1 /* |
|
2 * Copyright 2003-2008 Sun Microsystems, Inc. All Rights Reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. |
|
8 * |
|
9 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 * version 2 for more details (a copy is included in the LICENSE file that |
|
13 * accompanied this code). |
|
14 * |
|
15 * You should have received a copy of the GNU General Public License version |
|
16 * 2 along with this work; if not, write to the Free Software Foundation, |
|
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 * |
|
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 * CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 * have any questions. |
|
22 * |
|
23 */ |
|
24 |
|
25 class BiasedLockingCounters; |
|
26 |
|
27 // Contains all the definitions needed for amd64 assembly code generation. |
|
28 |
|
29 #ifdef _LP64 |
|
30 // Calling convention |
|
31 class Argument VALUE_OBJ_CLASS_SPEC { |
|
32 public: |
|
33 enum { |
|
34 #ifdef _WIN64 |
|
35 n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) |
|
36 n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... ) |
|
37 #else |
|
38 n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) |
|
39 n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... ) |
|
40 #endif // _WIN64 |
|
41 n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ... |
|
42 n_float_register_parameters_j = 8 // j_farg0, j_farg1, ... |
|
43 }; |
|
44 }; |
|
45 |
|
46 |
|
47 // Symbolically name the register arguments used by the c calling convention. |
|
48 // Windows is different from linux/solaris. So much for standards... |
|
49 |
|
50 #ifdef _WIN64 |
|
51 |
|
52 REGISTER_DECLARATION(Register, c_rarg0, rcx); |
|
53 REGISTER_DECLARATION(Register, c_rarg1, rdx); |
|
54 REGISTER_DECLARATION(Register, c_rarg2, r8); |
|
55 REGISTER_DECLARATION(Register, c_rarg3, r9); |
|
56 |
|
57 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0); |
|
58 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1); |
|
59 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2); |
|
60 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3); |
|
61 |
|
62 #else |
|
63 |
|
64 REGISTER_DECLARATION(Register, c_rarg0, rdi); |
|
65 REGISTER_DECLARATION(Register, c_rarg1, rsi); |
|
66 REGISTER_DECLARATION(Register, c_rarg2, rdx); |
|
67 REGISTER_DECLARATION(Register, c_rarg3, rcx); |
|
68 REGISTER_DECLARATION(Register, c_rarg4, r8); |
|
69 REGISTER_DECLARATION(Register, c_rarg5, r9); |
|
70 |
|
71 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0); |
|
72 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1); |
|
73 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2); |
|
74 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3); |
|
75 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4); |
|
76 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5); |
|
77 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6); |
|
78 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7); |
|
79 |
|
80 #endif // _WIN64 |
|
81 |
|
82 // Symbolically name the register arguments used by the Java calling convention. |
|
83 // We have control over the convention for java so we can do what we please. |
|
84 // What pleases us is to offset the java calling convention so that when |
|
85 // we call a suitable jni method the arguments are lined up and we don't |
|
86 // have to do little shuffling. A suitable jni method is non-static and a |
|
87 // small number of arguments (two fewer args on windows) |
|
88 // |
|
89 // |-------------------------------------------------------| |
|
90 // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 | |
|
91 // |-------------------------------------------------------| |
|
92 // | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg) |
|
93 // | rdi rsi rdx rcx r8 r9 | solaris/linux |
|
94 // |-------------------------------------------------------| |
|
95 // | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 | |
|
96 // |-------------------------------------------------------| |
|
97 |
|
98 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1); |
|
99 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2); |
|
100 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3); |
|
101 // Windows runs out of register args here |
|
102 #ifdef _WIN64 |
|
103 REGISTER_DECLARATION(Register, j_rarg3, rdi); |
|
104 REGISTER_DECLARATION(Register, j_rarg4, rsi); |
|
105 #else |
|
106 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4); |
|
107 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5); |
|
108 #endif // _WIN64 |
|
109 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0); |
|
110 |
|
111 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0); |
|
112 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1); |
|
113 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2); |
|
114 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3); |
|
115 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4); |
|
116 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5); |
|
117 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6); |
|
118 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7); |
|
119 |
|
120 REGISTER_DECLARATION(Register, rscratch1, r10); // volatile |
|
121 REGISTER_DECLARATION(Register, rscratch2, r11); // volatile |
|
122 |
|
123 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved |
|
124 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved |
|
125 |
|
126 #endif // _LP64 |
|
127 |
|
128 // Address is an abstraction used to represent a memory location |
|
129 // using any of the amd64 addressing modes with one object. |
|
130 // |
|
131 // Note: A register location is represented via a Register, not |
|
132 // via an address for efficiency & simplicity reasons. |
|
133 |
|
134 class ArrayAddress; |
|
135 |
|
136 class Address VALUE_OBJ_CLASS_SPEC { |
|
137 public: |
|
138 enum ScaleFactor { |
|
139 no_scale = -1, |
|
140 times_1 = 0, |
|
141 times_2 = 1, |
|
142 times_4 = 2, |
|
143 times_8 = 3 |
|
144 }; |
|
145 |
|
146 private: |
|
147 Register _base; |
|
148 Register _index; |
|
149 ScaleFactor _scale; |
|
150 int _disp; |
|
151 RelocationHolder _rspec; |
|
152 |
|
153 // Easily misused constructors make them private |
|
154 Address(int disp, address loc, relocInfo::relocType rtype); |
|
155 Address(int disp, address loc, RelocationHolder spec); |
|
156 |
|
157 public: |
|
158 // creation |
|
159 Address() |
|
160 : _base(noreg), |
|
161 _index(noreg), |
|
162 _scale(no_scale), |
|
163 _disp(0) { |
|
164 } |
|
165 |
|
166 // No default displacement otherwise Register can be implicitly |
|
167 // converted to 0(Register) which is quite a different animal. |
|
168 |
|
169 Address(Register base, int disp) |
|
170 : _base(base), |
|
171 _index(noreg), |
|
172 _scale(no_scale), |
|
173 _disp(disp) { |
|
174 } |
|
175 |
|
176 Address(Register base, Register index, ScaleFactor scale, int disp = 0) |
|
177 : _base (base), |
