jdk/src/share/native/java/lang/fdlibm/src/s_erf.c
changeset 10204 bbd2c5e0ce05
parent 10203 cca843a7d258
parent 10174 e63dffa79ddb
child 10205 de9223c94f9c
equal deleted inserted replaced
10203:cca843a7d258 10204:bbd2c5e0ce05
     1 
       
     2 /*
       
     3  * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
       
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     5  *
       
     6  * This code is free software; you can redistribute it and/or modify it
       
     7  * under the terms of the GNU General Public License version 2 only, as
       
     8  * published by the Free Software Foundation.  Oracle designates this
       
     9  * particular file as subject to the "Classpath" exception as provided
       
    10  * by Oracle in the LICENSE file that accompanied this code.
       
    11  *
       
    12  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    15  * version 2 for more details (a copy is included in the LICENSE file that
       
    16  * accompanied this code).
       
    17  *
       
    18  * You should have received a copy of the GNU General Public License version
       
    19  * 2 along with this work; if not, write to the Free Software Foundation,
       
    20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    21  *
       
    22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    23  * or visit www.oracle.com if you need additional information or have any
       
    24  * questions.
       
    25  */
       
    26 
       
    27 /* double erf(double x)
       
    28  * double erfc(double x)
       
    29  *                           x
       
    30  *                    2      |\
       
    31  *     erf(x)  =  ---------  | exp(-t*t)dt
       
    32  *                 sqrt(pi) \|
       
    33  *                           0
       
    34  *
       
    35  *     erfc(x) =  1-erf(x)
       
    36  *  Note that
       
    37  *              erf(-x) = -erf(x)
       
    38  *              erfc(-x) = 2 - erfc(x)
       
    39  *
       
    40  * Method:
       
    41  *      1. For |x| in [0, 0.84375]
       
    42  *          erf(x)  = x + x*R(x^2)
       
    43  *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
       
    44  *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
       
    45  *         where R = P/Q where P is an odd poly of degree 8 and
       
    46  *         Q is an odd poly of degree 10.
       
    47  *                                               -57.90
       
    48  *                      | R - (erf(x)-x)/x | <= 2
       
    49  *
       
    50  *
       
    51  *         Remark. The formula is derived by noting
       
    52  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
       
    53  *         and that
       
    54  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
       
    55  *         is close to one. The interval is chosen because the fix
       
    56  *         point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
       
    57  *         near 0.6174), and by some experiment, 0.84375 is chosen to
       
    58  *         guarantee the error is less than one ulp for erf.
       
    59  *
       
    60  *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
       
    61  *         c = 0.84506291151 rounded to single (24 bits)
       
    62  *              erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
       
    63  *              erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
       
    64  *                        1+(c+P1(s)/Q1(s))    if x < 0
       
    65  *              |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
       
    66  *         Remark: here we use the taylor series expansion at x=1.
       
    67  *              erf(1+s) = erf(1) + s*Poly(s)
       
    68  *                       = 0.845.. + P1(s)/Q1(s)
       
    69  *         That is, we use rational approximation to approximate
       
    70  *                      erf(1+s) - (c = (single)0.84506291151)
       
    71  *         Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
       
    72  *         where
       
    73  *              P1(s) = degree 6 poly in s
       
    74  *              Q1(s) = degree 6 poly in s
       
    75  *
       
    76  *      3. For x in [1.25,1/0.35(~2.857143)],
       
    77  *              erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
       
    78  *              erf(x)  = 1 - erfc(x)
       
    79  *         where
       
    80  *              R1(z) = degree 7 poly in z, (z=1/x^2)
       
    81  *              S1(z) = degree 8 poly in z
       
    82  *
       
    83  *      4. For x in [1/0.35,28]
       
    84  *              erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
       
    85  *                      = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
       
    86  *                      = 2.0 - tiny            (if x <= -6)
       
    87  *              erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
       
    88  *              erf(x)  = sign(x)*(1.0 - tiny)
       
    89  *         where
       
    90  *              R2(z) = degree 6 poly in z, (z=1/x^2)
       
    91  *              S2(z) = degree 7 poly in z
       
    92  *
       
    93  *      Note1:
       
