hotspot/src/share/vm/utilities/hashtable.cpp
changeset 13195 be27e1b6a4b9
parent 13097 c146b608d91f
child 13199 025b0984feea
equal deleted inserted replaced
13099:64752e56d721 13195:be27e1b6a4b9
    31 #include "utilities/dtrace.hpp"
    31 #include "utilities/dtrace.hpp"
    32 #include "utilities/hashtable.hpp"
    32 #include "utilities/hashtable.hpp"
    33 #include "utilities/hashtable.inline.hpp"
    33 #include "utilities/hashtable.inline.hpp"
    34 
    34 
    35 
    35 
    36 #ifndef USDT2
       
    37 HS_DTRACE_PROBE_DECL4(hs_private, hashtable__new_entry,
       
    38   void*, unsigned int, void*, void*);
       
    39 #endif /* !USDT2 */
       
    40 
       
    41 // This is a generic hashtable, designed to be used for the symbol
    36 // This is a generic hashtable, designed to be used for the symbol
    42 // and string tables.
    37 // and string tables.
    43 //
    38 //
    44 // It is implemented as an open hash table with a fixed number of buckets.
    39 // It is implemented as an open hash table with a fixed number of buckets.
    45 //
    40 //
    46 // %note:
    41 // %note:
    47 //  - HashtableEntrys are allocated in blocks to reduce the space overhead.
    42 //  - HashtableEntrys are allocated in blocks to reduce the space overhead.
    48 
    43 
    49 BasicHashtableEntry* BasicHashtable::new_entry(unsigned int hashValue) {
    44 template <MEMFLAGS F> BasicHashtableEntry<F>* BasicHashtable<F>::new_entry(unsigned int hashValue) {
    50   BasicHashtableEntry* entry;
    45   BasicHashtableEntry<F>* entry;
    51 
    46 
    52   if (_free_list) {
    47   if (_free_list) {
    53     entry = _free_list;
    48     entry = _free_list;
    54     _free_list = _free_list->next();
    49     _free_list = _free_list->next();
    55   } else {
    50   } else {
    56     if (_first_free_entry + _entry_size >= _end_block) {
    51     if (_first_free_entry + _entry_size >= _end_block) {
    57       int block_size = MIN2(512, MAX2((int)_table_size / 2, (int)_number_of_entries));
    52       int block_size = MIN2(512, MAX2((int)_table_size / 2, (int)_number_of_entries));
    58       int len = _entry_size * block_size;
    53       int len = _entry_size * block_size;
    59       len = 1 << log2_intptr(len); // round down to power of 2
    54       len = 1 << log2_intptr(len); // round down to power of 2
    60       assert(len >= _entry_size, "");
    55       assert(len >= _entry_size, "");
    61       _first_free_entry = NEW_C_HEAP_ARRAY(char, len);
    56       _first_free_entry = NEW_C_HEAP_ARRAY2(char, len, F, CURRENT_PC);
    62       _end_block = _first_free_entry + len;
    57       _end_block = _first_free_entry + len;
    63     }
    58     }
    64     entry = (BasicHashtableEntry*)_first_free_entry;
    59     entry = (BasicHashtableEntry<F>*)_first_free_entry;
    65     _first_free_entry += _entry_size;
    60     _first_free_entry += _entry_size;
    66   }
    61   }
    67 
    62 
    68   assert(_entry_size % HeapWordSize == 0, "");
    63   assert(_entry_size % HeapWordSize == 0, "");
    69   entry->set_hash(hashValue);
    64   entry->set_hash(hashValue);
    70   return entry;
    65   return entry;
    71 }
    66 }
    72 
    67 
    73 
    68 
    74 template <class T> HashtableEntry<T>* Hashtable<T>::new_entry(unsigned int hashValue, T obj) {
    69 template <class T, MEMFLAGS F> HashtableEntry<T, F>* Hashtable<T, F>::new_entry(unsigned int hashValue, T obj) {
    75   HashtableEntry<T>* entry;
    70   HashtableEntry<T, F>* entry;
    76 
    71 
    77   entry = (HashtableEntry<T>*)BasicHashtable::new_entry(hashValue);
    72   entry = (HashtableEntry<T, F>*)BasicHashtable<F>::new_entry(hashValue);
    78   entry->set_literal(obj);
    73   entry->set_literal(obj);
    79 #ifndef USDT2
       