|
178 _index(index), |
|
179 _scale(scale), |
|
180 _disp (disp) { |
|
181 assert(!index->is_valid() == (scale == Address::no_scale), |
|
182 "inconsistent address"); |
|
183 } |
|
184 |
|
185 // The following two overloads are used in connection with the |
|
186 // ByteSize type (see sizes.hpp). They simplify the use of |
|
187 // ByteSize'd arguments in assembly code. Note that their equivalent |
|
188 // for the optimized build are the member functions with int disp |
|
189 // argument since ByteSize is mapped to an int type in that case. |
|
190 // |
|
191 // Note: DO NOT introduce similar overloaded functions for WordSize |
|
192 // arguments as in the optimized mode, both ByteSize and WordSize |
|
193 // are mapped to the same type and thus the compiler cannot make a |
|
194 // distinction anymore (=> compiler errors). |
|
195 |
|
196 #ifdef ASSERT |
|
197 Address(Register base, ByteSize disp) |
|
198 : _base(base), |
|
199 _index(noreg), |
|
200 _scale(no_scale), |
|
201 _disp(in_bytes(disp)) { |
|
202 } |
|
203 |
|
204 Address(Register base, Register index, ScaleFactor scale, ByteSize disp) |
|
205 : _base(base), |
|
206 _index(index), |
|
207 _scale(scale), |
|
208 _disp(in_bytes(disp)) { |
|
209 assert(!index->is_valid() == (scale == Address::no_scale), |
|
210 "inconsistent address"); |
|
211 } |
|
212 #endif // ASSERT |
|
213 |
|
214 // accessors |
|
215 bool uses(Register reg) const { |
|
216 return _base == reg || _index == reg; |
|
217 } |
|
218 |
|
219 // Convert the raw encoding form into the form expected by the constructor for |
|
220 // Address. An index of 4 (rsp) corresponds to having no index, so convert |
|
221 // that to noreg for the Address constructor. |
|
222 static Address make_raw(int base, int index, int scale, int disp); |
|
223 |
|
224 static Address make_array(ArrayAddress); |
|
225 |
|
226 private: |
|
227 bool base_needs_rex() const { |
|
228 return _base != noreg && _base->encoding() >= 8; |
|
229 } |
|
230 |
|
231 bool index_needs_rex() const { |
|
232 return _index != noreg &&_index->encoding() >= 8; |
|
233 } |
|
234 |
|
235 relocInfo::relocType reloc() const { return _rspec.type(); } |
|
236 |
|
237 friend class Assembler; |
|
238 friend class MacroAssembler; |
|
239 friend class LIR_Assembler; // base/index/scale/disp |
|
240 }; |
|
241 |
|
242 // |
|
243 // AddressLiteral has been split out from Address because operands of this type |
|
244 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out |
|
245 // the few instructions that need to deal with address literals are unique and the |
|
246 // MacroAssembler does not have to implement every instruction in the Assembler |
|
247 // in order to search for address literals that may need special handling depending |
|
248 // on the instruction and the platform. As small step on the way to merging i486/amd64 |
|
249 // directories. |
|
250 // |
|
251 class AddressLiteral VALUE_OBJ_CLASS_SPEC { |
|
252 friend class ArrayAddress; |
|
253 RelocationHolder _rspec; |
|
254 // Typically we use AddressLiterals we want to use their rval |
|
255 // However in some situations we want the lval (effect address) of the item. |
|
256 // We provide a special factory for making those lvals. |
|
257 bool _is_lval; |
|
258 |
|
259 // If the target is far we'll need to load the ea of this to |
|
260 // a register to reach it. Otherwise if near we can do rip |
|
261 // relative addressing. |
|
262 |
|
263 address _target; |
|
264 |
|
265 protected: |
|
266 // creation |
|
267 AddressLiteral() |
|
268 : _is_lval(false), |
|
269 _target(NULL) |
|
270 {} |
|
271 |
|
272 public: |
|
273 |
|
274 |
|
275 AddressLiteral(address target, relocInfo::relocType rtype); |
|
276 |
|
277 AddressLiteral(address target, RelocationHolder const& rspec) |
|
278 : _rspec(rspec), |
|
279 _is_lval(false), |
|
280 _target(target) |
|
281 {} |
|
282 |
|
283 AddressLiteral addr() { |
|
284 AddressLiteral ret = *this; |
|
285 ret._is_lval = true; |
|
286 return ret; |
|
287 } |
|
288 |
|
289 |
|
290 private: |
|
291 |
|
292 address target() { return _target; } |
|
293 bool is_lval() { return _is_lval; } |
|
294 |
|
295 relocInfo::relocType reloc() const { return _rspec.type(); } |
|
296 const RelocationHolder& rspec() const { return _rspec; } |
|
297 |
|
298 friend class Assembler; |
|
299 friend class MacroAssembler; |
|
300 friend class Address; |
|
301 friend class LIR_Assembler; |
|
302 }; |
|
303 |
|
304 // Convience classes |
|
305 class RuntimeAddress: public AddressLiteral { |
|
306 |
|
307 public: |
|
308 |
|
309 RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {} |
|
310 |
|
311 }; |
|
312 |
|
313 class OopAddress: public AddressLiteral { |
|
314 |
|
315 public: |
|
316 |
|
317 OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){} |
|
318 |
|
319 }; |
|
320 |
|
321 class ExternalAddress: public AddressLiteral { |
|
322 |
|
323 public: |
|
324 |
|
325 ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){} |
|
326 |
|
327 }; |
|
328 |
|
329 class InternalAddress: public AddressLiteral { |
|
330 |
|
331 public: |
|
332 |
|
333 InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {} |
|
334 |
|
335 }; |
|
336 |
|
337 // x86 can do array addressing as a single operation since disp can be an absolute |
|
338 // address but amd64 can't [e.g. array_base(rx, ry:width) ]. We create a class |
|
339 // that expresses the concept but does extra magic on amd64 to get the final result |
|
340 |
|
341 class ArrayAddress VALUE_OBJ_CLASS_SPEC { |
|
342 private: |
|
343 |
|
344 AddressLiteral _base; |
|
345 Address _index; |
|
346 |
|
347 public: |
|
348 |
|
349 ArrayAddress() {}; |
|
350 ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {}; |
|
351 AddressLiteral base() { return _base; } |
|
352 Address index() { return _index; } |
|
353 |
|
354 }; |
|
355 |
|
356 // The amd64 Assembler: Pure assembler doing NO optimizations on |
|
357 // the instruction level (e.g. mov rax, 0 is not translated into xor |
|
358 // rax, rax!); i.e., what you write is what you get. The Assembler is |
|
359 // generating code into a CodeBuffer. |
|
360 |
|
361 const int FPUStateSizeInWords = 512 / wordSize; |
|
362 |
|
363 class Assembler : public AbstractAssembler { |
|
364 friend class AbstractAssembler; // for the non-virtual hack |
|
365 friend class StubGenerator; |
|
366 |
|
367 |
|
368 protected: |
|
369 #ifdef ASSERT |
|
370 void check_relocation(RelocationHolder const& rspec, int format); |
|
371 #endif |
|
372 |
|
373 inline void emit_long64(jlong x); |
|
374 |
|
375 void emit_data(jint data, relocInfo::relocType rtype, int format /* = 1 */); |
|
376 void emit_data(jint data, RelocationHolder const& rspec, int format /* = 1 */); |
|
377 void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0); |
|
378 void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0); |
|
379 |
|
380 // Helper functions for groups of instructions |
|
381 void emit_arith_b(int op1, int op2, Register dst, int imm8); |
