hotspot/src/cpu/x86/vm/assembler_x86_64.hpp
changeset 1111 a98b896e5485
parent 1110 59749505f3e8
parent 1107 5d33babdf375
child 1112 6d909d5803e3
equal deleted inserted replaced
1110:59749505f3e8 1111:a98b896e5485
     1 /*
       
     2  * Copyright 2003-2008 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 class BiasedLockingCounters;
       
    26 
       
    27 // Contains all the definitions needed for amd64 assembly code generation.
       
    28 
       
    29 #ifdef _LP64
       
    30 // Calling convention
       
    31 class Argument VALUE_OBJ_CLASS_SPEC {
       
    32  public:
       
    33   enum {
       
    34 #ifdef _WIN64
       
    35     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
       
    36     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
       
    37 #else
       
    38     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
       
    39     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
       
    40 #endif  // _WIN64
       
    41     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
       
    42     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
       
    43   };
       
    44 };
       
    45 
       
    46 
       
    47 // Symbolically name the register arguments used by the c calling convention.
       
    48 // Windows is different from linux/solaris. So much for standards...
       
    49 
       
    50 #ifdef _WIN64
       
    51 
       
    52 REGISTER_DECLARATION(Register, c_rarg0, rcx);
       
    53 REGISTER_DECLARATION(Register, c_rarg1, rdx);
       
    54 REGISTER_DECLARATION(Register, c_rarg2, r8);
       
    55 REGISTER_DECLARATION(Register, c_rarg3, r9);
       
    56 
       
    57 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
       
    58 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
       
    59 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
       
    60 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
       
    61 
       
    62 #else
       
    63 
       
    64 REGISTER_DECLARATION(Register, c_rarg0, rdi);
       
    65 REGISTER_DECLARATION(Register, c_rarg1, rsi);
       
    66 REGISTER_DECLARATION(Register, c_rarg2, rdx);
       
    67 REGISTER_DECLARATION(Register, c_rarg3, rcx);
       
    68 REGISTER_DECLARATION(Register, c_rarg4, r8);
       
    69 REGISTER_DECLARATION(Register, c_rarg5, r9);
       
    70 
       
    71 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
       
    72 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
       
    73 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
       
    74 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
       
    75 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
       
    76 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
       
    77 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
       
    78 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
       
    79 
       
    80 #endif  // _WIN64
       
    81 
       
    82 // Symbolically name the register arguments used by the Java calling convention.
       
    83 // We have control over the convention for java so we can do what we please.
       
    84 // What pleases us is to offset the java calling convention so that when
       
    85 // we call a suitable jni method the arguments are lined up and we don't
       
    86 // have to do little shuffling. A suitable jni method is non-static and a
       
    87 // small number of arguments (two fewer args on windows)
       
    88 //
       
    89 //        |-------------------------------------------------------|
       
    90 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
       
    91 //        |-------------------------------------------------------|
       
    92 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
       
    93 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
       
    94 //        |-------------------------------------------------------|
       
    95 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
       
    96 //        |-------------------------------------------------------|
       
    97 
       
    98 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
       
    99 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
       
   100 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
       
   101 // Windows runs out of register args here
       
   102 #ifdef _WIN64
       
   103 REGISTER_DECLARATION(Register, j_rarg3, rdi);
       
   104 REGISTER_DECLARATION(Register, j_rarg4, rsi);
       
   105 #else
       
   106 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
       
   107 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
       
   108 #endif // _WIN64
       
   109 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
       
   110 
       
   111 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
       
   112 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
       
   113 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
       
   114 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
       
   115 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
       
   116 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
       
   117 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
       
   118 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
       
   119 
       
   120 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
       
   121 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
       
   122 
       
   123 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
       
   124 REGISTER_DECLARATION(Register, r15_thread, r15);   // callee-saved
       
   125 
       
   126 #endif // _LP64
       
   127 
       
   128 // Address is an abstraction used to represent a memory location
       
   129 // using any of the amd64 addressing modes with one object.
       
   130 //
       
   131 // Note: A register location is represented via a Register, not
       
   132 //       via an address for efficiency & simplicity reasons.
       
   133 
       
   134 class ArrayAddress;
       
   135 
       
   136 class Address VALUE_OBJ_CLASS_SPEC {
       
   137  public:
       
   138   enum ScaleFactor {
       
   139     no_scale = -1,
       
   140     times_1  =  0,
       
   141     times_2  =  1,
       
   142     times_4  =  2,
       
   143     times_8  =  3
       
   144   };
       
   145 
       
   146  private:
       
   147   Register         _base;
       
   148   Register         _index;
       
   149   ScaleFactor      _scale;
       
   150   int              _disp;
       
   151   RelocationHolder _rspec;
       
   152 
       
   153   // Easily misused constructors make them private
       
   154   Address(int disp, address loc, relocInfo::relocType rtype);
       
   155   Address(int disp, address loc, RelocationHolder spec);
       
   156 
       
   157  public:
       
   158   // creation
       
   159   Address()
       
   160     : _base(noreg),
       
   161       _index(noreg),
       
   162       _scale(no_scale),
       
   163       _disp(0) {
       
   164   }
       
   165 
       
   166   // No default displacement otherwise Register can be implicitly
       
   167   // converted to 0(Register) which is quite a different animal.
       
   168 
       
   169   Address(Register base, int disp)
       
   170     : _base(base),
       
   171       _index(noreg),
       
   172       _scale(no_scale),
       
   173       _disp(disp) {
       
   174   }
       
   175 
       
   176   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
       
   177     : _base (base),
       
   178       _index(index),
       
   179       _scale(scale),
       
   180       _disp (disp) {
       
   181     assert(!index->is_valid() == (scale == Address::no_scale),
       
   182            "inconsistent address");
       
   183   }
       
   184 
       
   185   // The following two overloads are used in connection with the
       
   186   // ByteSize type (see sizes.hpp).  They simplify the use of
       
   187   // ByteSize'd arguments in assembly code. Note that their equivalent
       
   188   // for the optimized build are the member functions with int disp
       
   189   // argument since ByteSize is mapped to an int type in that case.
       
   190   //
       
   191   // Note: DO NOT introduce similar overloaded functions for WordSize
       
   192   // arguments as in the optimized mode, both ByteSize and WordSize
       
   193   // are mapped to the same type and thus the compiler cannot make a
       
   194   // distinction anymore (=> compiler errors).
       
   195 
       
   196 #ifdef ASSERT
       
   197   Address(Register base, ByteSize disp)
       
   198     : _base(base),
       
   199       _index(noreg),
       
   200       _scale(no_scale),
       
   201       _disp(in_bytes(disp)) {
       
   202   }
       
   203 
       
   204   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
       
   205     : _base(base),
       
   206       _index(index),
       
   207       _scale(scale),
       
   208       _disp(in_bytes(disp)) {
       
   209     assert(!index->is_valid() == (scale == Address::no_scale),
       
   210            "inconsistent address");
       
   211   }
       
   212 #endif // ASSERT
       
   213 
       
   214   // accessors
       
   215   bool uses(Register reg) const {
       
   216     return _base == reg || _index == reg;
       
   217   }
       
   218 
       
   219   // Convert the raw encoding form into the form expected by the constructor for
       
   220   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
       
   221   // that to noreg for the Address constructor.
       
