hotspot/src/cpu/ppc/vm/templateInterpreter_ppc.cpp
changeset 23221 b70675ece1ce
child 23522 217a6a90aad3
equal deleted inserted replaced
23220:fc827339dc37 23221:b70675ece1ce
       
     1 /*
       
     2  * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
       
     3  * Copyright 2013, 2014 SAP AG. All rights reserved.
       
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     5  *
       
     6  * This code is free software; you can redistribute it and/or modify it
       
     7  * under the terms of the GNU General Public License version 2 only, as
       
     8  * published by the Free Software Foundation.
       
     9  *
       
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    13  * version 2 for more details (a copy is included in the LICENSE file that
       
    14  * accompanied this code).
       
    15  *
       
    16  * You should have received a copy of the GNU General Public License version
       
    17  * 2 along with this work; if not, write to the Free Software Foundation,
       
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    19  *
       
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    21  * or visit www.oracle.com if you need additional information or have any
       
    22  * questions.
       
    23  *
       
    24  */
       
    25 
       
    26 #include "precompiled.hpp"
       
    27 #ifndef CC_INTERP
       
    28 #include "asm/macroAssembler.inline.hpp"
       
    29 #include "interpreter/bytecodeHistogram.hpp"
       
    30 #include "interpreter/interpreter.hpp"
       
    31 #include "interpreter/interpreterGenerator.hpp"
       
    32 #include "interpreter/interpreterRuntime.hpp"
       
    33 #include "interpreter/templateTable.hpp"
       
    34 #include "oops/arrayOop.hpp"
       
    35 #include "oops/methodData.hpp"
       
    36 #include "oops/method.hpp"
       
    37 #include "oops/oop.inline.hpp"
       
    38 #include "prims/jvmtiExport.hpp"
       
    39 #include "prims/jvmtiThreadState.hpp"
       
    40 #include "runtime/arguments.hpp"
       
    41 #include "runtime/deoptimization.hpp"
       
    42 #include "runtime/frame.inline.hpp"
       
    43 #include "runtime/sharedRuntime.hpp"
       
    44 #include "runtime/stubRoutines.hpp"
       
    45 #include "runtime/synchronizer.hpp"
       
    46 #include "runtime/timer.hpp"
       
    47 #include "runtime/vframeArray.hpp"
       
    48 #include "utilities/debug.hpp"
       
    49 #include "utilities/macros.hpp"
       
    50 
       
    51 #undef __
       
    52 #define __ _masm->
       
    53 
       
    54 #ifdef PRODUCT
       
    55 #define BLOCK_COMMENT(str) /* nothing */
       
    56 #else
       
    57 #define BLOCK_COMMENT(str) __ block_comment(str)
       
    58 #endif
       
    59 
       
    60 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
       
    61 
       
    62 //-----------------------------------------------------------------------------
       
    63 
       
    64 // Actually we should never reach here since we do stack overflow checks before pushing any frame.
       
    65 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
       
    66   address entry = __ pc();
       
    67   __ unimplemented("generate_StackOverflowError_handler");
       
    68   return entry;
       
    69 }
       
    70 
       
    71 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
       
    72   address entry = __ pc();
       
    73   __ empty_expression_stack();
       
    74   __ load_const_optimized(R4_ARG2, (address) name);
       
    75   // Index is in R17_tos.
       
    76   __ mr(R5_ARG3, R17_tos);
       
    77   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException));
       
    78   return entry;
       
    79 }
       
    80 
       
    81 #if 0
       
    82 // Call special ClassCastException constructor taking object to cast
       
    83 // and target class as arguments.
       
    84 address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler(const char* name) {
       
    85   address entry = __ pc();
       
    86 
       
    87   // Target class oop is in register R6_ARG4 by convention!
       
    88 
       
    89   // Expression stack must be empty before entering the VM if an
       
    90   // exception happened.
       
    91   __ empty_expression_stack();
       
    92   // Setup parameters.
       
    93   // Thread will be loaded to R3_ARG1.
       
    94   __ load_const_optimized(R4_ARG2, (address) name);
       
    95   __ mr(R5_ARG3, R17_tos);
       
    96   // R6_ARG4 contains specified class.
       
    97   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose));
       
    98 #ifdef ASSERT
       
    99   // Above call must not return here since exception pending.
       
   100   __ should_not_reach_here();
       
   101 #endif
       
   102   return entry;
       
   103 }
       
   104 #endif
       
   105 
       
   106 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
       
   107   address entry = __ pc();
       
   108   // Expression stack must be empty before entering the VM if an
       
   109   // exception happened.
       
   110   __ empty_expression_stack();
       
   111 
       
   112   // Load exception object.
       
   113   // Thread will be loaded to R3_ARG1.
       
   114   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
       
   115 #ifdef ASSERT
       
   116   // Above call must not return here since exception pending.
       
   117   __ should_not_reach_here();
       
   118 #endif
       
   119   return entry;
       
   120 }
       
   121 
       
   122 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
       
   123   address entry = __ pc();
       
   124   //__ untested("generate_exception_handler_common");
       
   125   Register Rexception = R17_tos;
       
   126 
       
   127   // Expression stack must be empty before entering the VM if an exception happened.
       
   128   __ empty_expression_stack();
       
   129 
       
   130   __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
       
   131   if (pass_oop) {
       
   132     __ mr(R5_ARG3, Rexception);
       
   133     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false);
       
   134   } else {
       
   135     __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
       
   136     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false);
       
   137   }
       
   138 
       
   139   // Throw exception.
       
   140   __ mr(R3_ARG1, Rexception);
       
   141   __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
       
   142   __ mtctr(R11_scratch1);
       
   143   __ bctr();
       
   144 
       
   145   return entry;
       
   146 }
       
   147 
       
   148 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
       
   149   address entry = __ pc();
       
   150   __ unimplemented("generate_continuation_for");
       
   151   return entry;
       
   152 }
       
   153 
       
   154 // This entry is returned to when a call returns to the interpreter.
       
   155 // When we arrive here, we expect that the callee stack frame is already popped.
       
   156 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
       
   157   address entry = __ pc();
       
   158 
       
   159   // Move the value out of the return register back to the TOS cache of current frame.
       
   160   switch (state) {
       
   161     case ltos:
       
   162     case btos:
       
   163     case ctos:
       
   164     case stos:
       
   165     case atos:
       
   166     case itos: __ mr(R17_tos, R3_RET); break;   // RET -> TOS cache
       
   167     case ftos:
       
   168     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
       
   169     case vtos: break;                           // Nothing to do, this was a void return.
       
   170     default  : ShouldNotReachHere();
       
   171   }
       
   172 
       
   173   __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
       
   174   __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
       
   175   __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
       
   176 
       
   177   // Compiled code destroys templateTableBase, reload.
       
   178   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
       
   179 
       
   180   const Register cache = R11_scratch1;
       
   181   const Register size  = R12_scratch2;
       
   182   __ get_cache_and_index_at_bcp(cache, 1, index_size);
       
   183 
       
   184   // Big Endian (get least significant byte of 64 bit value):
       
   185   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache);
       
   186   __ sldi(size, size, Interpreter::logStackElementSize);
       
   187   __ add(R15_esp, R15_esp, size);
       
   188   __ dispatch_next(state, step);
       
   189   return entry;
       
   190 }
       
   191 
       
   192 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
       
   193   address entry = __ pc();
       
   194   // If state != vtos, we're returning from a native method, which put it's result
       
   195   // into the result register. So move the value out of the return register back
       
   196   // to the TOS cache of current frame.
       
   197 
       
   198   switch (state) {
       
   199     case ltos:
       
   200     case btos:
       
   201     case ctos:
       
   202     case stos:
       
   203     case atos:
       
   204     case itos: __ mr(R17_tos, R3_RET); break;   // GR_RET -> TOS cache
       
   205     case ftos:
       
   206     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
       
   207     case vtos: break;                           // Nothing to do, this was a void return.
       
   208     default  : ShouldNotReachHere();
       
   209   }
       
   210 
       
   211   // Load LcpoolCache @@@ should be already set!
       
   212   __ get_constant_pool_cache(R27_constPoolCache);
       
   213 
       
   214   // Handle a pending exception, fall through if none.
       
   215   __ check_and_forward_exception(R11_scratch1, R12_scratch2);
       
   216 
       
   217   // Start executing bytecodes.
       
   218   __ dispatch_next(state, step);
       
   219 
       
   220   return entry;
       
   221 }
       
   222 
       
   223 // A result handler converts the native result into java format.
       
   224 // Use the shared code between c++ and template interpreter.
       
   225 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
       
   226   return AbstractInterpreterGenerator::generate_result_handler_for(type);
       
   227 }
       
   228 
       
   229 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
       
   230   address entry = __ pc();
       
   231 
       
   232   __ push(state);
       
   233   __ call_VM(noreg, runtime_entry);
       
   234   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
       
   235 
       
   236   return entry;
       
   237 }
       
   238 
       
   239 // Helpers for commoning out cases in the various type of method entries.
       
   240 
       
   241 // Increment invocation count & check for overflow.
       
   242 //
       
   243 // Note: checking for negative value instead of overflow
       
   244 //       so we have a 'sticky' overflow test.
       
   245 //
       
   246 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
       
   247   // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
       
   248   Register Rscratch1   = R11_scratch1;
       
   249   Register Rscratch2   = R12_scratch2;
       
   250   Register R3_counters = R3_ARG1;
       
   251   Label done;
       
   252 
       
   253   if (TieredCompilation) {
       
   254     const int increment = InvocationCounter::count_increment;
       
   255     const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
       
   256     Label no_mdo;
       
   257     if (ProfileInterpreter) {
       
   258       const Register Rmdo = Rscratch1;
       
   259       // If no method data exists, go to profile_continue.
       