|
382 |
|
383 void emit_arith(int op1, int op2, Register dst, int imm32); |
|
384 // only x86?? |
|
385 void emit_arith(int op1, int op2, Register dst, jobject obj); |
|
386 void emit_arith(int op1, int op2, Register dst, Register src); |
|
387 |
|
388 void emit_operand(Register reg, |
|
389 Register base, Register index, Address::ScaleFactor scale, |
|
390 int disp, |
|
391 RelocationHolder const& rspec, |
|
392 int rip_relative_correction = 0); |
|
393 void emit_operand(Register reg, Address adr, |
|
394 int rip_relative_correction = 0); |
|
395 void emit_operand(XMMRegister reg, |
|
396 Register base, Register index, Address::ScaleFactor scale, |
|
397 int disp, |
|
398 RelocationHolder const& rspec, |
|
399 int rip_relative_correction = 0); |
|
400 void emit_operand(XMMRegister reg, Address adr, |
|
401 int rip_relative_correction = 0); |
|
402 |
|
403 // Immediate-to-memory forms |
|
404 void emit_arith_operand(int op1, Register rm, Address adr, int imm32); |
|
405 |
|
406 void emit_farith(int b1, int b2, int i); |
|
407 |
|
408 bool reachable(AddressLiteral adr); |
|
409 |
|
410 // These are all easily abused and hence protected |
|
411 |
|
412 // Make these disappear in 64bit mode since they would never be correct |
|
413 #ifndef _LP64 |
|
414 void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); |
|
415 void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); |
|
416 |
|
417 void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec); |
|
418 void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); |
|
419 |
|
420 void push_literal32(int32_t imm32, RelocationHolder const& rspec); |
|
421 #endif // _LP64 |
|
422 |
|
423 |
|
424 void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); |
|
425 |
|
426 // These are unique in that we are ensured by the caller that the 32bit |
|
427 // relative in these instructions will always be able to reach the potentially |
|
428 // 64bit address described by entry. Since they can take a 64bit address they |
|
429 // don't have the 32 suffix like the other instructions in this class. |
|
430 void jmp_literal(address entry, RelocationHolder const& rspec); |
|
431 void call_literal(address entry, RelocationHolder const& rspec); |
|
432 |
|
433 public: |
|
434 enum Condition { // The amd64 condition codes used for conditional jumps/moves. |
|
435 zero = 0x4, |
|
436 notZero = 0x5, |
|
437 equal = 0x4, |
|
438 notEqual = 0x5, |
|
439 less = 0xc, |
|
440 lessEqual = 0xe, |
|
441 greater = 0xf, |
|
442 greaterEqual = 0xd, |
|
443 below = 0x2, |
|
444 belowEqual = 0x6, |
|
445 above = 0x7, |
|
446 aboveEqual = 0x3, |
|
447 overflow = 0x0, |
|
448 noOverflow = 0x1, |
|
449 carrySet = 0x2, |
|
450 carryClear = 0x3, |
|
451 negative = 0x8, |
|
452 positive = 0x9, |
|
453 parity = 0xa, |
|
454 noParity = 0xb |
|
455 }; |
|
456 |
|
457 enum Prefix { |
|
458 // segment overrides |
|
459 // XXX remove segment prefixes |
|
460 CS_segment = 0x2e, |
|
461 SS_segment = 0x36, |
|
462 DS_segment = 0x3e, |
|
463 ES_segment = 0x26, |
|
464 FS_segment = 0x64, |
|
465 GS_segment = 0x65, |
|
466 |
|
467 REX = 0x40, |
|
468 |
|
469 REX_B = 0x41, |
|
470 REX_X = 0x42, |
|
471 REX_XB = 0x43, |
|
472 REX_R = 0x44, |
|
473 REX_RB = 0x45, |
|
474 REX_RX = 0x46, |
|
475 REX_RXB = 0x47, |
|
476 |
|
477 REX_W = 0x48, |
|
478 |
|
479 REX_WB = 0x49, |
|
480 REX_WX = 0x4A, |
|
481 REX_WXB = 0x4B, |
|
482 REX_WR = 0x4C, |
|
483 REX_WRB = 0x4D, |
|
484 REX_WRX = 0x4E, |
|
485 REX_WRXB = 0x4F |
|
486 }; |
|
487 |
|
488 enum WhichOperand { |
|
489 // input to locate_operand, and format code for relocations |
|
490 imm64_operand = 0, // embedded 64-bit immediate operand |
|
491 disp32_operand = 1, // embedded 32-bit displacement |
|
492 call32_operand = 2, // embedded 32-bit self-relative displacement |
|
493 #ifndef AMD64 |
|
494 _WhichOperand_limit = 3 |
|
495 #else |
|
496 narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop |
|
497 _WhichOperand_limit = 4 |
|
498 #endif |
|
499 }; |
|
500 |
|
501 public: |
|
502 |
|
503 // Creation |
|
504 Assembler(CodeBuffer* code) |
|
505 : AbstractAssembler(code) { |
|
506 } |
|
507 |
|
508 // Decoding |
|
509 static address locate_operand(address inst, WhichOperand which); |
|
510 static address locate_next_instruction(address inst); |
|
511 |
|
512 // Utilities |
|
513 |
|
514 static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) ) <= x && x < ( CONST64(1) << (nbits-1) ); } |
|
515 static bool is_simm32 (int64_t x) { return x == (int64_t)(int32_t)x; } |
|
516 |
|
517 |
|
518 // Stack |
|
519 void pushaq(); |
|
520 void popaq(); |
|
521 |
|
522 void pushfq(); |
|
523 void popfq(); |
|
524 |
|
525 void pushq(int imm32); |
|
526 |
|
527 void pushq(Register src); |
|
528 void pushq(Address src); |
|
529 |
|
530 void popq(Register dst); |
|
531 void popq(Address dst); |
|
532 |
|
533 // Instruction prefixes |
|
534 void prefix(Prefix p); |
|
535 |
|
536 int prefix_and_encode(int reg_enc, bool byteinst = false); |
|
537 int prefixq_and_encode(int reg_enc); |
|
538 |
|
539 int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false); |
|
540 int prefixq_and_encode(int dst_enc, int src_enc); |
|
541 |
|
542 void prefix(Register reg); |
|
543 void prefix(Address adr); |
|
544 void prefixq(Address adr); |
|
545 |
|
546 void prefix(Address adr, Register reg, bool byteinst = false); |
|
547 void prefixq(Address adr, Register reg); |
|
548 |
|
549 void prefix(Address adr, XMMRegister reg); |
|
550 |
|
551 // Moves |
|
552 void movb(Register dst, Address src); |
|
553 void movb(Address dst, int imm8); |
|
554 void movb(Address dst, Register src); |
|
555 |
|
556 void movw(Address dst, int imm16); |
|
557 void movw(Register dst, Address src); |
|
558 void movw(Address dst, Register src); |
|
559 |
|
560 void movl(Register dst, int imm32); |
|
561 void movl(Register dst, Register src); |
|
562 void movl(Register dst, Address src); |
|
563 void movl(Address dst, int imm32); |
|
564 void movl(Address dst, Register src); |
|
565 |
|
566 void movq(Register dst, Register src); |
|
567 void movq(Register dst, Address src); |
|
568 void movq(Address dst, Register src); |
|
569 // These prevent using movq from converting a zero (like NULL) into Register |
|
570 // by giving the compiler two choices it can't resolve |
|
571 void movq(Address dst, void* dummy); |
|
572 void movq(Register dst, void* dummy); |
|
573 |
|
574 void mov64(Register dst, intptr_t imm64); |
|
575 void mov64(Address dst, intptr_t imm64); |
|
576 |
|
577 void movsbl(Register dst, Address src); |
|
578 void movsbl(Register dst, Register src); |
|
579 void movswl(Register dst, Address src); |
|
580 void movswl(Register dst, Register src); |
|
581 void movslq(Register dst, Address src); |
|
582 void movslq(Register dst, Register src); |
|
583 |
|
584 void movzbl(Register dst, Address src); |
|
585 void movzbl(Register dst, Register src); |
|
586 void movzwl(Register dst, Address src); |