   222   static Address make_raw(int base, int index, int scale, int disp);
       
   223 
       
   224   static Address make_array(ArrayAddress);
       
   225 
       
   226  private:
       
   227   bool base_needs_rex() const {
       
   228     return _base != noreg && _base->encoding() >= 8;
       
   229   }
       
   230 
       
   231   bool index_needs_rex() const {
       
   232     return _index != noreg &&_index->encoding() >= 8;
       
   233   }
       
   234 
       
   235   relocInfo::relocType reloc() const { return _rspec.type(); }
       
   236 
       
   237   friend class Assembler;
       
   238   friend class MacroAssembler;
       
   239   friend class LIR_Assembler; // base/index/scale/disp
       
   240 };
       
   241 
       
   242 //
       
   243 // AddressLiteral has been split out from Address because operands of this type
       
   244 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
       
   245 // the few instructions that need to deal with address literals are unique and the
       
   246 // MacroAssembler does not have to implement every instruction in the Assembler
       
   247 // in order to search for address literals that may need special handling depending
       
   248 // on the instruction and the platform. As small step on the way to merging i486/amd64
       
   249 // directories.
       
   250 //
       
   251 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
       
   252   friend class ArrayAddress;
       
   253   RelocationHolder _rspec;
       
   254   // Typically we use AddressLiterals we want to use their rval
       
   255   // However in some situations we want the lval (effect address) of the item.
       
   256   // We provide a special factory for making those lvals.
       
   257   bool _is_lval;
       
   258 
       
   259   // If the target is far we'll need to load the ea of this to
       
   260   // a register to reach it. Otherwise if near we can do rip
       
   261   // relative addressing.
       
   262 
       
   263   address          _target;
       
   264 
       
   265  protected:
       
   266   // creation
       
   267   AddressLiteral()
       
   268     : _is_lval(false),
       
   269       _target(NULL)
       
   270   {}
       
   271 
       
   272   public:
       
   273 
       
   274 
       
   275   AddressLiteral(address target, relocInfo::relocType rtype);
       
   276 
       
   277   AddressLiteral(address target, RelocationHolder const& rspec)
       
   278     : _rspec(rspec),
       
   279       _is_lval(false),
       
   280       _target(target)
       
   281   {}
       
   282 
       
   283   AddressLiteral addr() {
       
   284     AddressLiteral ret = *this;
       
   285     ret._is_lval = true;
       
   286     return ret;
       
   287   }
       
   288 
       
   289 
       
   290  private:
       
   291 
       
   292   address target() { return _target; }
       
   293   bool is_lval() { return _is_lval; }
       
   294 
       
   295   relocInfo::relocType reloc() const { return _rspec.type(); }
       
   296   const RelocationHolder& rspec() const { return _rspec; }
       
   297 
       
   298   friend class Assembler;
       
   299   friend class MacroAssembler;
       
   300   friend class Address;
       
   301   friend class LIR_Assembler;
       
   302 };
       
   303 
       
   304 // Convience classes
       
   305 class RuntimeAddress: public AddressLiteral {
       
   306 
       
   307   public:
       
   308 
       
   309   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
       
   310 
       
   311 };
       
   312 
       
   313 class OopAddress: public AddressLiteral {
       
   314 
       
   315   public:
       
   316 
       
   317   OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
       
   318 
       
   319 };
       
   320 
       
   321 class ExternalAddress: public AddressLiteral {
       
   322 
       
   323   public:
       
   324 
       
   325   ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
       
   326 
       
   327 };
       
   328 
       
   329 class InternalAddress: public AddressLiteral {
       
   330 
       
   331   public:
       
   332 
       
   333   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
       
   334 
       
   335 };
       
   336 
       
   337 // x86 can do array addressing as a single operation since disp can be an absolute
       
   338 // address but amd64 can't [e.g. array_base(rx, ry:width) ]. We create a class
       
   339 // that expresses the concept but does extra magic on amd64 to get the final result
       
   340 
       
   341 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
       
   342   private:
       
   343 
       
   344   AddressLiteral _base;
       
   345   Address        _index;
       
   346 
       
   347   public:
       
   348 
       
   349   ArrayAddress() {};
       
   350   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
       
   351   AddressLiteral base() { return _base; }
       
   352   Address index() { return _index; }
       
   353 
       
   354 };
       
   355 
       
   356 // The amd64 Assembler: Pure assembler doing NO optimizations on
       
   357 // the instruction level (e.g. mov rax, 0 is not translated into xor
       
   358 // rax, rax!); i.e., what you write is what you get. The Assembler is
       
   359 // generating code into a CodeBuffer.
       
   360 
       
   361 const int FPUStateSizeInWords = 512 / wordSize;
       
   362 
       
   363 class Assembler : public AbstractAssembler  {
       
   364   friend class AbstractAssembler; // for the non-virtual hack
       
   365   friend class StubGenerator;
       
   366 
       
   367 
       
   368  protected:
       
   369 #ifdef ASSERT
       
   370   void check_relocation(RelocationHolder const& rspec, int format);
       
   371 #endif
       
   372 
       
   373   inline void emit_long64(jlong x);
       
   374 
       
   375   void emit_data(jint data, relocInfo::relocType rtype, int format /* = 1 */);
       
   376   void emit_data(jint data, RelocationHolder const& rspec, int format /* = 1 */);
       
   377   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
       
   378   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
       
   379 
       
   380   // Helper functions for groups of instructions
       
   381   void emit_arith_b(int op1, int op2, Register dst, int imm8);
       
   382 
       
   383   void emit_arith(int op1, int op2, Register dst, int imm32);
       
   384   // only x86??
       
   385   void emit_arith(int op1, int op2, Register dst, jobject obj);
       
   386   void emit_arith(int op1, int op2, Register dst, Register src);
       
   387 
       
   388   void emit_operand(Register reg,
       
   389                     Register base, Register index, Address::ScaleFactor scale,
       
   390                     int disp,
       
   391                     RelocationHolder const& rspec,
       
   392                     int rip_relative_correction = 0);
       
   393   void emit_operand(Register reg, Address adr,
       
   394                     int rip_relative_correction = 0);
       
   395   void emit_operand(XMMRegister reg,
       
   396                     Register base, Register index, Address::ScaleFactor scale,
       
   397                     int disp,
       
   398                     RelocationHolder const& rspec,
       
   399                     int rip_relative_correction = 0);
       
   400   void emit_operand(XMMRegister reg, Address adr,
       
   401                     int rip_relative_correction = 0);
       
   402 
       
   403   // Immediate-to-memory forms
       
   404   void emit_arith_operand(int op1, Register rm, Address adr, int imm32);
       
   405 
       
   406   void emit_farith(int b1, int b2, int i);
       
   407 
       
   408   bool reachable(AddressLiteral adr);
       
   409 
       
   410   // These are all easily abused and hence protected
       
   411 
       
   412   // Make these disappear in 64bit mode since they would never be correct
       
   413 #ifndef _LP64
       
   414   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);
       
   415   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);
       
   416 
       
   417   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);
       
   418   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);
       
   419 
       
   420   void push_literal32(int32_t imm32, RelocationHolder const& rspec);
       
   421 #endif // _LP64
       
   422 
       
   423 
       
   424   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);
       
   425 
       
   426   // These are unique in that we are ensured by the caller that the 32bit
       
   427   // relative in these instructions will always be able to reach the potentially
       
   428   // 64bit address described by entry. Since they can take a 64bit address they
       
   429   // don't have the 32 suffix like the other instructions in this class.
       
   430   void jmp_literal(address entry, RelocationHolder const& rspec);
       
   431   void call_literal(address entry, RelocationHolder const& rspec);
       
   432 
       
   433  public:
       
   434   enum Condition { // The amd64 condition codes used for conditional jumps/moves.
       
