1866 goto CLEANUP; |
|
1867 |
|
1868 /* v = -t */ |
|
1869 if(SIGN(&t) == ZPOS) |
|
1870 SIGN(&v) = NEG; |
|
1871 else |
|
1872 SIGN(&v) = ZPOS; |
|
1873 } |
|
1874 |
|
1875 if((res = mp_sub(&u, &v, &t)) != MP_OKAY) |
|
1876 goto CLEANUP; |
|
1877 |
|
1878 if(s_mp_cmp_d(&t, 0) == MP_EQ) |
|
1879 break; |
|
1880 } |
|
1881 |
|
1882 s_mp_2expt(&v, k); /* v = 2^k */ |
|
1883 res = mp_mul(&u, &v, c); /* c = u * v */ |
|
1884 |
|
1885 CLEANUP: |
|
1886 mp_clear(&v); |
|
1887 V: |
|
1888 mp_clear(&u); |
|
1889 U: |
|
1890 mp_clear(&t); |
|
1891 |
|
1892 return res; |
|
1893 |
|
1894 } /* end mp_gcd() */ |
|
1895 |
|
1896 /* }}} */ |
|
1897 |
|
1898 /* {{{ mp_lcm(a, b, c) */ |
|
1899 |
|
1900 /* We compute the least common multiple using the rule: |
|
1901 |
|
1902 ab = [a, b](a, b) |
|
1903 |
|
1904 ... by computing the product, and dividing out the gcd. |
|
1905 */ |
|
1906 |
|
1907 mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c) |
|
1908 { |
|
1909 mp_int gcd, prod; |
|
1910 mp_err res; |
|
1911 |
|
1912 ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
|
1913 |
|
1914 /* Set up temporaries */ |
|
1915 if((res = mp_init(&gcd, FLAG(a))) != MP_OKAY) |
|
1916 return res; |
|
1917 if((res = mp_init(&prod, FLAG(a))) != MP_OKAY) |
|
1918 goto GCD; |
|
1919 |
|
1920 if((res = mp_mul(a, b, &prod)) != MP_OKAY) |
|
1921 goto CLEANUP; |
|
1922 if((res = mp_gcd(a, b, &gcd)) != MP_OKAY) |
|
1923 goto CLEANUP; |
|
1924 |
|
1925 res = mp_div(&prod, &gcd, c, NULL); |
|
1926 |
|
1927 CLEANUP: |
|
1928 mp_clear(&prod); |
|
1929 GCD: |
|
1930 mp_clear(&gcd); |
|
1931 |
|
1932 return res; |
|
1933 |
|
1934 } /* end mp_lcm() */ |
|
1935 |
|
1936 /* }}} */ |
|
1937 |
|
1938 /* {{{ mp_xgcd(a, b, g, x, y) */ |
|
1939 |
|
1940 /* |
|
1941 mp_xgcd(a, b, g, x, y) |
|
1942 |
|
1943 Compute g = (a, b) and values x and y satisfying Bezout's identity |
|
1944 (that is, ax + by = g). This uses the binary extended GCD algorithm |
|
1945 based on the Stein algorithm used for mp_gcd() |
|
1946 See algorithm 14.61 in Handbook of Applied Cryptogrpahy. |
|
1947 */ |
|
1948 |
|
1949 mp_err mp_xgcd(const mp_int *a, const mp_int *b, mp_int *g, mp_int *x, mp_int *y) |
|
1950 { |
|
1951 mp_int gx, xc, yc, u, v, A, B, C, D; |
|
1952 mp_int *clean[9]; |
|
1953 mp_err res; |
|
1954 int last = -1; |
|
1955 |
|
1956 if(mp_cmp_z(b) == 0) |
|
1957 return MP_RANGE; |
|
1958 |
|
1959 /* Initialize all these variables we need */ |
|
1960 MP_CHECKOK( mp_init(&u, FLAG(a)) ); |
|
1961 clean[++last] = &u; |
|
1962 MP_CHECKOK( mp_init(&v, FLAG(a)) ); |
|
1963 clean[++last] = &v; |
|
1964 MP_CHECKOK( mp_init(&gx, FLAG(a)) ); |
|
1965 clean[++last] = &gx; |
|
1966 MP_CHECKOK( mp_init(&A, FLAG(a)) ); |
|
1967 clean[++last] = &A; |
|
1968 MP_CHECKOK( mp_init(&B, FLAG(a)) ); |
|
1969 clean[++last] = &B; |
|
1970 MP_CHECKOK( mp_init(&C, FLAG(a)) ); |
|
1971 clean[++last] = &C; |
|
1972 MP_CHECKOK( mp_init(&D, FLAG(a)) ); |
|
1973 clean[++last] = &D; |
|
1974 MP_CHECKOK( mp_init_copy(&xc, a) ); |
|
1975 clean[++last] = &xc; |
|
1976 mp_abs(&xc, &xc); |
|
1977 MP_CHECKOK( mp_init_copy(&yc, b) ); |
|
1978 clean[++last] = &yc; |
|
1979 mp_abs(&yc, &yc); |
|
1980 |
|
1981 mp_set(&gx, 1); |
|
1982 |
|
1983 /* Divide by two until at least one of them is odd */ |
|
1984 while(mp_iseven(&xc) && mp_iseven(&yc)) { |
|
1985 mp_size nx = mp_trailing_zeros(&xc); |
|
1986 mp_size ny = mp_trailing_zeros(&yc); |
|
1987 mp_size n = MP_MIN(nx, ny); |
|
1988 s_mp_div_2d(&xc,n); |
|
1989 s_mp_div_2d(&yc,n); |
|
1990 MP_CHECKOK( s_mp_mul_2d(&gx,n) ); |
|
1991 } |
|
1992 |
|
1993 mp_copy(&xc, &u); |
|
1994 mp_copy(&yc, &v); |
|
1995 mp_set(&A, 1); mp_set(&D, 1); |
|
1996 |
|
1997 /* Loop through binary GCD algorithm */ |
|
1998 do { |
|
1999 while(mp_iseven(&u)) { |
|
2000 s_mp_div_2(&u); |
|
2001 |
|
2002 if(mp_iseven(&A) && mp_iseven(&B)) { |
|
2003 s_mp_div_2(&A); s_mp_div_2(&B); |
|
2004 } else { |
|
2005 MP_CHECKOK( mp_add(&A, &yc, &A) ); |
|
2006 s_mp_div_2(&A); |
|
2007 MP_CHECKOK( mp_sub(&B, &xc, &B) ); |
|
2008 s_mp_div_2(&B); |
|
2009 } |
|
2010 } |
|
2011 |
|
2012 while(mp_iseven(&v)) { |
|
2013 s_mp_div_2(&v); |
|
2014 |
|
2015 if(mp_iseven(&C) && mp_iseven(&D)) { |
|
2016 s_mp_div_2(&C); s_mp_div_2(&D); |
|
2017 } else { |
|
2018 MP_CHECKOK( mp_add(&C, &yc, &C) ); |
|
2019 s_mp_div_2(&C); |
|
2020 MP_CHECKOK( mp_sub(&D, &xc, &D) ); |
|
2021 s_mp_div_2(&D); |
|
2022 } |
|
2023 } |
|
2024 |
|
2025 if(mp_cmp(&u, &v) >= 0) { |
|
2026 MP_CHECKOK( mp_sub(&u, &v, &u) ); |
|
2027 MP_CHECKOK( mp_sub(&A, &C, &A) ); |
|
2028 MP_CHECKOK( mp_sub(&B, &D, &B) ); |
|
2029 } else { |
|
2030 MP_CHECKOK( mp_sub(&v, &u, &v) ); |
|
2031 MP_CHECKOK( mp_sub(&C, &A, &C) ); |
|
2032 MP_CHECKOK( mp_sub(&D, &B, &D) ); |
|
2033 } |
|
2034 } while (mp_cmp_z(&u) != 0); |
|
2035 |
|
2036 /* copy results to output */ |
|
2037 if(x) |
|
2038 MP_CHECKOK( mp_copy(&C, x) ); |
|
2039 |
|
2040 if(y) |
|
2041 MP_CHECKOK( mp_copy(&D, y) ); |
|
2042 |
|
2043 if(g) |
|
2044 MP_CHECKOK( mp_mul(&gx, &v, g) ); |
|
2045 |
|
2046 CLEANUP: |
|
2047 while(last >= 0) |
|
2048 mp_clear(clean[last--]); |
|
2049 |
|
2050 return res; |
|
2051 |
|
2052 } /* end mp_xgcd() */ |
|
2053 |
|
2054 /* }}} */ |
|
2055 |
|
2056 mp_size mp_trailing_zeros(const mp_int *mp) |
|
2057 { |
|
2058 mp_digit d; |
|
2059 mp_size n = 0; |
|
2060 int ix; |
|
2061 |
|
2062 if (!mp || !MP_DIGITS(mp) || !mp_cmp_z(mp)) |
|
2063 return n; |
|
2064 |
|
2065 for (ix = 0; !(d = MP_DIGIT(mp,ix)) && (ix < MP_USED(mp)); ++ix) |
|
2066 n += MP_DIGIT_BIT; |
|
2067 if (!d) |
|
2068 return 0; /* shouldn't happen, but ... */ |
|
2069 #if !defined(MP_USE_UINT_DIGIT) |
|
2070 if (!(d & 0xffffffffU)) { |
|
2071 d >>= 32; |
|
2072 n += 32; |
|
2073 } |
|
2074 #endif |
|
2075 if (!(d & 0xffffU)) { |
|
2076 d >>= 16; |
|
2077 n += 16; |
|
2078 } |
|
2079 if (!(d & 0xffU)) { |
|
2080 d >>= 8; |
|
2081 n += 8; |
|
2082 } |
|
2083 if (!(d & 0xfU)) { |
|
2084 d >>= 4; |
|
2085 n += 4; |
|
2086 } |
|
2087 if (!(d & 0x3U)) { |
|
2088 d >>= 2; |
|
2089 n += 2; |
|
2090 } |
|
2091 if (!(d & 0x1U)) { |
|
2092 d >>= 1; |
|
2093 n += 1; |
|
2094 } |
|
2095 #if MP_ARGCHK == 2 |
|
2096 assert(0 != (d & 1)); |
|
2097 #endif |
|
2098 return n; |
|
2099 } |
|
2100 |
|
2101 /* Given a and prime p, computes c and k such that a*c == 2**k (mod p). |
|
2102 ** Returns k (positive) or error (negative). |
|
2103 ** This technique from the paper "Fast Modular Reciprocals" (unpublished) |
|
2104 ** by Richard Schroeppel (a.k.a. Captain Nemo). |
|
2105 */ |
|
2106 mp_err s_mp_almost_inverse(const mp_int *a, const mp_int *p, mp_int *c) |
|
2107 { |
|
2108 mp_err res; |
|
2109 mp_err k = 0; |
|
2110 mp_int d, f, g; |
|
2111 |
|
2112 ARGCHK(a && p && c, MP_BADARG); |
|
2113 |
|
2114 MP_DIGITS(&d) = 0; |
|
2115 MP_DIGITS(&f) = 0; |
|
2116 MP_DIGITS(&g) = 0; |
|
2117 MP_CHECKOK( mp_init(&d, FLAG(a)) ); |
|
2118 MP_CHECKOK( mp_init_copy(&f, a) ); /* f = a */ |
|
2119 MP_CHECKOK( mp_init_copy(&g, p) ); /* g = p */ |
|
2120 |
|
2121 mp_set(c, 1); |
|
2122 mp_zero(&d); |
|
2123 |
|
2124 if (mp_cmp_z(&f) == 0) { |
|
2125 res = MP_UNDEF; |
|
2126 } else |
|
2127 for (;;) { |
|
2128 int diff_sign; |
|
2129 while (mp_iseven(&f)) { |
|
2130 mp_size n = mp_trailing_zeros(&f); |
|
2131 if (!n) { |
|
2132 res = MP_UNDEF; |
|
2133 goto CLEANUP; |
|
2134 } |
|
2135 s_mp_div_2d(&f, n); |
|
2136 MP_CHECKOK( s_mp_mul_2d(&d, n) ); |
|
2137 k += n; |
|
2138 } |
|
2139 if (mp_cmp_d(&f, 1) == MP_EQ) { /* f == 1 */ |
|
2140 res = k; |
|
2141 break; |
|
2142 } |
|
2143 diff_sign = mp_cmp(&f, &g); |
|
2144 if (diff_sign < 0) { /* f < g */ |
|
2145 s_mp_exch(&f, &g); |
|
2146 s_mp_exch(c, &d); |
|
2147 } else if (diff_sign == 0) { /* f == g */ |
|
2148 res = MP_UNDEF; /* a and p are not relatively prime */ |
|
2149 break; |
|
2150 } |
|
2151 if ((MP_DIGIT(&f,0) % 4) == (MP_DIGIT(&g,0) % 4)) { |
|
2152 MP_CHECKOK( mp_sub(&f, &g, &f) ); /* f = f - g */ |
|
2153 MP_CHECKOK( mp_sub(c, &d, c) ); /* c = c - d */ |
|
2154 } else { |
|
2155 MP_CHECKOK( mp_add(&f, &g, &f) ); /* f = f + g */ |
|
2156 MP_CHECKOK( mp_add(c, &d, c) ); /* c = c + d */ |
|
2157 } |
|
2158 } |
|
2159 if (res >= 0) { |
|
2160 while (MP_SIGN(c) != MP_ZPOS) { |
|
2161 MP_CHECKOK( mp_add(c, p, c) ); |
|
2162 } |
|
2163 res = k; |
|
2164 } |
|
2165 |
|
2166 CLEANUP: |
|
2167 mp_clear(&d); |
|
2168 mp_clear(&f); |
|
2169 mp_clear(&g); |
|
2170 return res; |
|
2171 } |
|
2172 |
|
2173 /* Compute T = (P ** -1) mod MP_RADIX. Also works for 16-bit mp_digits. |
|
2174 ** This technique from the paper "Fast Modular Reciprocals" (unpublished) |
|
2175 ** by Richard Schroeppel (a.k.a. Captain Nemo). |
|
2176 */ |
|
2177 mp_digit s_mp_invmod_radix(mp_digit P) |
|
2178 { |
|
2179 mp_digit T = P; |
|
2180 T *= 2 - (P * T); |
|
2181 T *= 2 - (P * T); |
|
2182 T *= 2 - (P * T); |
|
2183 T *= 2 - (P * T); |
|
2184 #if !defined(MP_USE_UINT_DIGIT) |
|
2185 T *= 2 - (P * T); |
|
2186 T *= 2 - (P * T); |
|
2187 #endif |
|
2188 return T; |
|
2189 } |
|
2190 |
|
2191 /* Given c, k, and prime p, where a*c == 2**k (mod p), |
|
2192 ** Compute x = (a ** -1) mod p. This is similar to Montgomery reduction. |
|
2193 ** This technique from the paper "Fast Modular Reciprocals" (unpublished) |
|
2194 ** by Richard Schroeppel (a.k.a. Captain Nemo). |
|
2195 */ |
|
2196 mp_err s_mp_fixup_reciprocal(const mp_int *c, const mp_int *p, int k, mp_int *x) |
|
2197 { |
|
2198 int k_orig = k; |
|
2199 mp_digit r; |
|
2200 mp_size ix; |
|
2201 mp_err res; |
|
2202 |
|
2203 if (mp_cmp_z(c) < 0) { /* c < 0 */ |
|
2204 MP_CHECKOK( mp_add(c, p, x) ); /* x = c + p */ |
|
2205 } else { |
|
2206 MP_CHECKOK( mp_copy(c, x) ); /* x = c */ |
|
2207 } |
|
2208 |
|
2209 /* make sure x is large enough */ |
|
2210 ix = MP_HOWMANY(k, MP_DIGIT_BIT) + MP_USED(p) + 1; |
|
2211 ix = MP_MAX(ix, MP_USED(x)); |
|
2212 MP_CHECKOK( s_mp_pad(x, ix) ); |
|
2213 |
|
2214 r = 0 - s_mp_invmod_radix(MP_DIGIT(p,0)); |
|
2215 |
|
2216 for (ix = 0; k > 0; ix++) { |
|
2217 int j = MP_MIN(k, MP_DIGIT_BIT); |
|
2218 mp_digit v = r * MP_DIGIT(x, ix); |
|
2219 if (j < MP_DIGIT_BIT) { |
|
2220 v &= ((mp_digit)1 << j) - 1; /* v = v mod (2 ** j) */ |
|
2221 } |
|
2222 s_mp_mul_d_add_offset(p, v, x, ix); /* x += p * v * (RADIX ** ix) */ |
|
2223 k -= j; |
|
2224 } |
|
2225 s_mp_clamp(x); |
|
2226 s_mp_div_2d(x, k_orig); |
|
2227 res = MP_OKAY; |
|
2228 |
|
2229 CLEANUP: |
|
2230 return res; |
|
2231 } |
|
2232 |
|
2233 /* compute mod inverse using Schroeppel's method, only if m is odd */ |
|
2234 mp_err s_mp_invmod_odd_m(const mp_int *a, const mp_int *m, mp_int *c) |
|
2235 { |
|
2236 int k; |
|
2237 mp_err res; |
|
2238 mp_int x; |
|
2239 |
|
2240 ARGCHK(a && m && c, MP_BADARG); |
|
2241 |
|
2242 if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) |
|
2243 return MP_RANGE; |
|
2244 if (mp_iseven(m)) |
|
2245 return MP_UNDEF; |
|
2246 |