   260       __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
       
   261       __ cmpdi(CCR0, Rmdo, 0);
       
   262       __ beq(CCR0, no_mdo);
       
   263 
       
   264       // Increment backedge counter in the MDO.
       
   265       const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
       
   266       __ lwz(Rscratch2, mdo_bc_offs, Rmdo);
       
   267       __ addi(Rscratch2, Rscratch2, increment);
       
   268       __ stw(Rscratch2, mdo_bc_offs, Rmdo);
       
   269       __ load_const_optimized(Rscratch1, mask, R0);
       
   270       __ and_(Rscratch1, Rscratch2, Rscratch1);
       
   271       __ bne(CCR0, done);
       
   272       __ b(*overflow);
       
   273     }
       
   274 
       
   275     // Increment counter in MethodCounters*.
       
   276     const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
       
   277     __ bind(no_mdo);
       
   278     __ get_method_counters(R19_method, R3_counters, done);
       
   279     __ lwz(Rscratch2, mo_bc_offs, R3_counters);
       
   280     __ addi(Rscratch2, Rscratch2, increment);
       
   281     __ stw(Rscratch2, mo_bc_offs, R3_counters);
       
   282     __ load_const_optimized(Rscratch1, mask, R0);
       
   283     __ and_(Rscratch1, Rscratch2, Rscratch1);
       
   284     __ beq(CCR0, *overflow);
       
   285 
       
   286     __ bind(done);
       
   287 
       
   288   } else {
       
   289 
       
   290     // Update standard invocation counters.
       
   291     Register Rsum_ivc_bec = R4_ARG2;
       
   292     __ get_method_counters(R19_method, R3_counters, done);
       
   293     __ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2);
       
   294     // Increment interpreter invocation counter.
       
   295     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop.
       
   296       __ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
       
   297       __ addi(R12_scratch2, R12_scratch2, 1);
       
   298       __ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
       
   299     }
       
   300     // Check if we must create a method data obj.
       
   301     if (ProfileInterpreter && profile_method != NULL) {
       
   302       const Register profile_limit = Rscratch1;
       
   303       int pl_offs = __ load_const_optimized(profile_limit, &InvocationCounter::InterpreterProfileLimit, R0, true);
       
   304       __ lwz(profile_limit, pl_offs, profile_limit);
       
   305       // Test to see if we should create a method data oop.
       
   306       __ cmpw(CCR0, Rsum_ivc_bec, profile_limit);
       
   307       __ blt(CCR0, *profile_method_continue);
       
   308       // If no method data exists, go to profile_method.
       
   309       __ test_method_data_pointer(*profile_method);
       
   310     }
       
   311     // Finally check for counter overflow.
       
   312     if (overflow) {
       
   313       const Register invocation_limit = Rscratch1;
       
   314       int il_offs = __ load_const_optimized(invocation_limit, &InvocationCounter::InterpreterInvocationLimit, R0, true);
       
   315       __ lwz(invocation_limit, il_offs, invocation_limit);
       
   316       assert(4 == sizeof(InvocationCounter::InterpreterInvocationLimit), "unexpected field size");
       
   317       __ cmpw(CCR0, Rsum_ivc_bec, invocation_limit);
       
   318       __ bge(CCR0, *overflow);
       
   319     }
       
   320 
       
   321     __ bind(done);
       
   322   }
       
   323 }
       
   324 
       
   325 // Generate code to initiate compilation on invocation counter overflow.
       
   326 void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
       
   327   // Generate code to initiate compilation on the counter overflow.
       
   328 
       
   329   // InterpreterRuntime::frequency_counter_overflow takes one arguments,
       
   330   // which indicates if the counter overflow occurs at a backwards branch (NULL bcp)
       
   331   // We pass zero in.
       
   332   // The call returns the address of the verified entry point for the method or NULL
       
   333   // if the compilation did not complete (either went background or bailed out).
       
   334   //
       
   335   // Unlike the C++ interpreter above: Check exceptions!
       
   336   // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
       
   337   // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
       
   338 
       
   339   __ li(R4_ARG2, 0);
       
   340   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
       
   341 
       
   342   // Returns verified_entry_point or NULL.
       
   343   // We ignore it in any case.
       
   344   __ b(continue_entry);
       
   345 }
       
   346 
       
   347 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
       
   348   assert_different_registers(Rmem_frame_size, Rscratch1);
       
   349   __ generate_stack_overflow_check_with_compare_and_throw(Rmem_frame_size, Rscratch1);
       
   350 }
       
   351 
       
   352 void TemplateInterpreterGenerator::unlock_method(bool check_exceptions) {
       
   353   __ unlock_object(R26_monitor, check_exceptions);
       
   354 }
       
   355 
       
   356 // Lock the current method, interpreter register window must be set up!
       
   357 void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
       
   358   const Register Robj_to_lock = Rscratch2;
       
   359 
       
   360   {
       
   361     if (!flags_preloaded) {
       
   362       __ lwz(Rflags, method_(access_flags));
       
   363     }
       
   364 
       
   365 #ifdef ASSERT
       
   366     // Check if methods needs synchronization.
       
   367     {
       
   368       Label Lok;
       
   369       __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
       
   370       __ btrue(CCR0,Lok);
       
   371       __ stop("method doesn't need synchronization");
       
   372       __ bind(Lok);
       
   373     }
       
   374 #endif // ASSERT
       
   375   }
       
   376 
       
   377   // Get synchronization object to Rscratch2.
       
   378   {
       
   379     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
       
   380     Label Lstatic;
       
   381     Label Ldone;
       
   382 
       
   383     __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
       
   384     __ btrue(CCR0, Lstatic);
       
   385 
       
   386     // Non-static case: load receiver obj from stack and we're done.
       
   387     __ ld(Robj_to_lock, R18_locals);
       
   388     __ b(Ldone);
       
   389 
       
   390     __ bind(Lstatic); // Static case: Lock the java mirror
       
   391     __ ld(Robj_to_lock, in_bytes(Method::const_offset()), R19_method);
       
   392     __ ld(Robj_to_lock, in_bytes(ConstMethod::constants_offset()), Robj_to_lock);
       
   393     __ ld(Robj_to_lock, ConstantPool::pool_holder_offset_in_bytes(), Robj_to_lock);
       
   394     __ ld(Robj_to_lock, mirror_offset, Robj_to_lock);
       
   395 
       
   396     __ bind(Ldone);
       
   397     __ verify_oop(Robj_to_lock);
       
   398   }
       
   399 
       
   400   // Got the oop to lock => execute!
       
   401   __ add_monitor_to_stack(true, Rscratch1, R0);
       
   402 
       
   403   __ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
       
   404   __ lock_object(R26_monitor, Robj_to_lock);
       
   405 }
       
   406 
       
   407 // Generate a fixed interpreter frame for pure interpreter
       
   408 // and I2N native transition frames.
       
   409 //
       
   410 // Before (stack grows downwards):
       
   411 //
       
   412 //         |  ...         |
       
   413 //         |------------- |
       
   414 //         |  java arg0   |
       
   415 //         |  ...         |
       
   416 //         |  java argn   |
       
   417 //         |              |   <-   R15_esp
       
   418 //         |              |
       
   419 //         |--------------|
       
   420 //         | abi_112      |
       
   421 //         |              |   <-   R1_SP
       
   422 //         |==============|
       
   423 //
       
   424 //
       
   425 // After:
       
   426 //
       
   427 //         |  ...         |
       
   428 //         |  java arg0   |<-   R18_locals
       
   429 //         |  ...         |
       
   430 //         |  java argn   |
       
   431 //         |--------------|
       
   432 //         |              |
       
   433 //         |  java locals |
       
   434 //         |              |
       
   435 //         |--------------|
       
   436 //         |  abi_48      |
       
   437 //         |==============|
       
   438 //         |              |
       
   439 //         |   istate     |
       
   440 //         |              |
       
   441 //         |--------------|
       
   442 //         |   monitor    |<-   R26_monitor
       
   443 //         |--------------|
       
   444 //         |              |<-   R15_esp
       
   445 //         | expression   |
       
   446 //         | stack        |
       
   447 //         |              |
       
   448 //         |--------------|
       
   449 //         |              |
       
   450 //         | abi_112      |<-   R1_SP
       
   451 //         |==============|
       
   452 //
       
   453 // The top most frame needs an abi space of 112 bytes. This space is needed,
       
   454 // since we call to c. The c function may spill their arguments to the caller
       
   455 // frame. When we call to java, we don't need these spill slots. In order to save
       
   456 // space on the stack, we resize the caller. However, java local reside in
       
   457 // the caller frame and the frame has to be increased. The frame_size for the
       
   458 // current frame was calculated based on max_stack as size for the expression
       
   459 // stack. At the call, just a part of the expression stack might be used.
       
   460 // We don't want to waste this space and cut the frame back accordingly.
       
   461 // The resulting amount for resizing is calculated as follows:
       
   462 // resize =   (number_of_locals - number_of_arguments) * slot_size
       
   463 //          + (R1_SP - R15_esp) + 48
       
   464 //
       
   465 // The size for the callee frame is calculated:
       
   466 // framesize = 112 + max_stack + monitor + state_size
       
   467 //
       
   468 // maxstack:   Max number of slots on the expression stack, loaded from the method.
       
   469 // monitor:    We statically reserve room for one monitor object.
       
   470 // state_size: We save the current state of the interpreter to this area.
       
   471 //
       
   472 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
       
   473   Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
       
   474            top_frame_size      = R7_ARG5,
       
   475            Rconst_method       = R8_ARG6;
       
   476 
       
   477   assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size);
       
   478 
       
   479   __ ld(Rconst_method, method_(const));
       
   480   __ lhz(Rsize_of_parameters /* number of params */,
       
   481          in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
       
   482   if (native_call) {
       
   483     // If we're calling a native method, we reserve space for the worst-case signature
       
   484     // handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2).
       