   435     zero          = 0x4,
       
   436     notZero       = 0x5,
       
   437     equal         = 0x4,
       
   438     notEqual      = 0x5,
       
   439     less          = 0xc,
       
   440     lessEqual     = 0xe,
       
   441     greater       = 0xf,
       
   442     greaterEqual  = 0xd,
       
   443     below         = 0x2,
       
   444     belowEqual    = 0x6,
       
   445     above         = 0x7,
       
   446     aboveEqual    = 0x3,
       
   447     overflow      = 0x0,
       
   448     noOverflow    = 0x1,
       
   449     carrySet      = 0x2,
       
   450     carryClear    = 0x3,
       
   451     negative      = 0x8,
       
   452     positive      = 0x9,
       
   453     parity        = 0xa,
       
   454     noParity      = 0xb
       
   455   };
       
   456 
       
   457   enum Prefix {
       
   458     // segment overrides
       
   459     // XXX remove segment prefixes
       
   460     CS_segment = 0x2e,
       
   461     SS_segment = 0x36,
       
   462     DS_segment = 0x3e,
       
   463     ES_segment = 0x26,
       
   464     FS_segment = 0x64,
       
   465     GS_segment = 0x65,
       
   466 
       
   467     REX        = 0x40,
       
   468 
       
   469     REX_B      = 0x41,
       
   470     REX_X      = 0x42,
       
   471     REX_XB     = 0x43,
       
   472     REX_R      = 0x44,
       
   473     REX_RB     = 0x45,
       
   474     REX_RX     = 0x46,
       
   475     REX_RXB    = 0x47,
       
   476 
       
   477     REX_W      = 0x48,
       
   478 
       
   479     REX_WB     = 0x49,
       
   480     REX_WX     = 0x4A,
       
   481     REX_WXB    = 0x4B,
       
   482     REX_WR     = 0x4C,
       
   483     REX_WRB    = 0x4D,
       
   484     REX_WRX    = 0x4E,
       
   485     REX_WRXB   = 0x4F
       
   486   };
       
   487 
       
   488   enum WhichOperand {
       
   489     // input to locate_operand, and format code for relocations
       
   490     imm64_operand  = 0,          // embedded 64-bit immediate operand
       
   491     disp32_operand = 1,          // embedded 32-bit displacement
       
   492     call32_operand = 2,          // embedded 32-bit self-relative displacement
       
   493 #ifndef AMD64
       
   494     _WhichOperand_limit = 3
       
   495 #else
       
   496      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
       
   497     _WhichOperand_limit = 4
       
   498 #endif
       
   499   };
       
   500 
       
   501   public:
       
   502 
       
   503   // Creation
       
   504   Assembler(CodeBuffer* code)
       
   505     : AbstractAssembler(code) {
       
   506   }
       
   507 
       
   508   // Decoding
       
   509   static address locate_operand(address inst, WhichOperand which);
       
   510   static address locate_next_instruction(address inst);
       
   511 
       
   512   // Utilities
       
   513 
       
   514  static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) )  <= x   &&   x  <  ( CONST64(1) << (nbits-1) ); }
       
   515  static bool is_simm32 (int64_t x) { return x == (int64_t)(int32_t)x; }
       
   516 
       
   517 
       
   518   // Stack
       
   519   void pushaq();
       
   520   void popaq();
       
   521 
       
   522   void pushfq();
       
   523   void popfq();
       
   524 
       
   525   void pushq(int imm32);
       
   526 
       
   527   void pushq(Register src);
       
   528   void pushq(Address src);
       
   529 
       
   530   void popq(Register dst);
       
   531   void popq(Address dst);
       
   532 
       
   533   // Instruction prefixes
       
   534   void prefix(Prefix p);
       
   535 
       
   536   int prefix_and_encode(int reg_enc, bool byteinst = false);
       
   537   int prefixq_and_encode(int reg_enc);
       
   538 
       
   539   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
       
   540   int prefixq_and_encode(int dst_enc, int src_enc);
       
   541 
       
   542   void prefix(Register reg);
       
   543   void prefix(Address adr);
       
   544   void prefixq(Address adr);
       
   545 
       
   546   void prefix(Address adr, Register reg,  bool byteinst = false);
       
   547   void prefixq(Address adr, Register reg);
       
   548 
       
   549   void prefix(Address adr, XMMRegister reg);
       
   550 
       
   551   // Moves
       
   552   void movb(Register dst, Address src);
       
   553   void movb(Address dst, int imm8);
       
   554   void movb(Address dst, Register src);
       
   555 
       
   556   void movw(Address dst, int imm16);
       
   557   void movw(Register dst, Address src);
       
   558   void movw(Address dst, Register src);
       
   559 
       
   560   void movl(Register dst, int imm32);
       
   561   void movl(Register dst, Register src);
       
   562   void movl(Register dst, Address src);
       
   563   void movl(Address dst, int imm32);
       
   564   void movl(Address dst, Register src);
       
   565 
       
   566   void movq(Register dst, Register src);
       
   567   void movq(Register dst, Address src);
       
   568   void movq(Address dst, Register src);
       
   569   // These prevent using movq from converting a zero (like NULL) into Register
       
   570   // by giving the compiler two choices it can't resolve
       
   571   void movq(Address dst, void* dummy);
       
   572   void movq(Register dst, void* dummy);
       
   573 
       
   574   void mov64(Register dst, intptr_t imm64);
       
   575   void mov64(Address dst, intptr_t imm64);
       
   576 
       
   577   void movsbl(Register dst, Address src);
       
   578   void movsbl(Register dst, Register src);
       
   579   void movswl(Register dst, Address src);
       
   580   void movswl(Register dst, Register src);
       
   581   void movslq(Register dst, Address src);
       
   582   void movslq(Register dst, Register src);
       
   583 
       
   584   void movzbl(Register dst, Address src);
       
   585   void movzbl(Register dst, Register src);
       
   586   void movzwl(Register dst, Address src);
       
   587   void movzwl(Register dst, Register src);
       
   588 
       
   589  protected: // Avoid using the next instructions directly.
       
   590   // New cpus require use of movsd and movss to avoid partial register stall
       
   591   // when loading from memory. But for old Opteron use movlpd instead of movsd.
       
   592   // The selection is done in MacroAssembler::movdbl() and movflt().
       
   593   void movss(XMMRegister dst, XMMRegister src);
       
   594   void movss(XMMRegister dst, Address src);
       
   595   void movss(Address dst, XMMRegister src);
       
   596   void movsd(XMMRegister dst, XMMRegister src);
       
   597   void movsd(Address dst, XMMRegister src);
       
   598   void movsd(XMMRegister dst, Address src);
       
   599   void movlpd(XMMRegister dst, Address src);
       
   600   // New cpus require use of movaps and movapd to avoid partial register stall
       
   601   // when moving between registers.
       