|
2247 MP_DIGITS(&x) = 0; |
|
2248 |
|
2249 if (a == c) { |
|
2250 if ((res = mp_init_copy(&x, a)) != MP_OKAY) |
|
2251 return res; |
|
2252 if (a == m) |
|
2253 m = &x; |
|
2254 a = &x; |
|
2255 } else if (m == c) { |
|
2256 if ((res = mp_init_copy(&x, m)) != MP_OKAY) |
|
2257 return res; |
|
2258 m = &x; |
|
2259 } else { |
|
2260 MP_DIGITS(&x) = 0; |
|
2261 } |
|
2262 |
|
2263 MP_CHECKOK( s_mp_almost_inverse(a, m, c) ); |
|
2264 k = res; |
|
2265 MP_CHECKOK( s_mp_fixup_reciprocal(c, m, k, c) ); |
|
2266 CLEANUP: |
|
2267 mp_clear(&x); |
|
2268 return res; |
|
2269 } |
|
2270 |
|
2271 /* Known good algorithm for computing modular inverse. But slow. */ |
|
2272 mp_err mp_invmod_xgcd(const mp_int *a, const mp_int *m, mp_int *c) |
|
2273 { |
|
2274 mp_int g, x; |
|
2275 mp_err res; |
|
2276 |
|
2277 ARGCHK(a && m && c, MP_BADARG); |
|
2278 |
|
2279 if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) |
|
2280 return MP_RANGE; |
|
2281 |
|
2282 MP_DIGITS(&g) = 0; |
|
2283 MP_DIGITS(&x) = 0; |
|
2284 MP_CHECKOK( mp_init(&x, FLAG(a)) ); |
|
2285 MP_CHECKOK( mp_init(&g, FLAG(a)) ); |
|
2286 |
|
2287 MP_CHECKOK( mp_xgcd(a, m, &g, &x, NULL) ); |
|
2288 |
|
2289 if (mp_cmp_d(&g, 1) != MP_EQ) { |
|
2290 res = MP_UNDEF; |
|
2291 goto CLEANUP; |
|
2292 } |
|
2293 |
|
2294 res = mp_mod(&x, m, c); |
|
2295 SIGN(c) = SIGN(a); |
|
2296 |
|
2297 CLEANUP: |
|
2298 mp_clear(&x); |
|
2299 mp_clear(&g); |
|
2300 |
|
2301 return res; |
|
2302 } |
|
2303 |
|
2304 /* modular inverse where modulus is 2**k. */ |
|
2305 /* c = a**-1 mod 2**k */ |
|
2306 mp_err s_mp_invmod_2d(const mp_int *a, mp_size k, mp_int *c) |
|
2307 { |
|
2308 mp_err res; |
|
2309 mp_size ix = k + 4; |
|
2310 mp_int t0, t1, val, tmp, two2k; |
|
2311 |
|
2312 static const mp_digit d2 = 2; |
|
2313 static const mp_int two = { 0, MP_ZPOS, 1, 1, (mp_digit *)&d2 }; |
|
2314 |
|
2315 if (mp_iseven(a)) |
|
2316 return MP_UNDEF; |
|
2317 if (k <= MP_DIGIT_BIT) { |
|
2318 mp_digit i = s_mp_invmod_radix(MP_DIGIT(a,0)); |
|
2319 if (k < MP_DIGIT_BIT) |
|
2320 i &= ((mp_digit)1 << k) - (mp_digit)1; |
|
2321 mp_set(c, i); |
|
2322 return MP_OKAY; |
|
2323 } |
|
2324 MP_DIGITS(&t0) = 0; |
|
2325 MP_DIGITS(&t1) = 0; |
|
2326 MP_DIGITS(&val) = 0; |
|
2327 MP_DIGITS(&tmp) = 0; |
|
2328 MP_DIGITS(&two2k) = 0; |
|
2329 MP_CHECKOK( mp_init_copy(&val, a) ); |
|
2330 s_mp_mod_2d(&val, k); |
|
2331 MP_CHECKOK( mp_init_copy(&t0, &val) ); |
|
2332 MP_CHECKOK( mp_init_copy(&t1, &t0) ); |
|
2333 MP_CHECKOK( mp_init(&tmp, FLAG(a)) ); |
|
2334 MP_CHECKOK( mp_init(&two2k, FLAG(a)) ); |
|
2335 MP_CHECKOK( s_mp_2expt(&two2k, k) ); |
|
2336 do { |
|
2337 MP_CHECKOK( mp_mul(&val, &t1, &tmp) ); |
|
2338 MP_CHECKOK( mp_sub(&two, &tmp, &tmp) ); |
|
2339 MP_CHECKOK( mp_mul(&t1, &tmp, &t1) ); |
|
2340 s_mp_mod_2d(&t1, k); |
|
2341 while (MP_SIGN(&t1) != MP_ZPOS) { |
|
2342 MP_CHECKOK( mp_add(&t1, &two2k, &t1) ); |
|
2343 } |
|
2344 if (mp_cmp(&t1, &t0) == MP_EQ) |
|
2345 break; |
|
2346 MP_CHECKOK( mp_copy(&t1, &t0) ); |
|
2347 } while (--ix > 0); |
|
2348 if (!ix) { |
|
2349 res = MP_UNDEF; |
|
2350 } else { |
|
2351 mp_exch(c, &t1); |
|
2352 } |
|
2353 |
|
2354 CLEANUP: |
|
2355 mp_clear(&t0); |
|
2356 mp_clear(&t1); |
|
2357 mp_clear(&val); |
|
2358 mp_clear(&tmp); |
|
2359 mp_clear(&two2k); |
|
2360 return res; |
|
2361 } |
|
2362 |
|
2363 mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c) |
|
2364 { |
|
2365 mp_err res; |
|
2366 mp_size k; |
|
2367 mp_int oddFactor, evenFactor; /* factors of the modulus */ |
|
2368 mp_int oddPart, evenPart; /* parts to combine via CRT. */ |
|
2369 mp_int C2, tmp1, tmp2; |
|
2370 |
|
2371 /*static const mp_digit d1 = 1; */ |
|
2372 /*static const mp_int one = { MP_ZPOS, 1, 1, (mp_digit *)&d1 }; */ |
|
2373 |
|
2374 if ((res = s_mp_ispow2(m)) >= 0) { |
|
2375 k = res; |
|
2376 return s_mp_invmod_2d(a, k, c); |
|
2377 } |
|
2378 MP_DIGITS(&oddFactor) = 0; |
|
2379 MP_DIGITS(&evenFactor) = 0; |
|
2380 MP_DIGITS(&oddPart) = 0; |
|
2381 MP_DIGITS(&evenPart) = 0; |
|
2382 MP_DIGITS(&C2) = 0; |
|
2383 MP_DIGITS(&tmp1) = 0; |
|
2384 MP_DIGITS(&tmp2) = 0; |
|
2385 |
|
2386 MP_CHECKOK( mp_init_copy(&oddFactor, m) ); /* oddFactor = m */ |
|
2387 MP_CHECKOK( mp_init(&evenFactor, FLAG(m)) ); |
|
2388 MP_CHECKOK( mp_init(&oddPart, FLAG(m)) ); |
|
2389 MP_CHECKOK( mp_init(&evenPart, FLAG(m)) ); |
|
2390 MP_CHECKOK( mp_init(&C2, FLAG(m)) ); |
|
2391 MP_CHECKOK( mp_init(&tmp1, FLAG(m)) ); |
|
2392 MP_CHECKOK( mp_init(&tmp2, FLAG(m)) ); |
|
2393 |
|
2394 k = mp_trailing_zeros(m); |
|
2395 s_mp_div_2d(&oddFactor, k); |
|
2396 MP_CHECKOK( s_mp_2expt(&evenFactor, k) ); |
|
2397 |
|
2398 /* compute a**-1 mod oddFactor. */ |
|
2399 MP_CHECKOK( s_mp_invmod_odd_m(a, &oddFactor, &oddPart) ); |
|
2400 /* compute a**-1 mod evenFactor, where evenFactor == 2**k. */ |
|
2401 MP_CHECKOK( s_mp_invmod_2d( a, k, &evenPart) ); |
|
2402 |
|
2403 /* Use Chinese Remainer theorem to compute a**-1 mod m. */ |
|
2404 /* let m1 = oddFactor, v1 = oddPart, |
|
2405 * let m2 = evenFactor, v2 = evenPart. |
|
2406 */ |
|
2407 |
|
2408 /* Compute C2 = m1**-1 mod m2. */ |
|
2409 MP_CHECKOK( s_mp_invmod_2d(&oddFactor, k, &C2) ); |
|
2410 |
|
2411 /* compute u = (v2 - v1)*C2 mod m2 */ |
|
2412 MP_CHECKOK( mp_sub(&evenPart, &oddPart, &tmp1) ); |
|
2413 MP_CHECKOK( mp_mul(&tmp1, &C2, &tmp2) ); |
|
2414 s_mp_mod_2d(&tmp2, k); |
|
2415 while (MP_SIGN(&tmp2) != MP_ZPOS) { |
|
2416 MP_CHECKOK( mp_add(&tmp2, &evenFactor, &tmp2) ); |
|
2417 } |
|
2418 |
|
2419 /* compute answer = v1 + u*m1 */ |
|
2420 MP_CHECKOK( mp_mul(&tmp2, &oddFactor, c) ); |
|
2421 MP_CHECKOK( mp_add(&oddPart, c, c) ); |
|
2422 /* not sure this is necessary, but it's low cost if not. */ |
|
2423 MP_CHECKOK( mp_mod(c, m, c) ); |
|
2424 |
|
2425 CLEANUP: |
|
2426 mp_clear(&oddFactor); |
|
2427 mp_clear(&evenFactor); |
|
2428 mp_clear(&oddPart); |
|
2429 mp_clear(&evenPart); |
|
2430 mp_clear(&C2); |
|
2431 mp_clear(&tmp1); |
|
2432 mp_clear(&tmp2); |
|
2433 return res; |
|
2434 } |
|
2435 |
|
2436 |
|
2437 /* {{{ mp_invmod(a, m, c) */ |
|
2438 |
|
2439 /* |
|
2440 mp_invmod(a, m, c) |
|
2441 |
|
2442 Compute c = a^-1 (mod m), if there is an inverse for a (mod m). |
|
2443 This is equivalent to the question of whether (a, m) = 1. If not, |
|
2444 MP_UNDEF is returned, and there is no inverse. |
|
2445 */ |
|
2446 |
|
2447 mp_err mp_invmod(const mp_int *a, const mp_int *m, mp_int *c) |
|
2448 { |
|
2449 |
|
2450 ARGCHK(a && m && c, MP_BADARG); |
|
2451 |
|
2452 if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0) |
|
2453 return MP_RANGE; |
|
2454 |
|
2455 if (mp_isodd(m)) { |
|
2456 return s_mp_invmod_odd_m(a, m, c); |
|
2457 } |
|
2458 if (mp_iseven(a)) |
|
2459 return MP_UNDEF; /* not invertable */ |
|
2460 |
|
2461 return s_mp_invmod_even_m(a, m, c); |
|
2462 |
|
2463 } /* end mp_invmod() */ |
|
2464 |
|
2465 /* }}} */ |
|
2466 #endif /* if MP_NUMTH */ |
|
2467 |
|
2468 /* }}} */ |
|
2469 |
|
2470 /*------------------------------------------------------------------------*/ |
|
2471 /* {{{ mp_print(mp, ofp) */ |
|
2472 |
|
2473 #if MP_IOFUNC |
|
2474 /* |
|
2475 mp_print(mp, ofp) |
|
2476 |
|
2477 Print a textual representation of the given mp_int on the output |
|
2478 stream 'ofp'. Output is generated using the internal radix. |
|
2479 */ |
|
2480 |
|
2481 void mp_print(mp_int *mp, FILE *ofp) |
|
2482 { |
|
2483 int ix; |
|
2484 |
|
2485 if(mp == NULL || ofp == NULL) |
|
2486 return; |
|
2487 |
|
2488 fputc((SIGN(mp) == NEG) ? '-' : '+', ofp); |
|
2489 |
|
2490 for(ix = USED(mp) - 1; ix >= 0; ix--) { |
|
2491 fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix)); |
|
2492 } |
|
2493 |
|
2494 } /* end mp_print() */ |
|
2495 |
|
2496 #endif /* if MP_IOFUNC */ |
|
2497 |
|
2498 /* }}} */ |
|
2499 |
|
2500 /*------------------------------------------------------------------------*/ |
|
2501 /* {{{ More I/O Functions */ |
|
2502 |
|
2503 /* {{{ mp_read_raw(mp, str, len) */ |
|
2504 |
|
2505 /* |
|
2506 mp_read_raw(mp, str, len) |
|
2507 |
|
2508 Read in a raw value (base 256) into the given mp_int |
|
2509 */ |
|
2510 |
|
2511 mp_err mp_read_raw(mp_int *mp, char *str, int len) |
|
2512 { |
|
2513 int ix; |
|
2514 mp_err res; |
|
2515 unsigned char *ustr = (unsigned char *)str; |
|
2516 |
|
2517 ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); |
|
2518 |
|
2519 mp_zero(mp); |
|
2520 |
|
2521 /* Get sign from first byte */ |
|
2522 if(ustr[0]) |
|
2523 SIGN(mp) = NEG; |
|
2524 else |
|
2525 SIGN(mp) = ZPOS; |
|
2526 |
|
2527 /* Read the rest of the digits */ |
|
2528 for(ix = 1; ix < len; ix++) { |
|
2529 if((res = mp_mul_d(mp, 256, mp)) != MP_OKAY) |
|
2530 return res; |
|
2531 if((res = mp_add_d(mp, ustr[ix], mp)) != MP_OKAY) |
|
2532 return res; |
|
2533 } |
|
2534 |
|
2535 return MP_OKAY; |
|
2536 |
|
2537 } /* end mp_read_raw() */ |
|
2538 |
|
2539 /* }}} */ |
|
2540 |
|
2541 /* {{{ mp_raw_size(mp) */ |
|
2542 |
|
2543 int mp_raw_size(mp_int *mp) |
|
2544 { |
|
2545 ARGCHK(mp != NULL, 0); |
|
2546 |
|
2547 return (USED(mp) * sizeof(mp_digit)) + 1; |
|
2548 |
|
2549 } /* end mp_raw_size() */ |
|
2550 |
|
2551 /* }}} */ |
|
2552 |
|
2553 /* {{{ mp_toraw(mp, str) */ |
|
2554 |
|
2555 mp_err mp_toraw(mp_int *mp, char *str) |
|
2556 { |
|
2557 int ix, jx, pos = 1; |
|
2558 |
|
2559 ARGCHK(mp != NULL && str != NULL, MP_BADARG); |
|
2560 |
|
2561 str[0] = (char)SIGN(mp); |
|
2562 |
|
2563 /* Iterate over each digit... */ |
|
2564 for(ix = USED(mp) - 1; ix >= 0; ix--) { |
|
2565 mp_digit d = DIGIT(mp, ix); |
|
2566 |
|
2567 /* Unpack digit bytes, high order first */ |
|
2568 for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { |
|
2569 str[pos++] = (char)(d >> (jx * CHAR_BIT)); |
|
2570 } |
|
2571 } |
|
2572 |
|
2573 return MP_OKAY; |
|
2574 |
|
2575 } /* end mp_toraw() */ |
|
2576 |
|
2577 /* }}} */ |
|
2578 |
|
2579 /* {{{ mp_read_radix(mp, str, radix) */ |
|
2580 |
|
2581 /* |
|
2582 mp_read_radix(mp, str, radix) |
|
2583 |
|
2584 Read an integer from the given string, and set mp to the resulting |
|
2585 value. The input is presumed to be in base 10. Leading non-digit |
|
2586 characters are ignored, and the function reads until a non-digit |
|
2587 character or the end of the string. |
|
2588 */ |
|
2589 |
|
2590 mp_err mp_read_radix(mp_int *mp, const char *str, int radix) |
|
2591 { |
|
2592 int ix = 0, val = 0; |
|
2593 mp_err res; |
|
2594 mp_sign sig = ZPOS; |
|
2595 |
|
2596 ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX, |
|
2597 MP_BADARG); |
|
2598 |
|
2599 mp_zero(mp); |
|
2600 |
|
2601 /* Skip leading non-digit characters until a digit or '-' or '+' */ |
|
2602 while(str[ix] && |
|
2603 (s_mp_tovalue(str[ix], radix) < 0) && |
|
2604 str[ix] != '-' && |
|
2605 str[ix] != '+') { |
|
2606 ++ix; |
|
2607 } |
|
2608 |
|
2609 if(str[ix] == '-') { |
|
2610 sig = NEG; |
|
2611 ++ix; |
|
2612 } else if(str[ix] == '+') { |
