hotspot/src/cpu/sparc/vm/bytecodeInterpreter_sparc.inline.hpp
changeset 35214 d86005e0b4c2
parent 35211 3771329165d4
child 35215 f9536fc8548c
equal deleted inserted replaced
35211:3771329165d4 35214:d86005e0b4c2
     1 /*
       
     2  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #ifndef CPU_SPARC_VM_BYTECODEINTERPRETER_SPARC_INLINE_HPP
       
    26 #define CPU_SPARC_VM_BYTECODEINTERPRETER_SPARC_INLINE_HPP
       
    27 
       
    28 // Inline interpreter functions for sparc
       
    29 
       
    30 inline jfloat BytecodeInterpreter::VMfloatAdd(jfloat op1, jfloat op2) { return op1 + op2; }
       
    31 inline jfloat BytecodeInterpreter::VMfloatSub(jfloat op1, jfloat op2) { return op1 - op2; }
       
    32 inline jfloat BytecodeInterpreter::VMfloatMul(jfloat op1, jfloat op2) { return op1 * op2; }
       
    33 inline jfloat BytecodeInterpreter::VMfloatDiv(jfloat op1, jfloat op2) { return op1 / op2; }
       
    34 inline jfloat BytecodeInterpreter::VMfloatRem(jfloat op1, jfloat op2) { return fmod(op1, op2); }
       
    35 
       
    36 inline jfloat BytecodeInterpreter::VMfloatNeg(jfloat op) { return -op; }
       
    37 
       
    38 inline int32_t BytecodeInterpreter::VMfloatCompare(jfloat op1, jfloat op2, int32_t direction) {
       
    39   return ( op1 < op2 ? -1 :
       
    40                op1 > op2 ? 1 :
       
    41                    op1 == op2 ? 0 :
       
    42                        (direction == -1 || direction == 1) ? direction : 0);
       
    43 
       
    44 }
       
    45 
       
    46 inline void BytecodeInterpreter::VMmemCopy64(uint32_t to[2], const uint32_t from[2]) {
       
    47   // x86 can do unaligned copies but not 64bits at a time
       
    48   to[0] = from[0]; to[1] = from[1];
       
    49 }
       
    50 
       
    51 // The long operations depend on compiler support for "long long" on x86
       
    52 
       
    53 inline jlong BytecodeInterpreter::VMlongAdd(jlong op1, jlong op2) {
       
    54   return op1 + op2;
       
    55 }
       
    56 
       
    57 inline jlong BytecodeInterpreter::VMlongAnd(jlong op1, jlong op2) {
       
    58   return op1 & op2;
       
    59 }
       
    60 
       
    61 inline jlong BytecodeInterpreter::VMlongDiv(jlong op1, jlong op2) {
       
    62   // QQQ what about check and throw...
       
    63   return op1 / op2;
       
    64 }
       
    65 
       
    66 inline jlong BytecodeInterpreter::VMlongMul(jlong op1, jlong op2) {
       
    67   return op1 * op2;
       
    68 }
       
    69 
       
    70 inline jlong BytecodeInterpreter::VMlongOr(jlong op1, jlong op2) {
       
    71   return op1 | op2;
       
    72 }
       
    73 
       
    74 inline jlong BytecodeInterpreter::VMlongSub(jlong op1, jlong op2) {
       
    75   return op1 - op2;
       
    76 }
       
    77 
       
    78 inline jlong BytecodeInterpreter::VMlongXor(jlong op1, jlong op2) {
       
    79   return op1 ^ op2;
       
    80 }
       
    81 
       
    82 inline jlong BytecodeInterpreter::VMlongRem(jlong op1, jlong op2) {
       
    83   return op1 % op2;
       
    84 }
       
    85 
       
    86 inline jlong BytecodeInterpreter::VMlongUshr(jlong op1, jint op2) {
       
    87   // CVM did this 0x3f mask, is the really needed??? QQQ
       
    88   return ((unsigned long long) op1) >> (op2 & 0x3F);
       
    89 }
       
    90 
       
    91 inline jlong BytecodeInterpreter::VMlongShr(jlong op1, jint op2) {
       
    92   return op1 >> (op2 & 0x3F);
       
    93 }
       
    94 
       
    95 inline jlong BytecodeInterpreter::VMlongShl(jlong op1, jint op2) {
       
    96   return op1 << (op2 & 0x3F);
       
    97 }
       
    98 
       
    99 inline jlong BytecodeInterpreter::VMlongNeg(jlong op) {
       
   100   return -op;
       
   101 }
       
   102 
       
   103 inline jlong BytecodeInterpreter::VMlongNot(jlong op) {
       
   104   return ~op;
       
   105 }
       
   106 
       
   107 inline int32_t BytecodeInterpreter::VMlongLtz(jlong op) {
       
   108   return (op <= 0);
       
   109 }
       
   110 
       
   111 inline int32_t BytecodeInterpreter::VMlongGez(jlong op) {
       
   112   return (op >= 0);
       