    80   HS_DTRACE_PROBE4(hs_private, hashtable__new_entry,
       
    81     this, hashValue, obj, entry);
       
    82 #else /* USDT2 */
       
    83   HS_PRIVATE_HASHTABLE_NEW_ENTRY(
       
    84     this, hashValue, (uintptr_t) obj, entry);
       
    85 #endif /* USDT2 */
       
    86   return entry;
    74   return entry;
    87 }
    75 }
    88 
       
    89 
    76 
    90 // Check to see if the hashtable is unbalanced.  The caller set a flag to
    77 // Check to see if the hashtable is unbalanced.  The caller set a flag to
    91 // rehash at the next safepoint.  If this bucket is 60 times greater than the
    78 // rehash at the next safepoint.  If this bucket is 60 times greater than the
    92 // expected average bucket length, it's an unbalanced hashtable.
    79 // expected average bucket length, it's an unbalanced hashtable.
    93 // This is somewhat an arbitrary heuristic but if one bucket gets to
    80 // This is somewhat an arbitrary heuristic but if one bucket gets to
    94 // rehash_count which is currently 100, there's probably something wrong.
    81 // rehash_count which is currently 100, there's probably something wrong.
    95 
    82 
    96 bool BasicHashtable::check_rehash_table(int count) {
    83 template <MEMFLAGS F> bool BasicHashtable<F>::check_rehash_table(int count) {
    97   assert(table_size() != 0, "underflow");
    84   assert(table_size() != 0, "underflow");
    98   if (count > (((double)number_of_entries()/(double)table_size())*rehash_multiple)) {
    85   if (count > (((double)number_of_entries()/(double)table_size())*rehash_multiple)) {
    99     // Set a flag for the next safepoint, which should be at some guaranteed
    86     // Set a flag for the next safepoint, which should be at some guaranteed
   100     // safepoint interval.
    87     // safepoint interval.
   101     return true;
    88     return true;
   105 
    92 
   106 // Create a new table and using alternate hash code, populate the new table
    93 // Create a new table and using alternate hash code, populate the new table
   107 // with the existing elements.   This can be used to change the hash code
    94 // with the existing elements.   This can be used to change the hash code
   108 // and could in the future change the size of the table.
    95 // and could in the future change the size of the table.
   109 
    96 
   110 template <class T> void Hashtable<T>::move_to(Hashtable<T>* new_table) {
    97 template <class T, MEMFLAGS F> void Hashtable<T, F>::move_to(Hashtable<T, F>* new_table) {
   111   int saved_entry_count = number_of_entries();
    98   int saved_entry_count = BasicHashtable<F>::number_of_entries();
   112 
    99 
   113   // Iterate through the table and create a new entry for the new table
   100   // Iterate through the table and create a new entry for the new table
   114   for (int i = 0; i < new_table->table_size(); ++i) {
   101   for (int i = 0; i < new_table->table_size(); ++i) {
   115     for (HashtableEntry<T>* p = bucket(i); p != NULL; ) {
   102     for (HashtableEntry<T, F>* p = bucket(i); p != NULL; ) {
   116       HashtableEntry<T>* next = p->next();
   103       HashtableEntry<T, F>* next = p->next();
   117       T string = p->literal();
   104       T string = p->literal();
   118       // Use alternate hashing algorithm on the symbol in the first table
   105       // Use alternate hashing algorithm on the symbol in the first table
   119       unsigned int hashValue = new_hash(string);
   106       unsigned int hashValue = new_hash(string);
   120       // Get a new index relative to the new table (can also change size)
   107       // Get a new index relative to the new table (can also change size)
   121       int index = new_table->hash_to_index(hashValue);
   108       int index = new_table->hash_to_index(hashValue);
   139 
   126 
   140   // Destroy memory used by the buckets in the hashtable.  The memory
   127   // Destroy memory used by the buckets in the hashtable.  The memory
   141   // for the elements has been used in a new table and is not
   128   // for the elements has been used in a new table and is not
   142   // destroyed.  The memory reuse will benefit resizing the SystemDictionary
   129   // destroyed.  The memory reuse will benefit resizing the SystemDictionary
   143   // to avoid a memory allocation spike at safepoint.
   130   // to avoid a memory allocation spike at safepoint.
   144   free_buckets();
   131   BasicHashtable<F>::free_buckets();
   145 }
   132 }
   146 
   133 
   147 void BasicHashtable::free_buckets() {