|
2613 sig = ZPOS; /* this is the default anyway... */ |
|
2614 ++ix; |
|
2615 } |
|
2616 |
|
2617 while((val = s_mp_tovalue(str[ix], radix)) >= 0) { |
|
2618 if((res = s_mp_mul_d(mp, radix)) != MP_OKAY) |
|
2619 return res; |
|
2620 if((res = s_mp_add_d(mp, val)) != MP_OKAY) |
|
2621 return res; |
|
2622 ++ix; |
|
2623 } |
|
2624 |
|
2625 if(s_mp_cmp_d(mp, 0) == MP_EQ) |
|
2626 SIGN(mp) = ZPOS; |
|
2627 else |
|
2628 SIGN(mp) = sig; |
|
2629 |
|
2630 return MP_OKAY; |
|
2631 |
|
2632 } /* end mp_read_radix() */ |
|
2633 |
|
2634 mp_err mp_read_variable_radix(mp_int *a, const char * str, int default_radix) |
|
2635 { |
|
2636 int radix = default_radix; |
|
2637 int cx; |
|
2638 mp_sign sig = ZPOS; |
|
2639 mp_err res; |
|
2640 |
|
2641 /* Skip leading non-digit characters until a digit or '-' or '+' */ |
|
2642 while ((cx = *str) != 0 && |
|
2643 (s_mp_tovalue(cx, radix) < 0) && |
|
2644 cx != '-' && |
|
2645 cx != '+') { |
|
2646 ++str; |
|
2647 } |
|
2648 |
|
2649 if (cx == '-') { |
|
2650 sig = NEG; |
|
2651 ++str; |
|
2652 } else if (cx == '+') { |
|
2653 sig = ZPOS; /* this is the default anyway... */ |
|
2654 ++str; |
|
2655 } |
|
2656 |
|
2657 if (str[0] == '0') { |
|
2658 if ((str[1] | 0x20) == 'x') { |
|
2659 radix = 16; |
|
2660 str += 2; |
|
2661 } else { |
|
2662 radix = 8; |
|
2663 str++; |
|
2664 } |
|
2665 } |
|
2666 res = mp_read_radix(a, str, radix); |
|
2667 if (res == MP_OKAY) { |
|
2668 MP_SIGN(a) = (s_mp_cmp_d(a, 0) == MP_EQ) ? ZPOS : sig; |
|
2669 } |
|
2670 return res; |
|
2671 } |
|
2672 |
|
2673 /* }}} */ |
|
2674 |
|
2675 /* {{{ mp_radix_size(mp, radix) */ |
|
2676 |
|
2677 int mp_radix_size(mp_int *mp, int radix) |
|
2678 { |
|
2679 int bits; |
|
2680 |
|
2681 if(!mp || radix < 2 || radix > MAX_RADIX) |
|
2682 return 0; |
|
2683 |
|
2684 bits = USED(mp) * DIGIT_BIT - 1; |
|
2685 |
|
2686 return s_mp_outlen(bits, radix); |
|
2687 |
|
2688 } /* end mp_radix_size() */ |
|
2689 |
|
2690 /* }}} */ |
|
2691 |
|
2692 /* {{{ mp_toradix(mp, str, radix) */ |
|
2693 |
|
2694 mp_err mp_toradix(mp_int *mp, char *str, int radix) |
|
2695 { |
|
2696 int ix, pos = 0; |
|
2697 |
|
2698 ARGCHK(mp != NULL && str != NULL, MP_BADARG); |
|
2699 ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE); |
|
2700 |
|
2701 if(mp_cmp_z(mp) == MP_EQ) { |
|
2702 str[0] = '0'; |
|
2703 str[1] = '\0'; |
|
2704 } else { |
|
2705 mp_err res; |
|
2706 mp_int tmp; |
|
2707 mp_sign sgn; |
|
2708 mp_digit rem, rdx = (mp_digit)radix; |
|
2709 char ch; |
|
2710 |
|
2711 if((res = mp_init_copy(&tmp, mp)) != MP_OKAY) |
|
2712 return res; |
|
2713 |
|
2714 /* Save sign for later, and take absolute value */ |
|
2715 sgn = SIGN(&tmp); SIGN(&tmp) = ZPOS; |
|
2716 |
|
2717 /* Generate output digits in reverse order */ |
|
2718 while(mp_cmp_z(&tmp) != 0) { |
|
2719 if((res = mp_div_d(&tmp, rdx, &tmp, &rem)) != MP_OKAY) { |
|
2720 mp_clear(&tmp); |
|
2721 return res; |
|
2722 } |
|
2723 |
|
2724 /* Generate digits, use capital letters */ |
|
2725 ch = s_mp_todigit(rem, radix, 0); |
|
2726 |
|
2727 str[pos++] = ch; |
|
2728 } |
|
2729 |
|
2730 /* Add - sign if original value was negative */ |
|
2731 if(sgn == NEG) |
|
2732 str[pos++] = '-'; |
|
2733 |
|
2734 /* Add trailing NUL to end the string */ |
|
2735 str[pos--] = '\0'; |
|
2736 |
|
2737 /* Reverse the digits and sign indicator */ |
|
2738 ix = 0; |
|
2739 while(ix < pos) { |
|
2740 char tmp = str[ix]; |
|
2741 |
|
2742 str[ix] = str[pos]; |
|
2743 str[pos] = tmp; |
|
2744 ++ix; |
|
2745 --pos; |
|
2746 } |
|
2747 |
|
2748 mp_clear(&tmp); |
|
2749 } |
|
2750 |
|
2751 return MP_OKAY; |
|
2752 |
|
2753 } /* end mp_toradix() */ |
|
2754 |
|
2755 /* }}} */ |
|
2756 |
|
2757 /* {{{ mp_tovalue(ch, r) */ |
|
2758 |
|
2759 int mp_tovalue(char ch, int r) |
|
2760 { |
|
2761 return s_mp_tovalue(ch, r); |
|
2762 |
|
2763 } /* end mp_tovalue() */ |
|
2764 |
|
2765 /* }}} */ |
|
2766 |
|
2767 /* }}} */ |
|
2768 |
|
2769 /* {{{ mp_strerror(ec) */ |
|
2770 |
|
2771 /* |
|
2772 mp_strerror(ec) |
|
2773 |
|
2774 Return a string describing the meaning of error code 'ec'. The |
|
2775 string returned is allocated in static memory, so the caller should |
|
2776 not attempt to modify or free the memory associated with this |
|
2777 string. |
|
2778 */ |
|
2779 const char *mp_strerror(mp_err ec) |
|
2780 { |
|
2781 int aec = (ec < 0) ? -ec : ec; |
|
2782 |
|
2783 /* Code values are negative, so the senses of these comparisons |
|
2784 are accurate */ |
|
2785 if(ec < MP_LAST_CODE || ec > MP_OKAY) { |
|
2786 return mp_err_string[0]; /* unknown error code */ |
|
2787 } else { |
|
2788 return mp_err_string[aec + 1]; |
|
2789 } |
|
2790 |
|
2791 } /* end mp_strerror() */ |
|
2792 |
|
2793 /* }}} */ |
|
2794 |
|
2795 /*========================================================================*/ |
|
2796 /*------------------------------------------------------------------------*/ |
|
2797 /* Static function definitions (internal use only) */ |
|
2798 |
|
2799 /* {{{ Memory management */ |
|
2800 |
|
2801 /* {{{ s_mp_grow(mp, min) */ |
|
2802 |
|
2803 /* Make sure there are at least 'min' digits allocated to mp */ |
|
2804 mp_err s_mp_grow(mp_int *mp, mp_size min) |
|
2805 { |
|
2806 if(min > ALLOC(mp)) { |
|
2807 mp_digit *tmp; |
|
2808 |
|
2809 /* Set min to next nearest default precision block size */ |
|
2810 min = MP_ROUNDUP(min, s_mp_defprec); |
|
2811 |
|
2812 if((tmp = s_mp_alloc(min, sizeof(mp_digit), FLAG(mp))) == NULL) |
|
2813 return MP_MEM; |
|
2814 |
|
2815 s_mp_copy(DIGITS(mp), tmp, USED(mp)); |
|
2816 |
|
2817 #if MP_CRYPTO |
|
2818 s_mp_setz(DIGITS(mp), ALLOC(mp)); |
|
2819 #endif |
|
2820 s_mp_free(DIGITS(mp), ALLOC(mp)); |
|
2821 DIGITS(mp) = tmp; |
|
2822 ALLOC(mp) = min; |
|
2823 } |
|
2824 |
|
2825 return MP_OKAY; |
|
2826 |
|
2827 } /* end s_mp_grow() */ |
|
2828 |
|
2829 /* }}} */ |
|
2830 |
|
2831 /* {{{ s_mp_pad(mp, min) */ |
|
2832 |
|
2833 /* Make sure the used size of mp is at least 'min', growing if needed */ |
|
2834 mp_err s_mp_pad(mp_int *mp, mp_size min) |
|
2835 { |
|
2836 if(min > USED(mp)) { |
|
2837 mp_err res; |
|
2838 |
|
2839 /* Make sure there is room to increase precision */ |
|
2840 if (min > ALLOC(mp)) { |
|
2841 if ((res = s_mp_grow(mp, min)) != MP_OKAY) |
|
2842 return res; |
|
2843 } else { |
|
2844 s_mp_setz(DIGITS(mp) + USED(mp), min - USED(mp)); |
|
2845 } |
|
2846 |
|
2847 /* Increase precision; should already be 0-filled */ |
|
2848 USED(mp) = min; |
|
2849 } |
|
2850 |
|
2851 return MP_OKAY; |
|
2852 |
|
2853 } /* end s_mp_pad() */ |
|
2854 |
|
2855 /* }}} */ |
|
2856 |
|
2857 /* {{{ s_mp_setz(dp, count) */ |
|
2858 |
|
2859 #if MP_MACRO == 0 |
|
2860 /* Set 'count' digits pointed to by dp to be zeroes */ |
|
2861 void s_mp_setz(mp_digit *dp, mp_size count) |
|
2862 { |
|
2863 #if MP_MEMSET == 0 |
|
2864 int ix; |
|
2865 |
|
2866 for(ix = 0; ix < count; ix++) |
|
2867 dp[ix] = 0; |
|
2868 #else |
|
2869 memset(dp, 0, count * sizeof(mp_digit)); |
|
2870 #endif |
|
2871 |
|
2872 } /* end s_mp_setz() */ |
|
2873 #endif |
|
2874 |
|
2875 /* }}} */ |
|
2876 |
|
2877 /* {{{ s_mp_copy(sp, dp, count) */ |
|
2878 |
|
2879 #if MP_MACRO == 0 |
|
2880 /* Copy 'count' digits from sp to dp */ |
|
2881 void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count) |
|
2882 { |
|
2883 #if MP_MEMCPY == 0 |
|
2884 int ix; |
|
2885 |
|
2886 for(ix = 0; ix < count; ix++) |
|
2887 dp[ix] = sp[ix]; |
|
2888 #else |
|
2889 memcpy(dp, sp, count * sizeof(mp_digit)); |
|
2890 #endif |
|
2891 |
|
2892 } /* end s_mp_copy() */ |
|
2893 #endif |
|
2894 |
|
2895 /* }}} */ |
|
2896 |
|
2897 /* {{{ s_mp_alloc(nb, ni, kmflag) */ |
|
2898 |
|
2899 #if MP_MACRO == 0 |
|
2900 /* Allocate ni records of nb bytes each, and return a pointer to that */ |
|
2901 void *s_mp_alloc(size_t nb, size_t ni, int kmflag) |
|
2902 { |
|
2903 mp_int *mp; |
|
2904 ++mp_allocs; |
|
2905 #ifdef _KERNEL |
|
2906 mp = kmem_zalloc(nb * ni, kmflag); |
|
2907 if (mp != NULL) |
|
2908 FLAG(mp) = kmflag; |
|
2909 return (mp); |
|
2910 #else |
|
2911 return calloc(nb, ni); |
|
2912 #endif |
|
2913 |
|
2914 } /* end s_mp_alloc() */ |
|
2915 #endif |
|
2916 |
|
2917 /* }}} */ |
|
2918 |
|
2919 /* {{{ s_mp_free(ptr) */ |
|
2920 |
|
2921 #if MP_MACRO == 0 |
|
2922 /* Free the memory pointed to by ptr */ |
|
2923 void s_mp_free(void *ptr, mp_size alloc) |
|
2924 { |
|
2925 if(ptr) { |
|
2926 ++mp_frees; |
|
2927 #ifdef _KERNEL |
|
2928 kmem_free(ptr, alloc * sizeof (mp_digit)); |
|
2929 #else |
|
2930 free(ptr); |
|
2931 #endif |
|
2932 } |
|
2933 } /* end s_mp_free() */ |
|
2934 #endif |
|
2935 |
|
2936 /* }}} */ |
|
2937 |
|
2938 /* {{{ s_mp_clamp(mp) */ |
|
2939 |
|
2940 #if MP_MACRO == 0 |
|
2941 /* Remove leading zeroes from the given value */ |
|
2942 void s_mp_clamp(mp_int *mp) |
|
2943 { |
|
2944 mp_size used = MP_USED(mp); |
|
2945 while (used > 1 && DIGIT(mp, used - 1) == 0) |
|
2946 --used; |
|
2947 MP_USED(mp) = used; |
|
2948 } /* end s_mp_clamp() */ |
|
2949 #endif |
|
2950 |
|
2951 /* }}} */ |
|
2952 |
|
2953 /* {{{ s_mp_exch(a, b) */ |
|
2954 |
|
2955 /* Exchange the data for a and b; (b, a) = (a, b) */ |
|
2956 void s_mp_exch(mp_int *a, mp_int *b) |
|
2957 { |
|
2958 mp_int tmp; |
|
2959 |
|
2960 tmp = *a; |
|
2961 *a = *b; |
|
2962 *b = tmp; |
|
2963 |
|
2964 } /* end s_mp_exch() */ |
|
2965 |
|
2966 /* }}} */ |
|
2967 |
|
2968 /* }}} */ |
|
2969 |
|
2970 /* {{{ Arithmetic helpers */ |
|
2971 |
|
2972 /* {{{ s_mp_lshd(mp, p) */ |
|
2973 |
|
2974 /* |
|
2975 Shift mp leftward by p digits, growing if needed, and zero-filling |
|
2976 the in-shifted digits at the right end. This is a convenient |
|
2977 alternative to multiplication by powers of the radix |
|
2978 The value of USED(mp) must already have been set to the value for |
|
2979 the shifted result. |
|
2980 */ |
|
2981 |
|
2982 mp_err s_mp_lshd(mp_int *mp, mp_size p) |
|
2983 { |
|
2984 mp_err res; |
|
2985 mp_size pos; |
|
2986 int ix; |
|
2987 |
|
2988 if(p == 0) |
|
2989 return MP_OKAY; |
|
2990 |
|
2991 if (MP_USED(mp) == 1 && MP_DIGIT(mp, 0) == 0) |
|
2992 return MP_OKAY; |
|
2993 |
|
2994 if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY) |
|
2995 return res; |
|
2996 |
|
2997 pos = USED(mp) - 1; |
|
2998 |
|
2999 /* Shift all the significant figures over as needed */ |
|
3000 for(ix = pos - p; ix >= 0; ix--) |
|
3001 DIGIT(mp, ix + p) = DIGIT(mp, ix); |
|
3002 |
|
3003 /* Fill the bottom digits with zeroes */ |
|
3004 for(ix = 0; ix < p; ix++) |
|
3005 DIGIT(mp, ix) = 0; |
|
3006 |
|
3007 return MP_OKAY; |
|
3008 |
|
3009 } /* end s_mp_lshd() */ |
|
3010 |
|
3011 /* }}} */ |
|
3012 |
|
3013 /* {{{ s_mp_mul_2d(mp, d) */ |
|
3014 |
|
3015 /* |
|
3016 Multiply the integer by 2^d, where d is a number of bits. This |
|
3017 amounts to a bitwise shift of the value. |
|
3018 */ |
|
3019 mp_err s_mp_mul_2d(mp_int *mp, mp_digit d) |