   602   void movapd(XMMRegister dst, XMMRegister src);
       
   603   void movaps(XMMRegister dst, XMMRegister src);
       
   604  public:
       
   605 
       
   606   void movdl(XMMRegister dst, Register src);
       
   607   void movdl(Register dst, XMMRegister src);
       
   608   void movdq(XMMRegister dst, Register src);
       
   609   void movdq(Register dst, XMMRegister src);
       
   610 
       
   611   void cmovl(Condition cc, Register dst, Register src);
       
   612   void cmovl(Condition cc, Register dst, Address src);
       
   613   void cmovq(Condition cc, Register dst, Register src);
       
   614   void cmovq(Condition cc, Register dst, Address src);
       
   615 
       
   616   // Prefetches
       
   617  private:
       
   618   void prefetch_prefix(Address src);
       
   619  public:
       
   620   void prefetcht0(Address src);
       
   621   void prefetcht1(Address src);
       
   622   void prefetcht2(Address src);
       
   623   void prefetchnta(Address src);
       
   624   void prefetchw(Address src);
       
   625 
       
   626   // Arithmetics
       
   627   void adcl(Register dst, int imm32);
       
   628   void adcl(Register dst, Address src);
       
   629   void adcl(Register dst, Register src);
       
   630   void adcq(Register dst, int imm32);
       
   631   void adcq(Register dst, Address src);
       
   632   void adcq(Register dst, Register src);
       
   633 
       
   634   void addl(Address dst, int imm32);
       
   635   void addl(Address dst, Register src);
       
   636   void addl(Register dst, int imm32);
       
   637   void addl(Register dst, Address src);
       
   638   void addl(Register dst, Register src);
       
   639   void addq(Address dst, int imm32);
       
   640   void addq(Address dst, Register src);
       
   641   void addq(Register dst, int imm32);
       
   642   void addq(Register dst, Address src);
       
   643   void addq(Register dst, Register src);
       
   644 
       
   645   void andl(Register dst, int imm32);
       
   646   void andl(Register dst, Address src);
       
   647   void andl(Register dst, Register src);
       
   648   void andq(Register dst, int imm32);
       
   649   void andq(Register dst, Address src);
       
   650   void andq(Register dst, Register src);
       
   651 
       
   652   void cmpb(Address dst, int imm8);
       
   653   void cmpl(Address dst, int imm32);
       
   654   void cmpl(Register dst, int imm32);
       
   655   void cmpl(Register dst, Register src);
       
   656   void cmpl(Register dst, Address src);
       
   657   void cmpq(Address dst, int imm32);
       
   658   void cmpq(Address dst, Register src);
       
   659   void cmpq(Register dst, int imm32);
       
   660   void cmpq(Register dst, Register src);
       
   661   void cmpq(Register dst, Address src);
       
   662 
       
   663   void ucomiss(XMMRegister dst, XMMRegister src);
       
   664   void ucomisd(XMMRegister dst, XMMRegister src);
       
   665 
       
   666  protected:
       
   667   // Don't use next inc() and dec() methods directly. INC & DEC instructions
       
   668   // could cause a partial flag stall since they don't set CF flag.
       
   669   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
       
   670   // which call inc() & dec() or add() & sub() in accordance with
       
   671   // the product flag UseIncDec value.
       
   672 
       
   673   void decl(Register dst);
       
   674   void decl(Address dst);
       
   675   void decq(Register dst);
       
   676   void decq(Address dst);
       
   677 
       
   678   void incl(Register dst);
       
   679   void incl(Address dst);
       
   680   void incq(Register dst);
       
   681   void incq(Address dst);
       
   682 
       
   683  public:
       
   684   void idivl(Register src);
       
   685   void idivq(Register src);
       
   686   void cdql();
       
   687   void cdqq();
       
   688 
       
   689   void imull(Register dst, Register src);
       
   690   void imull(Register dst, Register src, int value);
       
   691   void imulq(Register dst, Register src);
       
   692   void imulq(Register dst, Register src, int value);
       
   693 
       
   694   void leal(Register dst, Address src);
       
   695   void leaq(Register dst, Address src);
       
   696 
       
   697   void mull(Address src);
       
   698   void mull(Register src);
       
   699 
       
   700   void negl(Register dst);
       
   701   void negq(Register dst);
       
   702 
       
   703   void notl(Register dst);
       
   704   void notq(Register dst);
       
   705 
       
   706   void orl(Address dst, int imm32);
       
   707   void orl(Register dst, int imm32);
       
   708   void orl(Register dst, Address src);
       
   709   void orl(Register dst, Register src);
       
   710   void orq(Address dst, int imm32);
       
   711   void orq(Register dst, int imm32);
       
   712   void orq(Register dst, Address src);
       
   713   void orq(Register dst, Register src);
       
   714 
       
   715   void rcll(Register dst, int imm8);
       
   716   void rclq(Register dst, int imm8);
       
   717 
       
   718   void sarl(Register dst, int imm8);
       
   719   void sarl(Register dst);
       
   720   void sarq(Register dst, int imm8);
       
   721   void sarq(Register dst);
       
   722 
       
   723   void sbbl(Address dst, int imm32);
       
   724   void sbbl(Register dst, int imm32);
       
   725   void sbbl(Register dst, Address src);
       
   726   void sbbl(Register dst, Register src);
       
   727   void sbbq(Address dst, int imm32);
       
   728   void sbbq(Register dst, int imm32);
       
   729   void sbbq(Register dst, Address src);
       
   730   void sbbq(Register dst, Register src);
       
   731 
       
   732   void shll(Register dst, int imm8);
       
   733   void shll(Register dst);
       
   734   void shlq(Register dst, int imm8);
       
   735   void shlq(Register dst);
       
   736 
       
   737   void shrl(Register dst, int imm8);
       
   738   void shrl(Register dst);
       
   739   void shrq(Register dst, int imm8);
       
   740   void shrq(Register dst);
       
   741 
       
   742   void subl(Address dst, int imm32);
       
   743   void subl(Address dst, Register src);
       
   744   void subl(Register dst, int imm32);
       
   745   void subl(Register dst, Address src);
       
   746   void subl(Register dst, Register src);
       
   747   void subq(Address dst, int imm32);
       
   748   void subq(Address dst, Register src);
       
   749   void subq(Register dst, int imm32);
       
   750   void subq(Register dst, Address src);
       
   751   void subq(Register dst, Register src);
       
   752 
       
   753   void testb(Register dst, int imm8);
       
   754   void testl(Register dst, int imm32);
       
   755   void testl(Register dst, Register src);
       
   756   void testq(Register dst, int imm32);
       
   757   void testq(Register dst, Register src);
       
   758 
       
   759   void xaddl(Address dst, Register src);
       
   760   void xaddq(Address dst, Register src);
       
   761 
       
   762   void xorl(Register dst, int imm32);
       
   763   void xorl(Register dst, Address src);
       
   764   void xorl(Register dst, Register src);
       
   765   void xorq(Register dst, int imm32);
       
   766   void xorq(Register dst, Address src);
       
   767   void xorq(Register dst, Register src);
       
   768 
       
   769   // Miscellaneous
       
   770   void bswapl(Register reg);
       
   771   void bswapq(Register reg);
       
   772   void lock();
       
   773 
       
   774   void xchgl(Register reg, Address adr);
       
   775   void xchgl(Register dst, Register src);
       
   776   void xchgq(Register reg, Address adr);
       
   777   void xchgq(Register dst, Register src);
       
   778 
       
   779   void cmpxchgl(Register reg, Address adr);
       
   780   void cmpxchgq(Register reg, Address adr);
       
   781 
       
   782   void nop(int i = 1);
       
   783   void addr_nop_4();
       
   784   void addr_nop_5();
       
   785   void addr_nop_7();
       
   786   void addr_nop_8();
       
   787 
       
   788   void hlt();
       
   789   void ret(int imm16);
       
   790   void smovl();
       
   791   void rep_movl();
       
   792   void rep_movq();
       
   793   void rep_set();
       
   794   void repne_scanl();
       
   795   void repne_scanq();
       
   796   void setb(Condition cc, Register dst);
       
   797 
       
   798   void clflush(Address adr);
       
   799 
       
   800   enum Membar_mask_bits {
       
   801     StoreStore = 1 << 3,
       
   802     LoadStore  = 1 << 2,
       
   803     StoreLoad  = 1 << 1,
       
   804     LoadLoad   = 1 << 0
       
   805   };
       
   806 
       
   807   // Serializes memory.
       