   485     // We add two slots to the parameter_count, one for the jni
       
   486     // environment and one for a possible native mirror.
       
   487     Label skip_native_calculate_max_stack;
       
   488     __ addi(top_frame_size, Rsize_of_parameters, 2);
       
   489     __ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters);
       
   490     __ bge(CCR0, skip_native_calculate_max_stack);
       
   491     __ li(top_frame_size, Argument::n_register_parameters);
       
   492     __ bind(skip_native_calculate_max_stack);
       
   493     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
       
   494     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
       
   495     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
       
   496     assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
       
   497   } else {
       
   498     __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
       
   499     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
       
   500     __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
       
   501     __ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
       
   502     __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
       
   503     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
       
   504     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
       
   505     __ add(parent_frame_resize, parent_frame_resize, R11_scratch1);
       
   506   }
       
   507 
       
   508   // Compute top frame size.
       
   509   __ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size);
       
   510 
       
   511   // Cut back area between esp and max_stack.
       
   512   __ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize);
       
   513 
       
   514   __ round_to(top_frame_size, frame::alignment_in_bytes);
       
   515   __ round_to(parent_frame_resize, frame::alignment_in_bytes);
       
   516   // parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
       
   517   // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
       
   518 
       
   519   {
       
   520     // --------------------------------------------------------------------------
       
   521     // Stack overflow check
       
   522 
       
   523     Label cont;
       
   524     __ add(R11_scratch1, parent_frame_resize, top_frame_size);
       
   525     generate_stack_overflow_check(R11_scratch1, R12_scratch2);
       
   526   }
       
   527 
       
   528   // Set up interpreter state registers.
       
   529 
       
   530   __ add(R18_locals, R15_esp, Rsize_of_parameters);
       
   531   __ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
       
   532   __ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache);
       
   533 
       
   534   // Set method data pointer.
       
   535   if (ProfileInterpreter) {
       
   536     Label zero_continue;
       
   537     __ ld(R28_mdx, method_(method_data));
       
   538     __ cmpdi(CCR0, R28_mdx, 0);
       
   539     __ beq(CCR0, zero_continue);
       
   540     __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
       
   541     __ bind(zero_continue);
       
   542   }
       
   543 
       
   544   if (native_call) {
       
   545     __ li(R14_bcp, 0); // Must initialize.
       
   546   } else {
       
   547     __ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method);
       
   548   }
       
   549 
       
   550   // Resize parent frame.
       
   551   __ mflr(R12_scratch2);
       
   552   __ neg(parent_frame_resize, parent_frame_resize);
       
   553   __ resize_frame(parent_frame_resize, R11_scratch1);
       
   554   __ std(R12_scratch2, _abi(lr), R1_SP);
       
   555 
       
   556   __ addi(R26_monitor, R1_SP, - frame::ijava_state_size);
       
   557   __ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
       
   558 
       
   559   // Store values.
       
   560   // R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls
       
   561   // in InterpreterMacroAssembler::call_from_interpreter.
       
   562   __ std(R19_method, _ijava_state_neg(method), R1_SP);
       
   563   __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
       
   564   __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
       
   565   __ std(R18_locals, _ijava_state_neg(locals), R1_SP);
       
   566 
       
   567   // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
       
   568   // be found in the frame after save_interpreter_state is done. This is always true
       
   569   // for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
       
   570   // because e.g. frame::interpreter_frame_bcp() will not access the correct value
       
   571   // (Enhanced Stack Trace).
       
   572   // The signal handler does not save the interpreter state into the frame.
       
   573   __ li(R0, 0);
       
   574 #ifdef ASSERT
       
   575   // Fill remaining slots with constants.
       
   576   __ load_const_optimized(R11_scratch1, 0x5afe);
       
   577   __ load_const_optimized(R12_scratch2, 0xdead);
       
   578 #endif
       
   579   // We have to initialize some frame slots for native calls (accessed by GC).
       
   580   if (native_call) {
       
   581     __ std(R26_monitor, _ijava_state_neg(monitors), R1_SP);
       
   582     __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
       
   583     if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
       
   584   }
       
   585 #ifdef ASSERT
       
   586   else {
       
   587     __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
       
   588     __ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP);
       
   589     __ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP);
       
   590   }
       
   591   __ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP);
       
   592   __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
       
   593   __ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP);
       
   594   __ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP);
       
   595 #endif
       
   596   __ subf(R12_scratch2, top_frame_size, R1_SP);
       
   597   __ std(R0, _ijava_state_neg(oop_tmp), R1_SP);
       
   598   __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
       
   599 
       
   600   // Push top frame.
       
   601   __ push_frame(top_frame_size, R11_scratch1);
       
   602 }
       
   603 
       
   604 // End of helpers
       
   605 
       
   606 // ============================================================================
       
   607 // Various method entries
       
   608 //
       
   609 
       
   610 // Empty method, generate a very fast return. We must skip this entry if
       
   611 // someone's debugging, indicated by the flag
       
   612 // "interp_mode" in the Thread obj.
       
   613 // Note: empty methods are generated mostly methods that do assertions, which are
       
   614 // disabled in the "java opt build".
       
   615 address TemplateInterpreterGenerator::generate_empty_entry(void) {
       
   616   if (!UseFastEmptyMethods) {
       
   617     NOT_PRODUCT(__ should_not_reach_here();)
       
   618     return Interpreter::entry_for_kind(Interpreter::zerolocals);
       
   619   }
       
   620 
       
   621   Label Lslow_path;
       
   622   const Register Rjvmti_mode = R11_scratch1;
       
   623   address entry = __ pc();
       
   624 
       
   625   __ lwz(Rjvmti_mode, thread_(interp_only_mode));
       
   626   __ cmpwi(CCR0, Rjvmti_mode, 0);
       
   627   __ bne(CCR0, Lslow_path); // jvmti_mode!=0
       
   628 
       
   629   // Noone's debuggin: Simply return.
       
   630   // Pop c2i arguments (if any) off when we return.
       
   631 #ifdef ASSERT
       
   632     __ ld(R9_ARG7, 0, R1_SP);
       
   633     __ ld(R10_ARG8, 0, R21_sender_SP);
       
   634     __ cmpd(CCR0, R9_ARG7, R10_ARG8);
       
   635     __ asm_assert_eq("backlink", 0x545);
       
   636 #endif // ASSERT
       
   637   __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
       
   638 
       
   639   // And we're done.
       
   640   __ blr();
       
   641 
       
   642   __ bind(Lslow_path);
       
   643   __ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
       
   644   __ flush();
       
   645 
       
   646   return entry;
       
   647 }
       
   648 
       
   649 // Support abs and sqrt like in compiler.
       
   650 // For others we can use a normal (native) entry.
       
   651 
       
   652 inline bool math_entry_available(AbstractInterpreter::MethodKind kind) {
       
   653   // Provide math entry with debugging on demand.
       
   654   // Note: Debugging changes which code will get executed:
       
   655   // Debugging or disabled InlineIntrinsics: java method will get interpreted and performs a native call.
       
   656   // Not debugging and enabled InlineIntrinics: processor instruction will get used.
       
   657   // Result might differ slightly due to rounding etc.
       
   658   if (!InlineIntrinsics && (!FLAG_IS_ERGO(InlineIntrinsics))) return false; // Generate a vanilla entry.
       
   659 
       
   660   return ((kind==Interpreter::java_lang_math_sqrt && VM_Version::has_fsqrt()) ||
       
   661           (kind==Interpreter::java_lang_math_abs));
       
   662 }
       
   663 
       
   664 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
       
   665   if (!math_entry_available(kind)) {
       
   666     NOT_PRODUCT(__ should_not_reach_here();)
       
   667     return Interpreter::entry_for_kind(Interpreter::zerolocals);
       
   668   }
       
   669 
       
   670   Label Lslow_path;
       
   671   const Register Rjvmti_mode = R11_scratch1;
       
   672   address entry = __ pc();
       
   673 
       
   674   // Provide math entry with debugging on demand.
       
   675   __ lwz(Rjvmti_mode, thread_(interp_only_mode));
       
   676   __ cmpwi(CCR0, Rjvmti_mode, 0);
       
   677   __ bne(CCR0, Lslow_path); // jvmti_mode!=0
       
   678 
       
   679   __ lfd(F1_RET, Interpreter::stackElementSize, R15_esp);
       
   680 
       
   681   // Pop c2i arguments (if any) off when we return.
       
   682 #ifdef ASSERT
       
   683   __ ld(R9_ARG7, 0, R1_SP);
       
   684   __ ld(R10_ARG8, 0, R21_sender_SP);
       
   685   __ cmpd(CCR0, R9_ARG7, R10_ARG8);
       
   686   __ asm_assert_eq("backlink", 0x545);
       
   687 #endif // ASSERT
       
   688   __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
       
   689 
       
   690   if (kind == Interpreter::java_lang_math_sqrt) {
       
   691     __ fsqrt(F1_RET, F1_RET);
       
   692   } else if (kind == Interpreter::java_lang_math_abs) {
       
   693     __ fabs(F1_RET, F1_RET);
       
   694   } else {
       
   695     ShouldNotReachHere();
       
   696   }
       
   697 
       
   698   // And we're done.
       
   699   __ blr();
       
   700 
       
   701   // Provide slow path for JVMTI case.
       
   702   __ bind(Lslow_path);
       
   703   __ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R12_scratch2);
       
   704   __ flush();
       
   705 
       
   706   return entry;
       
   707 }
       
   708 
       
   709 // Interpreter stub for calling a native method. (asm interpreter)
       
   710 // This sets up a somewhat different looking stack for calling the
       
   711 // native method than the typical interpreter frame setup.
       