|
3020 { |
|
3021 mp_err res; |
|
3022 mp_digit dshift, bshift; |
|
3023 mp_digit mask; |
|
3024 |
|
3025 ARGCHK(mp != NULL, MP_BADARG); |
|
3026 |
|
3027 dshift = d / MP_DIGIT_BIT; |
|
3028 bshift = d % MP_DIGIT_BIT; |
|
3029 /* bits to be shifted out of the top word */ |
|
3030 mask = ((mp_digit)~0 << (MP_DIGIT_BIT - bshift)); |
|
3031 mask &= MP_DIGIT(mp, MP_USED(mp) - 1); |
|
3032 |
|
3033 if (MP_OKAY != (res = s_mp_pad(mp, MP_USED(mp) + dshift + (mask != 0) ))) |
|
3034 return res; |
|
3035 |
|
3036 if (dshift && MP_OKAY != (res = s_mp_lshd(mp, dshift))) |
|
3037 return res; |
|
3038 |
|
3039 if (bshift) { |
|
3040 mp_digit *pa = MP_DIGITS(mp); |
|
3041 mp_digit *alim = pa + MP_USED(mp); |
|
3042 mp_digit prev = 0; |
|
3043 |
|
3044 for (pa += dshift; pa < alim; ) { |
|
3045 mp_digit x = *pa; |
|
3046 *pa++ = (x << bshift) | prev; |
|
3047 prev = x >> (DIGIT_BIT - bshift); |
|
3048 } |
|
3049 } |
|
3050 |
|
3051 s_mp_clamp(mp); |
|
3052 return MP_OKAY; |
|
3053 } /* end s_mp_mul_2d() */ |
|
3054 |
|
3055 /* {{{ s_mp_rshd(mp, p) */ |
|
3056 |
|
3057 /* |
|
3058 Shift mp rightward by p digits. Maintains the invariant that |
|
3059 digits above the precision are all zero. Digits shifted off the |
|
3060 end are lost. Cannot fail. |
|
3061 */ |
|
3062 |
|
3063 void s_mp_rshd(mp_int *mp, mp_size p) |
|
3064 { |
|
3065 mp_size ix; |
|
3066 mp_digit *src, *dst; |
|
3067 |
|
3068 if(p == 0) |
|
3069 return; |
|
3070 |
|
3071 /* Shortcut when all digits are to be shifted off */ |
|
3072 if(p >= USED(mp)) { |
|
3073 s_mp_setz(DIGITS(mp), ALLOC(mp)); |
|
3074 USED(mp) = 1; |
|
3075 SIGN(mp) = ZPOS; |
|
3076 return; |
|
3077 } |
|
3078 |
|
3079 /* Shift all the significant figures over as needed */ |
|
3080 dst = MP_DIGITS(mp); |
|
3081 src = dst + p; |
|
3082 for (ix = USED(mp) - p; ix > 0; ix--) |
|
3083 *dst++ = *src++; |
|
3084 |
|
3085 MP_USED(mp) -= p; |
|
3086 /* Fill the top digits with zeroes */ |
|
3087 while (p-- > 0) |
|
3088 *dst++ = 0; |
|
3089 |
|
3090 #if 0 |
|
3091 /* Strip off any leading zeroes */ |
|
3092 s_mp_clamp(mp); |
|
3093 #endif |
|
3094 |
|
3095 } /* end s_mp_rshd() */ |
|
3096 |
|
3097 /* }}} */ |
|
3098 |
|
3099 /* {{{ s_mp_div_2(mp) */ |
|
3100 |
|
3101 /* Divide by two -- take advantage of radix properties to do it fast */ |
|
3102 void s_mp_div_2(mp_int *mp) |
|
3103 { |
|
3104 s_mp_div_2d(mp, 1); |
|
3105 |
|
3106 } /* end s_mp_div_2() */ |
|
3107 |
|
3108 /* }}} */ |
|
3109 |
|
3110 /* {{{ s_mp_mul_2(mp) */ |
|
3111 |
|
3112 mp_err s_mp_mul_2(mp_int *mp) |
|
3113 { |
|
3114 mp_digit *pd; |
|
3115 int ix, used; |
|
3116 mp_digit kin = 0; |
|
3117 |
|
3118 /* Shift digits leftward by 1 bit */ |
|
3119 used = MP_USED(mp); |
|
3120 pd = MP_DIGITS(mp); |
|
3121 for (ix = 0; ix < used; ix++) { |
|
3122 mp_digit d = *pd; |
|
3123 *pd++ = (d << 1) | kin; |
|
3124 kin = (d >> (DIGIT_BIT - 1)); |
|
3125 } |
|
3126 |
|
3127 /* Deal with rollover from last digit */ |
|
3128 if (kin) { |
|
3129 if (ix >= ALLOC(mp)) { |
|
3130 mp_err res; |
|
3131 if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY) |
|
3132 return res; |
|
3133 } |
|
3134 |
|
3135 DIGIT(mp, ix) = kin; |
|
3136 USED(mp) += 1; |
|
3137 } |
|
3138 |
|
3139 return MP_OKAY; |
|
3140 |
|
3141 } /* end s_mp_mul_2() */ |
|
3142 |
|
3143 /* }}} */ |
|
3144 |
|
3145 /* {{{ s_mp_mod_2d(mp, d) */ |
|
3146 |
|
3147 /* |
|
3148 Remainder the integer by 2^d, where d is a number of bits. This |
|
3149 amounts to a bitwise AND of the value, and does not require the full |
|
3150 division code |
|
3151 */ |
|
3152 void s_mp_mod_2d(mp_int *mp, mp_digit d) |
|
3153 { |
|
3154 mp_size ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT); |
|
3155 mp_size ix; |
|
3156 mp_digit dmask; |
|
3157 |
|
3158 if(ndig >= USED(mp)) |
|
3159 return; |
|
3160 |
|
3161 /* Flush all the bits above 2^d in its digit */ |
|
3162 dmask = ((mp_digit)1 << nbit) - 1; |
|
3163 DIGIT(mp, ndig) &= dmask; |
|
3164 |
|
3165 /* Flush all digits above the one with 2^d in it */ |
|
3166 for(ix = ndig + 1; ix < USED(mp); ix++) |
|
3167 DIGIT(mp, ix) = 0; |
|
3168 |
|
3169 s_mp_clamp(mp); |
|
3170 |
|
3171 } /* end s_mp_mod_2d() */ |
|
3172 |
|
3173 /* }}} */ |
|
3174 |
|
3175 /* {{{ s_mp_div_2d(mp, d) */ |
|
3176 |
|
3177 /* |
|
3178 Divide the integer by 2^d, where d is a number of bits. This |
|
3179 amounts to a bitwise shift of the value, and does not require the |
|
3180 full division code (used in Barrett reduction, see below) |
|
3181 */ |
|
3182 void s_mp_div_2d(mp_int *mp, mp_digit d) |
|
3183 { |
|
3184 int ix; |
|
3185 mp_digit save, next, mask; |
|
3186 |
|
3187 s_mp_rshd(mp, d / DIGIT_BIT); |
|
3188 d %= DIGIT_BIT; |
|
3189 if (d) { |
|
3190 mask = ((mp_digit)1 << d) - 1; |
|
3191 save = 0; |
|
3192 for(ix = USED(mp) - 1; ix >= 0; ix--) { |
|
3193 next = DIGIT(mp, ix) & mask; |
|
3194 DIGIT(mp, ix) = (DIGIT(mp, ix) >> d) | (save << (DIGIT_BIT - d)); |
|
3195 save = next; |
|
3196 } |
|
3197 } |
|
3198 s_mp_clamp(mp); |
|
3199 |
|
3200 } /* end s_mp_div_2d() */ |
|
3201 |
|
3202 /* }}} */ |
|
3203 |
|
3204 /* {{{ s_mp_norm(a, b, *d) */ |
|
3205 |
|
3206 /* |
|
3207 s_mp_norm(a, b, *d) |
|
3208 |
|
3209 Normalize a and b for division, where b is the divisor. In order |
|
3210 that we might make good guesses for quotient digits, we want the |
|
3211 leading digit of b to be at least half the radix, which we |
|
3212 accomplish by multiplying a and b by a power of 2. The exponent |
|
3213 (shift count) is placed in *pd, so that the remainder can be shifted |
|
3214 back at the end of the division process. |
|
3215 */ |
|
3216 |
|
3217 mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd) |
|
3218 { |
|
3219 mp_digit d; |
|
3220 mp_digit mask; |
|
3221 mp_digit b_msd; |
|
3222 mp_err res = MP_OKAY; |
|
3223 |
|
3224 d = 0; |
|
3225 mask = DIGIT_MAX & ~(DIGIT_MAX >> 1); /* mask is msb of digit */ |
|
3226 b_msd = DIGIT(b, USED(b) - 1); |
|
3227 while (!(b_msd & mask)) { |
|
3228 b_msd <<= 1; |
|
3229 ++d; |
|
3230 } |
|
3231 |
|
3232 if (d) { |
|
3233 MP_CHECKOK( s_mp_mul_2d(a, d) ); |
|
3234 MP_CHECKOK( s_mp_mul_2d(b, d) ); |
|
3235 } |
|
3236 |
|
3237 *pd = d; |
|
3238 CLEANUP: |
|
3239 return res; |
|
3240 |
|
3241 } /* end s_mp_norm() */ |
|
3242 |
|
3243 /* }}} */ |
|
3244 |
|
3245 /* }}} */ |
|
3246 |
|
3247 /* {{{ Primitive digit arithmetic */ |
|
3248 |
|
3249 /* {{{ s_mp_add_d(mp, d) */ |
|
3250 |
|
3251 /* Add d to |mp| in place */ |
|
3252 mp_err s_mp_add_d(mp_int *mp, mp_digit d) /* unsigned digit addition */ |
|
3253 { |
|
3254 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
|
3255 mp_word w, k = 0; |
|
3256 mp_size ix = 1; |
|
3257 |
|
3258 w = (mp_word)DIGIT(mp, 0) + d; |
|
3259 DIGIT(mp, 0) = ACCUM(w); |
|
3260 k = CARRYOUT(w); |
|
3261 |
|
3262 while(ix < USED(mp) && k) { |
|
3263 w = (mp_word)DIGIT(mp, ix) + k; |
|
3264 DIGIT(mp, ix) = ACCUM(w); |
|
3265 k = CARRYOUT(w); |
|
3266 ++ix; |
|
3267 } |
|
3268 |
|
3269 if(k != 0) { |
|
3270 mp_err res; |
|
3271 |
|
3272 if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY) |
|
3273 return res; |
|
3274 |
|
3275 DIGIT(mp, ix) = (mp_digit)k; |
|
3276 } |
|
3277 |
|
3278 return MP_OKAY; |
|
3279 #else |
|
3280 mp_digit * pmp = MP_DIGITS(mp); |
|
3281 mp_digit sum, mp_i, carry = 0; |
|
3282 mp_err res = MP_OKAY; |
|
3283 int used = (int)MP_USED(mp); |
|
3284 |
|
3285 mp_i = *pmp; |
|
3286 *pmp++ = sum = d + mp_i; |
|
3287 carry = (sum < d); |
|
3288 while (carry && --used > 0) { |
|
3289 mp_i = *pmp; |
|
3290 *pmp++ = sum = carry + mp_i; |
|
3291 carry = !sum; |
|
3292 } |
|
3293 if (carry && !used) { |
|
3294 /* mp is growing */ |
|
3295 used = MP_USED(mp); |
|
3296 MP_CHECKOK( s_mp_pad(mp, used + 1) ); |
|
3297 MP_DIGIT(mp, used) = carry; |
|
3298 } |
|
3299 CLEANUP: |
|
3300 return res; |
|
3301 #endif |
|
3302 } /* end s_mp_add_d() */ |
|
3303 |
|
3304 /* }}} */ |
|
3305 |
|
3306 /* {{{ s_mp_sub_d(mp, d) */ |
|
3307 |
|
3308 /* Subtract d from |mp| in place, assumes |mp| > d */ |
|
3309 mp_err s_mp_sub_d(mp_int *mp, mp_digit d) /* unsigned digit subtract */ |
|
3310 { |
|
3311 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
|
3312 mp_word w, b = 0; |
|
3313 mp_size ix = 1; |
|
3314 |
|
3315 /* Compute initial subtraction */ |
|
3316 w = (RADIX + (mp_word)DIGIT(mp, 0)) - d; |
|
3317 b = CARRYOUT(w) ? 0 : 1; |
|
3318 DIGIT(mp, 0) = ACCUM(w); |
|
3319 |
|
3320 /* Propagate borrows leftward */ |
|
3321 while(b && ix < USED(mp)) { |
|
3322 w = (RADIX + (mp_word)DIGIT(mp, ix)) - b; |
|
3323 b = CARRYOUT(w) ? 0 : 1; |
|
3324 DIGIT(mp, ix) = ACCUM(w); |
|
3325 ++ix; |
|
3326 } |
|
3327 |
|
3328 /* Remove leading zeroes */ |
|
3329 s_mp_clamp(mp); |
|
3330 |
|
3331 /* If we have a borrow out, it's a violation of the input invariant */ |
|
3332 if(b) |
|
3333 return MP_RANGE; |
|
3334 else |
|
3335 return MP_OKAY; |
|
3336 #else |
|
3337 mp_digit *pmp = MP_DIGITS(mp); |
|
3338 mp_digit mp_i, diff, borrow; |
|
3339 mp_size used = MP_USED(mp); |
|
3340 |
|
3341 mp_i = *pmp; |
|
3342 *pmp++ = diff = mp_i - d; |
|
3343 borrow = (diff > mp_i); |
|
3344 while (borrow && --used) { |
|
3345 mp_i = *pmp; |
|
3346 *pmp++ = diff = mp_i - borrow; |
|
3347 borrow = (diff > mp_i); |
|
3348 } |
|
3349 s_mp_clamp(mp); |
|
3350 return (borrow && !used) ? MP_RANGE : MP_OKAY; |
|
3351 #endif |
|
3352 } /* end s_mp_sub_d() */ |
|
3353 |
|
3354 /* }}} */ |
|
3355 |
|
3356 /* {{{ s_mp_mul_d(a, d) */ |
|
3357 |
|
3358 /* Compute a = a * d, single digit multiplication */ |
|
3359 mp_err s_mp_mul_d(mp_int *a, mp_digit d) |
|
3360 { |
|
3361 mp_err res; |
|
3362 mp_size used; |
|
3363 int pow; |
|
3364 |
|
3365 if (!d) { |
|
3366 mp_zero(a); |
|
3367 return MP_OKAY; |
|
3368 } |
|
3369 if (d == 1) |
|
3370 return MP_OKAY; |
|
3371 if (0 <= (pow = s_mp_ispow2d(d))) { |
|
3372 return s_mp_mul_2d(a, (mp_digit)pow); |
|
3373 } |
|
3374 |
|
3375 used = MP_USED(a); |
|
3376 MP_CHECKOK( s_mp_pad(a, used + 1) ); |
|
3377 |
|
3378 s_mpv_mul_d(MP_DIGITS(a), used, d, MP_DIGITS(a)); |
|
3379 |
|
3380 s_mp_clamp(a); |
|
3381 |
|
3382 CLEANUP: |
|
3383 return res; |
|
3384 |
|
3385 } /* end s_mp_mul_d() */ |
|
3386 |
|
3387 /* }}} */ |
|
3388 |
|
3389 /* {{{ s_mp_div_d(mp, d, r) */ |
|
3390 |
|
3391 /* |
|
3392 s_mp_div_d(mp, d, r) |
|
3393 |
|
3394 Compute the quotient mp = mp / d and remainder r = mp mod d, for a |
|
3395 single digit d. If r is null, the remainder will be discarded. |
|
3396 */ |
|
3397 |
|
3398 mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r) |
|
3399 { |
|
3400 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) |
|
3401 mp_word w = 0, q; |
|
3402 #else |
|
3403 mp_digit w, q; |
|
3404 #endif |
|
3405 int ix; |
|
3406 mp_err res; |
|
3407 mp_int quot; |
|
3408 mp_int rem; |
|
3409 |
|
3410 if(d == 0) |
|
3411 return MP_RANGE; |
|
3412 if (d == 1) { |
|
3413 if (r) |
|
3414 *r = 0; |
|