   134 template <MEMFLAGS F> void BasicHashtable<F>::free_buckets() {
   148   if (NULL != _buckets) {
   135   if (NULL != _buckets) {
   149     // Don't delete the buckets in the shared space.  They aren't
   136     // Don't delete the buckets in the shared space.  They aren't
   150     // allocated by os::malloc
   137     // allocated by os::malloc
   151     if (!UseSharedSpaces ||
   138     if (!UseSharedSpaces ||
   152         !FileMapInfo::current_info()->is_in_shared_space(_buckets)) {
   139         !FileMapInfo::current_info()->is_in_shared_space(_buckets)) {
   153        FREE_C_HEAP_ARRAY(HashtableBucket, _buckets);
   140        FREE_C_HEAP_ARRAY(HashtableBucket, _buckets, F);
   154     }
   141     }
   155     _buckets = NULL;
   142     _buckets = NULL;
   156   }
   143   }
   157 }
   144 }
   158 
   145 
   159 
   146 
   160 // Reverse the order of elements in the hash buckets.
   147 // Reverse the order of elements in the hash buckets.
   161 
   148 
   162 void BasicHashtable::reverse() {
   149 template <MEMFLAGS F> void BasicHashtable<F>::reverse() {
   163 
   150 
   164   for (int i = 0; i < _table_size; ++i) {
   151   for (int i = 0; i < _table_size; ++i) {
   165     BasicHashtableEntry* new_list = NULL;
   152     BasicHashtableEntry<F>* new_list = NULL;
   166     BasicHashtableEntry* p = bucket(i);
   153     BasicHashtableEntry<F>* p = bucket(i);
   167     while (p != NULL) {
   154     while (p != NULL) {
   168       BasicHashtableEntry* next = p->next();
   155       BasicHashtableEntry<F>* next = p->next();
   169       p->set_next(new_list);
   156       p->set_next(new_list);
   170       new_list = p;
   157       new_list = p;
   171       p = next;
   158       p = next;
   172     }
   159     }
   173     *bucket_addr(i) = new_list;
   160     *bucket_addr(i) = new_list;
   175 }
   162 }
   176 
   163 
   177 
   164 
   178 // Copy the table to the shared space.
   165 // Copy the table to the shared space.
   179 
   166 
   180 void BasicHashtable::copy_table(char** top, char* end) {
   167 template <MEMFLAGS F> void BasicHashtable<F>::copy_table(char** top, char* end) {
   181 
   168 
   182   // Dump the hash table entries.
   169   // Dump the hash table entries.
   183 
   170 
   184   intptr_t *plen = (intptr_t*)(*top);
   171   intptr_t *plen = (intptr_t*)(*top);
   185   *top += sizeof(*plen);
   172   *top += sizeof(*plen);
   186 
   173 
   187   int i;
   174   int i;
   188   for (i = 0; i < _table_size; ++i) {
   175   for (i = 0; i < _table_size; ++i) {
   189     for (BasicHashtableEntry** p = _buckets[i].entry_addr();
   176     for (BasicHashtableEntry<F>** p = _buckets[i].entry_addr();
   190                               *p != NULL;
   177                               *p != NULL;
   191                                p = (*p)->next_addr()) {
   178                                p = (*p)->next_addr()) {
   192       if (*top + entry_size() > end) {
   179       if (*top + entry_size() > end) {
   193         report_out_of_shared_space(SharedMiscData);
   180         report_out_of_shared_space(SharedMiscData);
   194       }
   181       }
   195       *p = (BasicHashtableEntry*)memcpy(*top, *p, entry_size());
   182       *p = (BasicHashtableEntry<F>*)memcpy(*top, *p, entry_size());
   196       *top += entry_size();
   183       *top += entry_size();
   197     }
   184     }
   198   }
   185   }
   199   *plen = (char*)(*top) - (char*)plen - sizeof(*plen);
   186   *plen = (char*)(*top) - (char*)plen - sizeof(*plen);
   200 
   187 
   201   // Set the shared bit.
   188   // Set the shared bit.
   202 
   189 
   203   for (i = 0; i < _table_size; ++i) {
   190   for (i = 0; i < _table_size; ++i) {
   204     for (BasicHashtableEntry* p = bucket(i); p != NULL; p = p->next()) {
   191     for (BasicHashtableEntry<F>* p = bucket(i); p != NULL; p = p->next()) {
   205       p->set_shared();
   192       p->set_shared();
   206     }
   193     }
   207   }
   194   }
   208 }
   195 }
   209 
   196 
   210 
   197 
   211 
   198 
   212 // Reverse the order of elements in the hash buckets.
   199 // Reverse the order of elements in the hash buckets.
   213 
   200 
   214 template <class T> void Hashtable<T>::reverse(void* boundary) {
   201 template <class T, MEMFLAGS F> void Hashtable<T, F>::reverse(void* boundary) {
   215 
   202 
   216   for (int i = 0; i < table_size(); ++i) {
   203   for (int i = 0; i < this->table_size(); ++i) {
   217     HashtableEntry<T>* high_list = NULL;
   204     HashtableEntry<T, F>* high_list = NULL;
   218     HashtableEntry<T>* low_list = NULL;