   808   void membar(Membar_mask_bits order_constraint) {
       
   809     // We only have to handle StoreLoad and LoadLoad
       
   810     if (order_constraint & StoreLoad) {
       
   811       // MFENCE subsumes LFENCE
       
   812       mfence();
       
   813     } /* [jk] not needed currently: else if (order_constraint & LoadLoad) {
       
   814          lfence();
       
   815     } */
       
   816   }
       
   817 
       
   818   void lfence() {
       
   819     emit_byte(0x0F);
       
   820     emit_byte(0xAE);
       
   821     emit_byte(0xE8);
       
   822   }
       
   823 
       
   824   void mfence() {
       
   825     emit_byte(0x0F);
       
   826     emit_byte(0xAE);
       
   827     emit_byte(0xF0);
       
   828   }
       
   829 
       
   830   // Identify processor type and features
       
   831   void cpuid() {
       
   832     emit_byte(0x0F);
       
   833     emit_byte(0xA2);
       
   834   }
       
   835 
       
   836   void cld() { emit_byte(0xfc);
       
   837   }
       
   838 
       
   839   void std() { emit_byte(0xfd);
       
   840   }
       
   841 
       
   842 
       
   843   // Calls
       
   844 
       
   845   void call(Label& L, relocInfo::relocType rtype);
       
   846   void call(Register reg);
       
   847   void call(Address adr);
       
   848 
       
   849   // Jumps
       
   850 
       
   851   void jmp(Register reg);
       
   852   void jmp(Address adr);
       
   853 
       
   854   // Label operations & relative jumps (PPUM Appendix D)
       
   855   // unconditional jump to L
       
   856   void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);
       
   857 
       
   858 
       
   859   // Unconditional 8-bit offset jump to L.
       
   860   // WARNING: be very careful using this for forward jumps.  If the label is
       
   861   // not bound within an 8-bit offset of this instruction, a run-time error
       
   862   // will occur.
       
   863   void jmpb(Label& L);
       
   864 
       
   865   // jcc is the generic conditional branch generator to run- time
       
   866   // routines, jcc is used for branches to labels. jcc takes a branch
       
   867   // opcode (cc) and a label (L) and generates either a backward
       
   868   // branch or a forward branch and links it to the label fixup
       
   869   // chain. Usage:
       
   870   //
       
   871   // Label L;      // unbound label
       
   872   // jcc(cc, L);   // forward branch to unbound label
       
   873   // bind(L);      // bind label to the current pc
       
   874   // jcc(cc, L);   // backward branch to bound label
       
   875   // bind(L);      // illegal: a label may be bound only once
       
   876   //
       
   877   // Note: The same Label can be used for forward and backward branches
       
   878   // but it may be bound only once.
       
   879 
       
   880   void jcc(Condition cc, Label& L,
       
   881            relocInfo::relocType rtype = relocInfo::none);
       
   882 
       
   883   // Conditional jump to a 8-bit offset to L.
       
   884   // WARNING: be very careful using this for forward jumps.  If the label is
       
   885   // not bound within an 8-bit offset of this instruction, a run-time error
       
   886   // will occur.
       
   887   void jccb(Condition cc, Label& L);
       
   888 
       
   889   // Floating-point operations
       
   890 
       
   891   void fxsave(Address dst);
       
   892   void fxrstor(Address src);
       
   893   void ldmxcsr(Address src);
       
   894   void stmxcsr(Address dst);
       
   895 
       
   896   void addss(XMMRegister dst, XMMRegister src);
       
   897   void addss(XMMRegister dst, Address src);
       
   898   void subss(XMMRegister dst, XMMRegister src);
       
   899   void subss(XMMRegister dst, Address src);
       
   900   void mulss(XMMRegister dst, XMMRegister src);
       
   901   void mulss(XMMRegister dst, Address src);
       
   902   void divss(XMMRegister dst, XMMRegister src);
       
   903   void divss(XMMRegister dst, Address src);
       
   904   void addsd(XMMRegister dst, XMMRegister src);
       
   905   void addsd(XMMRegister dst, Address src);
       
   906   void subsd(XMMRegister dst, XMMRegister src);
       
   907   void subsd(XMMRegister dst, Address src);
       
   908   void mulsd(XMMRegister dst, XMMRegister src);
       
   909   void mulsd(XMMRegister dst, Address src);
       
   910   void divsd(XMMRegister dst, XMMRegister src);
       
   911   void divsd(XMMRegister dst, Address src);
       
   912 
       
   913   // We only need the double form
       
   914   void sqrtsd(XMMRegister dst, XMMRegister src);
       
   915   void sqrtsd(XMMRegister dst, Address src);
       
   916 
       
   917   void xorps(XMMRegister dst, XMMRegister src);
       
   918   void xorps(XMMRegister dst, Address src);
       
   919   void xorpd(XMMRegister dst, XMMRegister src);
       
   920   void xorpd(XMMRegister dst, Address src);
       
   921 
       
   922   void cvtsi2ssl(XMMRegister dst, Register src);
       
   923   void cvtsi2ssq(XMMRegister dst, Register src);
       
   924   void cvtsi2sdl(XMMRegister dst, Register src);
       
   925   void cvtsi2sdq(XMMRegister dst, Register src);
       
   926   void cvttss2sil(Register dst, XMMRegister src); // truncates
       
   927   void cvttss2siq(Register dst, XMMRegister src); // truncates
       
   928   void cvttsd2sil(Register dst, XMMRegister src); // truncates
       
   929   void cvttsd2siq(Register dst, XMMRegister src); // truncates
       
   930   void cvtss2sd(XMMRegister dst, XMMRegister src);
       
   931   void cvtsd2ss(XMMRegister dst, XMMRegister src);
       
   932   void cvtdq2pd(XMMRegister dst, XMMRegister src);
       
   933   void cvtdq2ps(XMMRegister dst, XMMRegister src);
       
   934 
       
   935   void pxor(XMMRegister dst, Address src);       // Xor Packed Byte Integer Values
       
   936   void pxor(XMMRegister dst, XMMRegister src);   // Xor Packed Byte Integer Values
       
   937 
       
   938   void movdqa(XMMRegister dst, Address src);     // Move Aligned Double Quadword
       
   939   void movdqa(XMMRegister dst, XMMRegister src);
       
   940   void movdqa(Address     dst, XMMRegister src);
       
   941 
       
   942   void movq(XMMRegister dst, Address src);
       
   943   void movq(Address dst, XMMRegister src);
       
   944 
       
   945   void pshufd(XMMRegister dst, XMMRegister src, int mode); // Shuffle Packed Doublewords
       
   946   void pshufd(XMMRegister dst, Address src,     int mode);
       
   947   void pshuflw(XMMRegister dst, XMMRegister src, int mode); // Shuffle Packed Low Words
       
   948   void pshuflw(XMMRegister dst, Address src,     int mode);
       
   949 
       
   950   void psrlq(XMMRegister dst, int shift); // Shift Right Logical Quadword Immediate
       
   951 
       
   952   void punpcklbw(XMMRegister dst, XMMRegister src); // Interleave Low Bytes
       
   953   void punpcklbw(XMMRegister dst, Address src);
       
   954 };
       
   955 
       
   956 
       
   957 // MacroAssembler extends Assembler by frequently used macros.
       