    94  *         To compute exp(-x*x-0.5625+R/S), let s be a single
       
    95  *         precision number and s := x; then
       
    96  *              -x*x = -s*s + (s-x)*(s+x)
       
    97  *              exp(-x*x-0.5626+R/S) =
       
    98  *                      exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
       
    99  *      Note2:
       
   100  *         Here 4 and 5 make use of the asymptotic series
       
   101  *                        exp(-x*x)
       
   102  *              erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
       
   103  *                        x*sqrt(pi)
       
   104  *         We use rational approximation to approximate
       
   105  *              g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
       
   106  *         Here is the error bound for R1/S1 and R2/S2
       
   107  *              |R1/S1 - f(x)|  < 2**(-62.57)
       
   108  *              |R2/S2 - f(x)|  < 2**(-61.52)
       
   109  *
       
   110  *      5. For inf > x >= 28
       
   111  *              erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
       
   112  *              erfc(x) = tiny*tiny (raise underflow) if x > 0
       
   113  *                      = 2 - tiny if x<0
       
   114  *
       
   115  *      7. Special case:
       
   116  *              erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
       
   117  *              erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
       
   118  *              erfc/erf(NaN) is NaN
       
   119  */
       
   120 
       
   121 
       
   122 #include "fdlibm.h"
       
   123 
       
   124 #ifdef __STDC__
       
   125 static const double
       
   126 #else
       
   127 static double
       
   128 #endif
       
   129 tiny        = 1e-300,
       
   130 half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
       
   131 one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
       
   132 two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
       
   133         /* c = (float)0.84506291151 */
       
   134 erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
       
   135 /*
       
   136  * Coefficients for approximation to  erf on [0,0.84375]
       
   137  */
       
   138 efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
       
   139 efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
       
   140 pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
       
   141 pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
       
   142 pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
       
   143 pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
       
   144 pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
       
   145 qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
       
   146 qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
       
   147 qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
       
   148 qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
       
   149 qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
       
   150 /*
       
   151  * Coefficients for approximation to  erf  in [0.84375,1.25]
       
   152  */
       
   153 pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
       
   154 pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
       
   155 pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
       
   156 pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
       
   157 pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
       
   158 pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
       
   159 pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
       
   160 qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
       
   161 qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
       
   162 qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
       
   163 qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
       
   164 qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
       
   165 qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
       
   166 /*
       
   167  * Coefficients for approximation to  erfc in [1.25,1/0.35]
       
   168  */
       
   169 ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
       
   170 ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
       
   171 ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
       
   172 ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
       
   173 ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
       
   174 ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
       
   175 ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
       
   176 ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
       
   177 sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
       
   178 sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
       
   179 sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
       
   180 sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
       
   181 sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
       
   182 sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
       
   183 sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
       
   184 sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
       
   185 /*
       
   186  * Coefficients for approximation to  erfc in [1/.35,28]
       
   187  */
       
   188 rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
       
   189 rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
       
   190 rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
       
   191 rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
       
   192 rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
       
   193 rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
       
   194 rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
       
   195 sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
       
   196 sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
       
   197 sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
       
   198 sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
       
   199 sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
       
   200 sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
       
   201 sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
       
   202 
       
   203 #ifdef __STDC__
       
   204         double erf(double x)
       
   205 #else
       
   206         double erf(x)
       
   207         double x;
       
   208 #endif
       
   209 {
       
   210         int hx,ix,i;
       
   211         double R,S,P,Q,s,y,z,r;
       
   212         hx = __HI(x);
       
   213         ix = hx&0x7fffffff;
       
   214         if(ix>=0x7ff00000) {            /* erf(nan)=nan */
       
   215             i = ((unsigned)hx>>31)<<1;
       
   216             return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
       
   217         }
       
   218 
       
   219         if(ix < 0x3feb0000) {           /* |x|<0.84375 */
       
   220             if(ix < 0x3e300000) {       /* |x|<2**-28 */
       
   221                 if (ix < 0x00800000)
       
   222                     return 0.125*(8.0*x+efx8*x);  /*avoid underflow */
       
   223                 return x + efx*x;
       
   224             }
       
   225             z = x*x;
       