   712 //
       
   713 // On entry:
       
   714 //   R19_method    - method
       
   715 //   R16_thread    - JavaThread*
       
   716 //   R15_esp       - intptr_t* sender tos
       
   717 //
       
   718 //   abstract stack (grows up)
       
   719 //     [  IJava (caller of JNI callee)  ]  <-- ASP
       
   720 //        ...
       
   721 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
       
   722 
       
   723   address entry = __ pc();
       
   724 
       
   725   const bool inc_counter = UseCompiler || CountCompiledCalls;
       
   726 
       
   727   // -----------------------------------------------------------------------------
       
   728   // Allocate a new frame that represents the native callee (i2n frame).
       
   729   // This is not a full-blown interpreter frame, but in particular, the
       
   730   // following registers are valid after this:
       
   731   // - R19_method
       
   732   // - R18_local (points to start of argumuments to native function)
       
   733   //
       
   734   //   abstract stack (grows up)
       
   735   //     [  IJava (caller of JNI callee)  ]  <-- ASP
       
   736   //        ...
       
   737 
       
   738   const Register signature_handler_fd = R11_scratch1;
       
   739   const Register pending_exception    = R0;
       
   740   const Register result_handler_addr  = R31;
       
   741   const Register native_method_fd     = R11_scratch1;
       
   742   const Register access_flags         = R22_tmp2;
       
   743   const Register active_handles       = R11_scratch1; // R26_monitor saved to state.
       
   744   const Register sync_state           = R12_scratch2;
       
   745   const Register sync_state_addr      = sync_state;   // Address is dead after use.
       
   746   const Register suspend_flags        = R11_scratch1;
       
   747 
       
   748   //=============================================================================
       
   749   // Allocate new frame and initialize interpreter state.
       
   750 
       
   751   Label exception_return;
       
   752   Label exception_return_sync_check;
       
   753   Label stack_overflow_return;
       
   754 
       
   755   // Generate new interpreter state and jump to stack_overflow_return in case of
       
   756   // a stack overflow.
       
   757   //generate_compute_interpreter_state(stack_overflow_return);
       
   758 
       
   759   Register size_of_parameters = R22_tmp2;
       
   760 
       
   761   generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
       
   762 
       
   763   //=============================================================================
       
   764   // Increment invocation counter. On overflow, entry to JNI method
       
   765   // will be compiled.
       
   766   Label invocation_counter_overflow, continue_after_compile;
       
   767   if (inc_counter) {
       
   768     if (synchronized) {
       
   769       // Since at this point in the method invocation the exception handler
       
   770       // would try to exit the monitor of synchronized methods which hasn't
       
   771       // been entered yet, we set the thread local variable
       
   772       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
       
   773       // runtime, exception handling i.e. unlock_if_synchronized_method will
       
   774       // check this thread local flag.
       
   775       // This flag has two effects, one is to force an unwind in the topmost
       
   776       // interpreter frame and not perform an unlock while doing so.
       
   777       __ li(R0, 1);
       
   778       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
       
   779     }
       
   780     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
       
   781 
       
   782     __ BIND(continue_after_compile);
       
   783     // Reset the _do_not_unlock_if_synchronized flag.
       
   784     if (synchronized) {
       
   785       __ li(R0, 0);
       
   786       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
       
   787     }
       
   788   }
       
   789 
       
   790   // access_flags = method->access_flags();
       
   791   // Load access flags.
       
   792   assert(access_flags->is_nonvolatile(),
       
   793          "access_flags must be in a non-volatile register");
       
   794   // Type check.
       
   795   assert(4 == sizeof(AccessFlags), "unexpected field size");
       
   796   __ lwz(access_flags, method_(access_flags));
       
   797 
       
   798   // We don't want to reload R19_method and access_flags after calls
       
   799   // to some helper functions.
       
   800   assert(R19_method->is_nonvolatile(),
       
   801          "R19_method must be a non-volatile register");
       
   802 
       
   803   // Check for synchronized methods. Must happen AFTER invocation counter
       
   804   // check, so method is not locked if counter overflows.
       
   805 
       
   806   if (synchronized) {
       
   807     lock_method(access_flags, R11_scratch1, R12_scratch2, true);
       
   808 
       
   809     // Update monitor in state.
       
   810     __ ld(R11_scratch1, 0, R1_SP);
       
   811     __ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1);
       
   812   }
       
   813 
       
   814   // jvmti/jvmpi support
       
   815   __ notify_method_entry();
       
   816 
       
   817   //=============================================================================
       
   818   // Get and call the signature handler.
       
   819 
       
   820   __ ld(signature_handler_fd, method_(signature_handler));
       
   821   Label call_signature_handler;
       
   822 
       
   823   __ cmpdi(CCR0, signature_handler_fd, 0);
       
   824   __ bne(CCR0, call_signature_handler);
       
   825 
       
   826   // Method has never been called. Either generate a specialized
       
   827   // handler or point to the slow one.
       
   828   //
       
   829   // Pass parameter 'false' to avoid exception check in call_VM.
       
   830   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
       
   831 
       
   832   // Check for an exception while looking up the target method. If we
       
   833   // incurred one, bail.
       
   834   __ ld(pending_exception, thread_(pending_exception));
       
   835   __ cmpdi(CCR0, pending_exception, 0);
       
   836   __ bne(CCR0, exception_return_sync_check); // Has pending exception.
       
   837 
       
   838   // Reload signature handler, it may have been created/assigned in the meanwhile.
       
   839   __ ld(signature_handler_fd, method_(signature_handler));
       
   840   __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
       
   841 
       
   842   __ BIND(call_signature_handler);
       
   843 
       
   844   // Before we call the signature handler we push a new frame to
       
   845   // protect the interpreter frame volatile registers when we return
       
   846   // from jni but before we can get back to Java.
       
   847 
       
   848   // First set the frame anchor while the SP/FP registers are
       
   849   // convenient and the slow signature handler can use this same frame
       
   850   // anchor.
       
   851 
       
   852   // We have a TOP_IJAVA_FRAME here, which belongs to us.
       
   853   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
       
   854 
       
   855   // Now the interpreter frame (and its call chain) have been
       
   856   // invalidated and flushed. We are now protected against eager
       
   857   // being enabled in native code. Even if it goes eager the
       
   858   // registers will be reloaded as clean and we will invalidate after
       
   859   // the call so no spurious flush should be possible.
       
   860 
       
   861   // Call signature handler and pass locals address.
       
   862   //
       
   863   // Our signature handlers copy required arguments to the C stack
       
   864   // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
       
   865   __ mr(R3_ARG1, R18_locals);
       
   866   __ ld(signature_handler_fd, 0, signature_handler_fd);
       
   867 
       
   868   __ call_stub(signature_handler_fd);
       
   869 
       
   870   // Remove the register parameter varargs slots we allocated in
       
   871   // compute_interpreter_state. SP+16 ends up pointing to the ABI
       
   872   // outgoing argument area.
       
   873   //
       
   874   // Not needed on PPC64.
       
   875   //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);
       
   876 
       
   877   assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
       
   878   // Save across call to native method.
       
   879   __ mr(result_handler_addr, R3_RET);
       
   880 
       
   881   __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
       
   882 
       
   883   // Set up fixed parameters and call the native method.
       
   884   // If the method is static, get mirror into R4_ARG2.
       
   885   {
       
   886     Label method_is_not_static;
       
   887     // Access_flags is non-volatile and still, no need to restore it.
       
   888 
       
   889     // Restore access flags.
       
   890     __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
       
   891     __ bfalse(CCR0, method_is_not_static);
       
   892 
       
   893     // constants = method->constants();
       
   894     __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
       
   895     __ ld(R11_scratch1, in_bytes(ConstMethod::constants_offset()), R11_scratch1);
       
   896     // pool_holder = method->constants()->pool_holder();
       
   897     __ ld(R11_scratch1/*pool_holder*/, ConstantPool::pool_holder_offset_in_bytes(),
       
   898           R11_scratch1/*constants*/);
       
   899 
       
   900     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
       
   901 
       
   902     // mirror = pool_holder->klass_part()->java_mirror();
       
   903     __ ld(R0/*mirror*/, mirror_offset, R11_scratch1/*pool_holder*/);
       
   904     // state->_native_mirror = mirror;
       
   905 
       
   906     __ ld(R11_scratch1, 0, R1_SP);
       
   907     __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
       
   908     // R4_ARG2 = &state->_oop_temp;
       
   909     __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
       
   910     __ BIND(method_is_not_static);
       
   911   }
       
   912 
       
   913   // At this point, arguments have been copied off the stack into
       
   914   // their JNI positions. Oops are boxed in-place on the stack, with
       
   915   // handles copied to arguments. The result handler address is in a
       
   916   // register.
       
   917 
       
   918   // Pass JNIEnv address as first parameter.
       
   919   __ addir(R3_ARG1, thread_(jni_environment));
       
   920 
       
   921   // Load the native_method entry before we change the thread state.
       
   922   __ ld(native_method_fd, method_(native_function));
       
   923 
       
   924   //=============================================================================
       
   925   // Transition from _thread_in_Java to _thread_in_native. As soon as
       
   926   // we make this change the safepoint code needs to be certain that
       
   927   // the last Java frame we established is good. The pc in that frame
       
   928   // just needs to be near here not an actual return address.
       
   929 
       
   930   // We use release_store_fence to update values like the thread state, where
       
   931   // we don't want the current thread to continue until all our prior memory
       
   932   // accesses (including the new thread state) are visible to other threads.
       
   933   __ li(R0, _thread_in_native);
       
   934   __ release();
       
   935 
       
   936   // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
       
   937   __ stw(R0, thread_(thread_state));
       
   938 
       
   939   if (UseMembar) {
       
   940     __ fence();
       
   941   }
       
   942 
       
   943   //=============================================================================
       
   944   // Call the native method. Argument registers must not have been
       
   945   // overwritten since "__ call_stub(signature_handler);" (except for
       
   946   // ARG1 and ARG2 for static methods).
       
