hotspot/src/share/vm/gc/g1/g1Policy.cpp
changeset 38086 b8b1e0f65aed
parent 38085 795e6a867668
parent 38079 fd24ad51113a
child 38087 377153ad27c8
equal deleted inserted replaced
38085:795e6a867668 38086:b8b1e0f65aed
     1 /*
       
     2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "gc/g1/concurrentG1Refine.hpp"
       
    27 #include "gc/g1/concurrentMarkThread.inline.hpp"
       
    28 #include "gc/g1/g1Analytics.hpp"
       
    29 #include "gc/g1/g1CollectedHeap.inline.hpp"
       
    30 #include "gc/g1/g1CollectionSet.hpp"
       
    31 #include "gc/g1/g1ConcurrentMark.hpp"
       
    32 #include "gc/g1/g1IHOPControl.hpp"
       
    33 #include "gc/g1/g1GCPhaseTimes.hpp"
       
    34 #include "gc/g1/g1Policy.hpp"
       
    35 #include "gc/g1/g1YoungGenSizer.hpp"
       
    36 #include "gc/g1/heapRegion.inline.hpp"
       
    37 #include "gc/g1/heapRegionRemSet.hpp"
       
    38 #include "gc/shared/gcPolicyCounters.hpp"
       
    39 #include "runtime/arguments.hpp"
       
    40 #include "runtime/java.hpp"
       
    41 #include "runtime/mutexLocker.hpp"
       
    42 #include "utilities/debug.hpp"
       
    43 #include "utilities/pair.hpp"
       
    44 
       
    45 G1Policy::G1Policy() :
       
    46   _predictor(G1ConfidencePercent / 100.0),
       
    47   _analytics(new G1Analytics(&_predictor)),
       
    48   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
       
    49   _ihop_control(create_ihop_control(&_predictor)),
       
    50   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 3)),
       
    51   _young_list_fixed_length(0),
       
    52   _short_lived_surv_rate_group(new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary)),
       
    53   _survivor_surv_rate_group(new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary)),
       
    54   _reserve_factor((double) G1ReservePercent / 100.0),
       
    55   _reserve_regions(0),
       
    56   _rs_lengths_prediction(0),
       
    57   _bytes_allocated_in_old_since_last_gc(0),
       
    58   _initial_mark_to_mixed(),
       
    59   _collection_set(NULL),
       
    60   _g1(NULL),
       
    61   _phase_times(new G1GCPhaseTimes(ParallelGCThreads)),
       
    62   _tenuring_threshold(MaxTenuringThreshold),
       
    63   _max_survivor_regions(0),
       
    64   _survivors_age_table(true) { }
       
    65 
       
    66 G1Policy::~G1Policy() {
       
    67   delete _ihop_control;
       
    68 }
       
    69 
       
    70 G1CollectorState* G1Policy::collector_state() const { return _g1->collector_state(); }
       
    71 
       
    72 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
       
    73   _g1 = g1h;
       
    74   _collection_set = collection_set;
       
    75 
       
    76   assert(Heap_lock->owned_by_self(), "Locking discipline.");
       
    77 
       
    78   if (!adaptive_young_list_length()) {
       
    79     _young_list_fixed_length = _young_gen_sizer.min_desired_young_length();
       
    80   }
       
    81   _young_gen_sizer.adjust_max_new_size(_g1->max_regions());
       
    82 
       
    83   _free_regions_at_end_of_collection = _g1->num_free_regions();
       
    84 
       
    85   update_young_list_max_and_target_length();
       
    86   // We may immediately start allocating regions and placing them on the
       
    87   // collection set list. Initialize the per-collection set info
       
    88   _collection_set->start_incremental_building();
       
    89 }
       
    90 
       
    91 void G1Policy::note_gc_start() {
       
    92   phase_times()->note_gc_start();
       
    93 }
       
    94 
       
    95 bool G1Policy::predict_will_fit(uint young_length,
       
    96                                 double base_time_ms,
       
    97                                 uint base_free_regions,
       
    98                                 double target_pause_time_ms) const {
       
    99   if (young_length >= base_free_regions) {
       
   100     // end condition 1: not enough space for the young regions
       
   101     return false;
       
   102   }
       
   103 
       
   104   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
       
   105   size_t bytes_to_copy =
       
   106                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
       
   107   double copy_time_ms = _analytics->predict_object_copy_time_ms(bytes_to_copy,
       
   108                                                                 collector_state()->during_concurrent_mark());
       
   109   double young_other_time_ms = _analytics->predict_young_other_time_ms(young_length);
       
   110   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
       
   111   if (pause_time_ms > target_pause_time_ms) {
       
   112     // end condition 2: prediction is over the target pause time
       
   113     return false;
       
   114   }
       
   115 
       
   116   size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes;
       
   117 
       
   118   // When copying, we will likely need more bytes free than is live in the region.
       
   119   // Add some safety margin to factor in the confidence of our guess, and the
       
   120   // natural expected waste.
       
   121   // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
       
   122   // of the calculation: the lower the confidence, the more headroom.
       
   123   // (100 + TargetPLABWastePct) represents the increase in expected bytes during
       
   124   // copying due to anticipated waste in the PLABs.
       
   125   double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
       
   126   size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
       
   127 
       
   128   if (expected_bytes_to_copy > free_bytes) {
       
   129     // end condition 3: out-of-space
       
   130     return false;
       
   131   }
       
   132 
       
   133   // success!
       
   134   return true;
       
   135 }
       
   136 
       
   137 void G1Policy::record_new_heap_size(uint new_number_of_regions) {
       
   138   // re-calculate the necessary reserve
       
   139   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
       
   140   // We use ceiling so that if reserve_regions_d is > 0.0 (but
       
   141   // smaller than 1.0) we'll get 1.
       
