hotspot/src/cpu/x86/vm/templateTable_x86_64.cpp
changeset 29558 a46e5922bb40
parent 29557 17efac395638
parent 29549 89640d85c8cd
child 29559 47544495db2d
equal deleted inserted replaced
29557:17efac395638 29558:a46e5922bb40
     1 /*
       
     2  * Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "asm/macroAssembler.hpp"
       
    27 #include "interpreter/interpreter.hpp"
       
    28 #include "interpreter/interpreterRuntime.hpp"
       
    29 #include "interpreter/interp_masm.hpp"
       
    30 #include "interpreter/templateTable.hpp"
       
    31 #include "memory/universe.inline.hpp"
       
    32 #include "oops/methodData.hpp"
       
    33 #include "oops/objArrayKlass.hpp"
       
    34 #include "oops/oop.inline.hpp"
       
    35 #include "prims/methodHandles.hpp"
       
    36 #include "runtime/sharedRuntime.hpp"
       
    37 #include "runtime/stubRoutines.hpp"
       
    38 #include "runtime/synchronizer.hpp"
       
    39 #include "utilities/macros.hpp"
       
    40 
       
    41 #ifndef CC_INTERP
       
    42 
       
    43 #define __ _masm->
       
    44 
       
    45 // Platform-dependent initialization
       
    46 
       
    47 void TemplateTable::pd_initialize() {
       
    48   // No amd64 specific initialization
       
    49 }
       
    50 
       
    51 // Address computation: local variables
       
    52 
       
    53 static inline Address iaddress(int n) {
       
    54   return Address(r14, Interpreter::local_offset_in_bytes(n));
       
    55 }
       
    56 
       
    57 static inline Address laddress(int n) {
       
    58   return iaddress(n + 1);
       
    59 }
       
    60 
       
    61 static inline Address faddress(int n) {
       
    62   return iaddress(n);
       
    63 }
       
    64 
       
    65 static inline Address daddress(int n) {
       
    66   return laddress(n);
       
    67 }
       
    68 
       
    69 static inline Address aaddress(int n) {
       
    70   return iaddress(n);
       
    71 }
       
    72 
       
    73 static inline Address iaddress(Register r) {
       
    74   return Address(r14, r, Address::times_8);
       
    75 }
       
    76 
       
    77 static inline Address laddress(Register r) {
       
    78   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
       
    79 }
       
    80 
       
    81 static inline Address faddress(Register r) {
       
    82   return iaddress(r);
       
    83 }
       
    84 
       
    85 static inline Address daddress(Register r) {
       
    86   return laddress(r);
       
    87 }
       
    88 
       
    89 static inline Address aaddress(Register r) {
       
    90   return iaddress(r);
       
    91 }
       
    92 
       
    93 static inline Address at_rsp() {
       
    94   return Address(rsp, 0);
       
    95 }
       
    96 
       
    97 // At top of Java expression stack which may be different than esp().  It
       
    98 // isn't for category 1 objects.
       
    99 static inline Address at_tos   () {
       
   100   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
       
   101 }
       
   102 
       
   103 static inline Address at_tos_p1() {
       
   104   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
       
   105 }
       
   106 
       
   107 static inline Address at_tos_p2() {
       
   108   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
       
   109 }
       
   110 
       
   111 // Condition conversion
       
   112 static Assembler::Condition j_not(TemplateTable::Condition cc) {
       
   113   switch (cc) {
       
   114   case TemplateTable::equal        : return Assembler::notEqual;
       
   115   case TemplateTable::not_equal    : return Assembler::equal;
       
   116   case TemplateTable::less         : return Assembler::greaterEqual;
       
   117   case TemplateTable::less_equal   : return Assembler::greater;
       
   118   case TemplateTable::greater      : return Assembler::lessEqual;
       
   119   case TemplateTable::greater_equal: return Assembler::less;
       
   120   }
       
   121   ShouldNotReachHere();
       
   122   return Assembler::zero;
       
   123 }
       
   124 
       
   125 
       
   126 // Miscelaneous helper routines
       
   127 // Store an oop (or NULL) at the address described by obj.
       
   128 // If val == noreg this means store a NULL
       
   129 
       
   130 static void do_oop_store(InterpreterMacroAssembler* _masm,
       
   131                          Address obj,
       
   132                          Register val,
       
   133                          BarrierSet::Name barrier,
       
   134                          bool precise) {
       
   135   assert(val == noreg || val == rax, "parameter is just for looks");
       
   136   switch (barrier) {
       
   137 #if INCLUDE_ALL_GCS
       
   138     case BarrierSet::G1SATBCT:
       
   139     case BarrierSet::G1SATBCTLogging:
       
   140       {
       
   141         // flatten object address if needed
       
   142         if (obj.index() == noreg && obj.disp() == 0) {
       
   143           if (obj.base() != rdx) {
       
   144             __ movq(rdx, obj.base());
       
   145           }
       
   146         } else {
       
   147           __ leaq(rdx, obj);
       
   148         }
       
   149         __ g1_write_barrier_pre(rdx /* obj */,
       
   150                                 rbx /* pre_val */,
       
   151                                 r15_thread /* thread */,
       
   152                                 r8  /* tmp */,
       
   153                                 val != noreg /* tosca_live */,
       
   154                                 false /* expand_call */);
       
   155         if (val == noreg) {
       
   156           __ store_heap_oop_null(Address(rdx, 0));
       
   157         } else {
       
   158           // G1 barrier needs uncompressed oop for region cross check.
       
   159           Register new_val = val;
       
   160           if (UseCompressedOops) {
       
   161             new_val = rbx;
       
   162             __ movptr(new_val, val);
       
   163           }
       
   164           __ store_heap_oop(Address(rdx, 0), val);
       
   165           __ g1_write_barrier_post(rdx /* store_adr */,
       
   166                                    new_val /* new_val */,
       
   167                                    r15_thread /* thread */,
       
   168                                    r8 /* tmp */,
       
   169                                    rbx /* tmp2 */);
       
   170         }
       
   171       }
       
   172       break;
       
   173 #endif // INCLUDE_ALL_GCS
       
   174     case BarrierSet::CardTableModRef:
       
   175     case BarrierSet::CardTableExtension:
       
   176       {
       
   177         if (val == noreg) {
       
   178           __ store_heap_oop_null(obj);
       
   179         } else {
       
   180           __ store_heap_oop(obj, val);
       
   181           // flatten object address if needed
       
   182           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
       
   183             __ store_check(obj.base());
       
   184           } else {
       
   185             __ leaq(rdx, obj);
       
   186             __ store_check(rdx);
       
   187           }
       
   188         }
       
   189       }
       
   190       break;
       
   191     case BarrierSet::ModRef:
       
   192       if (val == noreg) {
       
   193         __ store_heap_oop_null(obj);
       
   194       } else {
       
   195         __ store_heap_oop(obj, val);
       
   196       }
       
   197       break;
       
   198     default      :
       
   199       ShouldNotReachHere();
       
   200 
       
   201   }
       
   202 }
       
   203 
       
   204 Address TemplateTable::at_bcp(int offset) {
       
   205   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
       
   206   return Address(r13, offset);
       
   207 }
       
   208 
       
   209 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
       
   210                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
       
   211                                    int byte_no) {
       
   212   if (!RewriteBytecodes)  return;
       
   213   Label L_patch_done;
       
   214 
       
   215   switch (bc) {
       
   216   case Bytecodes::_fast_aputfield:
       
   217   case Bytecodes::_fast_bputfield:
       
   218   case Bytecodes::_fast_cputfield:
       
   219   case Bytecodes::_fast_dputfield:
       
   220   case Bytecodes::_fast_fputfield:
       
   221   case Bytecodes::_fast_iputfield:
       
   222   case Bytecodes::_fast_lputfield:
       
   223   case Bytecodes::_fast_sputfield:
       
   224     {
       
   225       // We skip bytecode quickening for putfield instructions when
       
   226       // the put_code written to the constant pool cache is zero.
       
   227       // This is required so that every execution of this instruction
       
   228       // calls out to InterpreterRuntime::resolve_get_put to do
       
   229       // additional, required work.
       
   230       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
       
   231       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
       
   232       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
       
   233       __ movl(bc_reg, bc);
       
   234       __ cmpl(temp_reg, (int) 0);
       
   235       __ jcc(Assembler::zero, L_patch_done);  // don't patch
       
   236     }
       
   237     break;
       
   238   default:
       
   239     assert(byte_no == -1, "sanity");
       
   240     // the pair bytecodes have already done the load.
       