|
587 void movzwl(Register dst, Register src); |
|
588 |
|
589 protected: // Avoid using the next instructions directly. |
|
590 // New cpus require use of movsd and movss to avoid partial register stall |
|
591 // when loading from memory. But for old Opteron use movlpd instead of movsd. |
|
592 // The selection is done in MacroAssembler::movdbl() and movflt(). |
|
593 void movss(XMMRegister dst, XMMRegister src); |
|
594 void movss(XMMRegister dst, Address src); |
|
595 void movss(Address dst, XMMRegister src); |
|
596 void movsd(XMMRegister dst, XMMRegister src); |
|
597 void movsd(Address dst, XMMRegister src); |
|
598 void movsd(XMMRegister dst, Address src); |
|
599 void movlpd(XMMRegister dst, Address src); |
|
600 // New cpus require use of movaps and movapd to avoid partial register stall |
|
601 // when moving between registers. |
|
602 void movapd(XMMRegister dst, XMMRegister src); |
|
603 void movaps(XMMRegister dst, XMMRegister src); |
|
604 public: |
|
605 |
|
606 void movdl(XMMRegister dst, Register src); |
|
607 void movdl(Register dst, XMMRegister src); |
|
608 void movdq(XMMRegister dst, Register src); |
|
609 void movdq(Register dst, XMMRegister src); |
|
610 |
|
611 void cmovl(Condition cc, Register dst, Register src); |
|
612 void cmovl(Condition cc, Register dst, Address src); |
|
613 void cmovq(Condition cc, Register dst, Register src); |
|
614 void cmovq(Condition cc, Register dst, Address src); |
|
615 |
|
616 // Prefetches |
|
617 private: |
|
618 void prefetch_prefix(Address src); |
|
619 public: |
|
620 void prefetcht0(Address src); |
|
621 void prefetcht1(Address src); |
|
622 void prefetcht2(Address src); |
|
623 void prefetchnta(Address src); |
|
624 void prefetchw(Address src); |
|
625 |
|
626 // Arithmetics |
|
627 void adcl(Register dst, int imm32); |
|
628 void adcl(Register dst, Address src); |
|
629 void adcl(Register dst, Register src); |
|
630 void adcq(Register dst, int imm32); |
|
631 void adcq(Register dst, Address src); |
|
632 void adcq(Register dst, Register src); |
|
633 |
|
634 void addl(Address dst, int imm32); |
|
635 void addl(Address dst, Register src); |
|
636 void addl(Register dst, int imm32); |
|
637 void addl(Register dst, Address src); |
|
638 void addl(Register dst, Register src); |
|
639 void addq(Address dst, int imm32); |
|
640 void addq(Address dst, Register src); |
|
641 void addq(Register dst, int imm32); |
|
642 void addq(Register dst, Address src); |
|
643 void addq(Register dst, Register src); |
|
644 |
|
645 void andl(Register dst, int imm32); |
|
646 void andl(Register dst, Address src); |
|
647 void andl(Register dst, Register src); |
|
648 void andq(Register dst, int imm32); |
|
649 void andq(Register dst, Address src); |
|
650 void andq(Register dst, Register src); |
|
651 |
|
652 void cmpb(Address dst, int imm8); |
|
653 void cmpl(Address dst, int imm32); |
|
654 void cmpl(Register dst, int imm32); |
|
655 void cmpl(Register dst, Register src); |
|
656 void cmpl(Register dst, Address src); |
|
657 void cmpq(Address dst, int imm32); |
|
658 void cmpq(Address dst, Register src); |
|
659 void cmpq(Register dst, int imm32); |
|
660 void cmpq(Register dst, Register src); |
|
661 void cmpq(Register dst, Address src); |
|
662 |
|
663 void ucomiss(XMMRegister dst, XMMRegister src); |
|
664 void ucomisd(XMMRegister dst, XMMRegister src); |
|
665 |
|
666 protected: |
|
667 // Don't use next inc() and dec() methods directly. INC & DEC instructions |
|
668 // could cause a partial flag stall since they don't set CF flag. |
|
669 // Use MacroAssembler::decrement() & MacroAssembler::increment() methods |
|
670 // which call inc() & dec() or add() & sub() in accordance with |
|
671 // the product flag UseIncDec value. |
|
672 |
|
673 void decl(Register dst); |
|
674 void decl(Address dst); |
|
675 void decq(Register dst); |
|
676 void decq(Address dst); |
|
677 |
|
678 void incl(Register dst); |
|
679 void incl(Address dst); |
|
680 void incq(Register dst); |
|
681 void incq(Address dst); |
|
682 |
|
683 public: |
|
684 void idivl(Register src); |
|
685 void idivq(Register src); |
|
686 void cdql(); |
|
687 void cdqq(); |
|
688 |
|
689 void imull(Register dst, Register src); |
|
690 void imull(Register dst, Register src, int value); |
|
691 void imulq(Register dst, Register src); |
|
692 void imulq(Register dst, Register src, int value); |
|
693 |
|
694 void leal(Register dst, Address src); |
|
695 void leaq(Register dst, Address src); |
|
696 |
|
697 void mull(Address src); |
|
698 void mull(Register src); |
|
699 |
|
700 void negl(Register dst); |
|
701 void negq(Register dst); |
|
702 |
|
703 void notl(Register dst); |
|
704 void notq(Register dst); |
|
705 |
|
706 void orl(Address dst, int imm32); |
|
707 void orl(Register dst, int imm32); |
|
708 void orl(Register dst, Address src); |
|
709 void orl(Register dst, Register src); |
|
710 void orq(Address dst, int imm32); |
|
711 void orq(Register dst, int imm32); |
|
712 void orq(Register dst, Address src); |
|
713 void orq(Register dst, Register src); |
|
714 |
|
715 void rcll(Register dst, int imm8); |
|
716 void rclq(Register dst, int imm8); |
|
717 |
|
718 void sarl(Register dst, int imm8); |
|
719 void sarl(Register dst); |
|
720 void sarq(Register dst, int imm8); |
|
721 void sarq(Register dst); |
|
722 |
|
723 void sbbl(Address dst, int imm32); |
|
724 void sbbl(Register dst, int imm32); |
|
725 void sbbl(Register dst, Address src); |
|
726 void sbbl(Register dst, Register src); |
|
727 void sbbq(Address dst, int imm32); |
|
728 void sbbq(Register dst, int imm32); |
|
729 void sbbq(Register dst, Address src); |
|
730 void sbbq(Register dst, Register src); |
|
731 |
|
732 void shll(Register dst, int imm8); |
|
733 void shll(Register dst); |
|
734 void shlq(Register dst, int imm8); |
|
735 void shlq(Register dst); |
|
736 |
|
737 void shrl(Register dst, int imm8); |
|
738 void shrl(Register dst); |
|
739 void shrq(Register dst, int imm8); |
|
740 void shrq(Register dst); |
|
741 |
|
742 void subl(Address dst, int imm32); |
|
743 void subl(Address dst, Register src); |
|
744 void subl(Register dst, int imm32); |
|
745 void subl(Register dst, Address src); |
|
746 void subl(Register dst, Register src); |
|
747 void subq(Address dst, int imm32); |
|
748 void subq(Address dst, Register src); |
|
749 void subq(Register dst, int imm32); |
|
750 void subq(Register dst, Address src); |
|
751 void subq(Register dst, Register src); |
|
752 |
|
753 void testb(Register dst, int imm8); |
|
754 void testl(Register dst, int imm32); |
|
755 void testl(Register dst, Register src); |
|
756 void testq(Register dst, int imm32); |
|
757 void testq(Register dst, Register src); |
|
758 |
|
759 void xaddl(Address dst, Register src); |
|
760 void xaddq(Address dst, Register src); |
|
761 |
|
762 void xorl(Register dst, int imm32); |
|
763 void xorl(Register dst, Address src); |
|