   205     HashtableEntry<T, F>* low_list = NULL;
   219     HashtableEntry<T>* last_low_entry = NULL;
   206     HashtableEntry<T, F>* last_low_entry = NULL;
   220     HashtableEntry<T>* p = bucket(i);
   207     HashtableEntry<T, F>* p = bucket(i);
   221     while (p != NULL) {
   208     while (p != NULL) {
   222       HashtableEntry<T>* next = p->next();
   209       HashtableEntry<T, F>* next = p->next();
   223       if ((void*)p->literal() >= boundary) {
   210       if ((void*)p->literal() >= boundary) {
   224         p->set_next(high_list);
   211         p->set_next(high_list);
   225         high_list = p;
   212         high_list = p;
   226       } else {
   213       } else {
   227         p->set_next(low_list);
   214         p->set_next(low_list);
   242 }
   229 }
   243 
   230 
   244 
   231 
   245 // Dump the hash table buckets.
   232 // Dump the hash table buckets.
   246 
   233 
   247 void BasicHashtable::copy_buckets(char** top, char* end) {
   234 template <MEMFLAGS F> void BasicHashtable<F>::copy_buckets(char** top, char* end) {
   248   intptr_t len = _table_size * sizeof(HashtableBucket);
   235   intptr_t len = _table_size * sizeof(HashtableBucket<F>);
   249   *(intptr_t*)(*top) = len;
   236   *(intptr_t*)(*top) = len;
   250   *top += sizeof(intptr_t);
   237   *top += sizeof(intptr_t);
   251 
   238 
   252   *(intptr_t*)(*top) = _number_of_entries;
   239   *(intptr_t*)(*top) = _number_of_entries;
   253   *top += sizeof(intptr_t);
   240   *top += sizeof(intptr_t);
   254 
   241 
   255   if (*top + len > end) {
   242   if (*top + len > end) {
   256     report_out_of_shared_space(SharedMiscData);
   243     report_out_of_shared_space(SharedMiscData);
   257   }
   244   }
   258   _buckets = (HashtableBucket*)memcpy(*top, _buckets, len);
   245   _buckets = (HashtableBucket<F>*)memcpy(*top, _buckets, len);
   259   *top += len;
   246   *top += len;
   260 }
   247 }
   261 
   248 
   262 
   249 
   263 #ifndef PRODUCT
   250 #ifndef PRODUCT
   264 
   251 
   265 template <class T> void Hashtable<T>::print() {
   252 template <class T, MEMFLAGS F> void Hashtable<T, F>::print() {
   266   ResourceMark rm;
   253   ResourceMark rm;
   267 
   254 
   268   for (int i = 0; i < table_size(); i++) {
   255   for (int i = 0; i < BasicHashtable<F>::table_size(); i++) {
   269     HashtableEntry<T>* entry = bucket(i);
   256     HashtableEntry<T, F>* entry = bucket(i);
   270     while(entry != NULL) {
   257     while(entry != NULL) {
   271       tty->print("%d : ", i);
   258       tty->print("%d : ", i);
   272       entry->literal()->print();
   259       entry->literal()->print();
   273       tty->cr();
   260       tty->cr();
   274       entry = entry->next();
   261       entry = entry->next();
   275     }
   262     }
   276   }
   263   }
   277 }
   264 }
   278 
   265 
   279 
   266 
   280 void BasicHashtable::verify() {
   267 template <MEMFLAGS F> void BasicHashtable<F>::verify() {
   281   int count = 0;
   268   int count = 0;
   282   for (int i = 0; i < table_size(); i++) {
   269   for (int i = 0; i < table_size(); i++) {
   283     for (BasicHashtableEntry* p = bucket(i); p != NULL; p = p->next()) {
   270     for (BasicHashtableEntry<F>* p = bucket(i); p != NULL; p = p->next()) {
   284       ++count;
   271       ++count;
   285     }
   272     }
   286   }
   273   }
   287   assert(count == number_of_entries(), "number of hashtable entries incorrect");
   274   assert(count == number_of_entries(), "number of hashtable entries incorrect");
   288 }
   275 }
   291 #endif // PRODUCT
   278 #endif // PRODUCT
   292 
   279 
   293 
   280 
   294 #ifdef ASSERT
   281 #ifdef ASSERT
   295 
   282 
   296 void BasicHashtable::verify_lookup_length(double load) {
   283 template <MEMFLAGS F> void BasicHashtable<F>::verify_lookup_length(double load) {
   297   if ((double)_lookup_length / (double)_lookup_count > load * 2.0) {
   284   if ((double)_lookup_length / (double)_lookup_count > load * 2.0) {
   298     warning("Performance bug: SystemDictionary lookup_count=%d "
   285     warning("Performance bug: SystemDictionary lookup_count=%d "
   299             "lookup_length=%d average=%lf load=%f",
   286             "lookup_length=%d average=%lf load=%f",
   300             _lookup_count, _lookup_length,
   287             _lookup_count, _lookup_length,
   301             (double) _lookup_length / _lookup_count, load);
   288             (double) _lookup_length / _lookup_count, load);
   302   }
   289   }
   303 }
   290 }
   304 
   291 
   305 #endif
   292 #endif
   306 
       