   241     if (load_bc_into_bc_reg) {
       
   242       __ movl(bc_reg, bc);
       
   243     }
       
   244   }
       
   245 
       
   246   if (JvmtiExport::can_post_breakpoint()) {
       
   247     Label L_fast_patch;
       
   248     // if a breakpoint is present we can't rewrite the stream directly
       
   249     __ movzbl(temp_reg, at_bcp(0));
       
   250     __ cmpl(temp_reg, Bytecodes::_breakpoint);
       
   251     __ jcc(Assembler::notEqual, L_fast_patch);
       
   252     __ get_method(temp_reg);
       
   253     // Let breakpoint table handling rewrite to quicker bytecode
       
   254     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, r13, bc_reg);
       
   255 #ifndef ASSERT
       
   256     __ jmpb(L_patch_done);
       
   257 #else
       
   258     __ jmp(L_patch_done);
       
   259 #endif
       
   260     __ bind(L_fast_patch);
       
   261   }
       
   262 
       
   263 #ifdef ASSERT
       
   264   Label L_okay;
       
   265   __ load_unsigned_byte(temp_reg, at_bcp(0));
       
   266   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
       
   267   __ jcc(Assembler::equal, L_okay);
       
   268   __ cmpl(temp_reg, bc_reg);
       
   269   __ jcc(Assembler::equal, L_okay);
       
   270   __ stop("patching the wrong bytecode");
       
   271   __ bind(L_okay);
       
   272 #endif
       
   273 
       
   274   // patch bytecode
       
   275   __ movb(at_bcp(0), bc_reg);
       
   276   __ bind(L_patch_done);
       
   277 }
       
   278 
       
   279 
       
   280 // Individual instructions
       
   281 
       
   282 void TemplateTable::nop() {
       
   283   transition(vtos, vtos);
       
   284   // nothing to do
       
   285 }
       
   286 
       
   287 void TemplateTable::shouldnotreachhere() {
       
   288   transition(vtos, vtos);
       
   289   __ stop("shouldnotreachhere bytecode");
       
   290 }
       
   291 
       
   292 void TemplateTable::aconst_null() {
       
   293   transition(vtos, atos);
       
   294   __ xorl(rax, rax);
       
   295 }
       
   296 
       
   297 void TemplateTable::iconst(int value) {
       
   298   transition(vtos, itos);
       
   299   if (value == 0) {
       
   300     __ xorl(rax, rax);
       
   301   } else {
       
   302     __ movl(rax, value);
       
   303   }
       
   304 }
       
   305 
       
   306 void TemplateTable::lconst(int value) {
       
   307   transition(vtos, ltos);
       
   308   if (value == 0) {
       
   309     __ xorl(rax, rax);
       
   310   } else {
       
   311     __ movl(rax, value);
       
   312   }
       
   313 }
       
   314 
       
   315 void TemplateTable::fconst(int value) {
       
   316   transition(vtos, ftos);
       
   317   static float one = 1.0f, two = 2.0f;
       
   318   switch (value) {
       
   319   case 0:
       
   320     __ xorps(xmm0, xmm0);
       
   321     break;
       
   322   case 1:
       
   323     __ movflt(xmm0, ExternalAddress((address) &one));
       
   324     break;
       
   325   case 2:
       
   326     __ movflt(xmm0, ExternalAddress((address) &two));
       
   327     break;
       
   328   default:
       
   329     ShouldNotReachHere();
       
   330     break;
       
   331   }
       
   332 }
       
   333 
       
   334 void TemplateTable::dconst(int value) {
       
   335   transition(vtos, dtos);
       
   336   static double one = 1.0;
       
   337   switch (value) {
       
   338   case 0:
       
   339     __ xorpd(xmm0, xmm0);
       
   340     break;
       
   341   case 1:
       
   342     __ movdbl(xmm0, ExternalAddress((address) &one));
       
   343     break;
       
   344   default:
       
   345     ShouldNotReachHere();
       
   346     break;
       
   347   }
       
   348 }
       
   349 
       
   350 void TemplateTable::bipush() {
       
   351   transition(vtos, itos);
       
   352   __ load_signed_byte(rax, at_bcp(1));
       
   353 }
       
   354 
       
   355 void TemplateTable::sipush() {
       
   356   transition(vtos, itos);
       
   357   __ load_unsigned_short(rax, at_bcp(1));
       
   358   __ bswapl(rax);
       
   359   __ sarl(rax, 16);
       
   360 }
       
   361 
       
   362 void TemplateTable::ldc(bool wide) {
       
   363   transition(vtos, vtos);
       
   364   Label call_ldc, notFloat, notClass, Done;
       
   365 
       
   366   if (wide) {
       
   367     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
       
   368   } else {
       
   369     __ load_unsigned_byte(rbx, at_bcp(1));
       
   370   }
       
   371 
       
   372   __ get_cpool_and_tags(rcx, rax);
       
   373   const int base_offset = ConstantPool::header_size() * wordSize;
       
   374   const int tags_offset = Array<u1>::base_offset_in_bytes();
       
   375 
       
   376   // get type
       
   377   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
       
   378 
       
   379   // unresolved class - get the resolved class
       
   380   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
       
   381   __ jccb(Assembler::equal, call_ldc);
       
   382 
       
   383   // unresolved class in error state - call into runtime to throw the error
       
   384   // from the first resolution attempt
       
   385   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
       
   386   __ jccb(Assembler::equal, call_ldc);
       
   387 
       
   388   // resolved class - need to call vm to get java mirror of the class
       
   389   __ cmpl(rdx, JVM_CONSTANT_Class);
       
   390   __ jcc(Assembler::notEqual, notClass);
       
   391 
       
   392   __ bind(call_ldc);
       
   393   __ movl(c_rarg1, wide);
       
   394   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
       
   395   __ push_ptr(rax);
       
   396   __ verify_oop(rax);
       
   397   __ jmp(Done);
       
   398 
       
   399   __ bind(notClass);
       
   400   __ cmpl(rdx, JVM_CONSTANT_Float);
       
   401   __ jccb(Assembler::notEqual, notFloat);
       
   402   // ftos
       
   403   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
       
   404   __ push_f();
       
   405   __ jmp(Done);
       
   406 
       
   407   __ bind(notFloat);
       
   408 #ifdef ASSERT
       
   409   {
       
   410     Label L;
       
   411     __ cmpl(rdx, JVM_CONSTANT_Integer);
       
   412     __ jcc(Assembler::equal, L);
       
   413     // String and Object are rewritten to fast_aldc
       
   414     __ stop("unexpected tag type in ldc");
       
   415     __ bind(L);
       
   416   }
       
   417 #endif
       
   418   // itos JVM_CONSTANT_Integer only
       
   419   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
       
   420   __ push_i(rax);
       
   421   __ bind(Done);
       
   422 }
       
   423 
       
   424 // Fast path for caching oop constants.
       
   425 void TemplateTable::fast_aldc(bool wide) {
       
   426   transition(vtos, atos);
       
   427 
       
   428   Register result = rax;
       
   429   Register tmp = rdx;
       
   430   int index_size = wide ? sizeof(u2) : sizeof(u1);
       
   431 
       
   432   Label resolved;
       
   433 
       
   434   // We are resolved if the resolved reference cache entry contains a
       
   435   // non-null object (String, MethodType, etc.)
       
   436   assert_different_registers(result, tmp);
       
   437   __ get_cache_index_at_bcp(tmp, 1, index_size);
       
   438   __ load_resolved_reference_at_index(result, tmp);
       
   439   __ testl(result, result);
       
   440   __ jcc(Assembler::notZero, resolved);
       
   441 
       
   442   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
       
   443 
       
   444   // first time invocation - must resolve first
       
   445   __ movl(tmp, (int)bytecode());
       
   446   __ call_VM(result, entry, tmp);
       
   447 
       
   448   __ bind(resolved);
       
   449 
       
   450   if (VerifyOops) {
       
   451     __ verify_oop(result);
       
   452   }
       
   453 }
       
   454 
       
   455 void TemplateTable::ldc2_w() {
       
   456   transition(vtos, vtos);
       
   457   Label Long, Done;
       
   458   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
       
   459 
       
   460   __ get_cpool_and_tags(rcx, rax);
       
   461   const int base_offset = ConstantPool::header_size() * wordSize;
       
   462   const int tags_offset = Array<u1>::base_offset_in_bytes();
       
   463 
       
   464   // get type
       
   465   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
       
   466           JVM_CONSTANT_Double);
       
   467   __ jccb(Assembler::notEqual, Long);
       
   468   // dtos
       
   469   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
       
   470   __ push_d();
       
   471   __ jmpb(Done);
       
   472 
       
   473   __ bind(Long);
       
   474   // ltos
       
   475   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
       
   476   __ push_l();
       
   477 
       
   478   __ bind(Done);
       
   479 }
       
   480 
       
   481 void TemplateTable::locals_index(Register reg, int offset) {
       
   482   __ load_unsigned_byte(reg, at_bcp(offset));
       
   483   __ negptr(reg);
       
   484 }
       
   485 
       
   486 void TemplateTable::iload() {
       
   487   transition(vtos, itos);
       
   488   if (RewriteFrequentPairs) {
       
   489     Label rewrite, done;
       
   490     const Register bc = c_rarg3;
       
   491     assert(rbx != bc, "register damaged");
       
   492 
       
   493     // get next byte
       
   494     __ load_unsigned_byte(rbx,
       
   495                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
       
   496     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
       
   497     // last two iloads in a pair.  Comparing against fast_iload means that
       
   498     // the next bytecode is neither an iload or a caload, and therefore
       
   499     // an iload pair.
       
   500     __ cmpl(rbx, Bytecodes::_iload);
       
   501     __ jcc(Assembler::equal, done);
       
   502 
       
   503     __ cmpl(rbx, Bytecodes::_fast_iload);
       
   504     __ movl(bc, Bytecodes::_fast_iload2);
       
   505     __ jccb(Assembler::equal, rewrite);
       
   506 
       
   507     // if _caload, rewrite to fast_icaload
       
   508     __ cmpl(rbx, Bytecodes::_caload);
       
   509     __ movl(bc, Bytecodes::_fast_icaload);
       
   510     __ jccb(Assembler::equal, rewrite);
       
   511 
       
   512     // rewrite so iload doesn't check again.
       