   958 //
       
   959 // Instructions for which a 'better' code sequence exists depending
       
   960 // on arguments should also go in here.
       
   961 
       
   962 class MacroAssembler : public Assembler {
       
   963  friend class LIR_Assembler;
       
   964  protected:
       
   965 
       
   966   Address as_Address(AddressLiteral adr);
       
   967   Address as_Address(ArrayAddress adr);
       
   968 
       
   969   // Support for VM calls
       
   970   //
       
   971   // This is the base routine called by the different versions of
       
   972   // call_VM_leaf. The interpreter may customize this version by
       
   973   // overriding it for its purposes (e.g., to save/restore additional
       
   974   // registers when doing a VM call).
       
   975 
       
   976   virtual void call_VM_leaf_base(
       
   977     address entry_point,               // the entry point
       
   978     int     number_of_arguments        // the number of arguments to
       
   979                                        // pop after the call
       
   980   );
       
   981 
       
   982   // This is the base routine called by the different versions of
       
   983   // call_VM. The interpreter may customize this version by overriding
       
   984   // it for its purposes (e.g., to save/restore additional registers
       
   985   // when doing a VM call).
       
   986   //
       
   987   // If no java_thread register is specified (noreg) than rdi will be
       
   988   // used instead. call_VM_base returns the register which contains
       
   989   // the thread upon return. If a thread register has been specified,
       
   990   // the return value will correspond to that register. If no
       
   991   // last_java_sp is specified (noreg) than rsp will be used instead.
       
   992   virtual void call_VM_base(           // returns the register
       
   993                                        // containing the thread upon
       
   994                                        // return
       
   995     Register oop_result,               // where an oop-result ends up
       
   996                                        // if any; use noreg otherwise
       
   997     Register java_thread,              // the thread if computed
       
   998                                        // before ; use noreg otherwise
       
   999     Register last_java_sp,             // to set up last_Java_frame in
       
  1000                                        // stubs; use noreg otherwise
       
  1001     address  entry_point,              // the entry point
       
  1002     int      number_of_arguments,      // the number of arguments (w/o
       
  1003                                        // thread) to pop after the
       
  1004                                        // call
       
  1005     bool     check_exceptions          // whether to check for pending
       
  1006                                        // exceptions after return
       
  1007   );
       
  1008 
       
  1009   // This routines should emit JVMTI PopFrame handling and ForceEarlyReturn code.
       
  1010   // The implementation is only non-empty for the InterpreterMacroAssembler,
       
  1011   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
       
  1012   virtual void check_and_handle_popframe(Register java_thread);
       
  1013   virtual void check_and_handle_earlyret(Register java_thread);
       
  1014 
       
  1015   void call_VM_helper(Register oop_result,
       
  1016                       address entry_point,
       
  1017                       int number_of_arguments,
       
  1018                       bool check_exceptions = true);
       
  1019 
       
  1020  public:
       
  1021   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
       
  1022 
       
  1023   // Support for NULL-checks
       
  1024   //
       
  1025   // Generates code that causes a NULL OS exception if the content of
       
  1026   // reg is NULL.  If the accessed location is M[reg + offset] and the
       
  1027   // offset is known, provide the offset. No explicit code generation
       
  1028   // is needed if the offset is within a certain range (0 <= offset <=
       
  1029   // page_size).
       
  1030   void null_check(Register reg, int offset = -1);
       
  1031   static bool needs_explicit_null_check(intptr_t offset);
       
  1032 
       
  1033   // Required platform-specific helpers for Label::patch_instructions.
       
  1034   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
       
  1035   void pd_patch_instruction(address branch, address target);
       
  1036 #ifndef PRODUCT
       
  1037   static void pd_print_patched_instruction(address branch);
       
  1038 #endif
       
  1039 
       
  1040 
       
  1041   // The following 4 methods return the offset of the appropriate move
       
  1042   // instruction.  Note: these are 32 bit instructions
       
  1043 
       
  1044   // Support for fast byte/word loading with zero extension (depending
       
  1045   // on particular CPU)
       
  1046   int load_unsigned_byte(Register dst, Address src);
       
  1047   int load_unsigned_word(Register dst, Address src);
       
  1048 
       
  1049   // Support for fast byte/word loading with sign extension (depending
       
  1050   // on particular CPU)
       
  1051   int load_signed_byte(Register dst, Address src);
       
  1052   int load_signed_word(Register dst, Address src);
       
  1053 
       
  1054   // Support for inc/dec with optimal instruction selection depending
       
  1055   // on value
       
  1056   void incrementl(Register reg, int value = 1);
       
  1057   void decrementl(Register reg, int value = 1);
       
  1058   void incrementq(Register reg, int value = 1);
       
  1059   void decrementq(Register reg, int value = 1);
       
  1060 
       
  1061   void incrementl(Address dst, int value = 1);
       
  1062   void decrementl(Address dst, int value = 1);
       
  1063   void incrementq(Address dst, int value = 1);
       
  1064   void decrementq(Address dst, int value = 1);
       
  1065 
       
  1066   // Support optimal SSE move instructions.
       
  1067   void movflt(XMMRegister dst, XMMRegister src) {
       
  1068     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
       
  1069     else                       { movss (dst, src); return; }
       
  1070   }
       
  1071 
       
  1072   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
       
  1073 
       
  1074   void movflt(XMMRegister dst, AddressLiteral src);
       
  1075 
       
  1076   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
       
  1077 
       
  1078   void movdbl(XMMRegister dst, XMMRegister src) {
       
  1079     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
       
  1080     else                       { movsd (dst, src); return; }
       
  1081   }
       
  1082 
       
  1083   void movdbl(XMMRegister dst, AddressLiteral src);
       
  1084 
       
  1085   void movdbl(XMMRegister dst, Address src) {
       
  1086     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
       
  1087     else                         { movlpd(dst, src); return; }
       
  1088   }
       
  1089 
       
  1090   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
       
  1091 
       
  1092   void incrementl(AddressLiteral dst);
       
  1093   void incrementl(ArrayAddress dst);
       
  1094 
       
  1095   // Alignment
       
  1096   void align(int modulus);
       
  1097 
       
  1098   // Misc
       
  1099   void fat_nop(); // 5 byte nop
       
  1100 
       
  1101 
       
  1102   // C++ bool manipulation
       
  1103 
       
  1104   void movbool(Register dst, Address src);
       
  1105   void movbool(Address dst, bool boolconst);
       
  1106   void movbool(Address dst, Register src);
       
  1107   void testbool(Register dst);
       
  1108 
       
  1109   // oop manipulations
       
  1110   void load_klass(Register dst, Register src);
       
  1111   void store_klass(Register dst, Register src);
       
  1112   void store_klass_gap(Register dst, Register src);
       
  1113 
       
  1114   void load_prototype_header(Register dst, Register src);
       
  1115 
       
  1116   void load_heap_oop(Register dst, Address src);
       
  1117   void store_heap_oop(Address dst, Register src);
       
  1118   void encode_heap_oop(Register r);
       
  1119   void decode_heap_oop(Register r);
       
  1120   void encode_heap_oop_not_null(Register r);
       
  1121   void decode_heap_oop_not_null(Register r);
       
  1122   void encode_heap_oop_not_null(Register dst, Register src);
       
  1123   void decode_heap_oop_not_null(Register dst, Register src);
       
  1124 
       
  1125   void set_narrow_oop(Register dst, jobject obj);
       
  1126 
       
  1127   // Stack frame creation/removal
       
  1128   void enter();
       
  1129   void leave();
       
  1130 
       
  1131   // Support for getting the JavaThread pointer (i.e.; a reference to
       
  1132   // thread-local information) The pointer will be loaded into the
       
  1133   // thread register.
       