   307 // Explicitly instantiate these types
   293 // Explicitly instantiate these types
   308 template class Hashtable<constantPoolOop>;
   294 template class Hashtable<constantPoolOop, mtClass>;
   309 template class Hashtable<Symbol*>;
   295 template class Hashtable<Symbol*, mtSymbol>;
   310 template class Hashtable<klassOop>;
   296 template class Hashtable<klassOop, mtClass>;
   311 template class Hashtable<oop>;
   297 template class Hashtable<oop, mtClass>;
   312 
   298 #ifdef SOLARIS
       
   299 template class Hashtable<oop, mtSymbol>;
       
   300 #endif
       
   301 template class Hashtable<oopDesc*, mtSymbol>;
       
   302 template class Hashtable<Symbol*, mtClass>;
       
   303 template class HashtableEntry<Symbol*, mtSymbol>;
       
   304 template class HashtableEntry<Symbol*, mtClass>;
       
   305 template class HashtableEntry<oop, mtSymbol>;
       
   306 template class BasicHashtableEntry<mtSymbol>;
       
   307 template class BasicHashtableEntry<mtCode>;
       
   308 template class BasicHashtable<mtClass>;
       
   309 template class BasicHashtable<mtSymbol>;
       
   310 template class BasicHashtable<mtCode>;
       
   311 template class BasicHashtable<mtInternal>;