3415 return MP_OKAY; |
|
3416 } |
|
3417 /* could check for power of 2 here, but mp_div_d does that. */ |
|
3418 if (MP_USED(mp) == 1) { |
|
3419 mp_digit n = MP_DIGIT(mp,0); |
|
3420 mp_digit rem; |
|
3421 |
|
3422 q = n / d; |
|
3423 rem = n % d; |
|
3424 MP_DIGIT(mp,0) = q; |
|
3425 if (r) |
|
3426 *r = rem; |
|
3427 return MP_OKAY; |
|
3428 } |
|
3429 |
|
3430 MP_DIGITS(&rem) = 0; |
|
3431 MP_DIGITS(") = 0; |
|
3432 /* Make room for the quotient */ |
|
3433 MP_CHECKOK( mp_init_size(", USED(mp), FLAG(mp)) ); |
|
3434 |
|
3435 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) |
|
3436 for(ix = USED(mp) - 1; ix >= 0; ix--) { |
|
3437 w = (w << DIGIT_BIT) | DIGIT(mp, ix); |
|
3438 |
|
3439 if(w >= d) { |
|
3440 q = w / d; |
|
3441 w = w % d; |
|
3442 } else { |
|
3443 q = 0; |
|
3444 } |
|
3445 |
|
3446 s_mp_lshd(", 1); |
|
3447 DIGIT(", 0) = (mp_digit)q; |
|
3448 } |
|
3449 #else |
|
3450 { |
|
3451 mp_digit p; |
|
3452 #if !defined(MP_ASSEMBLY_DIV_2DX1D) |
|
3453 mp_digit norm; |
|
3454 #endif |
|
3455 |
|
3456 MP_CHECKOK( mp_init_copy(&rem, mp) ); |
|
3457 |
|
3458 #if !defined(MP_ASSEMBLY_DIV_2DX1D) |
|
3459 MP_DIGIT(", 0) = d; |
|
3460 MP_CHECKOK( s_mp_norm(&rem, ", &norm) ); |
|
3461 if (norm) |
|
3462 d <<= norm; |
|
3463 MP_DIGIT(", 0) = 0; |
|
3464 #endif |
|
3465 |
|
3466 p = 0; |
|
3467 for (ix = USED(&rem) - 1; ix >= 0; ix--) { |
|
3468 w = DIGIT(&rem, ix); |
|
3469 |
|
3470 if (p) { |
|
3471 MP_CHECKOK( s_mpv_div_2dx1d(p, w, d, &q, &w) ); |
|
3472 } else if (w >= d) { |
|
3473 q = w / d; |
|
3474 w = w % d; |
|
3475 } else { |
|
3476 q = 0; |
|
3477 } |
|
3478 |
|
3479 MP_CHECKOK( s_mp_lshd(", 1) ); |
|
3480 DIGIT(", 0) = q; |
|
3481 p = w; |
|
3482 } |
|
3483 #if !defined(MP_ASSEMBLY_DIV_2DX1D) |
|
3484 if (norm) |
|
3485 w >>= norm; |
|
3486 #endif |
|
3487 } |
|
3488 #endif |
|
3489 |
|
3490 /* Deliver the remainder, if desired */ |
|
3491 if(r) |
|
3492 *r = (mp_digit)w; |
|
3493 |
|
3494 s_mp_clamp("); |
|
3495 mp_exch(", mp); |
|
3496 CLEANUP: |
|
3497 mp_clear("); |
|
3498 mp_clear(&rem); |
|
3499 |
|
3500 return res; |
|
3501 } /* end s_mp_div_d() */ |
|
3502 |
|
3503 /* }}} */ |
|
3504 |
|
3505 |
|
3506 /* }}} */ |
|
3507 |
|
3508 /* {{{ Primitive full arithmetic */ |
|
3509 |
|
3510 /* {{{ s_mp_add(a, b) */ |
|
3511 |
|
3512 /* Compute a = |a| + |b| */ |
|
3513 mp_err s_mp_add(mp_int *a, const mp_int *b) /* magnitude addition */ |
|
3514 { |
|
3515 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
|
3516 mp_word w = 0; |
|
3517 #else |
|
3518 mp_digit d, sum, carry = 0; |
|
3519 #endif |
|
3520 mp_digit *pa, *pb; |
|
3521 mp_size ix; |
|
3522 mp_size used; |
|
3523 mp_err res; |
|
3524 |
|
3525 /* Make sure a has enough precision for the output value */ |
|
3526 if((USED(b) > USED(a)) && (res = s_mp_pad(a, USED(b))) != MP_OKAY) |
|
3527 return res; |
|
3528 |
|
3529 /* |
|
3530 Add up all digits up to the precision of b. If b had initially |
|
3531 the same precision as a, or greater, we took care of it by the |
|
3532 padding step above, so there is no problem. If b had initially |
|
3533 less precision, we'll have to make sure the carry out is duly |
|
3534 propagated upward among the higher-order digits of the sum. |
|
3535 */ |
|
3536 pa = MP_DIGITS(a); |
|
3537 pb = MP_DIGITS(b); |
|
3538 used = MP_USED(b); |
|
3539 for(ix = 0; ix < used; ix++) { |
|
3540 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
|
3541 w = w + *pa + *pb++; |
|
3542 *pa++ = ACCUM(w); |
|
3543 w = CARRYOUT(w); |
|
3544 #else |
|
3545 d = *pa; |
|
3546 sum = d + *pb++; |
|
3547 d = (sum < d); /* detect overflow */ |
|
3548 *pa++ = sum += carry; |
|
3549 carry = d + (sum < carry); /* detect overflow */ |
|
3550 #endif |
|
3551 } |
|
3552 |
|
3553 /* If we run out of 'b' digits before we're actually done, make |
|
3554 sure the carries get propagated upward... |
|
3555 */ |
|
3556 used = MP_USED(a); |
|
3557 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
|
3558 while (w && ix < used) { |
|
3559 w = w + *pa; |
|
3560 *pa++ = ACCUM(w); |
|
3561 w = CARRYOUT(w); |
|
3562 ++ix; |
|
3563 } |
|
3564 #else |
|
3565 while (carry && ix < used) { |
|
3566 sum = carry + *pa; |
|
3567 *pa++ = sum; |
|
3568 carry = !sum; |
|
3569 ++ix; |
|
3570 } |
|
3571 #endif |
|
3572 |
|
3573 /* If there's an overall carry out, increase precision and include |
|
3574 it. We could have done this initially, but why touch the memory |
|
3575 allocator unless we're sure we have to? |
|
3576 */ |
|
3577 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
|
3578 if (w) { |
|
3579 if((res = s_mp_pad(a, used + 1)) != MP_OKAY) |
|
3580 return res; |
|
3581 |
|
3582 DIGIT(a, ix) = (mp_digit)w; |
|
3583 } |
|
3584 #else |
|
3585 if (carry) { |
|
3586 if((res = s_mp_pad(a, used + 1)) != MP_OKAY) |
|
3587 return res; |
|
3588 |
|
3589 DIGIT(a, used) = carry; |
|
3590 } |
|
3591 #endif |
|
3592 |
|
3593 return MP_OKAY; |
|
3594 } /* end s_mp_add() */ |
|
3595 |
|
3596 /* }}} */ |
|
3597 |
|
3598 /* Compute c = |a| + |b| */ /* magnitude addition */ |
|
3599 mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c) |
|
3600 { |
|
3601 mp_digit *pa, *pb, *pc; |
|
3602 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
|
3603 mp_word w = 0; |
|
3604 #else |
|
3605 mp_digit sum, carry = 0, d; |
|
3606 #endif |
|
3607 mp_size ix; |
|
3608 mp_size used; |
|
3609 mp_err res; |
|
3610 |
|
3611 MP_SIGN(c) = MP_SIGN(a); |
|
3612 if (MP_USED(a) < MP_USED(b)) { |
|
3613 const mp_int *xch = a; |
|
3614 a = b; |
|
3615 b = xch; |
|
3616 } |
|
3617 |
|
3618 /* Make sure a has enough precision for the output value */ |
|
3619 if (MP_OKAY != (res = s_mp_pad(c, MP_USED(a)))) |
|
3620 return res; |
|
3621 |
|
3622 /* |
|
3623 Add up all digits up to the precision of b. If b had initially |
|
3624 the same precision as a, or greater, we took care of it by the |
|
3625 exchange step above, so there is no problem. If b had initially |
|
3626 less precision, we'll have to make sure the carry out is duly |
|
3627 propagated upward among the higher-order digits of the sum. |
|
3628 */ |
|
3629 pa = MP_DIGITS(a); |
|
3630 pb = MP_DIGITS(b); |
|
3631 pc = MP_DIGITS(c); |
|
3632 used = MP_USED(b); |
|
3633 for (ix = 0; ix < used; ix++) { |
|
3634 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
|
3635 w = w + *pa++ + *pb++; |
|
3636 *pc++ = ACCUM(w); |
|
3637 w = CARRYOUT(w); |
|
3638 #else |
|
3639 d = *pa++; |
|
3640 sum = d + *pb++; |
|
3641 d = (sum < d); /* detect overflow */ |
|
3642 *pc++ = sum += carry; |
|
3643 carry = d + (sum < carry); /* detect overflow */ |
|
3644 #endif |
|
3645 } |
|
3646 |
|
3647 /* If we run out of 'b' digits before we're actually done, make |
|
3648 sure the carries get propagated upward... |
|
3649 */ |
|
3650 for (used = MP_USED(a); ix < used; ++ix) { |
|
3651 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
|
3652 w = w + *pa++; |
|
3653 *pc++ = ACCUM(w); |
|
3654 w = CARRYOUT(w); |
|
3655 #else |
|
3656 *pc++ = sum = carry + *pa++; |
|
3657 carry = (sum < carry); |
|
3658 #endif |
|
3659 } |
|
3660 |
|
3661 /* If there's an overall carry out, increase precision and include |
|
3662 it. We could have done this initially, but why touch the memory |
|
3663 allocator unless we're sure we have to? |
|
3664 */ |
|
3665 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
|
3666 if (w) { |
|
3667 if((res = s_mp_pad(c, used + 1)) != MP_OKAY) |
|
3668 return res; |
|
3669 |
|
3670 DIGIT(c, used) = (mp_digit)w; |
|
3671 ++used; |
|
3672 } |
|
3673 #else |
|
3674 if (carry) { |
|
3675 if((res = s_mp_pad(c, used + 1)) != MP_OKAY) |
|
3676 return res; |
|
3677 |
|
3678 DIGIT(c, used) = carry; |
|
3679 ++used; |
|
3680 } |
|
3681 #endif |
|
3682 MP_USED(c) = used; |
|
3683 return MP_OKAY; |
|
3684 } |
|
3685 /* {{{ s_mp_add_offset(a, b, offset) */ |
|
3686 |
|
3687 /* Compute a = |a| + ( |b| * (RADIX ** offset) ) */ |
|
3688 mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset) |
|
3689 { |
|
3690 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
|
3691 mp_word w, k = 0; |
|
3692 #else |
|
3693 mp_digit d, sum, carry = 0; |
|
3694 #endif |
|
3695 mp_size ib; |
|
3696 mp_size ia; |
|
3697 mp_size lim; |
|
3698 mp_err res; |
|
3699 |
|
3700 /* Make sure a has enough precision for the output value */ |
|
3701 lim = MP_USED(b) + offset; |
|
3702 if((lim > USED(a)) && (res = s_mp_pad(a, lim)) != MP_OKAY) |
|
3703 return res; |
|
3704 |
|
3705 /* |
|
3706 Add up all digits up to the precision of b. If b had initially |
|
3707 the same precision as a, or greater, we took care of it by the |
|
3708 padding step above, so there is no problem. If b had initially |
|
3709 less precision, we'll have to make sure the carry out is duly |
|
3710 propagated upward among the higher-order digits of the sum. |
|
3711 */ |
|
3712 lim = USED(b); |
|
3713 for(ib = 0, ia = offset; ib < lim; ib++, ia++) { |
|
3714 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
|
3715 w = (mp_word)DIGIT(a, ia) + DIGIT(b, ib) + k; |
|
3716 DIGIT(a, ia) = ACCUM(w); |
|
3717 k = CARRYOUT(w); |
|
3718 #else |
|
3719 d = MP_DIGIT(a, ia); |
|
3720 sum = d + MP_DIGIT(b, ib); |
|
3721 d = (sum < d); |
|
3722 MP_DIGIT(a,ia) = sum += carry; |
|
3723 carry = d + (sum < carry); |
|
3724 #endif |
|
3725 } |
|
3726 |
|
3727 /* If we run out of 'b' digits before we're actually done, make |
|
3728 sure the carries get propagated upward... |
|
3729 */ |
|
3730 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
|
3731 for (lim = MP_USED(a); k && (ia < lim); ++ia) { |
|
3732 w = (mp_word)DIGIT(a, ia) + k; |
|
3733 DIGIT(a, ia) = ACCUM(w); |
|
3734 k = CARRYOUT(w); |
|
3735 } |
|
3736 #else |
|
3737 for (lim = MP_USED(a); carry && (ia < lim); ++ia) { |
|
3738 d = MP_DIGIT(a, ia); |
|
3739 MP_DIGIT(a,ia) = sum = d + carry; |
|
3740 carry = (sum < d); |
|
3741 } |
|
3742 #endif |
|
3743 |
|
3744 /* If there's an overall carry out, increase precision and include |
|
3745 it. We could have done this initially, but why touch the memory |
|
3746 allocator unless we're sure we have to? |
|
3747 */ |
|
3748 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD) |
|
3749 if(k) { |
|
3750 if((res = s_mp_pad(a, USED(a) + 1)) != MP_OKAY) |
|
3751 return res; |
|
3752 |
|
3753 DIGIT(a, ia) = (mp_digit)k; |
|
3754 } |
|
3755 #else |
|
3756 if (carry) { |
|
3757 if((res = s_mp_pad(a, lim + 1)) != MP_OKAY) |
|
3758 return res; |
|
3759 |
|
3760 DIGIT(a, lim) = carry; |
|
3761 } |
|
3762 #endif |
|
3763 s_mp_clamp(a); |
|
3764 |
|
3765 return MP_OKAY; |
|
3766 |
|
3767 } /* end s_mp_add_offset() */ |
|
3768 |
|
3769 /* }}} */ |
|
3770 |
|
3771 /* {{{ s_mp_sub(a, b) */ |
|
3772 |
|
3773 /* Compute a = |a| - |b|, assumes |a| >= |b| */ |
|
3774 mp_err s_mp_sub(mp_int *a, const mp_int *b) /* magnitude subtract */ |
|
3775 { |
|
3776 mp_digit *pa, *pb, *limit; |
|