  1134   void get_thread(Register thread);
       
  1135 
       
  1136   void int3();
       
  1137 
       
  1138   // Support for VM calls
       
  1139   //
       
  1140   // It is imperative that all calls into the VM are handled via the
       
  1141   // call_VM macros.  They make sure that the stack linkage is setup
       
  1142   // correctly. call_VM's correspond to ENTRY/ENTRY_X entry points
       
  1143   // while call_VM_leaf's correspond to LEAF entry points.
       
  1144   void call_VM(Register oop_result,
       
  1145                address entry_point,
       
  1146                bool check_exceptions = true);
       
  1147   void call_VM(Register oop_result,
       
  1148                address entry_point,
       
  1149                Register arg_1,
       
  1150                bool check_exceptions = true);
       
  1151   void call_VM(Register oop_result,
       
  1152                address entry_point,
       
  1153                Register arg_1, Register arg_2,
       
  1154                bool check_exceptions = true);
       
  1155   void call_VM(Register oop_result,
       
  1156                address entry_point,
       
  1157                Register arg_1, Register arg_2, Register arg_3,
       
  1158                bool check_exceptions = true);
       
  1159 
       
  1160   // Overloadings with last_Java_sp
       
  1161   void call_VM(Register oop_result,
       
  1162                Register last_java_sp,
       
  1163                address entry_point,
       
  1164                int number_of_arguments = 0,
       
  1165                bool check_exceptions = true);
       
  1166   void call_VM(Register oop_result,
       
  1167                Register last_java_sp,
       
  1168                address entry_point,
       
  1169                Register arg_1, bool
       
  1170                check_exceptions = true);
       
  1171   void call_VM(Register oop_result,
       
  1172                Register last_java_sp,
       
  1173                address entry_point,
       
  1174                Register arg_1, Register arg_2,
       
  1175                bool check_exceptions = true);
       
  1176   void call_VM(Register oop_result,
       
  1177                Register last_java_sp,
       
  1178                address entry_point,
       
  1179                Register arg_1, Register arg_2, Register arg_3,
       
  1180                bool check_exceptions = true);
       
  1181 
       
  1182   void call_VM_leaf(address entry_point,
       
  1183                     int number_of_arguments = 0);
       
  1184   void call_VM_leaf(address entry_point,
       
  1185                     Register arg_1);
       
  1186   void call_VM_leaf(address entry_point,
       
  1187                     Register arg_1, Register arg_2);
       
  1188   void call_VM_leaf(address entry_point,
       
  1189                     Register arg_1, Register arg_2, Register arg_3);
       
  1190 
       
  1191   // last Java Frame (fills frame anchor)
       
  1192   void set_last_Java_frame(Register last_java_sp,
       
  1193                            Register last_java_fp,
       
  1194                            address last_java_pc);
       
  1195   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
       
  1196 
       
  1197   // Stores
       
  1198   void store_check(Register obj);                // store check for
       
  1199                                                  // obj - register is
       
  1200                                                  // destroyed
       
  1201                                                  // afterwards
       
  1202   void store_check(Register obj, Address dst);   // same as above, dst
       
  1203                                                  // is exact store
       
  1204                                                  // location (reg. is
       
  1205                                                  // destroyed)
       
  1206 
       
  1207   // split store_check(Register obj) to enhance instruction interleaving
       
  1208   void store_check_part_1(Register obj);
       
  1209   void store_check_part_2(Register obj);
       
  1210 
       
  1211   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
       
  1212   void c2bool(Register x);
       
  1213 
       
  1214   // Int division/reminder for Java
       
  1215   // (as idivl, but checks for special case as described in JVM spec.)
       
  1216   // returns idivl instruction offset for implicit exception handling
       
  1217   int corrected_idivl(Register reg);
       
  1218   // Long division/reminder for Java
       
  1219   // (as idivq, but checks for special case as described in JVM spec.)
       
  1220   // returns idivq instruction offset for implicit exception handling
       
  1221   int corrected_idivq(Register reg);
       
  1222 
       
  1223   // Push and pop integer/fpu/cpu state
       
  1224   void push_IU_state();
       
  1225   void pop_IU_state();
       
  1226 
       
  1227   void push_FPU_state();
       
  1228   void pop_FPU_state();
       
  1229 
       
  1230   void push_CPU_state();
       
  1231   void pop_CPU_state();
       
  1232 
       
  1233   // Sign extension
       
  1234   void sign_extend_short(Register reg);
       
  1235   void sign_extend_byte(Register reg);
       
  1236 
       
  1237   // Division by power of 2, rounding towards 0
       
  1238   void division_with_shift(Register reg, int shift_value);
       
  1239 
       
  1240   // Round up to a power of two
       
  1241   void round_to_l(Register reg, int modulus);
       
  1242   void round_to_q(Register reg, int modulus);
       
  1243 
       
  1244   // allocation
       
  1245   void eden_allocate(
       
  1246     Register obj,               // result: pointer to object after
       
  1247                                 // successful allocation
       
  1248     Register var_size_in_bytes, // object size in bytes if unknown at
       
  1249                                 // compile time; invalid otherwise
       
  1250     int con_size_in_bytes,      // object size in bytes if known at
       
  1251                                 // compile time
       
  1252     Register t1,                // temp register
       
  1253     Label& slow_case            // continuation point if fast
       
  1254                                 // allocation fails
       
  1255     );
       
  1256   void tlab_allocate(
       
  1257     Register obj,               // result: pointer to object after
       
  1258                                 // successful allocation
       
  1259     Register var_size_in_bytes, // object size in bytes if unknown at
       
  1260                                 // compile time; invalid otherwise
       
  1261     int con_size_in_bytes,      // object size in bytes if known at
       
  1262                                 // compile time
       
  1263     Register t1,                // temp register
       
  1264     Register t2,                // temp register
       
  1265     Label& slow_case            // continuation point if fast
       
  1266                                 // allocation fails
       
  1267   );
       
  1268   void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
       
  1269 
       
  1270   //----
       
  1271 
       
  1272   // Debugging
       
  1273 
       
  1274   // only if +VerifyOops
       
  1275   void verify_oop(Register reg, const char* s = "broken oop");
       
  1276   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
       
  1277 
       
  1278   // if heap base register is used - reinit it with the correct value
       
  1279   void reinit_heapbase();
       
  1280 
       
  1281   // only if +VerifyFPU
       
  1282   void verify_FPU(int stack_depth, const char* s = "illegal FPU state") {}
       
  1283 
       
  1284   // prints msg, dumps registers and stops execution
       
  1285   void stop(const char* msg);
       
  1286 
       
  1287   // prints message and continues
       
  1288   void warn(const char* msg);
       
  1289 
       
  1290   static void debug(char* msg, int64_t pc, int64_t regs[]);
       
  1291 
       
  1292   void os_breakpoint();
       
  1293 
       
  1294   void untested()
       
  1295   {
       
  1296     stop("untested");
       
  1297   }
       
  1298 
       
  1299   void unimplemented(const char* what = "")
       
  1300   {
       
  1301     char* b = new char[1024];
       
  1302     sprintf(b, "unimplemented: %s", what);
       
  1303     stop(b);
       
  1304   }
       
  1305 
       
  1306   void should_not_reach_here()
       
  1307   {
       
  1308     stop("should not reach here");
       
  1309   }
       
  1310 
       
  1311   // Stack overflow checking
       
  1312   void bang_stack_with_offset(int offset)
       
  1313   {
       
  1314     // stack grows down, caller passes positive offset
       
  1315     assert(offset > 0, "must bang with negative offset");
       
  1316     movl(Address(rsp, (-offset)), rax);
       
  1317   }
       
  1318 
       
  1319   // Writes to stack successive pages until offset reached to check for
       
  1320   // stack overflow + shadow pages.  Also, clobbers tmp
       
  1321   void bang_stack_size(Register offset, Register tmp);
       
  1322 
       
  1323   // Support for serializing memory accesses between threads.
       