   142   _reserve_regions = (uint) ceil(reserve_regions_d);
       
   143 
       
   144   _young_gen_sizer.heap_size_changed(new_number_of_regions);
       
   145 
       
   146   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
       
   147 }
       
   148 
       
   149 uint G1Policy::calculate_young_list_desired_min_length(uint base_min_length) const {
       
   150   uint desired_min_length = 0;
       
   151   if (adaptive_young_list_length()) {
       
   152     if (_analytics->num_alloc_rate_ms() > 3) {
       
   153       double now_sec = os::elapsedTime();
       
   154       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
       
   155       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
       
   156       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
       
   157     } else {
       
   158       // otherwise we don't have enough info to make the prediction
       
   159     }
       
   160   }
       
   161   desired_min_length += base_min_length;
       
   162   // make sure we don't go below any user-defined minimum bound
       
   163   return MAX2(_young_gen_sizer.min_desired_young_length(), desired_min_length);
       
   164 }
       
   165 
       
   166 uint G1Policy::calculate_young_list_desired_max_length() const {
       
   167   // Here, we might want to also take into account any additional
       
   168   // constraints (i.e., user-defined minimum bound). Currently, we
       
   169   // effectively don't set this bound.
       
   170   return _young_gen_sizer.max_desired_young_length();
       
   171 }
       
   172 
       
   173 uint G1Policy::update_young_list_max_and_target_length() {
       
   174   return update_young_list_max_and_target_length(_analytics->predict_rs_lengths());
       
   175 }
       
   176 
       
   177 uint G1Policy::update_young_list_max_and_target_length(size_t rs_lengths) {
       
   178   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
       
   179   update_max_gc_locker_expansion();
       
   180   return unbounded_target_length;
       
   181 }
       
   182 
       
   183 uint G1Policy::update_young_list_target_length(size_t rs_lengths) {
       
   184   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
       
   185   _young_list_target_length = young_lengths.first;
       
   186   return young_lengths.second;
       
   187 }
       
   188 
       
   189 G1Policy::YoungTargetLengths G1Policy::young_list_target_lengths(size_t rs_lengths) const {
       
   190   YoungTargetLengths result;
       
   191 
       
   192   // Calculate the absolute and desired min bounds first.
       
   193 
       
   194   // This is how many young regions we already have (currently: the survivors).
       
   195   const uint base_min_length = _g1->young_list()->survivor_length();
       
   196   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
       
   197   // This is the absolute minimum young length. Ensure that we
       
   198   // will at least have one eden region available for allocation.
       
   199   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
       
   200   // If we shrank the young list target it should not shrink below the current size.
       
   201   desired_min_length = MAX2(desired_min_length, absolute_min_length);
       
   202   // Calculate the absolute and desired max bounds.
       
   203 
       
   204   uint desired_max_length = calculate_young_list_desired_max_length();
       
   205 
       
   206   uint young_list_target_length = 0;
       
   207   if (adaptive_young_list_length()) {
       
   208     if (collector_state()->gcs_are_young()) {
       
   209       young_list_target_length =
       
   210                         calculate_young_list_target_length(rs_lengths,
       
   211                                                            base_min_length,
       
   212                                                            desired_min_length,
       
   213                                                            desired_max_length);
       
   214     } else {
       
   215       // Don't calculate anything and let the code below bound it to
       
   216       // the desired_min_length, i.e., do the next GC as soon as
       
   217       // possible to maximize how many old regions we can add to it.
       
   218     }
       
   219   } else {
       
   220     // The user asked for a fixed young gen so we'll fix the young gen
       
   221     // whether the next GC is young or mixed.
       
   222     young_list_target_length = _young_list_fixed_length;
       
   223   }
       
   224 
       
   225   result.second = young_list_target_length;
       
   226 
       
   227   // We will try our best not to "eat" into the reserve.
       
   228   uint absolute_max_length = 0;
       
   229   if (_free_regions_at_end_of_collection > _reserve_regions) {
       
   230     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
       
   231   }
       
   232   if (desired_max_length > absolute_max_length) {
       
   233     desired_max_length = absolute_max_length;
       
   234   }
       
   235 
       
   236   // Make sure we don't go over the desired max length, nor under the
       
   237   // desired min length. In case they clash, desired_min_length wins
       
   238   // which is why that test is second.
       
   239   if (young_list_target_length > desired_max_length) {
       
   240     young_list_target_length = desired_max_length;
       
   241   }
       
   242   if (young_list_target_length < desired_min_length) {
       
   243     young_list_target_length = desired_min_length;
       
   244   }
       
   245 
       
   246   assert(young_list_target_length > base_min_length,
       
   247          "we should be able to allocate at least one eden region");
       
   248   assert(young_list_target_length >= absolute_min_length, "post-condition");
       
   249 
       
   250   result.first = young_list_target_length;
       
   251   return result;
       
   252 }
       
   253 
       
   254 uint
       
   255 G1Policy::calculate_young_list_target_length(size_t rs_lengths,
       
   256                                              uint base_min_length,
       
   257                                              uint desired_min_length,
       
   258                                              uint desired_max_length) const {
       
   259   assert(adaptive_young_list_length(), "pre-condition");
       
   260   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
       
   261 
       
   262   // In case some edge-condition makes the desired max length too small...
       
   263   if (desired_max_length <= desired_min_length) {
       
   264     return desired_min_length;
       
   265   }
       
   266 
       
   267   // We'll adjust min_young_length and max_young_length not to include
       
   268   // the already allocated young regions (i.e., so they reflect the
       
   269   // min and max eden regions we'll allocate). The base_min_length
       
   270   // will be reflected in the predictions by the
       
   271   // survivor_regions_evac_time prediction.
       
   272   assert(desired_min_length > base_min_length, "invariant");
       
   273   uint min_young_length = desired_min_length - base_min_length;
       
   274   assert(desired_max_length > base_min_length, "invariant");
       
   275   uint max_young_length = desired_max_length - base_min_length;
       
   276 
       
   277   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
       
   278   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
       
   279   size_t pending_cards = _analytics->predict_pending_cards();
       
   280   size_t adj_rs_lengths = rs_lengths + _analytics->predict_rs_length_diff();
       
   281   size_t scanned_cards = _analytics->predict_card_num(adj_rs_lengths, /* gcs_are_young */ true);
       
   282   double base_time_ms =
       
   283     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
       
   284     survivor_regions_evac_time;
       
   285   uint available_free_regions = _free_regions_at_end_of_collection;
       
   286   uint base_free_regions = 0;
       
   287   if (available_free_regions > _reserve_regions) {
       
   288     base_free_regions = available_free_regions - _reserve_regions;
       
   289   }
       
   290 
       
   291   // Here, we will make sure that the shortest young length that
       
   292   // makes sense fits within the target pause time.
       