   513     __ movl(bc, Bytecodes::_fast_iload);
       
   514 
       
   515     // rewrite
       
   516     // bc: fast bytecode
       
   517     __ bind(rewrite);
       
   518     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
       
   519     __ bind(done);
       
   520   }
       
   521 
       
   522   // Get the local value into tos
       
   523   locals_index(rbx);
       
   524   __ movl(rax, iaddress(rbx));
       
   525 }
       
   526 
       
   527 void TemplateTable::fast_iload2() {
       
   528   transition(vtos, itos);
       
   529   locals_index(rbx);
       
   530   __ movl(rax, iaddress(rbx));
       
   531   __ push(itos);
       
   532   locals_index(rbx, 3);
       
   533   __ movl(rax, iaddress(rbx));
       
   534 }
       
   535 
       
   536 void TemplateTable::fast_iload() {
       
   537   transition(vtos, itos);
       
   538   locals_index(rbx);
       
   539   __ movl(rax, iaddress(rbx));
       
   540 }
       
   541 
       
   542 void TemplateTable::lload() {
       
   543   transition(vtos, ltos);
       
   544   locals_index(rbx);
       
   545   __ movq(rax, laddress(rbx));
       
   546 }
       
   547 
       
   548 void TemplateTable::fload() {
       
   549   transition(vtos, ftos);
       
   550   locals_index(rbx);
       
   551   __ movflt(xmm0, faddress(rbx));
       
   552 }
       
   553 
       
   554 void TemplateTable::dload() {
       
   555   transition(vtos, dtos);
       
   556   locals_index(rbx);
       
   557   __ movdbl(xmm0, daddress(rbx));
       
   558 }
       
   559 
       
   560 void TemplateTable::aload() {
       
   561   transition(vtos, atos);
       
   562   locals_index(rbx);
       
   563   __ movptr(rax, aaddress(rbx));
       
   564 }
       
   565 
       
   566 void TemplateTable::locals_index_wide(Register reg) {
       
   567   __ load_unsigned_short(reg, at_bcp(2));
       
   568   __ bswapl(reg);
       
   569   __ shrl(reg, 16);
       
   570   __ negptr(reg);
       
   571 }
       
   572 
       
   573 void TemplateTable::wide_iload() {
       
   574   transition(vtos, itos);
       
   575   locals_index_wide(rbx);
       
   576   __ movl(rax, iaddress(rbx));
       
   577 }
       
   578 
       
   579 void TemplateTable::wide_lload() {
       
   580   transition(vtos, ltos);
       
   581   locals_index_wide(rbx);
       
   582   __ movq(rax, laddress(rbx));
       
   583 }
       
   584 
       
   585 void TemplateTable::wide_fload() {
       
   586   transition(vtos, ftos);
       
   587   locals_index_wide(rbx);
       
   588   __ movflt(xmm0, faddress(rbx));
       
   589 }
       
   590 
       
   591 void TemplateTable::wide_dload() {
       
   592   transition(vtos, dtos);
       
   593   locals_index_wide(rbx);
       
   594   __ movdbl(xmm0, daddress(rbx));
       
   595 }
       
   596 
       
   597 void TemplateTable::wide_aload() {
       
   598   transition(vtos, atos);
       
   599   locals_index_wide(rbx);
       
   600   __ movptr(rax, aaddress(rbx));
       
   601 }
       
   602 
       
   603 void TemplateTable::index_check(Register array, Register index) {
       
   604   // destroys rbx
       
   605   // check array
       
   606   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
       
   607   // sign extend index for use by indexed load
       
   608   __ movl2ptr(index, index);
       
   609   // check index
       
   610   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
       
   611   if (index != rbx) {
       
   612     // ??? convention: move aberrant index into ebx for exception message
       
   613     assert(rbx != array, "different registers");
       
   614     __ movl(rbx, index);
       
   615   }
       
   616   __ jump_cc(Assembler::aboveEqual,
       
   617              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
       
   618 }
       
   619 
       
   620 void TemplateTable::iaload() {
       
   621   transition(itos, itos);
       
   622   __ pop_ptr(rdx);
       
   623   // eax: index
       
   624   // rdx: array
       
   625   index_check(rdx, rax); // kills rbx
       
   626   __ movl(rax, Address(rdx, rax,
       
   627                        Address::times_4,
       
   628                        arrayOopDesc::base_offset_in_bytes(T_INT)));
       
   629 }
       
   630 
       
   631 void TemplateTable::laload() {
       
   632   transition(itos, ltos);
       
   633   __ pop_ptr(rdx);
       
   634   // eax: index
       
   635   // rdx: array
       
   636   index_check(rdx, rax); // kills rbx
       
   637   __ movq(rax, Address(rdx, rbx,
       
   638                        Address::times_8,
       
   639                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
       
   640 }
       
   641 
       
   642 void TemplateTable::faload() {
       
   643   transition(itos, ftos);
       
   644   __ pop_ptr(rdx);
       
   645   // eax: index
       
   646   // rdx: array
       
   647   index_check(rdx, rax); // kills rbx
       
   648   __ movflt(xmm0, Address(rdx, rax,
       
   649                          Address::times_4,
       
   650                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
       
   651 }
       
   652 
       
   653 void TemplateTable::daload() {
       
   654   transition(itos, dtos);
       
   655   __ pop_ptr(rdx);
       
   656   // eax: index
       
   657   // rdx: array
       
   658   index_check(rdx, rax); // kills rbx
       
   659   __ movdbl(xmm0, Address(rdx, rax,
       
   660                           Address::times_8,
       
   661                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
       
   662 }
       
   663 
       
   664 void TemplateTable::aaload() {
       
   665   transition(itos, atos);
       
   666   __ pop_ptr(rdx);
       
   667   // eax: index
       
   668   // rdx: array
       
   669   index_check(rdx, rax); // kills rbx
       
   670   __ load_heap_oop(rax, Address(rdx, rax,
       
   671                                 UseCompressedOops ? Address::times_4 : Address::times_8,
       
   672                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
       
   673 }
       
   674 
       
   675 void TemplateTable::baload() {
       
   676   transition(itos, itos);
       
   677   __ pop_ptr(rdx);
       
   678   // eax: index
       
   679   // rdx: array
       
   680   index_check(rdx, rax); // kills rbx
       
   681   __ load_signed_byte(rax,
       
   682                       Address(rdx, rax,
       
   683                               Address::times_1,
       
   684                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
       
   685 }
       
   686 
       
   687 void TemplateTable::caload() {
       
   688   transition(itos, itos);
       
   689   __ pop_ptr(rdx);
       
   690   // eax: index
       
   691   // rdx: array
       
   692   index_check(rdx, rax); // kills rbx
       
   693   __ load_unsigned_short(rax,
       
   694                          Address(rdx, rax,
       
   695                                  Address::times_2,
       
   696                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
       
   697 }
       
   698 
       
   699 // iload followed by caload frequent pair
       
   700 void TemplateTable::fast_icaload() {
       
   701   transition(vtos, itos);
       
   702   // load index out of locals
       
   703   locals_index(rbx);
       
   704   __ movl(rax, iaddress(rbx));
       
   705 
       
   706   // eax: index
       
   707   // rdx: array
       
   708   __ pop_ptr(rdx);
       
   709   index_check(rdx, rax); // kills rbx
       
   710   __ load_unsigned_short(rax,
       
   711                          Address(rdx, rax,
       
   712                                  Address::times_2,
       
   713                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
       
   714 }
       
   715 
       
   716 void TemplateTable::saload() {
       
   717   transition(itos, itos);
       
   718   __ pop_ptr(rdx);
       
   719   // eax: index
       
   720   // rdx: array
       
   721   index_check(rdx, rax); // kills rbx
       
   722   __ load_signed_short(rax,
       
   723                        Address(rdx, rax,
       
   724                                Address::times_2,
       
   725                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
       
   726 }
       
   727 
       
   728 void TemplateTable::iload(int n) {
       
   729   transition(vtos, itos);
       
   730   __ movl(rax, iaddress(n));
       
   731 }
       
   732 
       
   733 void TemplateTable::lload(int n) {
       
   734   transition(vtos, ltos);
       
   735   __ movq(rax, laddress(n));
       
   736 }
       
   737 
       
   738 void TemplateTable::fload(int n) {
       
   739   transition(vtos, ftos);
       
   740   __ movflt(xmm0, faddress(n));
       
   741 }
       
   742 
       
   743 void TemplateTable::dload(int n) {
       
   744   transition(vtos, dtos);
       
   745   __ movdbl(xmm0, daddress(n));
       
   746 }
       
   747 
       
   748 void TemplateTable::aload(int n) {
       
   749   transition(vtos, atos);
       
   750   __ movptr(rax, aaddress(n));
       
   751 }
       
   752 
       
   753 void TemplateTable::aload_0() {
       
   754   transition(vtos, atos);
       
   755   // According to bytecode histograms, the pairs:
       
   756   //
       
   757   // _aload_0, _fast_igetfield
       
   758   // _aload_0, _fast_agetfield
       
   759   // _aload_0, _fast_fgetfield
       
   760   //
       
   761   // occur frequently. If RewriteFrequentPairs is set, the (slow)
       
   762   // _aload_0 bytecode checks if the next bytecode is either
       
   763   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
       
   764   // rewrites the current bytecode into a pair bytecode; otherwise it
       
   765   // rewrites the current bytecode into _fast_aload_0 that doesn't do
       
   766   // the pair check anymore.
       
   767   //
       
   768   // Note: If the next bytecode is _getfield, the rewrite must be
       
   769   //       delayed, otherwise we may miss an opportunity for a pair.
       