   947   __ call_c(native_method_fd);
       
   948 
       
   949   __ li(R0, 0);
       
   950   __ ld(R11_scratch1, 0, R1_SP);
       
   951   __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
       
   952   __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
       
   953   __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
       
   954 
       
   955   // Note: C++ interpreter needs the following here:
       
   956   // The frame_manager_lr field, which we use for setting the last
       
   957   // java frame, gets overwritten by the signature handler. Restore
       
   958   // it now.
       
   959   //__ get_PC_trash_LR(R11_scratch1);
       
   960   //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
       
   961 
       
   962   // Because of GC R19_method may no longer be valid.
       
   963 
       
   964   // Block, if necessary, before resuming in _thread_in_Java state.
       
   965   // In order for GC to work, don't clear the last_Java_sp until after
       
   966   // blocking.
       
   967 
       
   968   //=============================================================================
       
   969   // Switch thread to "native transition" state before reading the
       
   970   // synchronization state. This additional state is necessary
       
   971   // because reading and testing the synchronization state is not
       
   972   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
       
   973   // in _thread_in_native state, loads _not_synchronized and is
       
   974   // preempted. VM thread changes sync state to synchronizing and
       
   975   // suspends threads for GC. Thread A is resumed to finish this
       
   976   // native method, but doesn't block here since it didn't see any
       
   977   // synchronization in progress, and escapes.
       
   978 
       
   979   // We use release_store_fence to update values like the thread state, where
       
   980   // we don't want the current thread to continue until all our prior memory
       
   981   // accesses (including the new thread state) are visible to other threads.
       
   982   __ li(R0/*thread_state*/, _thread_in_native_trans);
       
   983   __ release();
       
   984   __ stw(R0/*thread_state*/, thread_(thread_state));
       
   985   if (UseMembar) {
       
   986     __ fence();
       
   987   }
       
   988   // Write serialization page so that the VM thread can do a pseudo remote
       
   989   // membar. We use the current thread pointer to calculate a thread
       
   990   // specific offset to write to within the page. This minimizes bus
       
   991   // traffic due to cache line collision.
       
   992   else {
       
   993     __ serialize_memory(R16_thread, R11_scratch1, R12_scratch2);
       
   994   }
       
   995 
       
   996   // Now before we return to java we must look for a current safepoint
       
   997   // (a new safepoint can not start since we entered native_trans).
       
   998   // We must check here because a current safepoint could be modifying
       
   999   // the callers registers right this moment.
       
  1000 
       
  1001   // Acquire isn't strictly necessary here because of the fence, but
       
  1002   // sync_state is declared to be volatile, so we do it anyway
       
  1003   // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
       
  1004   int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
       
  1005 
       
  1006   // TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
       
  1007   __ lwz(sync_state, sync_state_offs, sync_state_addr);
       
  1008 
       
  1009   // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
       
  1010   __ lwz(suspend_flags, thread_(suspend_flags));
       
  1011 
       
  1012   Label sync_check_done;
       
  1013   Label do_safepoint;
       
  1014   // No synchronization in progress nor yet synchronized.
       
  1015   __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
       
  1016   // Not suspended.
       
  1017   __ cmpwi(CCR1, suspend_flags, 0);
       
  1018 
       
  1019   __ bne(CCR0, do_safepoint);
       
  1020   __ beq(CCR1, sync_check_done);
       
  1021   __ bind(do_safepoint);
       
  1022   __ isync();
       
  1023   // Block. We do the call directly and leave the current
       
  1024   // last_Java_frame setup undisturbed. We must save any possible
       
  1025   // native result across the call. No oop is present.
       
  1026 
       
  1027   __ mr(R3_ARG1, R16_thread);
       
  1028   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
       
  1029             relocInfo::none);
       
  1030 
       
  1031   __ bind(sync_check_done);
       
  1032 
       
  1033   //=============================================================================
       
  1034   // <<<<<< Back in Interpreter Frame >>>>>
       
  1035 
       
  1036   // We are in thread_in_native_trans here and back in the normal
       
  1037   // interpreter frame. We don't have to do anything special about
       
  1038   // safepoints and we can switch to Java mode anytime we are ready.
       
  1039 
       
  1040   // Note: frame::interpreter_frame_result has a dependency on how the
       
  1041   // method result is saved across the call to post_method_exit. For
       
  1042   // native methods it assumes that the non-FPU/non-void result is
       
  1043   // saved in _native_lresult and a FPU result in _native_fresult. If
       
  1044   // this changes then the interpreter_frame_result implementation
       
  1045   // will need to be updated too.
       
  1046 
       
  1047   // On PPC64, we have stored the result directly after the native call.
       
  1048 
       
  1049   //=============================================================================
       
  1050   // Back in Java
       
  1051 
       
  1052   // We use release_store_fence to update values like the thread state, where
       
  1053   // we don't want the current thread to continue until all our prior memory
       
  1054   // accesses (including the new thread state) are visible to other threads.
       
  1055   __ li(R0/*thread_state*/, _thread_in_Java);
       
  1056   __ release();
       
  1057   __ stw(R0/*thread_state*/, thread_(thread_state));
       
  1058   if (UseMembar) {
       
  1059     __ fence();
       
  1060   }
       
  1061 
       
  1062   __ reset_last_Java_frame();
       
  1063 
       
  1064   // Jvmdi/jvmpi support. Whether we've got an exception pending or
       
  1065   // not, and whether unlocking throws an exception or not, we notify
       
  1066   // on native method exit. If we do have an exception, we'll end up
       
  1067   // in the caller's context to handle it, so if we don't do the
       
  1068   // notify here, we'll drop it on the floor.
       
  1069   __ notify_method_exit(true/*native method*/,
       
  1070                         ilgl /*illegal state (not used for native methods)*/,
       
  1071                         InterpreterMacroAssembler::NotifyJVMTI,
       
  1072                         false /*check_exceptions*/);
       
  1073 
       
  1074   //=============================================================================
       
  1075   // Handle exceptions
       
  1076 
       
  1077   if (synchronized) {
       
  1078     // Don't check for exceptions since we're still in the i2n frame. Do that
       
  1079     // manually afterwards.
       
  1080     unlock_method(false);
       
  1081   }
       
  1082 
       
  1083   // Reset active handles after returning from native.
       
  1084   // thread->active_handles()->clear();
       
  1085   __ ld(active_handles, thread_(active_handles));
       
  1086   // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
       
  1087   __ li(R0, 0);
       
  1088   __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);
       
  1089 
       
  1090   Label exception_return_sync_check_already_unlocked;
       
  1091   __ ld(R0/*pending_exception*/, thread_(pending_exception));
       
  1092   __ cmpdi(CCR0, R0/*pending_exception*/, 0);
       
  1093   __ bne(CCR0, exception_return_sync_check_already_unlocked);
       
  1094 
       
  1095   //-----------------------------------------------------------------------------
       
  1096   // No exception pending.
       
  1097 
       
  1098   // Move native method result back into proper registers and return.
       
  1099   // Invoke result handler (may unbox/promote).
       
  1100   __ ld(R11_scratch1, 0, R1_SP);
       
  1101   __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
       
  1102   __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
       
  1103   __ call_stub(result_handler_addr);
       
  1104 
       
  1105   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
       
  1106 
       
  1107   // Must use the return pc which was loaded from the caller's frame
       
  1108   // as the VM uses return-pc-patching for deoptimization.
       
  1109   __ mtlr(R0);
       
  1110   __ blr();
       
  1111 
       
  1112   //-----------------------------------------------------------------------------
       
  1113   // An exception is pending. We call into the runtime only if the
       
  1114   // caller was not interpreted. If it was interpreted the
       
  1115   // interpreter will do the correct thing. If it isn't interpreted
       
  1116   // (call stub/compiled code) we will change our return and continue.
       
  1117 
       
  1118   __ BIND(exception_return_sync_check);
       
  1119 
       
  1120   if (synchronized) {
       
  1121     // Don't check for exceptions since we're still in the i2n frame. Do that
       
  1122     // manually afterwards.
       
  1123     unlock_method(false);
       
  1124   }
       
  1125   __ BIND(exception_return_sync_check_already_unlocked);
       
  1126 
       
  1127   const Register return_pc = R31;
       
  1128 
       
  1129   __ ld(return_pc, 0, R1_SP);
       
  1130   __ ld(return_pc, _abi(lr), return_pc);
       
  1131 
       
  1132   // Get the address of the exception handler.
       
  1133   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
       
  1134                   R16_thread,
       
  1135                   return_pc /* return pc */);
       
  1136   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
       
  1137 
       
  1138   // Load the PC of the the exception handler into LR.
       
  1139   __ mtlr(R3_RET);
       
  1140 
       
  1141   // Load exception into R3_ARG1 and clear pending exception in thread.
       
  1142   __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
       
  1143   __ li(R4_ARG2, 0);
       
  1144   __ std(R4_ARG2, thread_(pending_exception));
       
  1145 
       
  1146   // Load the original return pc into R4_ARG2.
       
  1147   __ mr(R4_ARG2/*issuing_pc*/, return_pc);
       
  1148 
       
  1149   // Return to exception handler.
       
  1150   __ blr();
       
  1151 
       
  1152   //=============================================================================
       
  1153   // Counter overflow.
       
  1154 
       
  1155   if (inc_counter) {
       
  1156     // Handle invocation counter overflow.
       
  1157     __ bind(invocation_counter_overflow);
       
  1158 
       
  1159     generate_counter_overflow(continue_after_compile);
       
  1160   }
       
  1161 
       
  1162   return entry;
       
  1163 }
       
  1164 
       
  1165 // Generic interpreted method entry to (asm) interpreter.
       