   293 
       
   294   if (predict_will_fit(min_young_length, base_time_ms,
       
   295                        base_free_regions, target_pause_time_ms)) {
       
   296     // The shortest young length will fit into the target pause time;
       
   297     // we'll now check whether the absolute maximum number of young
       
   298     // regions will fit in the target pause time. If not, we'll do
       
   299     // a binary search between min_young_length and max_young_length.
       
   300     if (predict_will_fit(max_young_length, base_time_ms,
       
   301                          base_free_regions, target_pause_time_ms)) {
       
   302       // The maximum young length will fit into the target pause time.
       
   303       // We are done so set min young length to the maximum length (as
       
   304       // the result is assumed to be returned in min_young_length).
       
   305       min_young_length = max_young_length;
       
   306     } else {
       
   307       // The maximum possible number of young regions will not fit within
       
   308       // the target pause time so we'll search for the optimal
       
   309       // length. The loop invariants are:
       
   310       //
       
   311       // min_young_length < max_young_length
       
   312       // min_young_length is known to fit into the target pause time
       
   313       // max_young_length is known not to fit into the target pause time
       
   314       //
       
   315       // Going into the loop we know the above hold as we've just
       
   316       // checked them. Every time around the loop we check whether
       
   317       // the middle value between min_young_length and
       
   318       // max_young_length fits into the target pause time. If it
       
   319       // does, it becomes the new min. If it doesn't, it becomes
       
   320       // the new max. This way we maintain the loop invariants.
       
   321 
       
   322       assert(min_young_length < max_young_length, "invariant");
       
   323       uint diff = (max_young_length - min_young_length) / 2;
       
   324       while (diff > 0) {
       
   325         uint young_length = min_young_length + diff;
       
   326         if (predict_will_fit(young_length, base_time_ms,
       
   327                              base_free_regions, target_pause_time_ms)) {
       
   328           min_young_length = young_length;
       
   329         } else {
       
   330           max_young_length = young_length;
       
   331         }
       
   332         assert(min_young_length <  max_young_length, "invariant");
       
   333         diff = (max_young_length - min_young_length) / 2;
       
   334       }
       
   335       // The results is min_young_length which, according to the
       
   336       // loop invariants, should fit within the target pause time.
       
   337 
       
   338       // These are the post-conditions of the binary search above:
       
   339       assert(min_young_length < max_young_length,
       
   340              "otherwise we should have discovered that max_young_length "
       
   341              "fits into the pause target and not done the binary search");
       
   342       assert(predict_will_fit(min_young_length, base_time_ms,
       
   343                               base_free_regions, target_pause_time_ms),
       
   344              "min_young_length, the result of the binary search, should "
       
   345              "fit into the pause target");
       
   346       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
       
   347                                base_free_regions, target_pause_time_ms),
       
   348              "min_young_length, the result of the binary search, should be "
       
   349              "optimal, so no larger length should fit into the pause target");
       
   350     }
       
   351   } else {
       
   352     // Even the minimum length doesn't fit into the pause time
       
   353     // target, return it as the result nevertheless.
       
   354   }
       
   355   return base_min_length + min_young_length;
       
   356 }
       
   357 
       
   358 double G1Policy::predict_survivor_regions_evac_time() const {
       
   359   double survivor_regions_evac_time = 0.0;
       
   360   for (HeapRegion * r = _g1->young_list()->first_survivor_region();
       
   361        r != NULL && r != _g1->young_list()->last_survivor_region()->get_next_young_region();
       
   362        r = r->get_next_young_region()) {
       
   363     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, collector_state()->gcs_are_young());
       
   364   }
       
   365   return survivor_regions_evac_time;
       
   366 }
       
   367 
       
   368 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_lengths) {
       
   369   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
       
   370 
       
   371   if (rs_lengths > _rs_lengths_prediction) {
       
   372     // add 10% to avoid having to recalculate often
       
   373     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
       
   374     update_rs_lengths_prediction(rs_lengths_prediction);
       
   375 
       
   376     update_young_list_max_and_target_length(rs_lengths_prediction);
       
   377   }
       
   378 }
       
   379 
       
   380 void G1Policy::update_rs_lengths_prediction() {
       
   381   update_rs_lengths_prediction(_analytics->predict_rs_lengths());
       
   382 }
       
   383 
       
   384 void G1Policy::update_rs_lengths_prediction(size_t prediction) {
       
   385   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
       
   386     _rs_lengths_prediction = prediction;
       
   387   }
       
   388 }
       
   389 
       
   390 #ifndef PRODUCT
       
   391 bool G1Policy::verify_young_ages() {
       
   392   HeapRegion* head = _g1->young_list()->first_region();
       
   393   return
       
   394     verify_young_ages(head, _short_lived_surv_rate_group);
       
   395   // also call verify_young_ages on any additional surv rate groups
       
   396 }
       
   397 
       
   398 bool G1Policy::verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group) {
       
   399   guarantee( surv_rate_group != NULL, "pre-condition" );
       
   400 
       
   401   const char* name = surv_rate_group->name();
       
   402   bool ret = true;
       
   403   int prev_age = -1;
       
   404 
       
   405   for (HeapRegion* curr = head;
       
   406        curr != NULL;
       
   407        curr = curr->get_next_young_region()) {
       
   408     SurvRateGroup* group = curr->surv_rate_group();
       
   409     if (group == NULL && !curr->is_survivor()) {
       
   410       log_error(gc, verify)("## %s: encountered NULL surv_rate_group", name);
       
   411       ret = false;
       
   412     }
       
   413 
       
   414     if (surv_rate_group == group) {
       
   415       int age = curr->age_in_surv_rate_group();
       
   416 
       
   417       if (age < 0) {
       
   418         log_error(gc, verify)("## %s: encountered negative age", name);
       
   419         ret = false;
       
   420       }
       
   421 
       
   422       if (age <= prev_age) {
       
   423         log_error(gc, verify)("## %s: region ages are not strictly increasing (%d, %d)", name, age, prev_age);
       
   424         ret = false;
       
   425       }
       
   426       prev_age = age;
       
   427     }
       
   428   }
       
   429 
       
   430   return ret;
       
   431 }
       
   432 #endif // PRODUCT
       
   433 
       
   434 void G1Policy::record_full_collection_start() {
       
   435   _full_collection_start_sec = os::elapsedTime();
       
   436   // Release the future to-space so that it is available for compaction into.
       