   770   //
       
   771   // Also rewrite frequent pairs
       
   772   //   aload_0, aload_1
       
   773   //   aload_0, iload_1
       
   774   // These bytecodes with a small amount of code are most profitable
       
   775   // to rewrite
       
   776   if (RewriteFrequentPairs) {
       
   777     Label rewrite, done;
       
   778     const Register bc = c_rarg3;
       
   779     assert(rbx != bc, "register damaged");
       
   780     // get next byte
       
   781     __ load_unsigned_byte(rbx,
       
   782                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
       
   783 
       
   784     // do actual aload_0
       
   785     aload(0);
       
   786 
       
   787     // if _getfield then wait with rewrite
       
   788     __ cmpl(rbx, Bytecodes::_getfield);
       
   789     __ jcc(Assembler::equal, done);
       
   790 
       
   791     // if _igetfield then reqrite to _fast_iaccess_0
       
   792     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
       
   793            Bytecodes::_aload_0,
       
   794            "fix bytecode definition");
       
   795     __ cmpl(rbx, Bytecodes::_fast_igetfield);
       
   796     __ movl(bc, Bytecodes::_fast_iaccess_0);
       
   797     __ jccb(Assembler::equal, rewrite);
       
   798 
       
   799     // if _agetfield then reqrite to _fast_aaccess_0
       
   800     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
       
   801            Bytecodes::_aload_0,
       
   802            "fix bytecode definition");
       
   803     __ cmpl(rbx, Bytecodes::_fast_agetfield);
       
   804     __ movl(bc, Bytecodes::_fast_aaccess_0);
       
   805     __ jccb(Assembler::equal, rewrite);
       
   806 
       
   807     // if _fgetfield then reqrite to _fast_faccess_0
       
   808     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
       
   809            Bytecodes::_aload_0,
       
   810            "fix bytecode definition");
       
   811     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
       
   812     __ movl(bc, Bytecodes::_fast_faccess_0);
       
   813     __ jccb(Assembler::equal, rewrite);
       
   814 
       
   815     // else rewrite to _fast_aload0
       
   816     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
       
   817            Bytecodes::_aload_0,
       
   818            "fix bytecode definition");
       
   819     __ movl(bc, Bytecodes::_fast_aload_0);
       
   820 
       
   821     // rewrite
       
   822     // bc: fast bytecode
       
   823     __ bind(rewrite);
       
   824     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
       
   825 
       
   826     __ bind(done);
       
   827   } else {
       
   828     aload(0);
       
   829   }
       
   830 }
       
   831 
       
   832 void TemplateTable::istore() {
       
   833   transition(itos, vtos);
       
   834   locals_index(rbx);
       
   835   __ movl(iaddress(rbx), rax);
       
   836 }
       
   837 
       
   838 void TemplateTable::lstore() {
       
   839   transition(ltos, vtos);
       
   840   locals_index(rbx);
       
   841   __ movq(laddress(rbx), rax);
       
   842 }
       
   843 
       
   844 void TemplateTable::fstore() {
       
   845   transition(ftos, vtos);
       
   846   locals_index(rbx);
       
   847   __ movflt(faddress(rbx), xmm0);
       
   848 }
       
   849 
       
   850 void TemplateTable::dstore() {
       
   851   transition(dtos, vtos);
       
   852   locals_index(rbx);
       
   853   __ movdbl(daddress(rbx), xmm0);
       
   854 }
       
   855 
       
   856 void TemplateTable::astore() {
       
   857   transition(vtos, vtos);
       
   858   __ pop_ptr(rax);
       
   859   locals_index(rbx);
       
   860   __ movptr(aaddress(rbx), rax);
       
   861 }
       
   862 
       
   863 void TemplateTable::wide_istore() {
       
   864   transition(vtos, vtos);
       
   865   __ pop_i();
       
   866   locals_index_wide(rbx);
       
   867   __ movl(iaddress(rbx), rax);
       
   868 }
       
   869 
       
   870 void TemplateTable::wide_lstore() {
       
   871   transition(vtos, vtos);
       
   872   __ pop_l();
       
   873   locals_index_wide(rbx);
       
   874   __ movq(laddress(rbx), rax);
       
   875 }
       
   876 
       
   877 void TemplateTable::wide_fstore() {
       
   878   transition(vtos, vtos);
       
   879   __ pop_f();
       
   880   locals_index_wide(rbx);
       
   881   __ movflt(faddress(rbx), xmm0);
       
   882 }
       
   883 
       
   884 void TemplateTable::wide_dstore() {
       
   885   transition(vtos, vtos);
       
   886   __ pop_d();
       
   887   locals_index_wide(rbx);
       
   888   __ movdbl(daddress(rbx), xmm0);
       
   889 }
       
   890 
       
   891 void TemplateTable::wide_astore() {
       
   892   transition(vtos, vtos);
       
   893   __ pop_ptr(rax);
       
   894   locals_index_wide(rbx);
       
   895   __ movptr(aaddress(rbx), rax);
       
   896 }
       
   897 
       
   898 void TemplateTable::iastore() {
       
   899   transition(itos, vtos);
       
   900   __ pop_i(rbx);
       
   901   __ pop_ptr(rdx);
       
   902   // eax: value
       
   903   // ebx: index
       
   904   // rdx: array
       
   905   index_check(rdx, rbx); // prefer index in ebx
       
   906   __ movl(Address(rdx, rbx,
       
   907                   Address::times_4,
       
   908                   arrayOopDesc::base_offset_in_bytes(T_INT)),
       
   909           rax);
       
   910 }
       
   911 
       
   912 void TemplateTable::lastore() {
       
   913   transition(ltos, vtos);
       
   914   __ pop_i(rbx);
       
   915   __ pop_ptr(rdx);
       
   916   // rax: value
       
   917   // ebx: index
       
   918   // rdx: array
       
   919   index_check(rdx, rbx); // prefer index in ebx
       
   920   __ movq(Address(rdx, rbx,
       
   921                   Address::times_8,
       
   922                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
       
   923           rax);
       
   924 }
       
   925 
       
   926 void TemplateTable::fastore() {
       
   927   transition(ftos, vtos);
       
   928   __ pop_i(rbx);
       
   929   __ pop_ptr(rdx);
       
   930   // xmm0: value
       
   931   // ebx:  index
       
   932   // rdx:  array
       
   933   index_check(rdx, rbx); // prefer index in ebx
       
   934   __ movflt(Address(rdx, rbx,
       
   935                    Address::times_4,
       
   936                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
       
   937            xmm0);
       
   938 }
       
   939 
       
   940 void TemplateTable::dastore() {
       
   941   transition(dtos, vtos);
       
   942   __ pop_i(rbx);
       
   943   __ pop_ptr(rdx);
       
   944   // xmm0: value
       
   945   // ebx:  index
       
   946   // rdx:  array
       
   947   index_check(rdx, rbx); // prefer index in ebx
       
   948   __ movdbl(Address(rdx, rbx,
       
   949                    Address::times_8,
       
   950                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
       
   951            xmm0);
       
   952 }
       
   953 
       
   954 void TemplateTable::aastore() {
       
   955   Label is_null, ok_is_subtype, done;
       
   956   transition(vtos, vtos);
       
   957   // stack: ..., array, index, value
       
   958   __ movptr(rax, at_tos());    // value
       
   959   __ movl(rcx, at_tos_p1()); // index
       
   960   __ movptr(rdx, at_tos_p2()); // array
       
   961 
       
   962   Address element_address(rdx, rcx,
       
   963                           UseCompressedOops? Address::times_4 : Address::times_8,
       
   964                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
       
   965 
       
   966   index_check(rdx, rcx);     // kills rbx
       
   967   // do array store check - check for NULL value first
       
   968   __ testptr(rax, rax);
       
   969   __ jcc(Assembler::zero, is_null);
       
   970 
       
   971   // Move subklass into rbx
       
   972   __ load_klass(rbx, rax);
       
   973   // Move superklass into rax
       
   974   __ load_klass(rax, rdx);
       
   975   __ movptr(rax, Address(rax,
       
   976                          ObjArrayKlass::element_klass_offset()));
       
   977   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
       
   978   __ lea(rdx, element_address);
       
   979 
       
   980   // Generate subtype check.  Blows rcx, rdi
       
   981   // Superklass in rax.  Subklass in rbx.
       
   982   __ gen_subtype_check(rbx, ok_is_subtype);
       
   983 
       
   984   // Come here on failure
       
   985   // object is at TOS
       
   986   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
       
   987 
       
   988   // Come here on success
       
   989   __ bind(ok_is_subtype);
       
   990 
       
   991   // Get the value we will store
       
   992   __ movptr(rax, at_tos());
       
   993   // Now store using the appropriate barrier
       
   994   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
       
   995   __ jmp(done);
       
   996 
       
   997   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
       
   998   __ bind(is_null);
       
   999   __ profile_null_seen(rbx);
       
  1000 
       
  1001   // Store a NULL
       
  1002   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
       
  1003 
       
  1004   // Pop stack arguments
       
  1005   __ bind(done);
       
  1006   __ addptr(rsp, 3 * Interpreter::stackElementSize);
       
  1007 }
       
  1008 
       
  1009 void TemplateTable::bastore() {
       
  1010   transition(itos, vtos);
       
  1011   __ pop_i(rbx);
       
  1012   __ pop_ptr(rdx);
       
  1013   // eax: value
       
  1014   // ebx: index
       
  1015   // rdx: array
       
  1016   index_check(rdx, rbx); // prefer index in ebx
       
  1017   __ movb(Address(rdx, rbx,
       
  1018                   Address::times_1,
       
  1019                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
       
  1020           rax);
       
  1021 }
       
  1022 
       
  1023 void TemplateTable::castore() {
       
  1024   transition(itos, vtos);
       
  1025   __ pop_i(rbx);
       
  1026   __ pop_ptr(rdx);
       
  1027   // eax: value
       
  1028   // ebx: index
       
  1029   // rdx: array
       
  1030   index_check(rdx, rbx);  // prefer index in ebx
       
  1031   __ movw(Address(rdx, rbx,
       
  1032                   Address::times_2,
       
  1033                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
       
  1034           rax);
       
  1035 }
       
  1036 
       
  1037 void TemplateTable::sastore() {
       
  1038   castore();
       
  1039 }
       
  1040 
       
  1041 void TemplateTable::istore(int n) {
       
  1042   transition(itos, vtos);
       
  1043   __ movl(iaddress(n), rax);
       
  1044 }
       
  1045 
       
  1046 void TemplateTable::lstore(int n) {
       
  1047   transition(ltos, vtos);
       
  1048   __ movq(laddress(n), rax);
       
  1049 }
       
  1050 
       
  1051 void TemplateTable::fstore(int n) {
       
  1052   transition(ftos, vtos);
       
  1053   __ movflt(faddress(n), xmm0);
       
  1054 }
       
  1055 
       
  1056 void TemplateTable::dstore(int n) {
       
  1057   transition(dtos, vtos);
       
  1058   __ movdbl(daddress(n), xmm0);
       
  1059 }
       
  1060 
       
  1061 void TemplateTable::astore(int n) {
       
  1062   transition(vtos, vtos);
       
  1063   __ pop_ptr(rax);
       
  1064   __ movptr(aaddress(n), rax);
       