764 void xorl(Register dst, Register src); |
|
765 void xorq(Register dst, int imm32); |
|
766 void xorq(Register dst, Address src); |
|
767 void xorq(Register dst, Register src); |
|
768 |
|
769 // Miscellaneous |
|
770 void bswapl(Register reg); |
|
771 void bswapq(Register reg); |
|
772 void lock(); |
|
773 |
|
774 void xchgl(Register reg, Address adr); |
|
775 void xchgl(Register dst, Register src); |
|
776 void xchgq(Register reg, Address adr); |
|
777 void xchgq(Register dst, Register src); |
|
778 |
|
779 void cmpxchgl(Register reg, Address adr); |
|
780 void cmpxchgq(Register reg, Address adr); |
|
781 |
|
782 void nop(int i = 1); |
|
783 void addr_nop_4(); |
|
784 void addr_nop_5(); |
|
785 void addr_nop_7(); |
|
786 void addr_nop_8(); |
|
787 |
|
788 void hlt(); |
|
789 void ret(int imm16); |
|
790 void smovl(); |
|
791 void rep_movl(); |
|
792 void rep_movq(); |
|
793 void rep_set(); |
|
794 void repne_scanl(); |
|
795 void repne_scanq(); |
|
796 void setb(Condition cc, Register dst); |
|
797 |
|
798 void clflush(Address adr); |
|
799 |
|
800 enum Membar_mask_bits { |
|
801 StoreStore = 1 << 3, |
|
802 LoadStore = 1 << 2, |
|
803 StoreLoad = 1 << 1, |
|
804 LoadLoad = 1 << 0 |
|
805 }; |
|
806 |
|
807 // Serializes memory. |
|
808 void membar(Membar_mask_bits order_constraint) { |
|
809 // We only have to handle StoreLoad and LoadLoad |
|
810 if (order_constraint & StoreLoad) { |
|
811 // MFENCE subsumes LFENCE |
|
812 mfence(); |
|
813 } /* [jk] not needed currently: else if (order_constraint & LoadLoad) { |
|
814 lfence(); |
|
815 } */ |
|
816 } |
|
817 |
|
818 void lfence() { |
|
819 emit_byte(0x0F); |
|
820 emit_byte(0xAE); |
|
821 emit_byte(0xE8); |
|
822 } |
|
823 |
|
824 void mfence() { |
|
825 emit_byte(0x0F); |
|
826 emit_byte(0xAE); |
|
827 emit_byte(0xF0); |
|
828 } |
|
829 |
|
830 // Identify processor type and features |
|
831 void cpuid() { |
|
832 emit_byte(0x0F); |
|
833 emit_byte(0xA2); |
|
834 } |
|
835 |
|
836 void cld() { emit_byte(0xfc); |
|
837 } |
|
838 |
|
839 void std() { emit_byte(0xfd); |
|
840 } |
|
841 |
|
842 |
|
843 // Calls |
|
844 |
|
845 void call(Label& L, relocInfo::relocType rtype); |
|
846 void call(Register reg); |
|
847 void call(Address adr); |
|
848 |
|
849 // Jumps |
|
850 |
|
851 void jmp(Register reg); |
|
852 void jmp(Address adr); |
|
853 |
|
854 // Label operations & relative jumps (PPUM Appendix D) |
|
855 // unconditional jump to L |
|
856 void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none); |
|
857 |
|
858 |
|
859 // Unconditional 8-bit offset jump to L. |
|
860 // WARNING: be very careful using this for forward jumps. If the label is |
|
861 // not bound within an 8-bit offset of this instruction, a run-time error |
|
862 // will occur. |
|
863 void jmpb(Label& L); |
|
864 |
|
865 // jcc is the generic conditional branch generator to run- time |
|
866 // routines, jcc is used for branches to labels. jcc takes a branch |
|
867 // opcode (cc) and a label (L) and generates either a backward |
|
868 // branch or a forward branch and links it to the label fixup |
|
869 // chain. Usage: |
|
870 // |
|
871 // Label L; // unbound label |
|
872 // jcc(cc, L); // forward branch to unbound label |
|
873 // bind(L); // bind label to the current pc |
|
874 // jcc(cc, L); // backward branch to bound label |
|
875 // bind(L); // illegal: a label may be bound only once |
|
876 // |
|
877 // Note: The same Label can be used for forward and backward branches |
|
878 // but it may be bound only once. |
|
879 |
|
880 void jcc(Condition cc, Label& L, |
|
881 relocInfo::relocType rtype = relocInfo::none); |
|
882 |
|
883 // Conditional jump to a 8-bit offset to L. |
|
884 // WARNING: be very careful using this for forward jumps. If the label is |
|
885 // not bound within an 8-bit offset of this instruction, a run-time error |
|
886 // will occur. |
|
887 void jccb(Condition cc, Label& L); |
|
888 |
|
889 // Floating-point operations |
|
890 |
|
891 void fxsave(Address dst); |
|
892 void fxrstor(Address src); |
|
893 void ldmxcsr(Address src); |
|
894 void stmxcsr(Address dst); |
|
895 |
|
896 void addss(XMMRegister dst, XMMRegister src); |
|
897 void addss(XMMRegister dst, Address src); |
|
898 void subss(XMMRegister dst, XMMRegister src); |
|
899 void subss(XMMRegister dst, Address src); |
|
900 void mulss(XMMRegister dst, XMMRegister src); |
|
901 void mulss(XMMRegister dst, Address src); |
|
902 void divss(XMMRegister dst, XMMRegister src); |
|
903 void divss(XMMRegister dst, Address src); |
|
904 void addsd(XMMRegister dst, XMMRegister src); |
|
905 void addsd(XMMRegister dst, Address src); |
|
906 void subsd(XMMRegister dst, XMMRegister src); |
|
907 void subsd(XMMRegister dst, Address src); |
|
908 void mulsd(XMMRegister dst, XMMRegister src); |
|
909 void mulsd(XMMRegister dst, Address src); |
|
910 void divsd(XMMRegister dst, XMMRegister src); |
|
911 void divsd(XMMRegister dst, Address src); |
|
912 |
|
913 // We only need the double form |
|
914 void sqrtsd(XMMRegister dst, XMMRegister src); |
|
915 void sqrtsd(XMMRegister dst, Address src); |
|
916 |
|
917 void xorps(XMMRegister dst, XMMRegister src); |
|
918 void xorps(XMMRegister dst, Address src); |
|
919 void xorpd(XMMRegister dst, XMMRegister src); |
|
920 void xorpd(XMMRegister dst, Address src); |
|
921 |
|
922 void cvtsi2ssl(XMMRegister dst, Register src); |
|
923 void cvtsi2ssq(XMMRegister dst, Register src); |
|
924 void cvtsi2sdl(XMMRegister dst, Register src); |
|
925 void cvtsi2sdq(XMMRegister dst, Register src); |
|
926 void cvttss2sil(Register dst, XMMRegister src); // truncates |
|
927 void cvttss2siq(Register dst, XMMRegister src); // truncates |
|
928 void cvttsd2sil(Register dst, XMMRegister src); // truncates |
|
929 void cvttsd2siq(Register dst, XMMRegister src); // truncates |
|
930 void cvtss2sd(XMMRegister dst, XMMRegister src); |
|
931 void cvtsd2ss(XMMRegister dst, XMMRegister src); |
|
932 void cvtdq2pd(XMMRegister dst, XMMRegister src); |
|
933 void cvtdq2ps(XMMRegister dst, XMMRegister src); |
|
934 |
|
935 void pxor(XMMRegister dst, Address src); // Xor Packed Byte Integer Values |
|
936 void pxor(XMMRegister dst, XMMRegister src); // Xor Packed Byte Integer Values |
|
937 |
|
938 void movdqa(XMMRegister dst, Address src); // Move Aligned Double Quadword |
|
939 void movdqa(XMMRegister dst, XMMRegister src); |
|
940 void movdqa(Address dst, XMMRegister src); |
|
941 |
|
942 void movq(XMMRegister dst, Address src); |
|
943 void movq(Address dst, XMMRegister src); |
|
944 |
|
945 void pshufd(XMMRegister dst, XMMRegister src, int mode); // Shuffle Packed Doublewords |
|
946 void pshufd(XMMRegister dst, Address src, int mode); |
|
947 void pshuflw(XMMRegister dst, XMMRegister src, int mode); // Shuffle Packed Low Words |
|
948 void pshuflw(XMMRegister dst, Address src, int mode); |
|
949 |
|
950 void psrlq(XMMRegister dst, int shift); // Shift Right Logical Quadword Immediate |
|
951 |
|