   437   collector_state()->set_full_collection(true);
       
   438 }
       
   439 
       
   440 void G1Policy::record_full_collection_end() {
       
   441   // Consider this like a collection pause for the purposes of allocation
       
   442   // since last pause.
       
   443   double end_sec = os::elapsedTime();
       
   444   double full_gc_time_sec = end_sec - _full_collection_start_sec;
       
   445   double full_gc_time_ms = full_gc_time_sec * 1000.0;
       
   446 
       
   447   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
       
   448 
       
   449   collector_state()->set_full_collection(false);
       
   450 
       
   451   // "Nuke" the heuristics that control the young/mixed GC
       
   452   // transitions and make sure we start with young GCs after the Full GC.
       
   453   collector_state()->set_gcs_are_young(true);
       
   454   collector_state()->set_last_young_gc(false);
       
   455   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
       
   456   collector_state()->set_during_initial_mark_pause(false);
       
   457   collector_state()->set_in_marking_window(false);
       
   458   collector_state()->set_in_marking_window_im(false);
       
   459 
       
   460   _short_lived_surv_rate_group->start_adding_regions();
       
   461   // also call this on any additional surv rate groups
       
   462 
       
   463   _free_regions_at_end_of_collection = _g1->num_free_regions();
       
   464   // Reset survivors SurvRateGroup.
       
   465   _survivor_surv_rate_group->reset();
       
   466   update_young_list_max_and_target_length();
       
   467   update_rs_lengths_prediction();
       
   468   cset_chooser()->clear();
       
   469 
       
   470   _bytes_allocated_in_old_since_last_gc = 0;
       
   471 
       
   472   record_pause(FullGC, _full_collection_start_sec, end_sec);
       
   473 }
       
   474 
       
   475 void G1Policy::record_collection_pause_start(double start_time_sec) {
       
   476   // We only need to do this here as the policy will only be applied
       
   477   // to the GC we're about to start. so, no point is calculating this
       
   478   // every time we calculate / recalculate the target young length.
       
   479   update_survivors_policy();
       
   480 
       
   481   assert(_g1->used() == _g1->recalculate_used(),
       
   482          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
       
   483          _g1->used(), _g1->recalculate_used());
       
   484 
       
   485   phase_times()->record_cur_collection_start_sec(start_time_sec);
       
   486   _pending_cards = _g1->pending_card_num();
       
   487 
       
   488   _collection_set->reset_bytes_used_before();
       
   489   _bytes_copied_during_gc = 0;
       
   490 
       
   491   collector_state()->set_last_gc_was_young(false);
       
   492 
       
   493   // do that for any other surv rate groups
       
   494   _short_lived_surv_rate_group->stop_adding_regions();
       
   495   _survivors_age_table.clear();
       
   496 
       
   497   assert( verify_young_ages(), "region age verification" );
       
   498 }
       
   499 
       
   500 void G1Policy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
       
   501   collector_state()->set_during_marking(true);
       
   502   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
       
   503   collector_state()->set_during_initial_mark_pause(false);
       
   504 }
       
   505 
       
   506 void G1Policy::record_concurrent_mark_remark_start() {
       
   507   _mark_remark_start_sec = os::elapsedTime();
       
   508   collector_state()->set_during_marking(false);
       
   509 }
       
   510 
       
   511 void G1Policy::record_concurrent_mark_remark_end() {
       
   512   double end_time_sec = os::elapsedTime();
       
   513   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
       
   514   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
       
   515   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
       
   516 
       
   517   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
       
   518 }
       
   519 
       
   520 void G1Policy::record_concurrent_mark_cleanup_start() {
       
   521   _mark_cleanup_start_sec = os::elapsedTime();
       
   522 }
       
   523 
       
   524 void G1Policy::record_concurrent_mark_cleanup_completed() {
       
   525   bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc",
       
   526                                                               "skip last young-only gc");
       
   527   collector_state()->set_last_young_gc(should_continue_with_reclaim);
       
   528   // We skip the marking phase.
       
   529   if (!should_continue_with_reclaim) {
       
   530     abort_time_to_mixed_tracking();
       
   531   }
       
   532   collector_state()->set_in_marking_window(false);
       
   533 }
       
   534 
       
   535 double G1Policy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
       
   536   return phase_times()->average_time_ms(phase);
       
   537 }
       
   538 
       
   539 double G1Policy::young_other_time_ms() const {
       
   540   return phase_times()->young_cset_choice_time_ms() +
       
   541          phase_times()->young_free_cset_time_ms();
       
   542 }
       
   543 
       
   544 double G1Policy::non_young_other_time_ms() const {
       
   545   return phase_times()->non_young_cset_choice_time_ms() +
       
   546          phase_times()->non_young_free_cset_time_ms();
       
   547 
       
   548 }
       
   549 
       
   550 double G1Policy::other_time_ms(double pause_time_ms) const {
       
   551   return pause_time_ms -
       
   552          average_time_ms(G1GCPhaseTimes::UpdateRS) -
       
   553          average_time_ms(G1GCPhaseTimes::ScanRS) -
       
   554          average_time_ms(G1GCPhaseTimes::ObjCopy) -
       
   555          average_time_ms(G1GCPhaseTimes::Termination);
       
   556 }
       
   557 
       
   558 double G1Policy::constant_other_time_ms(double pause_time_ms) const {
       
   559   return other_time_ms(pause_time_ms) - young_other_time_ms() - non_young_other_time_ms();
       
   560 }
       
   561 
       
   562 CollectionSetChooser* G1Policy::cset_chooser() const {
       
   563   return _collection_set->cset_chooser();
       
   564 }
       
   565 
       
   566 bool G1Policy::about_to_start_mixed_phase() const {
       
   567   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
       
   568 }
       
   569 
       
   570 bool G1Policy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
       
   571   if (about_to_start_mixed_phase()) {
       
   572     return false;
       
   573   }
       
   574 
       
   575   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
       
   576 
       
   577   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
       
   578   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
       
   579   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
       
   580 
       
   581   bool result = false;
       
   582   if (marking_request_bytes > marking_initiating_used_threshold) {
       
   583     result = collector_state()->gcs_are_young() && !collector_state()->last_young_gc();
       