  1065 }
       
  1066 
       
  1067 void TemplateTable::pop() {
       
  1068   transition(vtos, vtos);
       
  1069   __ addptr(rsp, Interpreter::stackElementSize);
       
  1070 }
       
  1071 
       
  1072 void TemplateTable::pop2() {
       
  1073   transition(vtos, vtos);
       
  1074   __ addptr(rsp, 2 * Interpreter::stackElementSize);
       
  1075 }
       
  1076 
       
  1077 void TemplateTable::dup() {
       
  1078   transition(vtos, vtos);
       
  1079   __ load_ptr(0, rax);
       
  1080   __ push_ptr(rax);
       
  1081   // stack: ..., a, a
       
  1082 }
       
  1083 
       
  1084 void TemplateTable::dup_x1() {
       
  1085   transition(vtos, vtos);
       
  1086   // stack: ..., a, b
       
  1087   __ load_ptr( 0, rax);  // load b
       
  1088   __ load_ptr( 1, rcx);  // load a
       
  1089   __ store_ptr(1, rax);  // store b
       
  1090   __ store_ptr(0, rcx);  // store a
       
  1091   __ push_ptr(rax);      // push b
       
  1092   // stack: ..., b, a, b
       
  1093 }
       
  1094 
       
  1095 void TemplateTable::dup_x2() {
       
  1096   transition(vtos, vtos);
       
  1097   // stack: ..., a, b, c
       
  1098   __ load_ptr( 0, rax);  // load c
       
  1099   __ load_ptr( 2, rcx);  // load a
       
  1100   __ store_ptr(2, rax);  // store c in a
       
  1101   __ push_ptr(rax);      // push c
       
  1102   // stack: ..., c, b, c, c
       
  1103   __ load_ptr( 2, rax);  // load b
       
  1104   __ store_ptr(2, rcx);  // store a in b
       
  1105   // stack: ..., c, a, c, c
       
  1106   __ store_ptr(1, rax);  // store b in c
       
  1107   // stack: ..., c, a, b, c
       
  1108 }
       
  1109 
       
  1110 void TemplateTable::dup2() {
       
  1111   transition(vtos, vtos);
       
  1112   // stack: ..., a, b
       
  1113   __ load_ptr(1, rax);  // load a
       
  1114   __ push_ptr(rax);     // push a
       
  1115   __ load_ptr(1, rax);  // load b
       
  1116   __ push_ptr(rax);     // push b
       
  1117   // stack: ..., a, b, a, b
       
  1118 }
       
  1119 
       
  1120 void TemplateTable::dup2_x1() {
       
  1121   transition(vtos, vtos);
       
  1122   // stack: ..., a, b, c
       
  1123   __ load_ptr( 0, rcx);  // load c
       
  1124   __ load_ptr( 1, rax);  // load b
       
  1125   __ push_ptr(rax);      // push b
       
  1126   __ push_ptr(rcx);      // push c
       
  1127   // stack: ..., a, b, c, b, c
       
  1128   __ store_ptr(3, rcx);  // store c in b
       
  1129   // stack: ..., a, c, c, b, c
       
  1130   __ load_ptr( 4, rcx);  // load a
       
  1131   __ store_ptr(2, rcx);  // store a in 2nd c
       
  1132   // stack: ..., a, c, a, b, c
       
  1133   __ store_ptr(4, rax);  // store b in a
       
  1134   // stack: ..., b, c, a, b, c
       
  1135 }
       
  1136 
       
  1137 void TemplateTable::dup2_x2() {
       
  1138   transition(vtos, vtos);
       
  1139   // stack: ..., a, b, c, d
       
  1140   __ load_ptr( 0, rcx);  // load d
       
  1141   __ load_ptr( 1, rax);  // load c
       
  1142   __ push_ptr(rax);      // push c
       
  1143   __ push_ptr(rcx);      // push d
       
  1144   // stack: ..., a, b, c, d, c, d
       
  1145   __ load_ptr( 4, rax);  // load b
       
  1146   __ store_ptr(2, rax);  // store b in d
       
  1147   __ store_ptr(4, rcx);  // store d in b
       
  1148   // stack: ..., a, d, c, b, c, d
       
  1149   __ load_ptr( 5, rcx);  // load a
       
  1150   __ load_ptr( 3, rax);  // load c
       
  1151   __ store_ptr(3, rcx);  // store a in c
       
  1152   __ store_ptr(5, rax);  // store c in a
       
  1153   // stack: ..., c, d, a, b, c, d
       
  1154 }
       
  1155 
       
  1156 void TemplateTable::swap() {
       
  1157   transition(vtos, vtos);
       
  1158   // stack: ..., a, b
       
  1159   __ load_ptr( 1, rcx);  // load a
       
  1160   __ load_ptr( 0, rax);  // load b
       
  1161   __ store_ptr(0, rcx);  // store a in b
       
  1162   __ store_ptr(1, rax);  // store b in a
       
  1163   // stack: ..., b, a
       
  1164 }
       
  1165 
       
  1166 void TemplateTable::iop2(Operation op) {
       
  1167   transition(itos, itos);
       
  1168   switch (op) {
       
  1169   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
       
  1170   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
       
  1171   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
       
  1172   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
       
  1173   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
       
  1174   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
       
  1175   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
       
  1176   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
       
  1177   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
       
  1178   default   : ShouldNotReachHere();
       
  1179   }
       
  1180 }
       
  1181 
       
  1182 void TemplateTable::lop2(Operation op) {
       
  1183   transition(ltos, ltos);
       
  1184   switch (op) {
       
  1185   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
       
  1186   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
       
  1187   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
       
  1188   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
       
  1189   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
       
  1190   default   : ShouldNotReachHere();
       
  1191   }
       
  1192 }
       
  1193 
       
  1194 void TemplateTable::idiv() {
       
  1195   transition(itos, itos);
       
  1196   __ movl(rcx, rax);
       
  1197   __ pop_i(rax);
       
  1198   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
       
  1199   //       they are not equal, one could do a normal division (no correction
       
  1200   //       needed), which may speed up this implementation for the common case.
       
  1201   //       (see also JVM spec., p.243 & p.271)
       
  1202   __ corrected_idivl(rcx);
       
  1203 }
       
  1204 
       
  1205 void TemplateTable::irem() {
       
  1206   transition(itos, itos);
       
  1207   __ movl(rcx, rax);
       
  1208   __ pop_i(rax);
       
  1209   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
       
  1210   //       they are not equal, one could do a normal division (no correction
       
  1211   //       needed), which may speed up this implementation for the common case.
       
  1212   //       (see also JVM spec., p.243 & p.271)
       
  1213   __ corrected_idivl(rcx);
       
  1214   __ movl(rax, rdx);
       
  1215 }
       
  1216 
       
  1217 void TemplateTable::lmul() {
       
  1218   transition(ltos, ltos);
       
  1219   __ pop_l(rdx);
       
  1220   __ imulq(rax, rdx);
       
  1221 }
       
  1222 
       
  1223 void TemplateTable::ldiv() {
       
  1224   transition(ltos, ltos);
       
  1225   __ mov(rcx, rax);
       
  1226   __ pop_l(rax);
       
  1227   // generate explicit div0 check
       
  1228   __ testq(rcx, rcx);
       
  1229   __ jump_cc(Assembler::zero,
       
  1230              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
       
  1231   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
       
  1232   //       they are not equal, one could do a normal division (no correction
       
  1233   //       needed), which may speed up this implementation for the common case.
       
  1234   //       (see also JVM spec., p.243 & p.271)
       
  1235   __ corrected_idivq(rcx); // kills rbx
       
  1236 }
       
  1237 
       
  1238 void TemplateTable::lrem() {
       
  1239   transition(ltos, ltos);
       
  1240   __ mov(rcx, rax);
       
  1241   __ pop_l(rax);
       
  1242   __ testq(rcx, rcx);
       
  1243   __ jump_cc(Assembler::zero,
       
  1244              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
       
  1245   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
       
  1246   //       they are not equal, one could do a normal division (no correction
       
  1247   //       needed), which may speed up this implementation for the common case.
       
  1248   //       (see also JVM spec., p.243 & p.271)
       
  1249   __ corrected_idivq(rcx); // kills rbx
       
  1250   __ mov(rax, rdx);
       
  1251 }
       
  1252 
       
  1253 void TemplateTable::lshl() {
       
  1254   transition(itos, ltos);
       
  1255   __ movl(rcx, rax);                             // get shift count
       
  1256   __ pop_l(rax);                                 // get shift value
       
  1257   __ shlq(rax);
       
  1258 }
       
  1259 
       
  1260 void TemplateTable::lshr() {
       
  1261   transition(itos, ltos);
       
  1262   __ movl(rcx, rax);                             // get shift count
       
  1263   __ pop_l(rax);                                 // get shift value
       
  1264   __ sarq(rax);
       
  1265 }
       
  1266 
       
  1267 void TemplateTable::lushr() {
       
  1268   transition(itos, ltos);
       
  1269   __ movl(rcx, rax);                             // get shift count
       
  1270   __ pop_l(rax);                                 // get shift value
       
  1271   __ shrq(rax);
       
  1272 }
       
  1273 
       
  1274 void TemplateTable::fop2(Operation op) {
       
  1275   transition(ftos, ftos);
       
  1276   switch (op) {
       
  1277   case add:
       
  1278     __ addss(xmm0, at_rsp());
       
  1279     __ addptr(rsp, Interpreter::stackElementSize);
       
  1280     break;
       
  1281   case sub:
       
  1282     __ movflt(xmm1, xmm0);
       
  1283     __ pop_f(xmm0);
       
  1284     __ subss(xmm0, xmm1);
       
  1285     break;
       
  1286   case mul:
       
  1287     __ mulss(xmm0, at_rsp());
       
  1288     __ addptr(rsp, Interpreter::stackElementSize);
       
  1289     break;
       
  1290   case div:
       
  1291     __ movflt(xmm1, xmm0);
       
  1292     __ pop_f(xmm0);
       