952 void punpcklbw(XMMRegister dst, XMMRegister src); // Interleave Low Bytes |
|
953 void punpcklbw(XMMRegister dst, Address src); |
|
954 }; |
|
955 |
|
956 |
|
957 // MacroAssembler extends Assembler by frequently used macros. |
|
958 // |
|
959 // Instructions for which a 'better' code sequence exists depending |
|
960 // on arguments should also go in here. |
|
961 |
|
962 class MacroAssembler : public Assembler { |
|
963 friend class LIR_Assembler; |
|
964 protected: |
|
965 |
|
966 Address as_Address(AddressLiteral adr); |
|
967 Address as_Address(ArrayAddress adr); |
|
968 |
|
969 // Support for VM calls |
|
970 // |
|
971 // This is the base routine called by the different versions of |
|
972 // call_VM_leaf. The interpreter may customize this version by |
|
973 // overriding it for its purposes (e.g., to save/restore additional |
|
974 // registers when doing a VM call). |
|
975 |
|
976 virtual void call_VM_leaf_base( |
|
977 address entry_point, // the entry point |
|
978 int number_of_arguments // the number of arguments to |
|
979 // pop after the call |
|
980 ); |
|
981 |
|
982 // This is the base routine called by the different versions of |
|
983 // call_VM. The interpreter may customize this version by overriding |
|
984 // it for its purposes (e.g., to save/restore additional registers |
|
985 // when doing a VM call). |
|
986 // |
|
987 // If no java_thread register is specified (noreg) than rdi will be |
|
988 // used instead. call_VM_base returns the register which contains |
|
989 // the thread upon return. If a thread register has been specified, |
|
990 // the return value will correspond to that register. If no |
|
991 // last_java_sp is specified (noreg) than rsp will be used instead. |
|
992 virtual void call_VM_base( // returns the register |
|
993 // containing the thread upon |
|
994 // return |
|
995 Register oop_result, // where an oop-result ends up |
|
996 // if any; use noreg otherwise |
|
997 Register java_thread, // the thread if computed |
|
998 // before ; use noreg otherwise |
|
999 Register last_java_sp, // to set up last_Java_frame in |
|
1000 // stubs; use noreg otherwise |
|
1001 address entry_point, // the entry point |
|
1002 int number_of_arguments, // the number of arguments (w/o |
|
1003 // thread) to pop after the |
|
1004 // call |
|
1005 bool check_exceptions // whether to check for pending |
|
1006 // exceptions after return |
|
1007 ); |
|
1008 |
|
1009 // This routines should emit JVMTI PopFrame handling and ForceEarlyReturn code. |
|
1010 // The implementation is only non-empty for the InterpreterMacroAssembler, |
|
1011 // as only the interpreter handles PopFrame and ForceEarlyReturn requests. |
|
1012 virtual void check_and_handle_popframe(Register java_thread); |
|
1013 virtual void check_and_handle_earlyret(Register java_thread); |
|
1014 |
|
1015 void call_VM_helper(Register oop_result, |
|
1016 address entry_point, |
|
1017 int number_of_arguments, |
|
1018 bool check_exceptions = true); |
|
1019 |
|
1020 public: |
|
1021 MacroAssembler(CodeBuffer* code) : Assembler(code) {} |
|
1022 |
|
1023 // Support for NULL-checks |
|
1024 // |
|
1025 // Generates code that causes a NULL OS exception if the content of |
|
1026 // reg is NULL. If the accessed location is M[reg + offset] and the |
|
1027 // offset is known, provide the offset. No explicit code generation |
|
1028 // is needed if the offset is within a certain range (0 <= offset <= |
|
1029 // page_size). |
|
1030 void null_check(Register reg, int offset = -1); |
|
1031 static bool needs_explicit_null_check(intptr_t offset); |
|
1032 |
|
1033 // Required platform-specific helpers for Label::patch_instructions. |
|
1034 // They _shadow_ the declarations in AbstractAssembler, which are undefined. |
|
1035 void pd_patch_instruction(address branch, address target); |
|
1036 #ifndef PRODUCT |
|
1037 static void pd_print_patched_instruction(address branch); |
|
1038 #endif |
|
1039 |
|
1040 |
|
1041 // The following 4 methods return the offset of the appropriate move |
|
1042 // instruction. Note: these are 32 bit instructions |
|
1043 |
|
1044 // Support for fast byte/word loading with zero extension (depending |
|
1045 // on particular CPU) |
|
1046 int load_unsigned_byte(Register dst, Address src); |
|
1047 int load_unsigned_word(Register dst, Address src); |
|
1048 |
|
1049 // Support for fast byte/word loading with sign extension (depending |
|
1050 // on particular CPU) |
|
1051 int load_signed_byte(Register dst, Address src); |
|
1052 int load_signed_word(Register dst, Address src); |
|
1053 |
|
1054 // Support for inc/dec with optimal instruction selection depending |
|
1055 // on value |
|
1056 void incrementl(Register reg, int value = 1); |
|
1057 void decrementl(Register reg, int value = 1); |
|
1058 void incrementq(Register reg, int value = 1); |
|
1059 void decrementq(Register reg, int value = 1); |
|
1060 |
|
1061 void incrementl(Address dst, int value = 1); |
|
1062 void decrementl(Address dst, int value = 1); |
|
1063 void incrementq(Address dst, int value = 1); |
|
1064 void decrementq(Address dst, int value = 1); |
|
1065 |
|
1066 // Support optimal SSE move instructions. |
|
1067 void movflt(XMMRegister dst, XMMRegister src) { |
|
1068 if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; } |
|
1069 else { movss (dst, src); return; } |
|
1070 } |
|
1071 |
|
1072 void movflt(XMMRegister dst, Address src) { movss(dst, src); } |
|
1073 |
|
1074 void movflt(XMMRegister dst, AddressLiteral src); |
|
1075 |
|
1076 void movflt(Address dst, XMMRegister src) { movss(dst, src); } |
|
1077 |
|
1078 void movdbl(XMMRegister dst, XMMRegister src) { |
|
1079 if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; } |
|
1080 else { movsd (dst, src); return; } |
|
1081 } |
|
1082 |
|
1083 void movdbl(XMMRegister dst, AddressLiteral src); |
|
1084 |
|
1085 void movdbl(XMMRegister dst, Address src) { |
|
1086 if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; } |
|
1087 else { movlpd(dst, src); return; } |
|
1088 } |
|
1089 |
|
1090 void movdbl(Address dst, XMMRegister src) { movsd(dst, src); } |
|
1091 |
|
1092 void incrementl(AddressLiteral dst); |
|
1093 void incrementl(ArrayAddress dst); |
|
1094 |
|
1095 // Alignment |
|
1096 void align(int modulus); |
|
1097 |
|
1098 // Misc |
|
1099 void fat_nop(); // 5 byte nop |
|
1100 |
|
1101 |
|
1102 // C++ bool manipulation |
|
1103 |
|
1104 void movbool(Register dst, Address src); |
|
1105 void movbool(Address dst, bool boolconst); |
|
1106 void movbool(Address dst, Register src); |
|
1107 void testbool(Register dst); |
|
1108 |
|
1109 // oop manipulations |
|
1110 void load_klass(Register dst, Register src); |
|
1111 void store_klass(Register dst, Register src); |
|
1112 void store_klass_gap(Register dst, Register src); |
|
1113 |
|
1114 void load_prototype_header(Register dst, Register src); |
|
1115 |
|
1116 void load_heap_oop(Register dst, Address src); |