   584     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
       
   585                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
       
   586                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source);
       
   587   }
       
   588 
       
   589   return result;
       
   590 }
       
   591 
       
   592 // Anything below that is considered to be zero
       
   593 #define MIN_TIMER_GRANULARITY 0.0000001
       
   594 
       
   595 void G1Policy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
       
   596   double end_time_sec = os::elapsedTime();
       
   597 
       
   598   size_t cur_used_bytes = _g1->used();
       
   599   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
       
   600   bool last_pause_included_initial_mark = false;
       
   601   bool update_stats = !_g1->evacuation_failed();
       
   602 
       
   603   NOT_PRODUCT(_short_lived_surv_rate_group->print());
       
   604 
       
   605   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
       
   606 
       
   607   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
       
   608   if (last_pause_included_initial_mark) {
       
   609     record_concurrent_mark_init_end(0.0);
       
   610   } else {
       
   611     maybe_start_marking();
       
   612   }
       
   613 
       
   614   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
       
   615   if (app_time_ms < MIN_TIMER_GRANULARITY) {
       
   616     // This usually happens due to the timer not having the required
       
   617     // granularity. Some Linuxes are the usual culprits.
       
   618     // We'll just set it to something (arbitrarily) small.
       
   619     app_time_ms = 1.0;
       
   620   }
       
   621 
       
   622   if (update_stats) {
       
   623     // We maintain the invariant that all objects allocated by mutator
       
   624     // threads will be allocated out of eden regions. So, we can use
       
   625     // the eden region number allocated since the previous GC to
       
   626     // calculate the application's allocate rate. The only exception
       
   627     // to that is humongous objects that are allocated separately. But
       
   628     // given that humongous object allocations do not really affect
       
   629     // either the pause's duration nor when the next pause will take
       
   630     // place we can safely ignore them here.
       
   631     uint regions_allocated = _collection_set->eden_region_length();
       
   632     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
       
   633     _analytics->report_alloc_rate_ms(alloc_rate_ms);
       
   634 
       
   635     double interval_ms =
       
   636       (end_time_sec - _analytics->last_known_gc_end_time_sec()) * 1000.0;
       
   637     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
       
   638     _analytics->compute_pause_time_ratio(interval_ms, pause_time_ms);
       
   639   }
       
   640 
       
   641   bool new_in_marking_window = collector_state()->in_marking_window();
       
   642   bool new_in_marking_window_im = false;
       
   643   if (last_pause_included_initial_mark) {
       
   644     new_in_marking_window = true;
       
   645     new_in_marking_window_im = true;
       
   646   }
       
   647 
       
   648   if (collector_state()->last_young_gc()) {
       
   649     // This is supposed to to be the "last young GC" before we start
       
   650     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
       
   651     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
       
   652 
       
   653     if (next_gc_should_be_mixed("start mixed GCs",
       
   654                                 "do not start mixed GCs")) {
       
   655       collector_state()->set_gcs_are_young(false);
       
   656     } else {
       
   657       // We aborted the mixed GC phase early.
       
   658       abort_time_to_mixed_tracking();
       
   659     }
       
   660 
       
   661     collector_state()->set_last_young_gc(false);
       
   662   }
       
   663 
       
   664   if (!collector_state()->last_gc_was_young()) {
       
   665     // This is a mixed GC. Here we decide whether to continue doing
       
   666     // mixed GCs or not.
       
   667     if (!next_gc_should_be_mixed("continue mixed GCs",
       
   668                                  "do not continue mixed GCs")) {
       
   669       collector_state()->set_gcs_are_young(true);
       
   670 
       
   671       maybe_start_marking();
       
   672     }
       
   673   }
       
   674 
       
   675   _short_lived_surv_rate_group->start_adding_regions();
       
   676   // Do that for any other surv rate groups
       
   677 
       
   678   double scan_hcc_time_ms = ConcurrentG1Refine::hot_card_cache_enabled() ? average_time_ms(G1GCPhaseTimes::ScanHCC) : 0.0;
       
   679 
       
   680   if (update_stats) {
       
   681     double cost_per_card_ms = 0.0;
       
   682     if (_pending_cards > 0) {
       
   683       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms) / (double) _pending_cards;
       
   684       _analytics->report_cost_per_card_ms(cost_per_card_ms);
       
   685     }
       
   686     _analytics->report_cost_scan_hcc(scan_hcc_time_ms);
       
   687 
       
   688     double cost_per_entry_ms = 0.0;
       
   689     if (cards_scanned > 10) {
       
   690       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
       
   691       _analytics->report_cost_per_entry_ms(cost_per_entry_ms, collector_state()->last_gc_was_young());
       
   692     }
       
   693 
       
   694     if (_max_rs_lengths > 0) {
       
   695       double cards_per_entry_ratio =
       
   696         (double) cards_scanned / (double) _max_rs_lengths;
       
   697       _analytics->report_cards_per_entry_ratio(cards_per_entry_ratio, collector_state()->last_gc_was_young());
       
   698     }
       
   699 
       
   700     // This is defensive. For a while _max_rs_lengths could get
       
   701     // smaller than _recorded_rs_lengths which was causing
       
   702     // rs_length_diff to get very large and mess up the RSet length
       
   703     // predictions. The reason was unsafe concurrent updates to the
       
   704     // _inc_cset_recorded_rs_lengths field which the code below guards
       
   705     // against (see CR 7118202). This bug has now been fixed (see CR
       
   706     // 7119027). However, I'm still worried that
       
   707     // _inc_cset_recorded_rs_lengths might still end up somewhat
       
   708     // inaccurate. The concurrent refinement thread calculates an
       
   709     // RSet's length concurrently with other CR threads updating it
       
   710     // which might cause it to calculate the length incorrectly (if,
       
   711     // say, it's in mid-coarsening). So I'll leave in the defensive
       
   712     // conditional below just in case.
       