  1293     __ divss(xmm0, xmm1);
       
  1294     break;
       
  1295   case rem:
       
  1296     __ movflt(xmm1, xmm0);
       
  1297     __ pop_f(xmm0);
       
  1298     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
       
  1299     break;
       
  1300   default:
       
  1301     ShouldNotReachHere();
       
  1302     break;
       
  1303   }
       
  1304 }
       
  1305 
       
  1306 void TemplateTable::dop2(Operation op) {
       
  1307   transition(dtos, dtos);
       
  1308   switch (op) {
       
  1309   case add:
       
  1310     __ addsd(xmm0, at_rsp());
       
  1311     __ addptr(rsp, 2 * Interpreter::stackElementSize);
       
  1312     break;
       
  1313   case sub:
       
  1314     __ movdbl(xmm1, xmm0);
       
  1315     __ pop_d(xmm0);
       
  1316     __ subsd(xmm0, xmm1);
       
  1317     break;
       
  1318   case mul:
       
  1319     __ mulsd(xmm0, at_rsp());
       
  1320     __ addptr(rsp, 2 * Interpreter::stackElementSize);
       
  1321     break;
       
  1322   case div:
       
  1323     __ movdbl(xmm1, xmm0);
       
  1324     __ pop_d(xmm0);
       
  1325     __ divsd(xmm0, xmm1);
       
  1326     break;
       
  1327   case rem:
       
  1328     __ movdbl(xmm1, xmm0);
       
  1329     __ pop_d(xmm0);
       
  1330     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
       
  1331     break;
       
  1332   default:
       
  1333     ShouldNotReachHere();
       
  1334     break;
       
  1335   }
       
  1336 }
       
  1337 
       
  1338 void TemplateTable::ineg() {
       
  1339   transition(itos, itos);
       
  1340   __ negl(rax);
       
  1341 }
       
  1342 
       
  1343 void TemplateTable::lneg() {
       
  1344   transition(ltos, ltos);
       
  1345   __ negq(rax);
       
  1346 }
       
  1347 
       
  1348 // Note: 'double' and 'long long' have 32-bits alignment on x86.
       
  1349 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
       
  1350   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
       
  1351   // of 128-bits operands for SSE instructions.
       
  1352   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
       
  1353   // Store the value to a 128-bits operand.
       
  1354   operand[0] = lo;
       
  1355   operand[1] = hi;
       
  1356   return operand;
       
  1357 }
       
  1358 
       
  1359 // Buffer for 128-bits masks used by SSE instructions.
       
  1360 static jlong float_signflip_pool[2*2];
       
  1361 static jlong double_signflip_pool[2*2];
       
  1362 
       
  1363 void TemplateTable::fneg() {
       
  1364   transition(ftos, ftos);
       
  1365   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
       
  1366   __ xorps(xmm0, ExternalAddress((address) float_signflip));
       
  1367 }
       
  1368 
       
  1369 void TemplateTable::dneg() {
       
  1370   transition(dtos, dtos);
       
  1371   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
       
  1372   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
       
  1373 }
       
  1374 
       
  1375 void TemplateTable::iinc() {
       
  1376   transition(vtos, vtos);
       
  1377   __ load_signed_byte(rdx, at_bcp(2)); // get constant
       
  1378   locals_index(rbx);
       
  1379   __ addl(iaddress(rbx), rdx);
       
  1380 }
       
  1381 
       
  1382 void TemplateTable::wide_iinc() {
       
  1383   transition(vtos, vtos);
       
  1384   __ movl(rdx, at_bcp(4)); // get constant
       
  1385   locals_index_wide(rbx);
       
  1386   __ bswapl(rdx); // swap bytes & sign-extend constant
       
  1387   __ sarl(rdx, 16);
       
  1388   __ addl(iaddress(rbx), rdx);
       
  1389   // Note: should probably use only one movl to get both
       
  1390   //       the index and the constant -> fix this
       
  1391 }
       
  1392 
       
  1393 void TemplateTable::convert() {
       
  1394   // Checking
       
  1395 #ifdef ASSERT
       
  1396   {
       
  1397     TosState tos_in  = ilgl;
       
  1398     TosState tos_out = ilgl;
       
  1399     switch (bytecode()) {
       
  1400     case Bytecodes::_i2l: // fall through
       
  1401     case Bytecodes::_i2f: // fall through
       
  1402     case Bytecodes::_i2d: // fall through
       
  1403     case Bytecodes::_i2b: // fall through
       
  1404     case Bytecodes::_i2c: // fall through
       
  1405     case Bytecodes::_i2s: tos_in = itos; break;
       
  1406     case Bytecodes::_l2i: // fall through
       
  1407     case Bytecodes::_l2f: // fall through
       
  1408     case Bytecodes::_l2d: tos_in = ltos; break;
       
  1409     case Bytecodes::_f2i: // fall through
       
  1410     case Bytecodes::_f2l: // fall through
       
  1411     case Bytecodes::_f2d: tos_in = ftos; break;
       
  1412     case Bytecodes::_d2i: // fall through
       
  1413     case Bytecodes::_d2l: // fall through
       
  1414     case Bytecodes::_d2f: tos_in = dtos; break;
       
  1415     default             : ShouldNotReachHere();
       
  1416     }
       
  1417     switch (bytecode()) {
       
  1418     case Bytecodes::_l2i: // fall through
       
  1419     case Bytecodes::_f2i: // fall through
       
  1420     case Bytecodes::_d2i: // fall through
       
  1421     case Bytecodes::_i2b: // fall through
       
  1422     case Bytecodes::_i2c: // fall through
       
  1423     case Bytecodes::_i2s: tos_out = itos; break;
       
  1424     case Bytecodes::_i2l: // fall through
       
  1425     case Bytecodes::_f2l: // fall through
       
  1426     case Bytecodes::_d2l: tos_out = ltos; break;
       
  1427     case Bytecodes::_i2f: // fall through
       
  1428     case Bytecodes::_l2f: // fall through
       
  1429     case Bytecodes::_d2f: tos_out = ftos; break;
       
  1430     case Bytecodes::_i2d: // fall through
       
  1431     case Bytecodes::_l2d: // fall through
       
  1432     case Bytecodes::_f2d: tos_out = dtos; break;
       
  1433     default             : ShouldNotReachHere();
       
  1434     }
       
  1435     transition(tos_in, tos_out);
       
  1436   }
       
  1437 #endif // ASSERT
       
  1438 
       
  1439   static const int64_t is_nan = 0x8000000000000000L;
       
  1440 
       
  1441   // Conversion
       
  1442   switch (bytecode()) {
       
  1443   case Bytecodes::_i2l:
       
  1444     __ movslq(rax, rax);
       
  1445     break;
       
  1446   case Bytecodes::_i2f:
       
  1447     __ cvtsi2ssl(xmm0, rax);
       
  1448     break;
       
  1449   case Bytecodes::_i2d:
       
  1450     __ cvtsi2sdl(xmm0, rax);
       
  1451     break;
       
  1452   case Bytecodes::_i2b:
       
  1453     __ movsbl(rax, rax);
       
  1454     break;
       
  1455   case Bytecodes::_i2c:
       
  1456     __ movzwl(rax, rax);
       
  1457     break;
       
  1458   case Bytecodes::_i2s:
       
  1459     __ movswl(rax, rax);
       
  1460     break;
       
  1461   case Bytecodes::_l2i:
       
  1462     __ movl(rax, rax);
       
  1463     break;
       
  1464   case Bytecodes::_l2f:
       
  1465     __ cvtsi2ssq(xmm0, rax);
       
  1466     break;
       
  1467   case Bytecodes::_l2d:
       
  1468     __ cvtsi2sdq(xmm0, rax);
       
  1469     break;
       
  1470   case Bytecodes::_f2i:
       
  1471   {
       
  1472     Label L;
       
  1473     __ cvttss2sil(rax, xmm0);
       
  1474     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
       
  1475     __ jcc(Assembler::notEqual, L);
       
  1476     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
       
  1477     __ bind(L);
       
  1478   }
       
  1479     break;
       
  1480   case Bytecodes::_f2l:
       
  1481   {
       
  1482     Label L;
       
  1483     __ cvttss2siq(rax, xmm0);
       
  1484     // NaN or overflow/underflow?
       
  1485     __ cmp64(rax, ExternalAddress((address) &is_nan));
       
  1486     __ jcc(Assembler::notEqual, L);
       
  1487     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
       
  1488     __ bind(L);
       
  1489   }
       
  1490     break;
       
  1491   case Bytecodes::_f2d:
       
  1492     __ cvtss2sd(xmm0, xmm0);
       
  1493     break;
       
  1494   case Bytecodes::_d2i:
       
  1495   {
       
  1496     Label L;
       
  1497     __ cvttsd2sil(rax, xmm0);
       
  1498     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
       
  1499     __ jcc(Assembler::notEqual, L);
       
  1500     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
       
  1501     __ bind(L);
       
  1502   }
       
  1503     break;
       
  1504   case Bytecodes::_d2l:
       
  1505   {
       
  1506     Label L;
       
  1507     __ cvttsd2siq(rax, xmm0);
       
  1508     // NaN or overflow/underflow?
       