|
1117 void store_heap_oop(Address dst, Register src); |
|
1118 void encode_heap_oop(Register r); |
|
1119 void decode_heap_oop(Register r); |
|
1120 void encode_heap_oop_not_null(Register r); |
|
1121 void decode_heap_oop_not_null(Register r); |
|
1122 void encode_heap_oop_not_null(Register dst, Register src); |
|
1123 void decode_heap_oop_not_null(Register dst, Register src); |
|
1124 |
|
1125 void set_narrow_oop(Register dst, jobject obj); |
|
1126 |
|
1127 // Stack frame creation/removal |
|
1128 void enter(); |
|
1129 void leave(); |
|
1130 |
|
1131 // Support for getting the JavaThread pointer (i.e.; a reference to |
|
1132 // thread-local information) The pointer will be loaded into the |
|
1133 // thread register. |
|
1134 void get_thread(Register thread); |
|
1135 |
|
1136 void int3(); |
|
1137 |
|
1138 // Support for VM calls |
|
1139 // |
|
1140 // It is imperative that all calls into the VM are handled via the |
|
1141 // call_VM macros. They make sure that the stack linkage is setup |
|
1142 // correctly. call_VM's correspond to ENTRY/ENTRY_X entry points |
|
1143 // while call_VM_leaf's correspond to LEAF entry points. |
|
1144 void call_VM(Register oop_result, |
|
1145 address entry_point, |
|
1146 bool check_exceptions = true); |
|
1147 void call_VM(Register oop_result, |
|
1148 address entry_point, |
|
1149 Register arg_1, |
|
1150 bool check_exceptions = true); |
|
1151 void call_VM(Register oop_result, |
|
1152 address entry_point, |
|
1153 Register arg_1, Register arg_2, |
|
1154 bool check_exceptions = true); |
|
1155 void call_VM(Register oop_result, |
|
1156 address entry_point, |
|
1157 Register arg_1, Register arg_2, Register arg_3, |
|
1158 bool check_exceptions = true); |
|
1159 |
|
1160 // Overloadings with last_Java_sp |
|
1161 void call_VM(Register oop_result, |
|
1162 Register last_java_sp, |
|
1163 address entry_point, |
|
1164 int number_of_arguments = 0, |
|
1165 bool check_exceptions = true); |
|
1166 void call_VM(Register oop_result, |
|
1167 Register last_java_sp, |
|
1168 address entry_point, |
|
1169 Register arg_1, bool |
|
1170 check_exceptions = true); |
|
1171 void call_VM(Register oop_result, |
|
1172 Register last_java_sp, |
|
1173 address entry_point, |
|
1174 Register arg_1, Register arg_2, |
|
1175 bool check_exceptions = true); |
|
1176 void call_VM(Register oop_result, |
|
1177 Register last_java_sp, |
|
1178 address entry_point, |
|
1179 Register arg_1, Register arg_2, Register arg_3, |
|
1180 bool check_exceptions = true); |
|
1181 |
|
1182 void call_VM_leaf(address entry_point, |
|
1183 int number_of_arguments = 0); |
|
1184 void call_VM_leaf(address entry_point, |
|
1185 Register arg_1); |
|
1186 void call_VM_leaf(address entry_point, |
|
1187 Register arg_1, Register arg_2); |
|
1188 void call_VM_leaf(address entry_point, |
|
1189 Register arg_1, Register arg_2, Register arg_3); |
|
1190 |
|
1191 // last Java Frame (fills frame anchor) |
|
1192 void set_last_Java_frame(Register last_java_sp, |
|
1193 Register last_java_fp, |
|
1194 address last_java_pc); |
|
1195 void reset_last_Java_frame(bool clear_fp, bool clear_pc); |
|
1196 |
|
1197 // Stores |
|
1198 void store_check(Register obj); // store check for |
|
1199 // obj - register is |
|
1200 // destroyed |
|
1201 // afterwards |
|
1202 void store_check(Register obj, Address dst); // same as above, dst |
|
1203 // is exact store |
|
1204 // location (reg. is |
|
1205 // destroyed) |
|
1206 |
|
1207 // split store_check(Register obj) to enhance instruction interleaving |
|
1208 void store_check_part_1(Register obj); |
|
1209 void store_check_part_2(Register obj); |
|
1210 |
|
1211 // C 'boolean' to Java boolean: x == 0 ? 0 : 1 |
|
1212 void c2bool(Register x); |
|
1213 |
|
1214 // Int division/reminder for Java |
|
1215 // (as idivl, but checks for special case as described in JVM spec.) |
|
1216 // returns idivl instruction offset for implicit exception handling |
|
1217 int corrected_idivl(Register reg); |
|
1218 // Long division/reminder for Java |
|
1219 // (as idivq, but checks for special case as described in JVM spec.) |
|
1220 // returns idivq instruction offset for implicit exception handling |
|
1221 int corrected_idivq(Register reg); |
|
1222 |
|
1223 // Push and pop integer/fpu/cpu state |
|
1224 void push_IU_state(); |
|
1225 void pop_IU_state(); |
|
1226 |
|
1227 void push_FPU_state(); |
|
1228 void pop_FPU_state(); |
|
1229 |
|
1230 void push_CPU_state(); |
|
1231 void pop_CPU_state(); |
|
1232 |
|
1233 // Sign extension |
|
1234 void sign_extend_short(Register reg); |
|
1235 void sign_extend_byte(Register reg); |
|
1236 |
|
1237 // Division by power of 2, rounding towards 0 |
|
1238 void division_with_shift(Register reg, int shift_value); |
|
1239 |
|
1240 // Round up to a power of two |
|
1241 void round_to_l(Register reg, int modulus); |
|
1242 void round_to_q(Register reg, int modulus); |
|
1243 |
|
1244 // allocation |
|
1245 void eden_allocate( |
|
1246 Register obj, // result: pointer to object after |
|
1247 // successful allocation |
|
1248 Register var_size_in_bytes, // object size in bytes if unknown at |
|
1249 // compile time; invalid otherwise |
|
1250 int con_size_in_bytes, // object size in bytes if known at |
|
1251 // compile time |
|
1252 Register t1, // temp register |
|
1253 Label& slow_case // continuation point if fast |
|
1254 // allocation fails |
|
1255 ); |
|
1256 void tlab_allocate( |
|
1257 Register obj, // result: pointer to object after |
|
1258 // successful allocation |
|
1259 Register var_size_in_bytes, // object size in bytes if unknown at |
|
1260 // compile time; invalid otherwise |
|
1261 int con_size_in_bytes, // object size in bytes if known at |
|
1262 // compile time |
|
1263 Register t1, // temp register |
|
1264 Register t2, // temp register |
|
1265 Label& slow_case // continuation point if fast |
|
1266 // allocation fails |
|
1267 ); |
|
1268 void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); |
|
1269 |
|
1270 //---- |
|
1271 |
|
1272 // Debugging |
|
1273 |
|
1274 // only if +VerifyOops |
|
1275 void verify_oop(Register reg, const char* s = "broken oop"); |
|
1276 void verify_oop_addr(Address addr, const char * s = "broken oop addr"); |
|
1277 |
|
1278 // if heap base register is used - reinit it with the correct value |
|
1279 void reinit_heapbase(); |
|
1280 |
|
1281 // only if +VerifyFPU |
|
1282 void verify_FPU(int stack_depth, const char* s = "illegal FPU state") {} |
|
1283 |
|
1284 // prints msg, dumps registers and stops execution |
|
1285 void stop(const char* msg); |
|
1286 |
|
1287 // prints message and continues |
|
1288 void warn(const char* msg); |
|
1289 |
|
1290 static void debug(char* msg, int64_t pc, int64_t regs[]); |
|
1291 |
|
1292 void os_breakpoint(); |
|
1293 |
|
1294 void untested() |
|
1295 { |
|
1296 stop("untested"); |
|
1297 } |
|
1298 |
|
1299 void unimplemented(const char* what = "") |
|
1300 { |