   713     size_t rs_length_diff = 0;
       
   714     size_t recorded_rs_lengths = _collection_set->recorded_rs_lengths();
       
   715     if (_max_rs_lengths > recorded_rs_lengths) {
       
   716       rs_length_diff = _max_rs_lengths - recorded_rs_lengths;
       
   717     }
       
   718     _analytics->report_rs_length_diff((double) rs_length_diff);
       
   719 
       
   720     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
       
   721     size_t copied_bytes = _collection_set->bytes_used_before() - freed_bytes;
       
   722     double cost_per_byte_ms = 0.0;
       
   723 
       
   724     if (copied_bytes > 0) {
       
   725       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
       
   726       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->in_marking_window());
       
   727     }
       
   728 
       
   729     if (_collection_set->young_region_length() > 0) {
       
   730       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
       
   731                                                         _collection_set->young_region_length());
       
   732     }
       
   733 
       
   734     if (_collection_set->old_region_length() > 0) {
       
   735       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
       
   736                                                             _collection_set->old_region_length());
       
   737     }
       
   738 
       
   739     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
       
   740 
       
   741     _analytics->report_pending_cards((double) _pending_cards);
       
   742     _analytics->report_rs_lengths((double) _max_rs_lengths);
       
   743   }
       
   744 
       
   745   collector_state()->set_in_marking_window(new_in_marking_window);
       
   746   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
       
   747   _free_regions_at_end_of_collection = _g1->num_free_regions();
       
   748   // IHOP control wants to know the expected young gen length if it were not
       
   749   // restrained by the heap reserve. Using the actual length would make the
       
   750   // prediction too small and the limit the young gen every time we get to the
       
   751   // predicted target occupancy.
       
   752   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
       
   753   update_rs_lengths_prediction();
       
   754 
       
   755   update_ihop_prediction(app_time_ms / 1000.0,
       
   756                          _bytes_allocated_in_old_since_last_gc,
       
   757                          last_unrestrained_young_length * HeapRegion::GrainBytes);
       
   758   _bytes_allocated_in_old_since_last_gc = 0;
       
   759 
       
   760   _ihop_control->send_trace_event(_g1->gc_tracer_stw());
       
   761 
       
   762   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
       
   763   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
       
   764 
       
   765   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
       
   766     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
       
   767                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
       
   768                                 update_rs_time_goal_ms, scan_hcc_time_ms);
       
   769 
       
   770     update_rs_time_goal_ms = 0;
       
   771   } else {
       
   772     update_rs_time_goal_ms -= scan_hcc_time_ms;
       
   773   }
       
   774   _g1->concurrent_g1_refine()->adjust(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
       
   775                                       phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
       
   776                                       update_rs_time_goal_ms);
       
   777 
       
   778   cset_chooser()->verify();
       
   779 }
       
   780 
       
   781 G1IHOPControl* G1Policy::create_ihop_control(const G1Predictions* predictor){
       
   782   if (G1UseAdaptiveIHOP) {
       
   783     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
       
   784                                      predictor,
       
   785                                      G1ReservePercent,
       
   786                                      G1HeapWastePercent);
       
   787   } else {
       
   788     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
       
   789   }
       
   790 }
       
   791 
       
   792 void G1Policy::update_ihop_prediction(double mutator_time_s,
       
   793                                       size_t mutator_alloc_bytes,
       
   794                                       size_t young_gen_size) {
       
   795   // Always try to update IHOP prediction. Even evacuation failures give information
       
   796   // about e.g. whether to start IHOP earlier next time.
       
   797 
       
   798   // Avoid using really small application times that might create samples with
       
   799   // very high or very low values. They may be caused by e.g. back-to-back gcs.
       
   800   double const min_valid_time = 1e-6;
       
   801 
       
   802   bool report = false;
       
   803 
       
   804   double marking_to_mixed_time = -1.0;
       
   805   if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) {
       
   806     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
       
   807     assert(marking_to_mixed_time > 0.0,
       
   808            "Initial mark to mixed time must be larger than zero but is %.3f",
       
   809            marking_to_mixed_time);
       
   810     if (marking_to_mixed_time > min_valid_time) {
       
   811       _ihop_control->update_marking_length(marking_to_mixed_time);
       
   812       report = true;
       
   813     }
       
   814   }
       
   815 
       
   816   // As an approximation for the young gc promotion rates during marking we use
       
   817   // all of them. In many applications there are only a few if any young gcs during
       
   818   // marking, which makes any prediction useless. This increases the accuracy of the
       
   819   // prediction.
       
   820   if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) {
       
   821     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
       
   822     report = true;
       
   823   }
       
   824 
       
   825   if (report) {
       
   826     report_ihop_statistics();
       
   827   }
       
   828 }
       
   829 
       
   830 void G1Policy::report_ihop_statistics() {
       
   831   _ihop_control->print();
       
   832 }
       
   833 
       
   834 void G1Policy::print_phases() {
       
   835   phase_times()->print();
       
   836 }
       
   837 
       
   838 double G1Policy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
       
   839   TruncatedSeq* seq = surv_rate_group->get_seq(age);
       
   840   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
       
   841   double pred = _predictor.get_new_prediction(seq);
       
   842   if (pred > 1.0) {
       
   843     pred = 1.0;
       
   844   }
       
   845   return pred;
       
   846 }
       
   847 
       
   848 double G1Policy::predict_yg_surv_rate(int age) const {
       
   849   return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
       
   850 }
       
   851 
       
   852 double G1Policy::accum_yg_surv_rate_pred(int age) const {
       
   853   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
       
   854 }
       
   855 
       
   856 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
       
   857                                               size_t scanned_cards) const {
       
   858   return
       
   859     _analytics->predict_rs_update_time_ms(pending_cards) +
       
   860     _analytics->predict_rs_scan_time_ms(scanned_cards, collector_state()->gcs_are_young()) +
       
   861     _analytics->predict_constant_other_time_ms();
       
   862 }
       
   863 
       
   864 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards) const {
       
   865   size_t rs_length = _analytics->predict_rs_lengths() + _analytics->predict_rs_length_diff();
       
   866   size_t card_num = _analytics->predict_card_num(rs_length, collector_state()->gcs_are_young());
       
   867   return predict_base_elapsed_time_ms(pending_cards, card_num);
       
   868 }
       
   869 
       
   870 size_t G1Policy::predict_bytes_to_copy(HeapRegion* hr) const {
       
   871   size_t bytes_to_copy;
       
   872   if (hr->is_marked())
       
   873     bytes_to_copy = hr->max_live_bytes();
       
   874   else {
       
   875     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
       
   876     int age = hr->age_in_surv_rate_group();
       
   877     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
       
   878     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
       
   879   }
       
   880   return bytes_to_copy;
       
   881 }
       
   882 
       
   883 double G1Policy::predict_region_elapsed_time_ms(HeapRegion* hr,
       
   884                                                 bool for_young_gc) const {
       
   885   size_t rs_length = hr->rem_set()->occupied();
       
   886   // Predicting the number of cards is based on which type of GC
       
   887   // we're predicting for.
       