  1509     __ cmp64(rax, ExternalAddress((address) &is_nan));
       
  1510     __ jcc(Assembler::notEqual, L);
       
  1511     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
       
  1512     __ bind(L);
       
  1513   }
       
  1514     break;
       
  1515   case Bytecodes::_d2f:
       
  1516     __ cvtsd2ss(xmm0, xmm0);
       
  1517     break;
       
  1518   default:
       
  1519     ShouldNotReachHere();
       
  1520   }
       
  1521 }
       
  1522 
       
  1523 void TemplateTable::lcmp() {
       
  1524   transition(ltos, itos);
       
  1525   Label done;
       
  1526   __ pop_l(rdx);
       
  1527   __ cmpq(rdx, rax);
       
  1528   __ movl(rax, -1);
       
  1529   __ jccb(Assembler::less, done);
       
  1530   __ setb(Assembler::notEqual, rax);
       
  1531   __ movzbl(rax, rax);
       
  1532   __ bind(done);
       
  1533 }
       
  1534 
       
  1535 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
       
  1536   Label done;
       
  1537   if (is_float) {
       
  1538     // XXX get rid of pop here, use ... reg, mem32
       
  1539     __ pop_f(xmm1);
       
  1540     __ ucomiss(xmm1, xmm0);
       
  1541   } else {
       
  1542     // XXX get rid of pop here, use ... reg, mem64
       
  1543     __ pop_d(xmm1);
       
  1544     __ ucomisd(xmm1, xmm0);
       
  1545   }
       
  1546   if (unordered_result < 0) {
       
  1547     __ movl(rax, -1);
       
  1548     __ jccb(Assembler::parity, done);
       
  1549     __ jccb(Assembler::below, done);
       
  1550     __ setb(Assembler::notEqual, rdx);
       
  1551     __ movzbl(rax, rdx);
       
  1552   } else {
       
  1553     __ movl(rax, 1);
       
  1554     __ jccb(Assembler::parity, done);
       
  1555     __ jccb(Assembler::above, done);
       
  1556     __ movl(rax, 0);
       
  1557     __ jccb(Assembler::equal, done);
       
  1558     __ decrementl(rax);
       
  1559   }
       
  1560   __ bind(done);
       
  1561 }
       
  1562 
       
  1563 void TemplateTable::branch(bool is_jsr, bool is_wide) {
       
  1564   __ get_method(rcx); // rcx holds method
       
  1565   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
       
  1566                                      // holds bumped taken count
       
  1567 
       
  1568   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
       
  1569                              InvocationCounter::counter_offset();
       
  1570   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
       
  1571                               InvocationCounter::counter_offset();
       
  1572 
       
  1573   // Load up edx with the branch displacement
       
  1574   if (is_wide) {
       
  1575     __ movl(rdx, at_bcp(1));
       
  1576   } else {
       
  1577     __ load_signed_short(rdx, at_bcp(1));
       
  1578   }
       
  1579   __ bswapl(rdx);
       
  1580 
       
  1581   if (!is_wide) {
       
  1582     __ sarl(rdx, 16);
       
  1583   }
       
  1584   __ movl2ptr(rdx, rdx);
       
  1585 
       
  1586   // Handle all the JSR stuff here, then exit.
       
  1587   // It's much shorter and cleaner than intermingling with the non-JSR
       
  1588   // normal-branch stuff occurring below.
       
  1589   if (is_jsr) {
       
  1590     // Pre-load the next target bytecode into rbx
       
  1591     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
       
  1592 
       
  1593     // compute return address as bci in rax
       
  1594     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
       
  1595                         in_bytes(ConstMethod::codes_offset())));
       
  1596     __ subptr(rax, Address(rcx, Method::const_offset()));
       
  1597     // Adjust the bcp in r13 by the displacement in rdx
       
  1598     __ addptr(r13, rdx);
       
  1599     // jsr returns atos that is not an oop
       
  1600     __ push_i(rax);
       
  1601     __ dispatch_only(vtos);
       
  1602     return;
       
  1603   }
       
  1604 
       
  1605   // Normal (non-jsr) branch handling
       
  1606 
       
  1607   // Adjust the bcp in r13 by the displacement in rdx
       
  1608   __ addptr(r13, rdx);
       
  1609 
       
  1610   assert(UseLoopCounter || !UseOnStackReplacement,
       
  1611          "on-stack-replacement requires loop counters");
       
  1612   Label backedge_counter_overflow;
       
  1613   Label profile_method;
       
  1614   Label dispatch;
       
  1615   if (UseLoopCounter) {
       
  1616     // increment backedge counter for backward branches
       
  1617     // rax: MDO
       
  1618     // ebx: MDO bumped taken-count
       
  1619     // rcx: method
       
  1620     // rdx: target offset
       
  1621     // r13: target bcp
       
  1622     // r14: locals pointer
       
  1623     __ testl(rdx, rdx);             // check if forward or backward branch
       
  1624     __ jcc(Assembler::positive, dispatch); // count only if backward branch
       
  1625 
       
  1626     // check if MethodCounters exists
       
  1627     Label has_counters;
       
  1628     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
       
  1629     __ testptr(rax, rax);
       
  1630     __ jcc(Assembler::notZero, has_counters);
       
  1631     __ push(rdx);
       
  1632     __ push(rcx);
       
  1633     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
       
  1634                rcx);
       
  1635     __ pop(rcx);
       
  1636     __ pop(rdx);
       
  1637     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
       
  1638     __ jcc(Assembler::zero, dispatch);
       
  1639     __ bind(has_counters);
       
  1640 
       
  1641     if (TieredCompilation) {
       
  1642       Label no_mdo;
       
  1643       int increment = InvocationCounter::count_increment;
       
  1644       if (ProfileInterpreter) {
       
  1645         // Are we profiling?
       
  1646         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
       
  1647         __ testptr(rbx, rbx);
       
  1648         __ jccb(Assembler::zero, no_mdo);
       
  1649         // Increment the MDO backedge counter
       
  1650         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
       
  1651                                            in_bytes(InvocationCounter::counter_offset()));
       
  1652         const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset()));
       
  1653         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
       
  1654                                    rax, false, Assembler::zero, &backedge_counter_overflow);
       
  1655         __ jmp(dispatch);
       
  1656       }
       
  1657       __ bind(no_mdo);
       
  1658       // Increment backedge counter in MethodCounters*
       
  1659       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
       
  1660          const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset()));
       
  1661       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
       
  1662                                  rax, false, Assembler::zero, &backedge_counter_overflow);
       
  1663     } else { // not TieredCompilation
       
  1664       // increment counter
       
  1665       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
       
  1666       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
       
  1667       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
       
  1668       __ movl(Address(rcx, be_offset), rax);        // store counter
       
  1669 
       
  1670       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
       
  1671 
       
  1672       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
       
  1673       __ addl(rax, Address(rcx, be_offset));        // add both counters
       
  1674 
       
  1675       if (ProfileInterpreter) {
       
  1676         // Test to see if we should create a method data oop
       
  1677         __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
       
  1678         __ jcc(Assembler::less, dispatch);
       
  1679 
       
  1680         // if no method data exists, go to profile method
       
  1681         __ test_method_data_pointer(rax, profile_method);
       
  1682 
       
  1683         if (UseOnStackReplacement) {
       
  1684           // check for overflow against ebx which is the MDO taken count
       
  1685           __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
       
  1686           __ jcc(Assembler::below, dispatch);
       
  1687 
       
  1688           // When ProfileInterpreter is on, the backedge_count comes
       
  1689           // from the MethodData*, which value does not get reset on
       
  1690           // the call to frequency_counter_overflow().  To avoid
       
  1691           // excessive calls to the overflow routine while the method is
       
  1692           // being compiled, add a second test to make sure the overflow
       
  1693           // function is called only once every overflow_frequency.
       
  1694           const int overflow_frequency = 1024;
       
  1695           __ andl(rbx, overflow_frequency - 1);
       
  1696           __ jcc(Assembler::zero, backedge_counter_overflow);
       
  1697 
       
  1698         }
       
  1699       } else {
       
  1700         if (UseOnStackReplacement) {
       
  1701           // check for overflow against eax, which is the sum of the
       
  1702           // counters
       
  1703           __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
       
  1704           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
       
  1705 
       
  1706         }
       
  1707       }
       
  1708     }
       
  1709     __ bind(dispatch);
       
  1710   }
       
  1711 
       
  1712   // Pre-load the next target bytecode into rbx
       
  1713   __ load_unsigned_byte(rbx, Address(r13, 0));
       
  1714 
       
  1715   // continue with the bytecode @ target
       
  1716   // eax: return bci for jsr's, unused otherwise
       
  1717   // ebx: target bytecode
       
  1718   // r13: target bcp
       
  1719   __ dispatch_only(vtos);
       
  1720 
       
  1721   if (UseLoopCounter) {
       
  1722     if (ProfileInterpreter) {
       
  1723       // Out-of-line code to allocate method data oop.
       
  1724       __ bind(profile_method);
       
  1725       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
       
  1726       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
       
  1727       __ set_method_data_pointer_for_bcp();
       
  1728       __ jmp(dispatch);
       
  1729     }
       
  1730 
       
  1731     if (UseOnStackReplacement) {
       
  1732       // invocation counter overflow
       
  1733       __ bind(backedge_counter_overflow);
       
  1734       __ negptr(rdx);
       
  1735       __ addptr(rdx, r13); // branch bcp
       
  1736       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
       
  1737       __ call_VM(noreg,
       
  1738                  CAST_FROM_FN_PTR(address,
       
  1739                                   InterpreterRuntime::frequency_counter_overflow),
       
  1740                  rdx);
       
  1741       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
       
  1742 
       
  1743       // rax: osr nmethod (osr ok) or NULL (osr not possible)
       
  1744       // ebx: target bytecode
       
  1745       // rdx: scratch
       
  1746       // r14: locals pointer
       
  1747       // r13: bcp
       
  1748       __ testptr(rax, rax);                        // test result
       
  1749       __ jcc(Assembler::zero, dispatch);         // no osr if null
       
  1750       // nmethod may have been invalidated (VM may block upon call_VM return)
       
  1751       __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use);
       
  1752       __ jcc(Assembler::notEqual, dispatch);
       
  1753 
       
  1754       // We have the address of an on stack replacement routine in eax
       
  1755       // We need to prepare to execute the OSR method. First we must
       
  1756       // migrate the locals and monitors off of the stack.
       