3777 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
|
3778 mp_sword w = 0; |
|
3779 #else |
|
3780 mp_digit d, diff, borrow = 0; |
|
3781 #endif |
|
3782 |
|
3783 /* |
|
3784 Subtract and propagate borrow. Up to the precision of b, this |
|
3785 accounts for the digits of b; after that, we just make sure the |
|
3786 carries get to the right place. This saves having to pad b out to |
|
3787 the precision of a just to make the loops work right... |
|
3788 */ |
|
3789 pa = MP_DIGITS(a); |
|
3790 pb = MP_DIGITS(b); |
|
3791 limit = pb + MP_USED(b); |
|
3792 while (pb < limit) { |
|
3793 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
|
3794 w = w + *pa - *pb++; |
|
3795 *pa++ = ACCUM(w); |
|
3796 w >>= MP_DIGIT_BIT; |
|
3797 #else |
|
3798 d = *pa; |
|
3799 diff = d - *pb++; |
|
3800 d = (diff > d); /* detect borrow */ |
|
3801 if (borrow && --diff == MP_DIGIT_MAX) |
|
3802 ++d; |
|
3803 *pa++ = diff; |
|
3804 borrow = d; |
|
3805 #endif |
|
3806 } |
|
3807 limit = MP_DIGITS(a) + MP_USED(a); |
|
3808 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
|
3809 while (w && pa < limit) { |
|
3810 w = w + *pa; |
|
3811 *pa++ = ACCUM(w); |
|
3812 w >>= MP_DIGIT_BIT; |
|
3813 } |
|
3814 #else |
|
3815 while (borrow && pa < limit) { |
|
3816 d = *pa; |
|
3817 *pa++ = diff = d - borrow; |
|
3818 borrow = (diff > d); |
|
3819 } |
|
3820 #endif |
|
3821 |
|
3822 /* Clobber any leading zeroes we created */ |
|
3823 s_mp_clamp(a); |
|
3824 |
|
3825 /* |
|
3826 If there was a borrow out, then |b| > |a| in violation |
|
3827 of our input invariant. We've already done the work, |
|
3828 but we'll at least complain about it... |
|
3829 */ |
|
3830 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
|
3831 return w ? MP_RANGE : MP_OKAY; |
|
3832 #else |
|
3833 return borrow ? MP_RANGE : MP_OKAY; |
|
3834 #endif |
|
3835 } /* end s_mp_sub() */ |
|
3836 |
|
3837 /* }}} */ |
|
3838 |
|
3839 /* Compute c = |a| - |b|, assumes |a| >= |b| */ /* magnitude subtract */ |
|
3840 mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c) |
|
3841 { |
|
3842 mp_digit *pa, *pb, *pc; |
|
3843 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
|
3844 mp_sword w = 0; |
|
3845 #else |
|
3846 mp_digit d, diff, borrow = 0; |
|
3847 #endif |
|
3848 int ix, limit; |
|
3849 mp_err res; |
|
3850 |
|
3851 MP_SIGN(c) = MP_SIGN(a); |
|
3852 |
|
3853 /* Make sure a has enough precision for the output value */ |
|
3854 if (MP_OKAY != (res = s_mp_pad(c, MP_USED(a)))) |
|
3855 return res; |
|
3856 |
|
3857 /* |
|
3858 Subtract and propagate borrow. Up to the precision of b, this |
|
3859 accounts for the digits of b; after that, we just make sure the |
|
3860 carries get to the right place. This saves having to pad b out to |
|
3861 the precision of a just to make the loops work right... |
|
3862 */ |
|
3863 pa = MP_DIGITS(a); |
|
3864 pb = MP_DIGITS(b); |
|
3865 pc = MP_DIGITS(c); |
|
3866 limit = MP_USED(b); |
|
3867 for (ix = 0; ix < limit; ++ix) { |
|
3868 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
|
3869 w = w + *pa++ - *pb++; |
|
3870 *pc++ = ACCUM(w); |
|
3871 w >>= MP_DIGIT_BIT; |
|
3872 #else |
|
3873 d = *pa++; |
|
3874 diff = d - *pb++; |
|
3875 d = (diff > d); |
|
3876 if (borrow && --diff == MP_DIGIT_MAX) |
|
3877 ++d; |
|
3878 *pc++ = diff; |
|
3879 borrow = d; |
|
3880 #endif |
|
3881 } |
|
3882 for (limit = MP_USED(a); ix < limit; ++ix) { |
|
3883 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
|
3884 w = w + *pa++; |
|
3885 *pc++ = ACCUM(w); |
|
3886 w >>= MP_DIGIT_BIT; |
|
3887 #else |
|
3888 d = *pa++; |
|
3889 *pc++ = diff = d - borrow; |
|
3890 borrow = (diff > d); |
|
3891 #endif |
|
3892 } |
|
3893 |
|
3894 /* Clobber any leading zeroes we created */ |
|
3895 MP_USED(c) = ix; |
|
3896 s_mp_clamp(c); |
|
3897 |
|
3898 /* |
|
3899 If there was a borrow out, then |b| > |a| in violation |
|
3900 of our input invariant. We've already done the work, |
|
3901 but we'll at least complain about it... |
|
3902 */ |
|
3903 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD) |
|
3904 return w ? MP_RANGE : MP_OKAY; |
|
3905 #else |
|
3906 return borrow ? MP_RANGE : MP_OKAY; |
|
3907 #endif |
|
3908 } |
|
3909 /* {{{ s_mp_mul(a, b) */ |
|
3910 |
|
3911 /* Compute a = |a| * |b| */ |
|
3912 mp_err s_mp_mul(mp_int *a, const mp_int *b) |
|
3913 { |
|
3914 return mp_mul(a, b, a); |
|
3915 } /* end s_mp_mul() */ |
|
3916 |
|
3917 /* }}} */ |
|
3918 |
|
3919 #if defined(MP_USE_UINT_DIGIT) && defined(MP_USE_LONG_LONG_MULTIPLY) |
|
3920 /* This trick works on Sparc V8 CPUs with the Workshop compilers. */ |
|
3921 #define MP_MUL_DxD(a, b, Phi, Plo) \ |
|
3922 { unsigned long long product = (unsigned long long)a * b; \ |
|
3923 Plo = (mp_digit)product; \ |
|
3924 Phi = (mp_digit)(product >> MP_DIGIT_BIT); } |
|
3925 #elif defined(OSF1) |
|
3926 #define MP_MUL_DxD(a, b, Phi, Plo) \ |
|
3927 { Plo = asm ("mulq %a0, %a1, %v0", a, b);\ |
|
3928 Phi = asm ("umulh %a0, %a1, %v0", a, b); } |
|
3929 #else |
|
3930 #define MP_MUL_DxD(a, b, Phi, Plo) \ |
|
3931 { mp_digit a0b1, a1b0; \ |
|
3932 Plo = (a & MP_HALF_DIGIT_MAX) * (b & MP_HALF_DIGIT_MAX); \ |
|
3933 Phi = (a >> MP_HALF_DIGIT_BIT) * (b >> MP_HALF_DIGIT_BIT); \ |
|
3934 a0b1 = (a & MP_HALF_DIGIT_MAX) * (b >> MP_HALF_DIGIT_BIT); \ |
|
3935 a1b0 = (a >> MP_HALF_DIGIT_BIT) * (b & MP_HALF_DIGIT_MAX); \ |
|
3936 a1b0 += a0b1; \ |
|
3937 Phi += a1b0 >> MP_HALF_DIGIT_BIT; \ |
|
3938 if (a1b0 < a0b1) \ |
|
3939 Phi += MP_HALF_RADIX; \ |
|
3940 a1b0 <<= MP_HALF_DIGIT_BIT; \ |
|
3941 Plo += a1b0; \ |
|
3942 if (Plo < a1b0) \ |
|
3943 ++Phi; \ |
|
3944 } |
|
3945 #endif |
|
3946 |
|
3947 #if !defined(MP_ASSEMBLY_MULTIPLY) |
|
3948 /* c = a * b */ |
|
3949 void s_mpv_mul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c) |
|
3950 { |
|
3951 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) |
|
3952 mp_digit d = 0; |
|
3953 |
|
3954 /* Inner product: Digits of a */ |
|
3955 while (a_len--) { |
|
3956 mp_word w = ((mp_word)b * *a++) + d; |
|
3957 *c++ = ACCUM(w); |
|
3958 d = CARRYOUT(w); |
|
3959 } |
|
3960 *c = d; |
|
3961 #else |
|
3962 mp_digit carry = 0; |
|
3963 while (a_len--) { |
|
3964 mp_digit a_i = *a++; |
|
3965 mp_digit a0b0, a1b1; |
|
3966 |
|
3967 MP_MUL_DxD(a_i, b, a1b1, a0b0); |
|
3968 |
|
3969 a0b0 += carry; |
|
3970 if (a0b0 < carry) |
|
3971 ++a1b1; |
|
3972 *c++ = a0b0; |
|
3973 carry = a1b1; |
|
3974 } |
|
3975 *c = carry; |
|
3976 #endif |
|
3977 } |
|
3978 |
|
3979 /* c += a * b */ |
|
3980 void s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, |
|
3981 mp_digit *c) |
|
3982 { |
|
3983 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) |
|
3984 mp_digit d = 0; |
|
3985 |
|
3986 /* Inner product: Digits of a */ |
|
3987 while (a_len--) { |
|
3988 mp_word w = ((mp_word)b * *a++) + *c + d; |
|
3989 *c++ = ACCUM(w); |
|
3990 d = CARRYOUT(w); |
|
3991 } |
|
3992 *c = d; |
|
3993 #else |
|
3994 mp_digit carry = 0; |
|
3995 while (a_len--) { |
|
3996 mp_digit a_i = *a++; |
|
3997 mp_digit a0b0, a1b1; |
|
3998 |
|
3999 MP_MUL_DxD(a_i, b, a1b1, a0b0); |
|
4000 |
|
4001 a0b0 += carry; |
|
4002 if (a0b0 < carry) |
|
4003 ++a1b1; |
|
4004 a0b0 += a_i = *c; |
|
4005 if (a0b0 < a_i) |
|
4006 ++a1b1; |
|
4007 *c++ = a0b0; |
|
4008 carry = a1b1; |
|
4009 } |
|
4010 *c = carry; |
|
4011 #endif |
|
4012 } |
|
4013 |
|
4014 /* Presently, this is only used by the Montgomery arithmetic code. */ |
|
4015 /* c += a * b */ |
|
4016 void s_mpv_mul_d_add_prop(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c) |
|
4017 { |
|
4018 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) |
|
4019 mp_digit d = 0; |
|
4020 |
|
4021 /* Inner product: Digits of a */ |
|
4022 while (a_len--) { |
|
4023 mp_word w = ((mp_word)b * *a++) + *c + d; |
|
4024 *c++ = ACCUM(w); |
|
4025 d = CARRYOUT(w); |
|
4026 } |
|
4027 |
|
4028 while (d) { |
|
4029 mp_word w = (mp_word)*c + d; |
|
4030 *c++ = ACCUM(w); |
|
4031 d = CARRYOUT(w); |
|
4032 } |
|
4033 #else |
|
4034 mp_digit carry = 0; |
|
4035 while (a_len--) { |
|
4036 mp_digit a_i = *a++; |
|
4037 mp_digit a0b0, a1b1; |
|
4038 |
|
4039 MP_MUL_DxD(a_i, b, a1b1, a0b0); |
|
4040 |
|
4041 a0b0 += carry; |
|
4042 if (a0b0 < carry) |
|
4043 ++a1b1; |
|
4044 |
|
4045 a0b0 += a_i = *c; |
|
4046 if (a0b0 < a_i) |
|
4047 ++a1b1; |
|
4048 |
|
4049 *c++ = a0b0; |
|
4050 carry = a1b1; |
|
4051 } |
|
4052 while (carry) { |
|
4053 mp_digit c_i = *c; |
|
4054 carry += c_i; |
|
4055 *c++ = carry; |
|
4056 carry = carry < c_i; |
|
4057 } |
|
4058 #endif |
|
4059 } |
|
4060 #endif |
|
4061 |
|
4062 #if defined(MP_USE_UINT_DIGIT) && defined(MP_USE_LONG_LONG_MULTIPLY) |
|
4063 /* This trick works on Sparc V8 CPUs with the Workshop compilers. */ |
|
4064 #define MP_SQR_D(a, Phi, Plo) \ |
|
4065 { unsigned long long square = (unsigned long long)a * a; \ |
|
4066 Plo = (mp_digit)square; \ |
|
4067 Phi = (mp_digit)(square >> MP_DIGIT_BIT); } |
|
4068 #elif defined(OSF1) |
|
4069 #define MP_SQR_D(a, Phi, Plo) \ |
|
4070 { Plo = asm ("mulq %a0, %a0, %v0", a);\ |
|
4071 Phi = asm ("umulh %a0, %a0, %v0", a); } |
|
4072 #else |
|
4073 #define MP_SQR_D(a, Phi, Plo) \ |
|
4074 { mp_digit Pmid; \ |
|
4075 Plo = (a & MP_HALF_DIGIT_MAX) * (a & MP_HALF_DIGIT_MAX); \ |
|
4076 Phi = (a >> MP_HALF_DIGIT_BIT) * (a >> MP_HALF_DIGIT_BIT); \ |
|
4077 Pmid = (a & MP_HALF_DIGIT_MAX) * (a >> MP_HALF_DIGIT_BIT); \ |
|
4078 Phi += Pmid >> (MP_HALF_DIGIT_BIT - 1); \ |
|
4079 Pmid <<= (MP_HALF_DIGIT_BIT + 1); \ |
|
4080 Plo += Pmid; \ |
|
4081 if (Plo < Pmid) \ |
|
4082 ++Phi; \ |
|
4083 } |
|
4084 #endif |
|
4085 |
|
4086 #if !defined(MP_ASSEMBLY_SQUARE) |
|
4087 /* Add the squares of the digits of a to the digits of b. */ |
|
4088 void s_mpv_sqr_add_prop(const mp_digit *pa, mp_size a_len, mp_digit *ps) |
|
4089 { |
|
4090 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD) |
|
4091 mp_word w; |
|
4092 mp_digit d; |
|
4093 mp_size ix; |
|
4094 |
|
4095 w = 0; |
|
4096 #define ADD_SQUARE(n) \ |
|
4097 d = pa[n]; \ |
|
4098 w += (d * (mp_word)d) + ps[2*n]; \ |
|
4099 ps[2*n] = ACCUM(w); \ |
|
4100 w = (w >> DIGIT_BIT) + ps[2*n+1]; \ |
|
4101 ps[2*n+1] = ACCUM(w); \ |
|
4102 w = (w >> DIGIT_BIT) |
|
4103 |
|
4104 for (ix = a_len; ix >= 4; ix -= 4) { |
|
4105 ADD_SQUARE(0); |
|
4106 ADD_SQUARE(1); |
|
4107 ADD_SQUARE(2); |
|
4108 ADD_SQUARE(3); |
|
4109 pa += 4; |
|
4110 ps += 8; |
|
4111 } |
|
4112 if (ix) { |
|
4113 ps += 2*ix; |
|
4114 pa += ix; |
|
4115 switch (ix) { |
|
4116 case 3: ADD_SQUARE(-3); /* FALLTHRU */ |
|
4117 case 2: ADD_SQUARE(-2); /* FALLTHRU */ |
|
4118 case 1: ADD_SQUARE(-1); /* FALLTHRU */ |
|
4119 case 0: break; |
|
4120 } |
|
4121 } |
|
4122 while (w) { |
|
4123 w += *ps; |
|
4124 *ps++ = ACCUM(w); |
|
4125 w = (w >> DIGIT_BIT); |
|
4126 } |
|
4127 #else |
|
4128 mp_digit carry = 0; |
|
4129 while (a_len--) { |
|
4130 mp_digit a_i = *pa++; |
|
4131 mp_digit a0a0, a1a1; |
|