   888   size_t card_num = _analytics->predict_card_num(rs_length, for_young_gc);
       
   889   size_t bytes_to_copy = predict_bytes_to_copy(hr);
       
   890 
       
   891   double region_elapsed_time_ms =
       
   892     _analytics->predict_rs_scan_time_ms(card_num, collector_state()->gcs_are_young()) +
       
   893     _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->during_concurrent_mark());
       
   894 
       
   895   // The prediction of the "other" time for this region is based
       
   896   // upon the region type and NOT the GC type.
       
   897   if (hr->is_young()) {
       
   898     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
       
   899   } else {
       
   900     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
       
   901   }
       
   902   return region_elapsed_time_ms;
       
   903 }
       
   904 
       
   905 
       
   906 void G1Policy::print_yg_surv_rate_info() const {
       
   907 #ifndef PRODUCT
       
   908   _short_lived_surv_rate_group->print_surv_rate_summary();
       
   909   // add this call for any other surv rate groups
       
   910 #endif // PRODUCT
       
   911 }
       
   912 
       
   913 bool G1Policy::is_young_list_full() const {
       
   914   uint young_list_length = _g1->young_list()->length();
       
   915   uint young_list_target_length = _young_list_target_length;
       
   916   return young_list_length >= young_list_target_length;
       
   917 }
       
   918 
       
   919 bool G1Policy::can_expand_young_list() const {
       
   920   uint young_list_length = _g1->young_list()->length();
       
   921   uint young_list_max_length = _young_list_max_length;
       
   922   return young_list_length < young_list_max_length;
       
   923 }
       
   924 
       
   925 bool G1Policy::adaptive_young_list_length() const {
       
   926   return _young_gen_sizer.adaptive_young_list_length();
       
   927 }
       
   928 
       
   929 void G1Policy::update_max_gc_locker_expansion() {
       
   930   uint expansion_region_num = 0;
       
   931   if (GCLockerEdenExpansionPercent > 0) {
       
   932     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
       
   933     double expansion_region_num_d = perc * (double) _young_list_target_length;
       
   934     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
       
   935     // less than 1.0) we'll get 1.
       
   936     expansion_region_num = (uint) ceil(expansion_region_num_d);
       
   937   } else {
       
   938     assert(expansion_region_num == 0, "sanity");
       
   939   }
       
   940   _young_list_max_length = _young_list_target_length + expansion_region_num;
       
   941   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
       
   942 }
       
   943 
       
   944 // Calculates survivor space parameters.
       
   945 void G1Policy::update_survivors_policy() {
       
   946   double max_survivor_regions_d =
       
   947                  (double) _young_list_target_length / (double) SurvivorRatio;
       
   948   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
       
   949   // smaller than 1.0) we'll get 1.
       
   950   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
       
   951 
       
   952   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
       
   953       HeapRegion::GrainWords * _max_survivor_regions, _policy_counters);
       
   954 }
       
   955 
       
   956 bool G1Policy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
       
   957   // We actually check whether we are marking here and not if we are in a
       
   958   // reclamation phase. This means that we will schedule a concurrent mark
       
   959   // even while we are still in the process of reclaiming memory.
       
   960   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
       
   961   if (!during_cycle) {
       
   962     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
       
   963     collector_state()->set_initiate_conc_mark_if_possible(true);
       
   964     return true;
       
   965   } else {
       
   966     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
       
   967     return false;
       
   968   }
       
   969 }
       
   970 
       
   971 void G1Policy::initiate_conc_mark() {
       
   972   collector_state()->set_during_initial_mark_pause(true);
       
   973   collector_state()->set_initiate_conc_mark_if_possible(false);
       
   974 }
       
   975 
       
   976 void G1Policy::decide_on_conc_mark_initiation() {
       
   977   // We are about to decide on whether this pause will be an
       
   978   // initial-mark pause.
       
   979 
       
   980   // First, collector_state()->during_initial_mark_pause() should not be already set. We
       
   981   // will set it here if we have to. However, it should be cleared by
       
   982   // the end of the pause (it's only set for the duration of an
       
   983   // initial-mark pause).
       
   984   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
       
   985 
       
   986   if (collector_state()->initiate_conc_mark_if_possible()) {
       
   987     // We had noticed on a previous pause that the heap occupancy has
       
   988     // gone over the initiating threshold and we should start a
       
   989     // concurrent marking cycle. So we might initiate one.
       
   990 
       
   991     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
       
   992       // Initiate a new initial mark if there is no marking or reclamation going on.
       
   993       initiate_conc_mark();
       
   994       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
       
   995     } else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) {
       
   996       // Initiate a user requested initial mark. An initial mark must be young only
       
   997       // GC, so the collector state must be updated to reflect this.
       
   998       collector_state()->set_gcs_are_young(true);
       
   999       collector_state()->set_last_young_gc(false);
       
  1000 
       
  1001       abort_time_to_mixed_tracking();
       
  1002       initiate_conc_mark();
       
  1003       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
       
  1004     } else {
       
  1005       // The concurrent marking thread is still finishing up the
       
  1006       // previous cycle. If we start one right now the two cycles
       
  1007       // overlap. In particular, the concurrent marking thread might
       
  1008       // be in the process of clearing the next marking bitmap (which
       
  1009       // we will use for the next cycle if we start one). Starting a
       
  1010       // cycle now will be bad given that parts of the marking
       
  1011       // information might get cleared by the marking thread. And we
       
  1012       // cannot wait for the marking thread to finish the cycle as it
       
  1013       // periodically yields while clearing the next marking bitmap
       
  1014       // and, if it's in a yield point, it's waiting for us to
       
  1015       // finish. So, at this point we will not start a cycle and we'll
       
  1016       // let the concurrent marking thread complete the last one.
       