   113 }
       
   114 
       
   115 inline int32_t BytecodeInterpreter::VMlongEqz(jlong op) {
       
   116   return (op == 0);
       
   117 }
       
   118 
       
   119 inline int32_t BytecodeInterpreter::VMlongEq(jlong op1, jlong op2) {
       
   120   return (op1 == op2);
       
   121 }
       
   122 
       
   123 inline int32_t BytecodeInterpreter::VMlongNe(jlong op1, jlong op2) {
       
   124   return (op1 != op2);
       
   125 }
       
   126 
       
   127 inline int32_t BytecodeInterpreter::VMlongGe(jlong op1, jlong op2) {
       
   128   return (op1 >= op2);
       
   129 }
       
   130 
       
   131 inline int32_t BytecodeInterpreter::VMlongLe(jlong op1, jlong op2) {
       
   132   return (op1 <= op2);
       
   133 }
       
   134 
       
   135 inline int32_t BytecodeInterpreter::VMlongLt(jlong op1, jlong op2) {
       
   136   return (op1 < op2);
       
   137 }
       
   138 
       
   139 inline int32_t BytecodeInterpreter::VMlongGt(jlong op1, jlong op2) {
       
   140   return (op1 > op2);
       
   141 }
       
   142 
       
   143 inline int32_t BytecodeInterpreter::VMlongCompare(jlong op1, jlong op2) {
       
   144   return (VMlongLt(op1, op2) ? -1 : VMlongGt(op1, op2) ? 1 : 0);
       
   145 }
       
   146 
       
   147 // Long conversions
       
   148 
       
   149 inline jdouble BytecodeInterpreter::VMlong2Double(jlong val) {
       
   150   return (jdouble) val;
       
   151 }
       
   152 
       
   153 inline jfloat BytecodeInterpreter::VMlong2Float(jlong val) {
       
   154   return (jfloat) val;
       
   155 }
       
   156 
       
   157 inline jint BytecodeInterpreter::VMlong2Int(jlong val) {
       
   158   return (jint) val;
       
   159 }
       
   160 
       
   161 // Double Arithmetic
       
   162 
       
   163 inline jdouble BytecodeInterpreter::VMdoubleAdd(jdouble op1, jdouble op2) {
       
   164   return op1 + op2;
       
   165 }
       
   166 
       
   167 inline jdouble BytecodeInterpreter::VMdoubleDiv(jdouble op1, jdouble op2) {
       
   168   // Divide by zero... QQQ
       
   169   return op1 / op2;
       
   170 }
       
   171 
       
   172 inline jdouble BytecodeInterpreter::VMdoubleMul(jdouble op1, jdouble op2) {
       
   173   return op1 * op2;
       
   174 }
       
   175 
       
   176 inline jdouble BytecodeInterpreter::VMdoubleNeg(jdouble op) {
       
   177   return -op;
       
   178 }
       
   179 
       
   180 inline jdouble BytecodeInterpreter::VMdoubleRem(jdouble op1, jdouble op2) {
       
   181   return fmod(op1, op2);
       
   182 }
       
   183 
       
   184 inline jdouble BytecodeInterpreter::VMdoubleSub(jdouble op1, jdouble op2) {
       
   185   return op1 - op2;
       
   186 }
       
   187 
       
   188 inline int32_t BytecodeInterpreter::VMdoubleCompare(jdouble op1, jdouble op2, int32_t direction) {
       
   189   return ( op1 < op2 ? -1 :
       
   190                op1 > op2 ? 1 :
       
   191                    op1 == op2 ? 0 :
       
   192                        (direction == -1 || direction == 1) ? direction : 0);
       
   193 }
       
   194 
       
   195 // Double Conversions
       
   196 
       
   197 inline jfloat BytecodeInterpreter::VMdouble2Float(jdouble val) {
       
   198   return (jfloat) val;
       
   199 }
       
   200 
       
   201 // Float Conversions
       
   202 
       
   203 inline jdouble BytecodeInterpreter::VMfloat2Double(jfloat op) {
       
   204   return (jdouble) op;
       
   205 }
       
   206 
       
   207 // Integer Arithmetic
       
   208 
       
   209 inline jint BytecodeInterpreter::VMintAdd(jint op1, jint op2) {
       
   210   return op1 + op2;
       
   211 }
       
   212 
       
   213 inline jint BytecodeInterpreter::VMintAnd(jint op1, jint op2) {
       
   214   return op1 & op2;
       
   215 }
       
   216 
       
   217 inline jint BytecodeInterpreter::VMintDiv(jint op1, jint op2) {
       
   218   /* it's possible we could catch this special case implicitly */
       
   219   if (op1 == 0x80000000 && op2 == -1) return op1;
       
   220   else return op1 / op2;
       
   221 }
       
   222 
       
   223 inline jint BytecodeInterpreter::VMintMul(jint op1, jint op2) {
       
   224   return op1 * op2;
       