  1166 //
       
  1167 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
       
  1168   bool inc_counter = UseCompiler || CountCompiledCalls;
       
  1169   address entry = __ pc();
       
  1170   // Generate the code to allocate the interpreter stack frame.
       
  1171   Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
       
  1172            Rsize_of_locals     = R5_ARG3; // Written by generate_fixed_frame.
       
  1173 
       
  1174   generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
       
  1175 
       
  1176 #ifdef FAST_DISPATCH
       
  1177   __ unimplemented("Fast dispatch in generate_normal_entry");
       
  1178 #if 0
       
  1179   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
       
  1180   // Set bytecode dispatch table base.
       
  1181 #endif
       
  1182 #endif
       
  1183 
       
  1184   // --------------------------------------------------------------------------
       
  1185   // Zero out non-parameter locals.
       
  1186   // Note: *Always* zero out non-parameter locals as Sparc does. It's not
       
  1187   // worth to ask the flag, just do it.
       
  1188   Register Rslot_addr = R6_ARG4,
       
  1189            Rnum       = R7_ARG5;
       
  1190   Label Lno_locals, Lzero_loop;
       
  1191 
       
  1192   // Set up the zeroing loop.
       
  1193   __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
       
  1194   __ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
       
  1195   __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
       
  1196   __ beq(CCR0, Lno_locals);
       
  1197   __ li(R0, 0);
       
  1198   __ mtctr(Rnum);
       
  1199 
       
  1200   // The zero locals loop.
       
  1201   __ bind(Lzero_loop);
       
  1202   __ std(R0, 0, Rslot_addr);
       
  1203   __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
       
  1204   __ bdnz(Lzero_loop);
       
  1205 
       
  1206   __ bind(Lno_locals);
       
  1207 
       
  1208   // --------------------------------------------------------------------------
       
  1209   // Counter increment and overflow check.
       
  1210   Label invocation_counter_overflow,
       
  1211         profile_method,
       
  1212         profile_method_continue;
       
  1213   if (inc_counter || ProfileInterpreter) {
       
  1214 
       
  1215     Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
       
  1216     if (synchronized) {
       
  1217       // Since at this point in the method invocation the exception handler
       
  1218       // would try to exit the monitor of synchronized methods which hasn't
       
  1219       // been entered yet, we set the thread local variable
       
  1220       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
       
  1221       // runtime, exception handling i.e. unlock_if_synchronized_method will
       
  1222       // check this thread local flag.
       
  1223       // This flag has two effects, one is to force an unwind in the topmost
       
  1224       // interpreter frame and not perform an unlock while doing so.
       
  1225       __ li(R0, 1);
       
  1226       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
       
  1227     }
       
  1228     // Increment invocation counter and check for overflow.
       
  1229     if (inc_counter) {
       
  1230       generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
       
  1231     }
       
  1232 
       
  1233     __ bind(profile_method_continue);
       
  1234 
       
  1235     // Reset the _do_not_unlock_if_synchronized flag.
       
  1236     if (synchronized) {
       
  1237       __ li(R0, 0);
       
  1238       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
       
  1239     }
       
  1240   }
       
  1241 
       
  1242   // --------------------------------------------------------------------------
       
  1243   // Locking of synchronized methods. Must happen AFTER invocation_counter
       
  1244   // check and stack overflow check, so method is not locked if overflows.
       
  1245   if (synchronized) {
       
  1246     lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
       
  1247   }
       
  1248 #ifdef ASSERT
       
  1249   else {
       
  1250     Label Lok;
       
  1251     __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
       
  1252     __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
       
  1253     __ asm_assert_eq("method needs synchronization", 0x8521);
       
  1254     __ bind(Lok);
       
  1255   }
       
  1256 #endif // ASSERT
       
  1257 
       
  1258   __ verify_thread();
       
  1259 
       
  1260   // --------------------------------------------------------------------------
       
  1261   // JVMTI support
       
  1262   __ notify_method_entry();
       
  1263 
       
  1264   // --------------------------------------------------------------------------
       
  1265   // Start executing instructions.
       
  1266   __ dispatch_next(vtos);
       
  1267 
       
  1268   // --------------------------------------------------------------------------
       
  1269   // Out of line counter overflow and MDO creation code.
       
  1270   if (ProfileInterpreter) {
       
  1271     // We have decided to profile this method in the interpreter.
       
  1272     __ bind(profile_method);
       
  1273     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
       
  1274     __ set_method_data_pointer_for_bcp();
       
  1275     __ b(profile_method_continue);
       
  1276   }
       
  1277 
       
  1278   if (inc_counter) {
       
  1279     // Handle invocation counter overflow.
       
  1280     __ bind(invocation_counter_overflow);
       
  1281     generate_counter_overflow(profile_method_continue);
       
  1282   }
       
  1283   return entry;
       
  1284 }
       
  1285 
       
  1286 // =============================================================================
       
  1287 // Entry points
       
  1288 
       
  1289 address AbstractInterpreterGenerator::generate_method_entry(
       
  1290                                         AbstractInterpreter::MethodKind kind) {
       
  1291   // Determine code generation flags.
       
  1292   bool synchronized = false;
       
  1293   address entry_point = NULL;
       
  1294 
       
  1295   switch (kind) {
       
  1296   case Interpreter::zerolocals             :                                                                             break;
       
  1297   case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
       
  1298   case Interpreter::native                 : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false); break;
       
  1299   case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(true);  break;
       
  1300   case Interpreter::empty                  : entry_point = ((InterpreterGenerator*) this)->generate_empty_entry();       break;
       
  1301   case Interpreter::accessor               : entry_point = ((InterpreterGenerator*) this)->generate_accessor_entry();    break;
       
  1302   case Interpreter::abstract               : entry_point = ((InterpreterGenerator*) this)->generate_abstract_entry();    break;
       
  1303 
       
  1304   case Interpreter::java_lang_math_sin     : // fall thru
       
  1305   case Interpreter::java_lang_math_cos     : // fall thru
       
  1306   case Interpreter::java_lang_math_tan     : // fall thru
       
  1307   case Interpreter::java_lang_math_abs     : // fall thru
       
  1308   case Interpreter::java_lang_math_log     : // fall thru
       
  1309   case Interpreter::java_lang_math_log10   : // fall thru
       
  1310   case Interpreter::java_lang_math_sqrt    : // fall thru
       
  1311   case Interpreter::java_lang_math_pow     : // fall thru
       
  1312   case Interpreter::java_lang_math_exp     : entry_point = ((InterpreterGenerator*) this)->generate_math_entry(kind);    break;
       
  1313   case Interpreter::java_lang_ref_reference_get
       
  1314                                            : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
       
  1315   default                                  : ShouldNotReachHere();                                                       break;
       
  1316   }
       
  1317 
       
  1318   if (entry_point) {
       
  1319     return entry_point;
       
  1320   }
       
  1321 
       
  1322   return ((InterpreterGenerator*) this)->generate_normal_entry(synchronized);
       
  1323 }
       
  1324 
       
  1325 // These should never be compiled since the interpreter will prefer
       
  1326 // the compiled version to the intrinsic version.
       
  1327 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
       
  1328   return !math_entry_available(method_kind(m));
       
  1329 }
       
  1330 
       
  1331 // How much stack a method activation needs in stack slots.
       
  1332 // We must calc this exactly like in generate_fixed_frame.
       
  1333 // Note: This returns the conservative size assuming maximum alignment.
       
  1334 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
       
  1335   const int max_alignment_size = 2;
       
  1336   const int abi_scratch = frame::abi_reg_args_size;
       
  1337   return method->max_locals() + method->max_stack() + frame::interpreter_frame_monitor_size() + max_alignment_size + abi_scratch;
       
  1338 }
       
  1339 
       
  1340 // Fills a sceletal interpreter frame generated during deoptimizations
       
  1341 // and returns the frame size in slots.
       
  1342 //
       
  1343 // Parameters:
       
  1344 //
       
  1345 // interpreter_frame == NULL:
       
  1346 //   Only calculate the size of an interpreter activation, no actual layout.
       
  1347 //   Note: This calculation must exactly parallel the frame setup
       
  1348 //   in TemplateInterpreter::generate_normal_entry. But it does not
       
  1349 //   account for the SP alignment, that might further enhance the
       
  1350 //   frame size, depending on FP.
       
  1351 //
       
  1352 // interpreter_frame != NULL:
       
  1353 //   set up the method, locals, and monitors.
       
  1354 //   The frame interpreter_frame, if not NULL, is guaranteed to be the
       
  1355 //   right size, as determined by a previous call to this method.
       
  1356 //   It is also guaranteed to be walkable even though it is in a skeletal state
       
  1357 //
       
  1358 // is_top_frame == true:
       
  1359 //   We're processing the *oldest* interpreter frame!
       
  1360 //
       
  1361 // pop_frame_extra_args:
       
  1362 //   If this is != 0 we are returning to a deoptimized frame by popping
       
  1363 //   off the callee frame. We want to re-execute the call that called the
       
  1364 //   callee interpreted, but since the return to the interpreter would pop
       
  1365 //   the arguments off advance the esp by dummy popframe_extra_args slots.
       
  1366 //   Popping off those will establish the stack layout as it was before the call.
       