4132 |
|
4133 MP_SQR_D(a_i, a1a1, a0a0); |
|
4134 |
|
4135 /* here a1a1 and a0a0 constitute a_i ** 2 */ |
|
4136 a0a0 += carry; |
|
4137 if (a0a0 < carry) |
|
4138 ++a1a1; |
|
4139 |
|
4140 /* now add to ps */ |
|
4141 a0a0 += a_i = *ps; |
|
4142 if (a0a0 < a_i) |
|
4143 ++a1a1; |
|
4144 *ps++ = a0a0; |
|
4145 a1a1 += a_i = *ps; |
|
4146 carry = (a1a1 < a_i); |
|
4147 *ps++ = a1a1; |
|
4148 } |
|
4149 while (carry) { |
|
4150 mp_digit s_i = *ps; |
|
4151 carry += s_i; |
|
4152 *ps++ = carry; |
|
4153 carry = carry < s_i; |
|
4154 } |
|
4155 #endif |
|
4156 } |
|
4157 #endif |
|
4158 |
|
4159 #if (defined(MP_NO_MP_WORD) || defined(MP_NO_DIV_WORD)) \ |
|
4160 && !defined(MP_ASSEMBLY_DIV_2DX1D) |
|
4161 /* |
|
4162 ** Divide 64-bit (Nhi,Nlo) by 32-bit divisor, which must be normalized |
|
4163 ** so its high bit is 1. This code is from NSPR. |
|
4164 */ |
|
4165 mp_err s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, mp_digit divisor, |
|
4166 mp_digit *qp, mp_digit *rp) |
|
4167 { |
|
4168 mp_digit d1, d0, q1, q0; |
|
4169 mp_digit r1, r0, m; |
|
4170 |
|
4171 d1 = divisor >> MP_HALF_DIGIT_BIT; |
|
4172 d0 = divisor & MP_HALF_DIGIT_MAX; |
|
4173 r1 = Nhi % d1; |
|
4174 q1 = Nhi / d1; |
|
4175 m = q1 * d0; |
|
4176 r1 = (r1 << MP_HALF_DIGIT_BIT) | (Nlo >> MP_HALF_DIGIT_BIT); |
|
4177 if (r1 < m) { |
|
4178 q1--, r1 += divisor; |
|
4179 if (r1 >= divisor && r1 < m) { |
|
4180 q1--, r1 += divisor; |
|
4181 } |
|
4182 } |
|
4183 r1 -= m; |
|
4184 r0 = r1 % d1; |
|
4185 q0 = r1 / d1; |
|
4186 m = q0 * d0; |
|
4187 r0 = (r0 << MP_HALF_DIGIT_BIT) | (Nlo & MP_HALF_DIGIT_MAX); |
|
4188 if (r0 < m) { |
|
4189 q0--, r0 += divisor; |
|
4190 if (r0 >= divisor && r0 < m) { |
|
4191 q0--, r0 += divisor; |
|
4192 } |
|
4193 } |
|
4194 if (qp) |
|
4195 *qp = (q1 << MP_HALF_DIGIT_BIT) | q0; |
|
4196 if (rp) |
|
4197 *rp = r0 - m; |
|
4198 return MP_OKAY; |
|
4199 } |
|
4200 #endif |
|
4201 |
|
4202 #if MP_SQUARE |
|
4203 /* {{{ s_mp_sqr(a) */ |
|
4204 |
|
4205 mp_err s_mp_sqr(mp_int *a) |
|
4206 { |
|
4207 mp_err res; |
|
4208 mp_int tmp; |
|
4209 |
|
4210 if((res = mp_init_size(&tmp, 2 * USED(a), FLAG(a))) != MP_OKAY) |
|
4211 return res; |
|
4212 res = mp_sqr(a, &tmp); |
|
4213 if (res == MP_OKAY) { |
|
4214 s_mp_exch(&tmp, a); |
|
4215 } |
|
4216 mp_clear(&tmp); |
|
4217 return res; |
|
4218 } |
|
4219 |
|
4220 /* }}} */ |
|
4221 #endif |
|
4222 |
|
4223 /* {{{ s_mp_div(a, b) */ |
|
4224 |
|
4225 /* |
|
4226 s_mp_div(a, b) |
|
4227 |
|
4228 Compute a = a / b and b = a mod b. Assumes b > a. |
|
4229 */ |
|
4230 |
|
4231 mp_err s_mp_div(mp_int *rem, /* i: dividend, o: remainder */ |
|
4232 mp_int *div, /* i: divisor */ |
|
4233 mp_int *quot) /* i: 0; o: quotient */ |
|
4234 { |
|
4235 mp_int part, t; |
|
4236 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) |
|
4237 mp_word q_msd; |
|
4238 #else |
|
4239 mp_digit q_msd; |
|
4240 #endif |
|
4241 mp_err res; |
|
4242 mp_digit d; |
|
4243 mp_digit div_msd; |
|
4244 int ix; |
|
4245 |
|
4246 if(mp_cmp_z(div) == 0) |
|
4247 return MP_RANGE; |
|
4248 |
|
4249 /* Shortcut if divisor is power of two */ |
|
4250 if((ix = s_mp_ispow2(div)) >= 0) { |
|
4251 MP_CHECKOK( mp_copy(rem, quot) ); |
|
4252 s_mp_div_2d(quot, (mp_digit)ix); |
|
4253 s_mp_mod_2d(rem, (mp_digit)ix); |
|
4254 |
|
4255 return MP_OKAY; |
|
4256 } |
|
4257 |
|
4258 DIGITS(&t) = 0; |
|
4259 MP_SIGN(rem) = ZPOS; |
|
4260 MP_SIGN(div) = ZPOS; |
|
4261 |
|
4262 /* A working temporary for division */ |
|
4263 MP_CHECKOK( mp_init_size(&t, MP_ALLOC(rem), FLAG(rem))); |
|
4264 |
|
4265 /* Normalize to optimize guessing */ |
|
4266 MP_CHECKOK( s_mp_norm(rem, div, &d) ); |
|
4267 |
|
4268 part = *rem; |
|
4269 |
|
4270 /* Perform the division itself...woo! */ |
|
4271 MP_USED(quot) = MP_ALLOC(quot); |
|
4272 |
|
4273 /* Find a partial substring of rem which is at least div */ |
|
4274 /* If we didn't find one, we're finished dividing */ |
|
4275 while (MP_USED(rem) > MP_USED(div) || s_mp_cmp(rem, div) >= 0) { |
|
4276 int i; |
|
4277 int unusedRem; |
|
4278 |
|
4279 unusedRem = MP_USED(rem) - MP_USED(div); |
|
4280 MP_DIGITS(&part) = MP_DIGITS(rem) + unusedRem; |
|
4281 MP_ALLOC(&part) = MP_ALLOC(rem) - unusedRem; |
|
4282 MP_USED(&part) = MP_USED(div); |
|
4283 if (s_mp_cmp(&part, div) < 0) { |
|
4284 -- unusedRem; |
|
4285 #if MP_ARGCHK == 2 |
|
4286 assert(unusedRem >= 0); |
|
4287 #endif |
|
4288 -- MP_DIGITS(&part); |
|
4289 ++ MP_USED(&part); |
|
4290 ++ MP_ALLOC(&part); |
|
4291 } |
|
4292 |
|
4293 /* Compute a guess for the next quotient digit */ |
|
4294 q_msd = MP_DIGIT(&part, MP_USED(&part) - 1); |
|
4295 div_msd = MP_DIGIT(div, MP_USED(div) - 1); |
|
4296 if (q_msd >= div_msd) { |
|
4297 q_msd = 1; |
|
4298 } else if (MP_USED(&part) > 1) { |
|
4299 #if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD) |
|
4300 q_msd = (q_msd << MP_DIGIT_BIT) | MP_DIGIT(&part, MP_USED(&part) - 2); |
|
4301 q_msd /= div_msd; |
|
4302 if (q_msd == RADIX) |
|
4303 --q_msd; |
|
4304 #else |
|
4305 mp_digit r; |
|
4306 MP_CHECKOK( s_mpv_div_2dx1d(q_msd, MP_DIGIT(&part, MP_USED(&part) - 2), |
|
4307 div_msd, &q_msd, &r) ); |
|
4308 #endif |
|
4309 } else { |
|
4310 q_msd = 0; |
|
4311 } |
|
4312 #if MP_ARGCHK == 2 |
|
4313 assert(q_msd > 0); /* This case should never occur any more. */ |
|
4314 #endif |
|
4315 if (q_msd <= 0) |
|
4316 break; |
|
4317 |
|
4318 /* See what that multiplies out to */ |
|
4319 mp_copy(div, &t); |
|
4320 MP_CHECKOK( s_mp_mul_d(&t, (mp_digit)q_msd) ); |
|
4321 |
|
4322 /* |
|
4323 If it's too big, back it off. We should not have to do this |
|
4324 more than once, or, in rare cases, twice. Knuth describes a |
|
4325 method by which this could be reduced to a maximum of once, but |
|
4326 I didn't implement that here. |
|
4327 * When using s_mpv_div_2dx1d, we may have to do this 3 times. |
|
4328 */ |
|
4329 for (i = 4; s_mp_cmp(&t, &part) > 0 && i > 0; --i) { |
|
4330 --q_msd; |
|
4331 s_mp_sub(&t, div); /* t -= div */ |
|
4332 } |
|
4333 if (i < 0) { |
|
4334 res = MP_RANGE; |
|
4335 goto CLEANUP; |
|
4336 } |
|
4337 |
|
4338 /* At this point, q_msd should be the right next digit */ |
|
4339 MP_CHECKOK( s_mp_sub(&part, &t) ); /* part -= t */ |
|
4340 s_mp_clamp(rem); |
|
4341 |
|
4342 /* |
|
4343 Include the digit in the quotient. We allocated enough memory |
|
4344 for any quotient we could ever possibly get, so we should not |
|
4345 have to check for failures here |
|
4346 */ |
|
4347 MP_DIGIT(quot, unusedRem) = (mp_digit)q_msd; |
|
4348 } |
|
4349 |
|
4350 /* Denormalize remainder */ |
|
4351 if (d) { |
|
4352 s_mp_div_2d(rem, d); |
|
4353 } |
|
4354 |
|
4355 s_mp_clamp(quot); |
|
4356 |
|
4357 CLEANUP: |
|
4358 mp_clear(&t); |
|
4359 |
|
4360 return res; |
|
4361 |
|
4362 } /* end s_mp_div() */ |
|
4363 |
|
4364 |
|
4365 /* }}} */ |
|
4366 |
|
4367 /* {{{ s_mp_2expt(a, k) */ |
|
4368 |
|
4369 mp_err s_mp_2expt(mp_int *a, mp_digit k) |
|
4370 { |
|
4371 mp_err res; |
|
4372 mp_size dig, bit; |
|
4373 |
|
4374 dig = k / DIGIT_BIT; |
|
4375 bit = k % DIGIT_BIT; |
|
4376 |
|
4377 mp_zero(a); |
|
4378 if((res = s_mp_pad(a, dig + 1)) != MP_OKAY) |
|
4379 return res; |
|
4380 |
|
4381 DIGIT(a, dig) |= ((mp_digit)1 << bit); |
|
4382 |
|
4383 return MP_OKAY; |
|
4384 |
|
4385 } /* end s_mp_2expt() */ |
|
4386 |
|
4387 /* }}} */ |
|
4388 |
|
4389 /* {{{ s_mp_reduce(x, m, mu) */ |
|
4390 |
|
4391 /* |
|
4392 Compute Barrett reduction, x (mod m), given a precomputed value for |
|
4393 mu = b^2k / m, where b = RADIX and k = #digits(m). This should be |
|
4394 faster than straight division, when many reductions by the same |
|
4395 value of m are required (such as in modular exponentiation). This |
|
4396 can nearly halve the time required to do modular exponentiation, |
|
4397 as compared to using the full integer divide to reduce. |
|
4398 |
|
4399 This algorithm was derived from the _Handbook of Applied |
|
4400 Cryptography_ by Menezes, Oorschot and VanStone, Ch. 14, |
|
4401 pp. 603-604. |
|
4402 */ |
|
4403 |
|
4404 mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu) |
|
4405 { |
|
4406 mp_int q; |
|
4407 mp_err res; |
|
4408 |
|
4409 if((res = mp_init_copy(&q, x)) != MP_OKAY) |
|
4410 return res; |
|
4411 |
|
4412 s_mp_rshd(&q, USED(m) - 1); /* q1 = x / b^(k-1) */ |
|
4413 s_mp_mul(&q, mu); /* q2 = q1 * mu */ |
|
4414 s_mp_rshd(&q, USED(m) + 1); /* q3 = q2 / b^(k+1) */ |
|
4415 |
|
4416 /* x = x mod b^(k+1), quick (no division) */ |
|
4417 s_mp_mod_2d(x, DIGIT_BIT * (USED(m) + 1)); |
|
4418 |
|
4419 /* q = q * m mod b^(k+1), quick (no division) */ |
|
4420 s_mp_mul(&q, m); |
|
4421 s_mp_mod_2d(&q, DIGIT_BIT * (USED(m) + 1)); |
|
4422 |
|
4423 /* x = x - q */ |
|
4424 if((res = mp_sub(x, &q, x)) != MP_OKAY) |
|
4425 goto CLEANUP; |
|
4426 |
|
4427 /* If x < 0, add b^(k+1) to it */ |
|
4428 if(mp_cmp_z(x) < 0) { |
|
4429 mp_set(&q, 1); |
|
4430 if((res = s_mp_lshd(&q, USED(m) + 1)) != MP_OKAY) |
|
4431 goto CLEANUP; |
|
4432 if((res = mp_add(x, &q, x)) != MP_OKAY) |
|
4433 goto CLEANUP; |
|
4434 } |
|
4435 |
|
4436 /* Back off if it's too big */ |
|
4437 while(mp_cmp(x, m) >= 0) { |
|
4438 if((res = s_mp_sub(x, m)) != MP_OKAY) |
|
4439 break; |
|
4440 } |
|
4441 |
|
4442 CLEANUP: |
|
4443 mp_clear(&q); |
|
4444 |
|
4445 return res; |
|
4446 |
|
4447 } /* end s_mp_reduce() */ |
|
4448 |
|
4449 /* }}} */ |
|
4450 |
|
4451 /* }}} */ |
|
4452 |
|
4453 /* {{{ Primitive comparisons */ |
|
4454 |
|
4455 /* {{{ s_mp_cmp(a, b) */ |
|
4456 |
|
4457 /* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b */ |
|
4458 int s_mp_cmp(const mp_int *a, const mp_int *b) |
|
4459 { |
|
4460 mp_size used_a = MP_USED(a); |
|
4461 { |
|
4462 mp_size used_b = MP_USED(b); |
|
4463 |
|
4464 if (used_a > used_b) |
|
4465 goto IS_GT; |
|
4466 if (used_a < used_b) |
|
4467 goto IS_LT; |
|
4468 } |
|
4469 { |
|
4470 mp_digit *pa, *pb; |
|
4471 mp_digit da = 0, db = 0; |
|
4472 |
|
4473 #define CMP_AB(n) if ((da = pa[n]) != (db = pb[n])) goto done |
|
4474 |
|
4475 pa = MP_DIGITS(a) + used_a; |
|
4476 pb = MP_DIGITS(b) + used_a; |
|
4477 while (used_a >= 4) { |
|
4478 pa -= 4; |
|
4479 pb -= 4; |
|
4480 used_a -= 4; |
|
4481 CMP_AB(3); |
|
4482 CMP_AB(2); |
|
4483 CMP_AB(1); |
|
4484 CMP_AB(0); |
|
4485 } |
|
4486 while (used_a-- > 0 && ((da = *--pa) == (db = *--pb))) |
|
4487 /* do nothing */; |
|
4488 done: |
|
4489 if (da > db) |
|
4490 goto IS_GT; |
|
4491 if (da < db) |
|
4492 goto IS_LT; |
|
4493 } |
|
4494 return MP_EQ; |
|
4495 IS_LT: |
|
4496 return MP_LT; |
|
4497 IS_GT: |
|
4498 return MP_GT; |
|
4499 } /* end s_mp_cmp() */ |
|
4500 |
|
4501 /* }}} */ |
|
4502 |
|
4503 /* {{{ s_mp_cmp_d(a, d) */ |
|
4504 |
|
4505 /* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d */ |
|
4506 int s_mp_cmp_d(const mp_int *a, mp_digit d) |
|
4507 { |
|
4508 if(USED(a) > 1) |
|
4509 return MP_GT; |
|
4510 |
|
4511 if(DIGIT(a, 0) < d) |