|
1301 char* b = new char[1024]; |
|
1302 sprintf(b, "unimplemented: %s", what); |
|
1303 stop(b); |
|
1304 } |
|
1305 |
|
1306 void should_not_reach_here() |
|
1307 { |
|
1308 stop("should not reach here"); |
|
1309 } |
|
1310 |
|
1311 // Stack overflow checking |
|
1312 void bang_stack_with_offset(int offset) |
|
1313 { |
|
1314 // stack grows down, caller passes positive offset |
|
1315 assert(offset > 0, "must bang with negative offset"); |
|
1316 movl(Address(rsp, (-offset)), rax); |
|
1317 } |
|
1318 |
|
1319 // Writes to stack successive pages until offset reached to check for |
|
1320 // stack overflow + shadow pages. Also, clobbers tmp |
|
1321 void bang_stack_size(Register offset, Register tmp); |
|
1322 |
|
1323 // Support for serializing memory accesses between threads. |
|
1324 void serialize_memory(Register thread, Register tmp); |
|
1325 |
|
1326 void verify_tlab(); |
|
1327 |
|
1328 // Biased locking support |
|
1329 // lock_reg and obj_reg must be loaded up with the appropriate values. |
|
1330 // swap_reg must be rax and is killed. |
|
1331 // tmp_reg must be supplied and is killed. |
|
1332 // If swap_reg_contains_mark is true then the code assumes that the |
|
1333 // mark word of the object has already been loaded into swap_reg. |
|
1334 // Optional slow case is for implementations (interpreter and C1) which branch to |
|
1335 // slow case directly. Leaves condition codes set for C2's Fast_Lock node. |
|
1336 // Returns offset of first potentially-faulting instruction for null |
|
1337 // check info (currently consumed only by C1). If |
|
1338 // swap_reg_contains_mark is true then returns -1 as it is assumed |
|
1339 // the calling code has already passed any potential faults. |
|
1340 int biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg, |
|
1341 bool swap_reg_contains_mark, |
|
1342 Label& done, Label* slow_case = NULL, |
|
1343 BiasedLockingCounters* counters = NULL); |
|
1344 void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done); |
|
1345 |
|
1346 Condition negate_condition(Condition cond); |
|
1347 |
|
1348 // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit |
|
1349 // operands. In general the names are modified to avoid hiding the instruction in Assembler |
|
1350 // so that we don't need to implement all the varieties in the Assembler with trivial wrappers |
|
1351 // here in MacroAssembler. The major exception to this rule is call |
|
1352 |
|
1353 // Arithmetics |
|
1354 |
|
1355 void cmp8(AddressLiteral src1, int8_t imm32); |
|
1356 |
|
1357 void cmp32(AddressLiteral src1, int32_t src2); |
|
1358 // compare reg - mem, or reg - &mem |
|
1359 void cmp32(Register src1, AddressLiteral src2); |
|
1360 |
|
1361 void cmp32(Register src1, Address src2); |
|
1362 |
|
1363 #ifndef _LP64 |
|
1364 void cmpoop(Address dst, jobject obj); |
|
1365 void cmpoop(Register dst, jobject obj); |
|
1366 #endif // _LP64 |
|
1367 |
|
1368 // NOTE src2 must be the lval. This is NOT an mem-mem compare |
|
1369 void cmpptr(Address src1, AddressLiteral src2); |
|
1370 |
|
1371 void cmpptr(Register src1, AddressLiteral src); |
|
1372 |
|
1373 // will be cmpreg(?) |
|
1374 void cmp64(Register src1, AddressLiteral src); |
|
1375 |
|
1376 void cmpxchgptr(Register reg, Address adr); |
|
1377 void cmpxchgptr(Register reg, AddressLiteral adr); |
|
1378 |
|
1379 // Helper functions for statistics gathering. |
|
1380 // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes. |
|
1381 void cond_inc32(Condition cond, AddressLiteral counter_addr); |
|
1382 // Unconditional atomic increment. |
|
1383 void atomic_incl(AddressLiteral counter_addr); |
|
1384 |
|
1385 |
|
1386 void lea(Register dst, AddressLiteral src); |
|
1387 void lea(Register dst, Address src); |
|
1388 |
|
1389 |
|
1390 // Calls |
|
1391 void call(Label& L, relocInfo::relocType rtype); |
|
1392 void call(Register entry); |
|
1393 void call(AddressLiteral entry); |
|
1394 |
|
1395 // Jumps |
|
1396 |
|
1397 // 32bit can do a case table jump in one instruction but we no longer allow the base |
|
1398 // to be installed in the Address class |
|
1399 void jump(ArrayAddress entry); |
|
1400 |
|
1401 void jump(AddressLiteral entry); |
|
1402 void jump_cc(Condition cc, AddressLiteral dst); |
|
1403 |
|
1404 // Floating |
|
1405 |
|
1406 void ldmxcsr(Address src) { Assembler::ldmxcsr(src); } |
|
1407 void ldmxcsr(AddressLiteral src); |
|
1408 |
|
1409 private: |
|
1410 // these are private because users should be doing movflt/movdbl |
|
1411 |
|
1412 void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); } |
|
1413 void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); } |
|
1414 void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); } |
|
1415 void movss(XMMRegister dst, AddressLiteral src); |
|
1416 |
|
1417 void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); } |
|
1418 void movlpd(XMMRegister dst, AddressLiteral src); |
|
1419 |
|
1420 public: |
|
1421 |
|
1422 |
|
1423 void xorpd(XMMRegister dst, XMMRegister src) {Assembler::xorpd(dst, src); } |
|
1424 void xorpd(XMMRegister dst, Address src) {Assembler::xorpd(dst, src); } |
|
1425 void xorpd(XMMRegister dst, AddressLiteral src); |
|
1426 |
|
1427 void xorps(XMMRegister dst, XMMRegister src) {Assembler::xorps(dst, src); } |
|
1428 void xorps(XMMRegister dst, Address src) {Assembler::xorps(dst, src); } |
|
1429 void xorps(XMMRegister dst, AddressLiteral src); |
|
1430 |
|
1431 |
|
1432 // Data |
|
1433 |
|
1434 void movoop(Register dst, jobject obj); |
|
1435 void movoop(Address dst, jobject obj); |
|
1436 |
|
1437 void movptr(ArrayAddress dst, Register src); |
|
1438 void movptr(Register dst, AddressLiteral src); |
|
1439 |
|
1440 void movptr(Register dst, intptr_t src); |
|
1441 void movptr(Address dst, intptr_t src); |
|
1442 |
|
1443 void movptr(Register dst, ArrayAddress src); |
|
1444 |
|
1445 // to avoid hiding movl |
|
1446 void mov32(AddressLiteral dst, Register src); |
|
1447 void mov32(Register dst, AddressLiteral src); |
|
1448 |
|
1449 void pushoop(jobject obj); |
|
1450 |
|
1451 // Can push value or effective address |
|
1452 void pushptr(AddressLiteral src); |
|
1453 |
|
1454 }; |
|
1455 |
|
1456 /** |
|
1457 * class SkipIfEqual: |
|
1458 * |
|
1459 * Instantiating this class will result in assembly code being output that will |
|
1460 * jump around any code emitted between the creation of the instance and it's |
|
1461 * automatic destruction at the end of a scope block, depending on the value of |
|
1462 * the flag passed to the constructor, which will be checked at run-time. |
|
1463 */ |
|
1464 class SkipIfEqual { |
|
1465 private: |
|
1466 MacroAssembler* _masm; |
|
1467 Label _label; |
|
1468 |
|
1469 public: |
|
1470 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value); |
|
1471 ~SkipIfEqual(); |
|
1472 }; |
|
1473 |
|
1474 |
|
1475 #ifdef ASSERT |
|
1476 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; } |
|
1477 #endif |
|