  1367 //
       
  1368 int AbstractInterpreter::layout_activation(Method* method,
       
  1369                                            int tempcount,
       
  1370                                            int popframe_extra_args,
       
  1371                                            int moncount,
       
  1372                                            int caller_actual_parameters,
       
  1373                                            int callee_param_count,
       
  1374                                            int callee_locals,
       
  1375                                            frame* caller,
       
  1376                                            frame* interpreter_frame,
       
  1377                                            bool is_top_frame,
       
  1378                                            bool is_bottom_frame) {
       
  1379 
       
  1380   const int max_alignment_space = 2;
       
  1381   const int abi_scratch = is_top_frame ? (frame::abi_reg_args_size / Interpreter::stackElementSize) :
       
  1382                                          (frame::abi_minframe_size / Interpreter::stackElementSize) ;
       
  1383   const int conservative_framesize_in_slots =
       
  1384     method->max_stack() + callee_locals - callee_param_count +
       
  1385     (moncount * frame::interpreter_frame_monitor_size()) + max_alignment_space +
       
  1386     abi_scratch + frame::ijava_state_size / Interpreter::stackElementSize;
       
  1387 
       
  1388   assert(!is_top_frame || conservative_framesize_in_slots * 8 > frame::abi_reg_args_size + frame::ijava_state_size, "frame too small");
       
  1389 
       
  1390   if (interpreter_frame == NULL) {
       
  1391     // Since we don't know the exact alignment, we return the conservative size.
       
  1392     return (conservative_framesize_in_slots & -2);
       
  1393   } else {
       
  1394     // Now we know our caller, calc the exact frame layout and size.
       
  1395     intptr_t* locals_base  = (caller->is_interpreted_frame()) ?
       
  1396       caller->interpreter_frame_esp() + caller_actual_parameters :
       
  1397       caller->sp() + method->max_locals() - 1 + (frame::abi_minframe_size / Interpreter::stackElementSize) ;
       
  1398 
       
  1399     intptr_t* monitor_base = caller->sp() - frame::ijava_state_size / Interpreter::stackElementSize ;
       
  1400     intptr_t* monitor      = monitor_base - (moncount * frame::interpreter_frame_monitor_size());
       
  1401     intptr_t* esp_base     = monitor - 1;
       
  1402     intptr_t* esp          = esp_base - tempcount - popframe_extra_args;
       
  1403     intptr_t* sp           = (intptr_t *) (((intptr_t) (esp_base- callee_locals + callee_param_count - method->max_stack()- abi_scratch)) & -StackAlignmentInBytes);
       
  1404     intptr_t* sender_sp    = caller->sp() + (frame::abi_minframe_size - frame::abi_reg_args_size) / Interpreter::stackElementSize;
       
  1405     intptr_t* top_frame_sp = is_top_frame ? sp : sp + (frame::abi_minframe_size - frame::abi_reg_args_size) / Interpreter::stackElementSize;
       
  1406 
       
  1407     interpreter_frame->interpreter_frame_set_method(method);
       
  1408     interpreter_frame->interpreter_frame_set_locals(locals_base);
       
  1409     interpreter_frame->interpreter_frame_set_cpcache(method->constants()->cache());
       
  1410     interpreter_frame->interpreter_frame_set_esp(esp);
       
  1411     interpreter_frame->interpreter_frame_set_monitor_end((BasicObjectLock *)monitor);
       
  1412     interpreter_frame->interpreter_frame_set_top_frame_sp(top_frame_sp);
       
  1413     if (!is_bottom_frame) {
       
  1414       interpreter_frame->interpreter_frame_set_sender_sp(sender_sp);
       
  1415     }
       
  1416 
       
  1417     int framesize_in_slots = caller->sp() - sp;
       
  1418     assert(!is_top_frame ||framesize_in_slots >= (frame::abi_reg_args_size / Interpreter::stackElementSize) + frame::ijava_state_size / Interpreter::stackElementSize, "frame too small");
       
  1419     assert(framesize_in_slots <= conservative_framesize_in_slots, "exact frame size must be smaller than the convervative size!");
       
  1420     return framesize_in_slots;
       
  1421   }
       
  1422 }
       
  1423 
       
  1424 // =============================================================================
       
  1425 // Exceptions
       
  1426 
       
  1427 void TemplateInterpreterGenerator::generate_throw_exception() {
       
  1428   Register Rexception    = R17_tos,
       
  1429            Rcontinuation = R3_RET;
       
  1430 
       
  1431   // --------------------------------------------------------------------------
       
  1432   // Entry point if an method returns with a pending exception (rethrow).
       
  1433   Interpreter::_rethrow_exception_entry = __ pc();
       
  1434   {
       
  1435     __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
       
  1436     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
       
  1437     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
       
  1438 
       
  1439     // Compiled code destroys templateTableBase, reload.
       
  1440     __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
       
  1441   }
       
  1442 
       
  1443   // Entry point if a interpreted method throws an exception (throw).
       
  1444   Interpreter::_throw_exception_entry = __ pc();
       
  1445   {
       
  1446     __ mr(Rexception, R3_RET);
       
  1447 
       
  1448     __ verify_thread();
       
  1449     __ verify_oop(Rexception);
       
  1450 
       
  1451     // Expression stack must be empty before entering the VM in case of an exception.
       
  1452     __ empty_expression_stack();
       
  1453     // Find exception handler address and preserve exception oop.
       
  1454     // Call C routine to find handler and jump to it.
       
  1455     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
       
  1456     __ mtctr(Rcontinuation);
       
  1457     // Push exception for exception handler bytecodes.
       
  1458     __ push_ptr(Rexception);
       
  1459 
       
  1460     // Jump to exception handler (may be remove activation entry!).
       
  1461     __ bctr();
       
  1462   }
       
  1463 
       
  1464   // If the exception is not handled in the current frame the frame is
       
  1465   // removed and the exception is rethrown (i.e. exception
       
  1466   // continuation is _rethrow_exception).
       
  1467   //
       
  1468   // Note: At this point the bci is still the bxi for the instruction
       
  1469   // which caused the exception and the expression stack is
       
  1470   // empty. Thus, for any VM calls at this point, GC will find a legal
       
  1471   // oop map (with empty expression stack).
       
  1472 
       
  1473   // In current activation
       
  1474   // tos: exception
       
  1475   // bcp: exception bcp
       
  1476 
       
  1477   // --------------------------------------------------------------------------
       
  1478   // JVMTI PopFrame support
       
  1479 
       
  1480   Interpreter::_remove_activation_preserving_args_entry = __ pc();
       
  1481   {
       
  1482     // Set the popframe_processing bit in popframe_condition indicating that we are
       
  1483     // currently handling popframe, so that call_VMs that may happen later do not
       
  1484     // trigger new popframe handling cycles.
       
  1485     __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
       
  1486     __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
       
  1487     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
       
  1488 
       
  1489     // Empty the expression stack, as in normal exception handling.
       
  1490     __ empty_expression_stack();
       
  1491     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
       
  1492 
       
  1493     // Check to see whether we are returning to a deoptimized frame.
       
  1494     // (The PopFrame call ensures that the caller of the popped frame is
       
  1495     // either interpreted or compiled and deoptimizes it if compiled.)
       
  1496     // Note that we don't compare the return PC against the
       
  1497     // deoptimization blob's unpack entry because of the presence of
       
  1498     // adapter frames in C2.
       
  1499     Label Lcaller_not_deoptimized;
       
  1500     Register return_pc = R3_ARG1;
       
  1501     __ ld(return_pc, 0, R1_SP);
       
  1502     __ ld(return_pc, _abi(lr), return_pc);
       
  1503     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
       
  1504     __ cmpdi(CCR0, R3_RET, 0);
       
  1505     __ bne(CCR0, Lcaller_not_deoptimized);
       
  1506 
       
  1507     // The deoptimized case.
       
  1508     // In this case, we can't call dispatch_next() after the frame is
       
  1509     // popped, but instead must save the incoming arguments and restore
       
  1510     // them after deoptimization has occurred.
       
  1511     __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
       
  1512     __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
       
  1513     __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
       
  1514     __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
       
  1515     __ subf(R5_ARG3, R4_ARG2, R5_ARG3);
       
  1516     // Save these arguments.
       
  1517     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
       
  1518 
       
  1519     // Inform deoptimization that it is responsible for restoring these arguments.
       
  1520     __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
       
  1521     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
       
  1522 
       
  1523     // Return from the current method into the deoptimization blob. Will eventually
       
  1524     // end up in the deopt interpeter entry, deoptimization prepared everything that
       
  1525     // we will reexecute the call that called us.
       
  1526     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
       
  1527     __ mtlr(return_pc);
       
  1528     __ blr();
       
  1529 
       
  1530     // The non-deoptimized case.
       
  1531     __ bind(Lcaller_not_deoptimized);
       
  1532 
       
  1533     // Clear the popframe condition flag.
       
  1534     __ li(R0, 0);
       
  1535     __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
       
  1536 
       
  1537     // Get out of the current method and re-execute the call that called us.
       
  1538     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ return_pc, R11_scratch1, R12_scratch2);
       
  1539     __ restore_interpreter_state(R11_scratch1);
       
  1540     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
       
  1541     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
       
  1542     __ mtlr(return_pc);
       
  1543     if (ProfileInterpreter) {
       
  1544       __ set_method_data_pointer_for_bcp();
       
  1545     }
       
  1546     __ dispatch_next(vtos);
       
  1547   }
       
  1548   // end of JVMTI PopFrame support
       
  1549 
       
  1550   // --------------------------------------------------------------------------
       
  1551   // Remove activation exception entry.
       
  1552   // This is jumped to if an interpreted method can't handle an exception itself
       
  1553   // (we come from the throw/rethrow exception entry above). We're going to call
       
  1554   // into the VM to find the exception handler in the caller, pop the current
       
  1555   // frame and return the handler we calculated.
       
  1556   Interpreter::_remove_activation_entry = __ pc();
       
  1557   {
       
  1558     __ pop_ptr(Rexception);
       
  1559     __ verify_thread();
       
  1560     __ verify_oop(Rexception);
       
  1561     __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
       
  1562 
       
  1563     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
       
  1564     __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
       
  1565 
       
  1566     __ get_vm_result(Rexception);
       
  1567 
       
  1568     // We are done with this activation frame; find out where to go next.
       
