|
1 /* ********************************************************************* |
|
2 * |
|
3 * Sun elects to have this file available under and governed by the |
|
4 * Mozilla Public License Version 1.1 ("MPL") (see |
|
5 * http://www.mozilla.org/MPL/ for full license text). For the avoidance |
|
6 * of doubt and subject to the following, Sun also elects to allow |
|
7 * licensees to use this file under the MPL, the GNU General Public |
|
8 * License version 2 only or the Lesser General Public License version |
|
9 * 2.1 only. Any references to the "GNU General Public License version 2 |
|
10 * or later" or "GPL" in the following shall be construed to mean the |
|
11 * GNU General Public License version 2 only. Any references to the "GNU |
|
12 * Lesser General Public License version 2.1 or later" or "LGPL" in the |
|
13 * following shall be construed to mean the GNU Lesser General Public |
|
14 * License version 2.1 only. However, the following notice accompanied |
|
15 * the original version of this file: |
|
16 * |
|
17 * Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
|
18 * |
|
19 * The contents of this file are subject to the Mozilla Public License Version |
|
20 * 1.1 (the "License"); you may not use this file except in compliance with |
|
21 * the License. You may obtain a copy of the License at |
|
22 * http://www.mozilla.org/MPL/ |
|
23 * |
|
24 * Software distributed under the License is distributed on an "AS IS" basis, |
|
25 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
|
26 * for the specific language governing rights and limitations under the |
|
27 * License. |
|
28 * |
|
29 * The Original Code is the elliptic curve math library for binary polynomial field curves. |
|
30 * |
|
31 * The Initial Developer of the Original Code is |
|
32 * Sun Microsystems, Inc. |
|
33 * Portions created by the Initial Developer are Copyright (C) 2003 |
|
34 * the Initial Developer. All Rights Reserved. |
|
35 * |
|
36 * Contributor(s): |
|
37 * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories |
|
38 * |
|
39 * Alternatively, the contents of this file may be used under the terms of |
|
40 * either the GNU General Public License Version 2 or later (the "GPL"), or |
|
41 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
|
42 * in which case the provisions of the GPL or the LGPL are applicable instead |
|
43 * of those above. If you wish to allow use of your version of this file only |
|
44 * under the terms of either the GPL or the LGPL, and not to allow others to |
|
45 * use your version of this file under the terms of the MPL, indicate your |
|
46 * decision by deleting the provisions above and replace them with the notice |
|
47 * and other provisions required by the GPL or the LGPL. If you do not delete |
|
48 * the provisions above, a recipient may use your version of this file under |
|
49 * the terms of any one of the MPL, the GPL or the LGPL. |
|
50 * |
|
51 *********************************************************************** */ |
|
52 /* |
|
53 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. |
|
54 * Use is subject to license terms. |
|
55 */ |
|
56 |
|
57 #ifndef _EC2_H |
|
58 #define _EC2_H |
|
59 |
|
60 #pragma ident "%Z%%M% %I% %E% SMI" |
|
61 |
|
62 #include "ecl-priv.h" |
|
63 |
|
64 /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */ |
|
65 mp_err ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py); |
|
66 |
|
67 /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */ |
|
68 mp_err ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py); |
|
69 |
|
70 /* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx, |
|
71 * qy). Uses affine coordinates. */ |
|
72 mp_err ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py, |
|
73 const mp_int *qx, const mp_int *qy, mp_int *rx, |
|
74 mp_int *ry, const ECGroup *group); |
|
75 |
|
76 /* Computes R = P - Q. Uses affine coordinates. */ |
|
77 mp_err ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py, |
|
78 const mp_int *qx, const mp_int *qy, mp_int *rx, |
|
79 mp_int *ry, const ECGroup *group); |
|
80 |
|
81 /* Computes R = 2P. Uses affine coordinates. */ |
|
82 mp_err ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx, |
|
83 mp_int *ry, const ECGroup *group); |
|
84 |
|
85 /* Validates a point on a GF2m curve. */ |
|
86 mp_err ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group); |
|
87 |
|
88 /* by default, this routine is unused and thus doesn't need to be compiled */ |
|
89 #ifdef ECL_ENABLE_GF2M_PT_MUL_AFF |
|
90 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters |
|
91 * a, b and p are the elliptic curve coefficients and the irreducible that |
|
92 * determines the field GF2m. Uses affine coordinates. */ |
|
93 mp_err ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px, |
|
94 const mp_int *py, mp_int *rx, mp_int *ry, |
|
95 const ECGroup *group); |
|
96 #endif |
|
97 |
|
98 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters |
|
99 * a, b and p are the elliptic curve coefficients and the irreducible that |
|
100 * determines the field GF2m. Uses Montgomery projective coordinates. */ |
|
101 mp_err ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, |
|
102 const mp_int *py, mp_int *rx, mp_int *ry, |
|
103 const ECGroup *group); |
|
104 |
|
105 #ifdef ECL_ENABLE_GF2M_PROJ |
|
106 /* Converts a point P(px, py) from affine coordinates to projective |
|
107 * coordinates R(rx, ry, rz). */ |
|
108 mp_err ec_GF2m_pt_aff2proj(const mp_int *px, const mp_int *py, mp_int *rx, |
|
109 mp_int *ry, mp_int *rz, const ECGroup *group); |
|
110 |
|
111 /* Converts a point P(px, py, pz) from projective coordinates to affine |
|
112 * coordinates R(rx, ry). */ |
|
113 mp_err ec_GF2m_pt_proj2aff(const mp_int *px, const mp_int *py, |
|
114 const mp_int *pz, mp_int *rx, mp_int *ry, |
|
115 const ECGroup *group); |
|
116 |
|
117 /* Checks if point P(px, py, pz) is at infinity. Uses projective |
|
118 * coordinates. */ |
|
119 mp_err ec_GF2m_pt_is_inf_proj(const mp_int *px, const mp_int *py, |
|
120 const mp_int *pz); |
|
121 |
|
122 /* Sets P(px, py, pz) to be the point at infinity. Uses projective |
|
123 * coordinates. */ |
|
124 mp_err ec_GF2m_pt_set_inf_proj(mp_int *px, mp_int *py, mp_int *pz); |
|
125 |
|
126 /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is |
|
127 * (qx, qy, qz). Uses projective coordinates. */ |
|
128 mp_err ec_GF2m_pt_add_proj(const mp_int *px, const mp_int *py, |
|
129 const mp_int *pz, const mp_int *qx, |
|
130 const mp_int *qy, mp_int *rx, mp_int *ry, |
|
131 mp_int *rz, const ECGroup *group); |
|
132 |
|
133 /* Computes R = 2P. Uses projective coordinates. */ |
|
134 mp_err ec_GF2m_pt_dbl_proj(const mp_int *px, const mp_int *py, |
|
135 const mp_int *pz, mp_int *rx, mp_int *ry, |
|
136 mp_int *rz, const ECGroup *group); |
|
137 |
|
138 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters |
|
139 * a, b and p are the elliptic curve coefficients and the prime that |
|
140 * determines the field GF2m. Uses projective coordinates. */ |
|
141 mp_err ec_GF2m_pt_mul_proj(const mp_int *n, const mp_int *px, |
|
142 const mp_int *py, mp_int *rx, mp_int *ry, |
|
143 const ECGroup *group); |
|
144 #endif |
|
145 |
|
146 #endif /* _EC2_H */ |