  1017       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
       
  1018     }
       
  1019   }
       
  1020 }
       
  1021 
       
  1022 void G1Policy::record_concurrent_mark_cleanup_end() {
       
  1023   cset_chooser()->rebuild(_g1->workers(), _g1->num_regions());
       
  1024 
       
  1025   double end_sec = os::elapsedTime();
       
  1026   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
       
  1027   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
       
  1028   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
       
  1029 
       
  1030   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
       
  1031 }
       
  1032 
       
  1033 double G1Policy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
       
  1034   // Returns the given amount of reclaimable bytes (that represents
       
  1035   // the amount of reclaimable space still to be collected) as a
       
  1036   // percentage of the current heap capacity.
       
  1037   size_t capacity_bytes = _g1->capacity();
       
  1038   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
       
  1039 }
       
  1040 
       
  1041 void G1Policy::maybe_start_marking() {
       
  1042   if (need_to_start_conc_mark("end of GC")) {
       
  1043     // Note: this might have already been set, if during the last
       
  1044     // pause we decided to start a cycle but at the beginning of
       
  1045     // this pause we decided to postpone it. That's OK.
       
  1046     collector_state()->set_initiate_conc_mark_if_possible(true);
       
  1047   }
       
  1048 }
       
  1049 
       
  1050 G1Policy::PauseKind G1Policy::young_gc_pause_kind() const {
       
  1051   assert(!collector_state()->full_collection(), "must be");
       
  1052   if (collector_state()->during_initial_mark_pause()) {
       
  1053     assert(collector_state()->last_gc_was_young(), "must be");
       
  1054     assert(!collector_state()->last_young_gc(), "must be");
       
  1055     return InitialMarkGC;
       
  1056   } else if (collector_state()->last_young_gc()) {
       
  1057     assert(!collector_state()->during_initial_mark_pause(), "must be");
       
  1058     assert(collector_state()->last_gc_was_young(), "must be");
       
  1059     return LastYoungGC;
       
  1060   } else if (!collector_state()->last_gc_was_young()) {
       
  1061     assert(!collector_state()->during_initial_mark_pause(), "must be");
       
  1062     assert(!collector_state()->last_young_gc(), "must be");
       
  1063     return MixedGC;
       
  1064   } else {
       
  1065     assert(collector_state()->last_gc_was_young(), "must be");
       
  1066     assert(!collector_state()->during_initial_mark_pause(), "must be");
       
  1067     assert(!collector_state()->last_young_gc(), "must be");
       
  1068     return YoungOnlyGC;
       
  1069   }
       
  1070 }
       
  1071 
       
  1072 void G1Policy::record_pause(PauseKind kind, double start, double end) {
       
  1073   // Manage the MMU tracker. For some reason it ignores Full GCs.
       
  1074   if (kind != FullGC) {
       
  1075     _mmu_tracker->add_pause(start, end);
       
  1076   }
       
  1077   // Manage the mutator time tracking from initial mark to first mixed gc.
       
  1078   switch (kind) {
       
  1079     case FullGC:
       
  1080       abort_time_to_mixed_tracking();
       
  1081       break;
       
  1082     case Cleanup:
       
  1083     case Remark:
       
  1084     case YoungOnlyGC:
       
  1085     case LastYoungGC:
       
  1086       _initial_mark_to_mixed.add_pause(end - start);
       
  1087       break;
       
  1088     case InitialMarkGC:
       
  1089       _initial_mark_to_mixed.record_initial_mark_end(end);
       
  1090       break;
       
  1091     case MixedGC:
       
  1092       _initial_mark_to_mixed.record_mixed_gc_start(start);
       
  1093       break;
       
  1094     default:
       
  1095       ShouldNotReachHere();
       
  1096   }
       
  1097 }
       
  1098 
       
  1099 void G1Policy::abort_time_to_mixed_tracking() {
       
  1100   _initial_mark_to_mixed.reset();
       
  1101 }
       
  1102 
       
  1103 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
       
  1104                                        const char* false_action_str) const {
       
  1105   if (cset_chooser()->is_empty()) {
       
  1106     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
       
  1107     return false;
       
  1108   }
       
  1109 
       
  1110   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
       
  1111   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
       
  1112   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
       
  1113   double threshold = (double) G1HeapWastePercent;
       
  1114   if (reclaimable_perc <= threshold) {
       
  1115     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
       
  1116                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
       
  1117     return false;
       
  1118   }
       
  1119   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
       
  1120                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
       
  1121   return true;
       
  1122 }
       
  1123 
       
  1124 uint G1Policy::calc_min_old_cset_length() const {
       
  1125   // The min old CSet region bound is based on the maximum desired
       
  1126   // number of mixed GCs after a cycle. I.e., even if some old regions
       
  1127   // look expensive, we should add them to the CSet anyway to make
       
  1128   // sure we go through the available old regions in no more than the
       
  1129   // maximum desired number of mixed GCs.
       
  1130   //
       
  1131   // The calculation is based on the number of marked regions we added
       
  1132   // to the CSet chooser in the first place, not how many remain, so
       
  1133   // that the result is the same during all mixed GCs that follow a cycle.
       
  1134 
       
  1135   const size_t region_num = (size_t) cset_chooser()->length();
       
  1136   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
       
  1137   size_t result = region_num / gc_num;
       
  1138   // emulate ceiling
       
  1139   if (result * gc_num < region_num) {
       
  1140     result += 1;
       
  1141   }
       
  1142   return (uint) result;
       
  1143 }
       
  1144 
       
  1145 uint G1Policy::calc_max_old_cset_length() const {
       
  1146   // The max old CSet region bound is based on the threshold expressed
       
  1147   // as a percentage of the heap size. I.e., it should bound the
       
  1148   // number of old regions added to the CSet irrespective of how many
       
  1149   // of them are available.
       
  1150 
       
  1151   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
       
  1152   const size_t region_num = g1h->num_regions();
       
  1153   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
       
  1154   size_t result = region_num * perc / 100;
       
  1155   // emulate ceiling
       
  1156   if (100 * result < region_num * perc) {
       
  1157     result += 1;
       
  1158   }
       
  1159   return (uint) result;
       
  1160 }
       
  1161 
       
  1162 void G1Policy::finalize_collection_set(double target_pause_time_ms) {
       
  1163   double time_remaining_ms = _collection_set->finalize_young_part(target_pause_time_ms);
       
  1164   _collection_set->finalize_old_part(time_remaining_ms);
       
  1165 }