  1569     // The continuation point will be an exception handler, which expects
       
  1570     // the following registers set up:
       
  1571     //
       
  1572     // RET:  exception oop
       
  1573     // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
       
  1574 
       
  1575     Register return_pc = R31; // Needs to survive the runtime call.
       
  1576     __ ld(return_pc, 0, R1_SP);
       
  1577     __ ld(return_pc, _abi(lr), return_pc);
       
  1578     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
       
  1579 
       
  1580     // Remove the current activation.
       
  1581     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
       
  1582 
       
  1583     __ mr(R4_ARG2, return_pc);
       
  1584     __ mtlr(R3_RET);
       
  1585     __ mr(R3_RET, Rexception);
       
  1586     __ blr();
       
  1587   }
       
  1588 }
       
  1589 
       
  1590 // JVMTI ForceEarlyReturn support.
       
  1591 // Returns "in the middle" of a method with a "fake" return value.
       
  1592 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
       
  1593 
       
  1594   Register Rscratch1 = R11_scratch1,
       
  1595            Rscratch2 = R12_scratch2;
       
  1596 
       
  1597   address entry = __ pc();
       
  1598   __ empty_expression_stack();
       
  1599 
       
  1600   __ load_earlyret_value(state, Rscratch1);
       
  1601 
       
  1602   __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
       
  1603   // Clear the earlyret state.
       
  1604   __ li(R0, 0);
       
  1605   __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
       
  1606 
       
  1607   __ remove_activation(state, false, false);
       
  1608   // Copied from TemplateTable::_return.
       
  1609   // Restoration of lr done by remove_activation.
       
  1610   switch (state) {
       
  1611     case ltos:
       
  1612     case btos:
       
  1613     case ctos:
       
  1614     case stos:
       
  1615     case atos:
       
  1616     case itos: __ mr(R3_RET, R17_tos); break;
       
  1617     case ftos:
       
  1618     case dtos: __ fmr(F1_RET, F15_ftos); break;
       
  1619     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
       
  1620                // to get visible before the reference to the object gets stored anywhere.
       
  1621                __ membar(Assembler::StoreStore); break;
       
  1622     default  : ShouldNotReachHere();
       
  1623   }
       
  1624   __ blr();
       
  1625 
       
  1626   return entry;
       
  1627 } // end of ForceEarlyReturn support
       
  1628 
       
  1629 //-----------------------------------------------------------------------------
       
  1630 // Helper for vtos entry point generation
       
  1631 
       
  1632 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
       
  1633                                                          address& bep,
       
  1634                                                          address& cep,
       
  1635                                                          address& sep,
       
  1636                                                          address& aep,
       
  1637                                                          address& iep,
       
  1638                                                          address& lep,
       
  1639                                                          address& fep,
       
  1640                                                          address& dep,
       
  1641                                                          address& vep) {
       
  1642   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
       
  1643   Label L;
       
  1644 
       
  1645   aep = __ pc();  __ push_ptr();  __ b(L);
       
  1646   fep = __ pc();  __ push_f();    __ b(L);
       
  1647   dep = __ pc();  __ push_d();    __ b(L);
       
  1648   lep = __ pc();  __ push_l();    __ b(L);
       
  1649   __ align(32, 12, 24); // align L
       
  1650   bep = cep = sep =
       
  1651   iep = __ pc();  __ push_i();
       
  1652   vep = __ pc();
       
  1653   __ bind(L);
       
  1654   generate_and_dispatch(t);
       
  1655 }
       
  1656 
       
  1657 //-----------------------------------------------------------------------------
       
  1658 // Generation of individual instructions
       
  1659 
       
  1660 // helpers for generate_and_dispatch
       
  1661 
       
  1662 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
       
  1663   : TemplateInterpreterGenerator(code) {
       
  1664   generate_all(); // Down here so it can be "virtual".
       
  1665 }
       
  1666 
       
  1667 //-----------------------------------------------------------------------------
       
  1668 
       
  1669 // Non-product code
       
  1670 #ifndef PRODUCT
       
  1671 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
       
  1672   //__ flush_bundle();
       
  1673   address entry = __ pc();
       
  1674 
       
  1675   char *bname = NULL;
       
  1676   uint tsize = 0;
       
  1677   switch(state) {
       
  1678   case ftos:
       
  1679     bname = "trace_code_ftos {";
       
  1680     tsize = 2;
       
  1681     break;
       
  1682   case btos:
       
  1683     bname = "trace_code_btos {";
       
  1684     tsize = 2;
       
  1685     break;
       
  1686   case ctos:
       
  1687     bname = "trace_code_ctos {";
       
  1688     tsize = 2;
       
  1689     break;
       
  1690   case stos:
       
  1691     bname = "trace_code_stos {";
       
  1692     tsize = 2;
       
  1693     break;
       
  1694   case itos:
       
  1695     bname = "trace_code_itos {";
       
  1696     tsize = 2;
       
  1697     break;
       
  1698   case ltos:
       
  1699     bname = "trace_code_ltos {";
       
  1700     tsize = 3;
       
  1701     break;
       
  1702   case atos:
       
  1703     bname = "trace_code_atos {";
       
  1704     tsize = 2;
       
  1705     break;
       
  1706   case vtos:
       
  1707     // Note: In case of vtos, the topmost of stack value could be a int or doubl
       
  1708     // In case of a double (2 slots) we won't see the 2nd stack value.
       
  1709     // Maybe we simply should print the topmost 3 stack slots to cope with the problem.
       
  1710     bname = "trace_code_vtos {";
       
  1711     tsize = 2;
       
  1712 
       
  1713     break;
       
  1714   case dtos:
       
  1715     bname = "trace_code_dtos {";
       
  1716     tsize = 3;
       
  1717     break;
       
  1718   default:
       
  1719     ShouldNotReachHere();
       
  1720   }
       
  1721   BLOCK_COMMENT(bname);
       
  1722 
       
  1723   // Support short-cut for TraceBytecodesAt.
       
  1724   // Don't call into the VM if we don't want to trace to speed up things.
       
  1725   Label Lskip_vm_call;
       
  1726   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
       
  1727     int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
       
  1728     int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
       
  1729     __ ld(R11_scratch1, offs1, R11_scratch1);
       
  1730     __ lwa(R12_scratch2, offs2, R12_scratch2);
       
  1731     __ cmpd(CCR0, R12_scratch2, R11_scratch1);
       
  1732     __ blt(CCR0, Lskip_vm_call);
       
  1733   }
       
  1734 
       
  1735   __ push(state);
       
  1736   // Load 2 topmost expression stack values.
       
  1737   __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
       
  1738   __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
       
  1739   __ mflr(R31);
       
  1740   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
       
  1741   __ mtlr(R31);
       
  1742   __ pop(state);
       
  1743 
       
  1744   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
       
  1745     __ bind(Lskip_vm_call);
       
  1746   }
       
  1747   __ blr();
       
  1748   BLOCK_COMMENT("} trace_code");
       
  1749   return entry;
       
  1750 }
       
  1751 
       
  1752 void TemplateInterpreterGenerator::count_bytecode() {
       
  1753   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
       
  1754   __ lwz(R12_scratch2, offs, R11_scratch1);
       
  1755   __ addi(R12_scratch2, R12_scratch2, 1);
       
  1756   __ stw(R12_scratch2, offs, R11_scratch1);
       
  1757 }
       
  1758 
       
  1759 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
       
  1760   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
       
  1761   __ lwz(R12_scratch2, offs, R11_scratch1);
       
  1762   __ addi(R12_scratch2, R12_scratch2, 1);
       
  1763   __ stw(R12_scratch2, offs, R11_scratch1);
       
  1764 }
       
  1765 
       
  1766 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
       
  1767   const Register addr = R11_scratch1,
       
  1768                  tmp  = R12_scratch2;
       
  1769   // Get index, shift out old bytecode, bring in new bytecode, and store it.
       
  1770   // _index = (_index >> log2_number_of_codes) |
       
  1771   //          (bytecode << log2_number_of_codes);
       
  1772   int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
       
  1773   __ lwz(tmp, offs1, addr);
       
  1774   __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
       
  1775   __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
       
  1776   __ stw(tmp, offs1, addr);
       
  1777 
       
  1778   // Bump bucket contents.
       
  1779   // _counters[_index] ++;
       
  1780   int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
       
  1781   __ sldi(tmp, tmp, LogBytesPerInt);
       
  1782   __ add(addr, tmp, addr);
       
  1783   __ lwz(tmp, offs2, addr);
       
  1784   __ addi(tmp, tmp, 1);
       
  1785   __ stw(tmp, offs2, addr);
       
  1786 }
       
  1787 
       
  1788 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
       
  1789   // Call a little run-time stub to avoid blow-up for each bytecode.
       
  1790   // The run-time runtime saves the right registers, depending on
       
  1791   // the tosca in-state for the given template.
       
  1792 
       
  1793   assert(Interpreter::trace_code(t->tos_in()) != NULL,
       
  1794          "entry must have been generated");
       
  1795 
       
  1796   // Note: we destroy LR here.
       
  1797   __ bl(Interpreter::trace_code(t->tos_in()));
       
  1798 }
       
  1799 
       
  1800 void TemplateInterpreterGenerator::stop_interpreter_at() {
       
  1801   Label L;
       
  1802   int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
       
  1803   int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
       
  1804   __ ld(R11_scratch1, offs1, R11_scratch1);
       
  1805   __ lwa(R12_scratch2, offs2, R12_scratch2);
       
  1806   __ cmpd(CCR0, R12_scratch2, R11_scratch1);
       
  1807   __ bne(CCR0, L);
       
  1808   __ illtrap();
       
  1809   __ bind(L);
       
  1810 }
       
  1811 
       
  1812 #endif // !PRODUCT
       
  1813 #endif // !CC_INTERP