   225 }
       
   226 
       
   227 inline jint BytecodeInterpreter::VMintNeg(jint op) {
       
   228   return -op;
       
   229 }
       
   230 
       
   231 inline jint BytecodeInterpreter::VMintOr(jint op1, jint op2) {
       
   232   return op1 | op2;
       
   233 }
       
   234 
       
   235 inline jint BytecodeInterpreter::VMintRem(jint op1, jint op2) {
       
   236   /* it's possible we could catch this special case implicitly */
       
   237   if (op1 == 0x80000000 && op2 == -1) return 0;
       
   238   else return op1 % op2;
       
   239 }
       
   240 
       
   241 inline jint BytecodeInterpreter::VMintShl(jint op1, jint op2) {
       
   242   return op1 << (op2 & 0x1f);
       
   243 }
       
   244 
       
   245 inline jint BytecodeInterpreter::VMintShr(jint op1, jint op2) {
       
   246   return op1 >> (op2 & 0x1f);
       
   247 }
       
   248 
       
   249 inline jint BytecodeInterpreter::VMintSub(jint op1, jint op2) {
       
   250   return op1 - op2;
       
   251 }
       
   252 
       
   253 inline juint BytecodeInterpreter::VMintUshr(jint op1, jint op2) {
       
   254   return ((juint) op1) >> (op2 & 0x1f);
       
   255 }
       
   256 
       
   257 inline jint BytecodeInterpreter::VMintXor(jint op1, jint op2) {
       
   258   return op1 ^ op2;
       
   259 }
       
   260 
       
   261 inline jdouble BytecodeInterpreter::VMint2Double(jint val) {
       
   262   return (jdouble) val;
       
   263 }
       
   264 
       
   265 inline jfloat BytecodeInterpreter::VMint2Float(jint val) {
       
   266   return (jfloat) val;
       
   267 }
       
   268 
       
   269 inline jlong BytecodeInterpreter::VMint2Long(jint val) {
       
   270   return (jlong) val;
       
   271 }
       
   272 
       
   273 inline jchar BytecodeInterpreter::VMint2Char(jint val) {
       
   274   return (jchar) val;
       
   275 }
       
   276 
       
   277 inline jshort BytecodeInterpreter::VMint2Short(jint val) {
       
   278   return (jshort) val;
       
   279 }
       
   280 
       
   281 inline jbyte BytecodeInterpreter::VMint2Byte(jint val) {
       
   282   return (jbyte) val;
       
   283 }
       
   284 
       
   285 // The implementations are platform dependent. We have to worry about alignment
       
   286 // issues on some machines which can change on the same platform depending on
       
   287 // whether it is an LP64 machine also.
       
   288 
       
   289 // We know that on LP32 mode that longs/doubles are the only thing that gives
       
   290 // us alignment headaches. We also know that the worst we have is 32bit alignment
       
   291 // so thing are not really too bad.
       
   292 // (Also sparcworks compiler does the right thing for free if we don't use -arch..
       
   293 // switches. Only gcc gives us a hard time. In LP64 mode I think we have no issue
       
   294 // with alignment.
       
   295 
       
   296 #ifdef _GNU_SOURCE
       
   297   #define ALIGN_CONVERTER        /* Needs alignment converter */
       
   298 #else
       
   299   #undef ALIGN_CONVERTER        /* No alignment converter */
       
   300 #endif /* _GNU_SOURCE */
       
   301 
       
   302 #ifdef ALIGN_CONVERTER
       
   303 class u8_converter {
       
   304 
       
   305   private:
       
   306 
       
   307   public:
       
   308   static jdouble get_jdouble(address p) {
       
   309     VMJavaVal64 tmp;
       
   310     tmp.v[0] = ((uint32_t*)p)[0];
       
   311     tmp.v[1] = ((uint32_t*)p)[1];
       
   312     return tmp.d;
       
   313   }
       
   314 
       
   315   static void put_jdouble(address p, jdouble d) {
       
   316     VMJavaVal64 tmp;
       
   317     tmp.d = d;
       
   318     ((uint32_t*)p)[0] = tmp.v[0];
       
   319     ((uint32_t*)p)[1] = tmp.v[1];
       
   320   }
       
   321 
       
   322   static jlong get_jlong(address p) {
       
   323     VMJavaVal64 tmp;
       
   324     tmp.v[0] = ((uint32_t*)p)[0];
       
   325     tmp.v[1] = ((uint32_t*)p)[1];
       
   326     return tmp.l;
       
   327   }
       
   328 
       
   329   static void put_jlong(address p, jlong l) {
       
   330     VMJavaVal64 tmp;
       
   331     tmp.l = l;
       
   332     ((uint32_t*)p)[0] = tmp.v[0];
       
   333     ((uint32_t*)p)[1] = tmp.v[1];
       
   334   }
       
   335 };
       
   336 #endif /* ALIGN_CONVERTER */
       
   337 
       
   338 #endif // CPU_SPARC_VM_BYTECODEINTERPRETER_SPARC_INLINE_HPP