  1324   void serialize_memory(Register thread, Register tmp);
       
  1325 
       
  1326   void verify_tlab();
       
  1327 
       
  1328   // Biased locking support
       
  1329   // lock_reg and obj_reg must be loaded up with the appropriate values.
       
  1330   // swap_reg must be rax and is killed.
       
  1331   // tmp_reg must be supplied and is killed.
       
  1332   // If swap_reg_contains_mark is true then the code assumes that the
       
  1333   // mark word of the object has already been loaded into swap_reg.
       
  1334   // Optional slow case is for implementations (interpreter and C1) which branch to
       
  1335   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
       
  1336   // Returns offset of first potentially-faulting instruction for null
       
  1337   // check info (currently consumed only by C1). If
       
  1338   // swap_reg_contains_mark is true then returns -1 as it is assumed
       
  1339   // the calling code has already passed any potential faults.
       
  1340   int biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
       
  1341                            bool swap_reg_contains_mark,
       
  1342                            Label& done, Label* slow_case = NULL,
       
  1343                            BiasedLockingCounters* counters = NULL);
       
  1344   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
       
  1345 
       
  1346   Condition negate_condition(Condition cond);
       
  1347 
       
  1348   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
       
  1349   // operands. In general the names are modified to avoid hiding the instruction in Assembler
       
  1350   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
       
  1351   // here in MacroAssembler. The major exception to this rule is call
       
  1352 
       
  1353   // Arithmetics
       
  1354 
       
  1355   void cmp8(AddressLiteral src1, int8_t imm32);
       
  1356 
       
  1357   void cmp32(AddressLiteral src1, int32_t src2);
       
  1358   // compare reg - mem, or reg - &mem
       
  1359   void cmp32(Register src1, AddressLiteral src2);
       
  1360 
       
  1361   void cmp32(Register src1, Address src2);
       
  1362 
       
  1363 #ifndef _LP64
       
  1364   void cmpoop(Address dst, jobject obj);
       
  1365   void cmpoop(Register dst, jobject obj);
       
  1366 #endif // _LP64
       
  1367 
       
  1368   // NOTE src2 must be the lval. This is NOT an mem-mem compare
       
  1369   void cmpptr(Address src1, AddressLiteral src2);
       
  1370 
       
  1371   void cmpptr(Register src1, AddressLiteral src);
       
  1372 
       
  1373   // will be cmpreg(?)
       
  1374   void cmp64(Register src1, AddressLiteral src);
       
  1375 
       
  1376   void cmpxchgptr(Register reg, Address adr);
       
  1377   void cmpxchgptr(Register reg, AddressLiteral adr);
       
  1378 
       
  1379   // Helper functions for statistics gathering.
       
  1380   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
       
  1381   void cond_inc32(Condition cond, AddressLiteral counter_addr);
       
  1382   // Unconditional atomic increment.
       
  1383   void atomic_incl(AddressLiteral counter_addr);
       
  1384 
       
  1385 
       
  1386   void lea(Register dst, AddressLiteral src);
       
  1387   void lea(Register dst, Address src);
       
  1388 
       
  1389 
       
  1390   // Calls
       
  1391   void call(Label& L, relocInfo::relocType rtype);
       
  1392   void call(Register entry);
       
  1393   void call(AddressLiteral entry);
       
  1394 
       
  1395   // Jumps
       
  1396 
       
  1397   // 32bit can do a case table jump in one instruction but we no longer allow the base
       
  1398   // to be installed in the Address class
       
  1399   void jump(ArrayAddress entry);
       
  1400 
       
  1401   void jump(AddressLiteral entry);
       
  1402   void jump_cc(Condition cc, AddressLiteral dst);
       
  1403 
       
  1404   // Floating
       
  1405 
       
  1406   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
       
  1407   void ldmxcsr(AddressLiteral src);
       
  1408 
       
  1409 private:
       
  1410   // these are private because users should be doing movflt/movdbl
       
  1411 
       
  1412   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
       
  1413   void movss(Address dst, XMMRegister src)       { Assembler::movss(dst, src); }
       
  1414   void movss(XMMRegister dst, Address src)       { Assembler::movss(dst, src); }
       
  1415   void movss(XMMRegister dst, AddressLiteral src);
       
  1416 
       
  1417   void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
       
  1418   void movlpd(XMMRegister dst, AddressLiteral src);
       
  1419 
       
  1420 public:
       
  1421 
       
  1422 
       
  1423   void xorpd(XMMRegister dst, XMMRegister src) {Assembler::xorpd(dst, src); }
       
  1424   void xorpd(XMMRegister dst, Address src)       {Assembler::xorpd(dst, src); }
       
  1425   void xorpd(XMMRegister dst, AddressLiteral src);
       
  1426 
       
  1427   void xorps(XMMRegister dst, XMMRegister src) {Assembler::xorps(dst, src); }
       
  1428   void xorps(XMMRegister dst, Address src)       {Assembler::xorps(dst, src); }
       
  1429   void xorps(XMMRegister dst, AddressLiteral src);
       
  1430 
       
  1431 
       
  1432   // Data
       
  1433 
       
  1434   void movoop(Register dst, jobject obj);
       
  1435   void movoop(Address dst, jobject obj);
       
  1436 
       
  1437   void movptr(ArrayAddress dst, Register src);
       
  1438   void movptr(Register dst, AddressLiteral src);
       
  1439 
       
  1440   void movptr(Register dst, intptr_t src);
       
  1441   void movptr(Address dst, intptr_t src);
       
  1442 
       
  1443   void movptr(Register dst, ArrayAddress src);
       
  1444 
       
  1445   // to avoid hiding movl
       
  1446   void mov32(AddressLiteral dst, Register src);
       
  1447   void mov32(Register dst, AddressLiteral src);
       
  1448 
       
  1449   void pushoop(jobject obj);
       
  1450 
       
  1451   // Can push value or effective address
       
  1452   void pushptr(AddressLiteral src);
       
  1453 
       
  1454 };
       
  1455 
       
  1456 /**
       
  1457  * class SkipIfEqual:
       
  1458  *
       
  1459  * Instantiating this class will result in assembly code being output that will
       
  1460  * jump around any code emitted between the creation of the instance and it's
       
  1461  * automatic destruction at the end of a scope block, depending on the value of
       
  1462  * the flag passed to the constructor, which will be checked at run-time.
       
  1463  */
       
  1464 class SkipIfEqual {
       
  1465  private:
       
  1466   MacroAssembler* _masm;
       
  1467   Label _label;
       
  1468 
       
  1469  public:
       
  1470    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
       
  1471    ~SkipIfEqual();
       
  1472 };
       
  1473 
       
  1474 
       
  1475 #ifdef ASSERT
       
  1476 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
       
  1477 #endif