|
4512 return MP_LT; |
|
4513 else if(DIGIT(a, 0) > d) |
|
4514 return MP_GT; |
|
4515 else |
|
4516 return MP_EQ; |
|
4517 |
|
4518 } /* end s_mp_cmp_d() */ |
|
4519 |
|
4520 /* }}} */ |
|
4521 |
|
4522 /* {{{ s_mp_ispow2(v) */ |
|
4523 |
|
4524 /* |
|
4525 Returns -1 if the value is not a power of two; otherwise, it returns |
|
4526 k such that v = 2^k, i.e. lg(v). |
|
4527 */ |
|
4528 int s_mp_ispow2(const mp_int *v) |
|
4529 { |
|
4530 mp_digit d; |
|
4531 int extra = 0, ix; |
|
4532 |
|
4533 ix = MP_USED(v) - 1; |
|
4534 d = MP_DIGIT(v, ix); /* most significant digit of v */ |
|
4535 |
|
4536 extra = s_mp_ispow2d(d); |
|
4537 if (extra < 0 || ix == 0) |
|
4538 return extra; |
|
4539 |
|
4540 while (--ix >= 0) { |
|
4541 if (DIGIT(v, ix) != 0) |
|
4542 return -1; /* not a power of two */ |
|
4543 extra += MP_DIGIT_BIT; |
|
4544 } |
|
4545 |
|
4546 return extra; |
|
4547 |
|
4548 } /* end s_mp_ispow2() */ |
|
4549 |
|
4550 /* }}} */ |
|
4551 |
|
4552 /* {{{ s_mp_ispow2d(d) */ |
|
4553 |
|
4554 int s_mp_ispow2d(mp_digit d) |
|
4555 { |
|
4556 if ((d != 0) && ((d & (d-1)) == 0)) { /* d is a power of 2 */ |
|
4557 int pow = 0; |
|
4558 #if defined (MP_USE_UINT_DIGIT) |
|
4559 if (d & 0xffff0000U) |
|
4560 pow += 16; |
|
4561 if (d & 0xff00ff00U) |
|
4562 pow += 8; |
|
4563 if (d & 0xf0f0f0f0U) |
|
4564 pow += 4; |
|
4565 if (d & 0xccccccccU) |
|
4566 pow += 2; |
|
4567 if (d & 0xaaaaaaaaU) |
|
4568 pow += 1; |
|
4569 #elif defined(MP_USE_LONG_LONG_DIGIT) |
|
4570 if (d & 0xffffffff00000000ULL) |
|
4571 pow += 32; |
|
4572 if (d & 0xffff0000ffff0000ULL) |
|
4573 pow += 16; |
|
4574 if (d & 0xff00ff00ff00ff00ULL) |
|
4575 pow += 8; |
|
4576 if (d & 0xf0f0f0f0f0f0f0f0ULL) |
|
4577 pow += 4; |
|
4578 if (d & 0xccccccccccccccccULL) |
|
4579 pow += 2; |
|
4580 if (d & 0xaaaaaaaaaaaaaaaaULL) |
|
4581 pow += 1; |
|
4582 #elif defined(MP_USE_LONG_DIGIT) |
|
4583 if (d & 0xffffffff00000000UL) |
|
4584 pow += 32; |
|
4585 if (d & 0xffff0000ffff0000UL) |
|
4586 pow += 16; |
|
4587 if (d & 0xff00ff00ff00ff00UL) |
|
4588 pow += 8; |
|
4589 if (d & 0xf0f0f0f0f0f0f0f0UL) |
|
4590 pow += 4; |
|
4591 if (d & 0xccccccccccccccccUL) |
|
4592 pow += 2; |
|
4593 if (d & 0xaaaaaaaaaaaaaaaaUL) |
|
4594 pow += 1; |
|
4595 #else |
|
4596 #error "unknown type for mp_digit" |
|
4597 #endif |
|
4598 return pow; |
|
4599 } |
|
4600 return -1; |
|
4601 |
|
4602 } /* end s_mp_ispow2d() */ |
|
4603 |
|
4604 /* }}} */ |
|
4605 |
|
4606 /* }}} */ |
|
4607 |
|
4608 /* {{{ Primitive I/O helpers */ |
|
4609 |
|
4610 /* {{{ s_mp_tovalue(ch, r) */ |
|
4611 |
|
4612 /* |
|
4613 Convert the given character to its digit value, in the given radix. |
|
4614 If the given character is not understood in the given radix, -1 is |
|
4615 returned. Otherwise the digit's numeric value is returned. |
|
4616 |
|
4617 The results will be odd if you use a radix < 2 or > 62, you are |
|
4618 expected to know what you're up to. |
|
4619 */ |
|
4620 int s_mp_tovalue(char ch, int r) |
|
4621 { |
|
4622 int val, xch; |
|
4623 |
|
4624 if(r > 36) |
|
4625 xch = ch; |
|
4626 else |
|
4627 xch = toupper(ch); |
|
4628 |
|
4629 if(isdigit(xch)) |
|
4630 val = xch - '0'; |
|
4631 else if(isupper(xch)) |
|
4632 val = xch - 'A' + 10; |
|
4633 else if(islower(xch)) |
|
4634 val = xch - 'a' + 36; |
|
4635 else if(xch == '+') |
|
4636 val = 62; |
|
4637 else if(xch == '/') |
|
4638 val = 63; |
|
4639 else |
|
4640 return -1; |
|
4641 |
|
4642 if(val < 0 || val >= r) |
|
4643 return -1; |
|
4644 |
|
4645 return val; |
|
4646 |
|
4647 } /* end s_mp_tovalue() */ |
|
4648 |
|
4649 /* }}} */ |
|
4650 |
|
4651 /* {{{ s_mp_todigit(val, r, low) */ |
|
4652 |
|
4653 /* |
|
4654 Convert val to a radix-r digit, if possible. If val is out of range |
|
4655 for r, returns zero. Otherwise, returns an ASCII character denoting |
|
4656 the value in the given radix. |
|
4657 |
|
4658 The results may be odd if you use a radix < 2 or > 64, you are |
|
4659 expected to know what you're doing. |
|
4660 */ |
|
4661 |
|
4662 char s_mp_todigit(mp_digit val, int r, int low) |
|
4663 { |
|
4664 char ch; |
|
4665 |
|
4666 if(val >= r) |
|
4667 return 0; |
|
4668 |
|
4669 ch = s_dmap_1[val]; |
|
4670 |
|
4671 if(r <= 36 && low) |
|
4672 ch = tolower(ch); |
|
4673 |
|
4674 return ch; |
|
4675 |
|
4676 } /* end s_mp_todigit() */ |
|
4677 |
|
4678 /* }}} */ |
|
4679 |
|
4680 /* {{{ s_mp_outlen(bits, radix) */ |
|
4681 |
|
4682 /* |
|
4683 Return an estimate for how long a string is needed to hold a radix |
|
4684 r representation of a number with 'bits' significant bits, plus an |
|
4685 extra for a zero terminator (assuming C style strings here) |
|
4686 */ |
|
4687 int s_mp_outlen(int bits, int r) |
|
4688 { |
|
4689 return (int)((double)bits * LOG_V_2(r) + 1.5) + 1; |
|
4690 |
|
4691 } /* end s_mp_outlen() */ |
|
4692 |
|
4693 /* }}} */ |
|
4694 |
|
4695 /* }}} */ |
|
4696 |
|
4697 /* {{{ mp_read_unsigned_octets(mp, str, len) */ |
|
4698 /* mp_read_unsigned_octets(mp, str, len) |
|
4699 Read in a raw value (base 256) into the given mp_int |
|
4700 No sign bit, number is positive. Leading zeros ignored. |
|
4701 */ |
|
4702 |
|
4703 mp_err |
|
4704 mp_read_unsigned_octets(mp_int *mp, const unsigned char *str, mp_size len) |
|
4705 { |
|
4706 int count; |
|
4707 mp_err res; |
|
4708 mp_digit d; |
|
4709 |
|
4710 ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG); |
|
4711 |
|
4712 mp_zero(mp); |
|
4713 |
|
4714 count = len % sizeof(mp_digit); |
|
4715 if (count) { |
|
4716 for (d = 0; count-- > 0; --len) { |
|
4717 d = (d << 8) | *str++; |
|
4718 } |
|
4719 MP_DIGIT(mp, 0) = d; |
|
4720 } |
|
4721 |
|
4722 /* Read the rest of the digits */ |
|
4723 for(; len > 0; len -= sizeof(mp_digit)) { |
|
4724 for (d = 0, count = sizeof(mp_digit); count > 0; --count) { |
|
4725 d = (d << 8) | *str++; |
|
4726 } |
|
4727 if (MP_EQ == mp_cmp_z(mp)) { |
|
4728 if (!d) |
|
4729 continue; |
|
4730 } else { |
|
4731 if((res = s_mp_lshd(mp, 1)) != MP_OKAY) |
|
4732 return res; |
|
4733 } |
|
4734 MP_DIGIT(mp, 0) = d; |
|
4735 } |
|
4736 return MP_OKAY; |
|
4737 } /* end mp_read_unsigned_octets() */ |
|
4738 /* }}} */ |
|
4739 |
|
4740 /* {{{ mp_unsigned_octet_size(mp) */ |
|
4741 int |
|
4742 mp_unsigned_octet_size(const mp_int *mp) |
|
4743 { |
|
4744 int bytes; |
|
4745 int ix; |
|
4746 mp_digit d = 0; |
|
4747 |
|
4748 ARGCHK(mp != NULL, MP_BADARG); |
|
4749 ARGCHK(MP_ZPOS == SIGN(mp), MP_BADARG); |
|
4750 |
|
4751 bytes = (USED(mp) * sizeof(mp_digit)); |
|
4752 |
|
4753 /* subtract leading zeros. */ |
|
4754 /* Iterate over each digit... */ |
|
4755 for(ix = USED(mp) - 1; ix >= 0; ix--) { |
|
4756 d = DIGIT(mp, ix); |
|
4757 if (d) |
|
4758 break; |
|
4759 bytes -= sizeof(d); |
|
4760 } |
|
4761 if (!bytes) |
|
4762 return 1; |
|
4763 |
|
4764 /* Have MSD, check digit bytes, high order first */ |
|
4765 for(ix = sizeof(mp_digit) - 1; ix >= 0; ix--) { |
|
4766 unsigned char x = (unsigned char)(d >> (ix * CHAR_BIT)); |
|
4767 if (x) |
|
4768 break; |
|
4769 --bytes; |
|
4770 } |
|
4771 return bytes; |
|
4772 } /* end mp_unsigned_octet_size() */ |
|
4773 /* }}} */ |
|
4774 |
|
4775 /* {{{ mp_to_unsigned_octets(mp, str) */ |
|
4776 /* output a buffer of big endian octets no longer than specified. */ |
|
4777 mp_err |
|
4778 mp_to_unsigned_octets(const mp_int *mp, unsigned char *str, mp_size maxlen) |
|
4779 { |
|
4780 int ix, pos = 0; |
|
4781 int bytes; |
|
4782 |
|
4783 ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG); |
|
4784 |
|
4785 bytes = mp_unsigned_octet_size(mp); |
|
4786 ARGCHK(bytes <= maxlen, MP_BADARG); |
|
4787 |
|
4788 /* Iterate over each digit... */ |
|
4789 for(ix = USED(mp) - 1; ix >= 0; ix--) { |
|
4790 mp_digit d = DIGIT(mp, ix); |
|
4791 int jx; |
|
4792 |
|
4793 /* Unpack digit bytes, high order first */ |
|
4794 for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { |
|
4795 unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT)); |
|
4796 if (!pos && !x) /* suppress leading zeros */ |
|
4797 continue; |
|
4798 str[pos++] = x; |
|
4799 } |
|
4800 } |
|
4801 if (!pos) |
|
4802 str[pos++] = 0; |
|
4803 return pos; |
|
4804 } /* end mp_to_unsigned_octets() */ |
|
4805 /* }}} */ |
|
4806 |
|
4807 /* {{{ mp_to_signed_octets(mp, str) */ |
|
4808 /* output a buffer of big endian octets no longer than specified. */ |
|
4809 mp_err |
|
4810 mp_to_signed_octets(const mp_int *mp, unsigned char *str, mp_size maxlen) |
|
4811 { |
|
4812 int ix, pos = 0; |
|
4813 int bytes; |
|
4814 |
|
4815 ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG); |
|
4816 |
|
4817 bytes = mp_unsigned_octet_size(mp); |
|
4818 ARGCHK(bytes <= maxlen, MP_BADARG); |
|
4819 |
|
4820 /* Iterate over each digit... */ |
|
4821 for(ix = USED(mp) - 1; ix >= 0; ix--) { |
|
4822 mp_digit d = DIGIT(mp, ix); |
|
4823 int jx; |
|
4824 |
|
4825 /* Unpack digit bytes, high order first */ |
|
4826 for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { |
|
4827 unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT)); |
|
4828 if (!pos) { |
|
4829 if (!x) /* suppress leading zeros */ |
|
4830 continue; |
|
4831 if (x & 0x80) { /* add one leading zero to make output positive. */ |
|
4832 ARGCHK(bytes + 1 <= maxlen, MP_BADARG); |
|
4833 if (bytes + 1 > maxlen) |
|
4834 return MP_BADARG; |
|
4835 str[pos++] = 0; |
|
4836 } |
|
4837 } |
|
4838 str[pos++] = x; |
|
4839 } |
|
4840 } |
|
4841 if (!pos) |
|
4842 str[pos++] = 0; |
|
4843 return pos; |
|
4844 } /* end mp_to_signed_octets() */ |
|
4845 /* }}} */ |
|
4846 |
|
4847 /* {{{ mp_to_fixlen_octets(mp, str) */ |
|
4848 /* output a buffer of big endian octets exactly as long as requested. */ |
|
4849 mp_err |
|
4850 mp_to_fixlen_octets(const mp_int *mp, unsigned char *str, mp_size length) |
|
4851 { |
|
4852 int ix, pos = 0; |
|
4853 int bytes; |
|
4854 |
|
4855 ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG); |
|
4856 |
|
4857 bytes = mp_unsigned_octet_size(mp); |
|
4858 ARGCHK(bytes <= length, MP_BADARG); |
|
4859 |
|
4860 /* place any needed leading zeros */ |
|
4861 for (;length > bytes; --length) { |
|
4862 *str++ = 0; |
|
4863 } |
|
4864 |
|
4865 /* Iterate over each digit... */ |
|
4866 for(ix = USED(mp) - 1; ix >= 0; ix--) { |
|
4867 mp_digit d = DIGIT(mp, ix); |
|
4868 int jx; |
|
4869 |
|
4870 /* Unpack digit bytes, high order first */ |
|
4871 for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) { |
|
4872 unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT)); |
|
4873 if (!pos && !x) /* suppress leading zeros */ |
|
4874 continue; |
|
4875 str[pos++] = x; |
|
4876 } |
|
4877 } |
|
4878 if (!pos) |
|
4879 str[pos++] = 0; |
|
4880 return MP_OKAY; |
|
4881 } /* end mp_to_fixlen_octets() */ |
|
4882 /* }}} */ |
|
4883 |
|
4884 |
|
4885 /*------------------------------------------------------------------------*/ |
|
4886 /* HERE THERE BE DRAGONS */ |