   226             r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
       
   227             s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
       
   228             y = r/s;
       
   229             return x + x*y;
       
   230         }
       
   231         if(ix < 0x3ff40000) {           /* 0.84375 <= |x| < 1.25 */
       
   232             s = fabs(x)-one;
       
   233             P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
       
   234             Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
       
   235             if(hx>=0) return erx + P/Q; else return -erx - P/Q;
       
   236         }
       
   237         if (ix >= 0x40180000) {         /* inf>|x|>=6 */
       
   238             if(hx>=0) return one-tiny; else return tiny-one;
       
   239         }
       
   240         x = fabs(x);
       
   241         s = one/(x*x);
       
   242         if(ix< 0x4006DB6E) {    /* |x| < 1/0.35 */
       
   243             R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
       
   244                                 ra5+s*(ra6+s*ra7))))));
       
   245             S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
       
   246                                 sa5+s*(sa6+s*(sa7+s*sa8)))))));
       
   247         } else {        /* |x| >= 1/0.35 */
       
   248             R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
       
   249                                 rb5+s*rb6)))));
       
   250             S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
       
   251                                 sb5+s*(sb6+s*sb7))))));
       
   252         }
       
   253         z  = x;
       
   254         __LO(z) = 0;
       
   255         r  =  __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
       
   256         if(hx>=0) return one-r/x; else return  r/x-one;
       
   257 }
       
   258 
       
   259 #ifdef __STDC__
       
   260         double erfc(double x)
       
   261 #else
       
   262         double erfc(x)
       
   263         double x;
       
   264 #endif
       
   265 {
       
   266         int hx,ix;
       
   267         double R,S,P,Q,s,y,z,r;
       
   268         hx = __HI(x);
       
   269         ix = hx&0x7fffffff;
       
   270         if(ix>=0x7ff00000) {                    /* erfc(nan)=nan */
       
   271                                                 /* erfc(+-inf)=0,2 */
       
   272             return (double)(((unsigned)hx>>31)<<1)+one/x;
       
   273         }
       
   274 
       
   275         if(ix < 0x3feb0000) {           /* |x|<0.84375 */
       
   276             if(ix < 0x3c700000)         /* |x|<2**-56 */
       
   277                 return one-x;
       
   278             z = x*x;
       
   279             r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
       
   280             s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
       
   281             y = r/s;
       
   282             if(hx < 0x3fd00000) {       /* x<1/4 */
       
   283                 return one-(x+x*y);
       
   284             } else {
       
   285                 r = x*y;
       
   286                 r += (x-half);
       
   287                 return half - r ;
       
   288             }
       
   289         }
       
   290         if(ix < 0x3ff40000) {           /* 0.84375 <= |x| < 1.25 */
       
   291             s = fabs(x)-one;
       
   292             P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
       
   293             Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
       
   294             if(hx>=0) {
       
   295                 z  = one-erx; return z - P/Q;
       
   296             } else {
       
   297                 z = erx+P/Q; return one+z;
       
   298             }
       
   299         }
       
   300         if (ix < 0x403c0000) {          /* |x|<28 */
       
   301             x = fabs(x);
       
   302             s = one/(x*x);
       
   303             if(ix< 0x4006DB6D) {        /* |x| < 1/.35 ~ 2.857143*/
       
   304                 R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
       
   305                                 ra5+s*(ra6+s*ra7))))));
       
   306                 S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
       
   307                                 sa5+s*(sa6+s*(sa7+s*sa8)))))));
       
   308             } else {                    /* |x| >= 1/.35 ~ 2.857143 */
       
   309                 if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
       
   310                 R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
       
   311                                 rb5+s*rb6)))));
       
   312                 S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
       
   313                                 sb5+s*(sb6+s*sb7))))));
       
   314             }
       
   315             z  = x;
       
   316             __LO(z)  = 0;
       
   317             r  =  __ieee754_exp(-z*z-0.5625)*
       
   318                         __ieee754_exp((z-x)*(z+x)+R/S);
       
   319             if(hx>0) return r/x; else return two-r/x;
       
   320         } else {
       
   321             if(hx>0) return tiny*tiny; else return two-tiny;
       
   322         }
       
   323 }