  1757 
       
  1758       __ mov(r13, rax);                             // save the nmethod
       
  1759 
       
  1760       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
       
  1761 
       
  1762       // eax is OSR buffer, move it to expected parameter location
       
  1763       __ mov(j_rarg0, rax);
       
  1764 
       
  1765       // We use j_rarg definitions here so that registers don't conflict as parameter
       
  1766       // registers change across platforms as we are in the midst of a calling
       
  1767       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
       
  1768 
       
  1769       const Register retaddr = j_rarg2;
       
  1770       const Register sender_sp = j_rarg1;
       
  1771 
       
  1772       // pop the interpreter frame
       
  1773       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
       
  1774       __ leave();                                // remove frame anchor
       
  1775       __ pop(retaddr);                           // get return address
       
  1776       __ mov(rsp, sender_sp);                   // set sp to sender sp
       
  1777       // Ensure compiled code always sees stack at proper alignment
       
  1778       __ andptr(rsp, -(StackAlignmentInBytes));
       
  1779 
       
  1780       // unlike x86 we need no specialized return from compiled code
       
  1781       // to the interpreter or the call stub.
       
  1782 
       
  1783       // push the return address
       
  1784       __ push(retaddr);
       
  1785 
       
  1786       // and begin the OSR nmethod
       
  1787       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
       
  1788     }
       
  1789   }
       
  1790 }
       
  1791 
       
  1792 
       
  1793 void TemplateTable::if_0cmp(Condition cc) {
       
  1794   transition(itos, vtos);
       
  1795   // assume branch is more often taken than not (loops use backward branches)
       
  1796   Label not_taken;
       
  1797   __ testl(rax, rax);
       
  1798   __ jcc(j_not(cc), not_taken);
       
  1799   branch(false, false);
       
  1800   __ bind(not_taken);
       
  1801   __ profile_not_taken_branch(rax);
       
  1802 }
       
  1803 
       
  1804 void TemplateTable::if_icmp(Condition cc) {
       
  1805   transition(itos, vtos);
       
  1806   // assume branch is more often taken than not (loops use backward branches)
       
  1807   Label not_taken;
       
  1808   __ pop_i(rdx);
       
  1809   __ cmpl(rdx, rax);
       
  1810   __ jcc(j_not(cc), not_taken);
       
  1811   branch(false, false);
       
  1812   __ bind(not_taken);
       
  1813   __ profile_not_taken_branch(rax);
       
  1814 }
       
  1815 
       
  1816 void TemplateTable::if_nullcmp(Condition cc) {
       
  1817   transition(atos, vtos);
       
  1818   // assume branch is more often taken than not (loops use backward branches)
       
  1819   Label not_taken;
       
  1820   __ testptr(rax, rax);
       
  1821   __ jcc(j_not(cc), not_taken);
       
  1822   branch(false, false);
       
  1823   __ bind(not_taken);
       
  1824   __ profile_not_taken_branch(rax);
       
  1825 }
       
  1826 
       
  1827 void TemplateTable::if_acmp(Condition cc) {
       
  1828   transition(atos, vtos);
       
  1829   // assume branch is more often taken than not (loops use backward branches)
       
  1830   Label not_taken;
       
  1831   __ pop_ptr(rdx);
       
  1832   __ cmpptr(rdx, rax);
       
  1833   __ jcc(j_not(cc), not_taken);
       
  1834   branch(false, false);
       
  1835   __ bind(not_taken);
       
  1836   __ profile_not_taken_branch(rax);
       
  1837 }
       
  1838 
       
  1839 void TemplateTable::ret() {
       
  1840   transition(vtos, vtos);
       
  1841   locals_index(rbx);
       
  1842   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
       
  1843   __ profile_ret(rbx, rcx);
       
  1844   __ get_method(rax);
       
  1845   __ movptr(r13, Address(rax, Method::const_offset()));
       
  1846   __ lea(r13, Address(r13, rbx, Address::times_1,
       
  1847                       ConstMethod::codes_offset()));
       
  1848   __ dispatch_next(vtos);
       
  1849 }
       
  1850 
       
  1851 void TemplateTable::wide_ret() {
       
  1852   transition(vtos, vtos);
       
  1853   locals_index_wide(rbx);
       
  1854   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
       
  1855   __ profile_ret(rbx, rcx);
       
  1856   __ get_method(rax);
       
  1857   __ movptr(r13, Address(rax, Method::const_offset()));
       
  1858   __ lea(r13, Address(r13, rbx, Address::times_1, ConstMethod::codes_offset()));
       
  1859   __ dispatch_next(vtos);
       
  1860 }
       
  1861 
       
  1862 void TemplateTable::tableswitch() {
       
  1863   Label default_case, continue_execution;
       
  1864   transition(itos, vtos);
       
  1865   // align r13
       
  1866   __ lea(rbx, at_bcp(BytesPerInt));
       
  1867   __ andptr(rbx, -BytesPerInt);
       
  1868   // load lo & hi
       
  1869   __ movl(rcx, Address(rbx, BytesPerInt));
       
  1870   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
       
  1871   __ bswapl(rcx);
       
  1872   __ bswapl(rdx);
       
  1873   // check against lo & hi
       
  1874   __ cmpl(rax, rcx);
       
  1875   __ jcc(Assembler::less, default_case);
       
  1876   __ cmpl(rax, rdx);
       
  1877   __ jcc(Assembler::greater, default_case);
       
  1878   // lookup dispatch offset
       
  1879   __ subl(rax, rcx);
       
  1880   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
       
  1881   __ profile_switch_case(rax, rbx, rcx);
       
  1882   // continue execution
       
  1883   __ bind(continue_execution);
       
  1884   __ bswapl(rdx);
       
  1885   __ movl2ptr(rdx, rdx);
       
  1886   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
       
  1887   __ addptr(r13, rdx);
       
  1888   __ dispatch_only(vtos);
       
  1889   // handle default
       
  1890   __ bind(default_case);
       
  1891   __ profile_switch_default(rax);
       
  1892   __ movl(rdx, Address(rbx, 0));
       
  1893   __ jmp(continue_execution);
       
  1894 }
       
  1895 
       
  1896 void TemplateTable::lookupswitch() {
       
  1897   transition(itos, itos);
       
  1898   __ stop("lookupswitch bytecode should have been rewritten");
       
  1899 }
       
  1900 
       
  1901 void TemplateTable::fast_linearswitch() {
       
  1902   transition(itos, vtos);
       
  1903   Label loop_entry, loop, found, continue_execution;
       
  1904   // bswap rax so we can avoid bswapping the table entries
       
  1905   __ bswapl(rax);
       
  1906   // align r13
       
  1907   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
       
  1908                                     // this instruction (change offsets
       
  1909                                     // below)
       
  1910   __ andptr(rbx, -BytesPerInt);
       
  1911   // set counter
       
  1912   __ movl(rcx, Address(rbx, BytesPerInt));
       
  1913   __ bswapl(rcx);
       
  1914   __ jmpb(loop_entry);
       
  1915   // table search
       
  1916   __ bind(loop);
       
  1917   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
       
  1918   __ jcc(Assembler::equal, found);
       
  1919   __ bind(loop_entry);
       
  1920   __ decrementl(rcx);
       
  1921   __ jcc(Assembler::greaterEqual, loop);
       
  1922   // default case
       
  1923   __ profile_switch_default(rax);
       
  1924   __ movl(rdx, Address(rbx, 0));
       
  1925   __ jmp(continue_execution);
       
  1926   // entry found -> get offset
       
  1927   __ bind(found);
       
  1928   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
       
  1929   __ profile_switch_case(rcx, rax, rbx);
       
  1930   // continue execution
       
  1931   __ bind(continue_execution);
       
  1932   __ bswapl(rdx);
       
  1933   __ movl2ptr(rdx, rdx);
       
  1934   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
       
  1935   __ addptr(r13, rdx);
       
  1936   __ dispatch_only(vtos);
       
  1937 }
       
  1938 
       
  1939 void TemplateTable::fast_binaryswitch() {
       
  1940   transition(itos, vtos);
       
  1941   // Implementation using the following core algorithm:
       
  1942   //
       
  1943   // int binary_search(int key, LookupswitchPair* array, int n) {
       
  1944   //   // Binary search according to "Methodik des Programmierens" by
       
  1945   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
       
  1946   //   int i = 0;
       
  1947   //   int j = n;
       
  1948   //   while (i+1 < j) {
       
  1949   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
       
  1950   //     // with      Q: for all i: 0 <= i < n: key < a[i]
       
  1951   //     // where a stands for the array and assuming that the (inexisting)
       
  1952   //     // element a[n] is infinitely big.
       
  1953   //     int h = (i + j) >> 1;
       
  1954   //     // i < h < j
       
  1955   //     if (key < array[h].fast_match()) {
       
  1956   //       j = h;
       
  1957   //     } else {
       
  1958   //       i = h;
       
  1959   //     }
       
  1960   //   }
       
  1961   //   // R: a[i] <= key < a[i+1] or Q
       
  1962   //   // (i.e., if key is within array, i is the correct index)
       
  1963   //   return i;
       
  1964   // }
       
  1965 
       
  1966   // Register allocation
       
  1967   const Register key   = rax; // already set (tosca)
       
  1968   const Register array = rbx;
       
  1969   const Register i     = rcx;
       
  1970   const Register j     = rdx;
       
  1971   const Register h     = rdi;
       
  1972   const Register temp  = rsi;
       
  1973 
       
  1974   // Find array start
       
  1975   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
       
  1976                                           // get rid of this
       
  1977                                           // instruction (change
       
  1978                                           // offsets below)
       
  1979   __ andptr(array, -BytesPerInt);
       
  1980 
       
  1981   // Initialize i & j
       
  1982   __ xorl(i, i);                            // i = 0;
       
  1983   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
       
  1984 
       
  1985   // Convert j into native byteordering
       
  1986   __ bswapl(j);
       
  1987 
       
  1988   // And start
       
  1989   Label entry;
       
  1990   __ jmp(entry);
       
  1991 
       
  1992   // binary search loop
       
  1993   {
       
  1994     Label loop;
       
  1995     __ bind(loop);
       
  1996     // int h = (i + j) >> 1;
       
  1997     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
       
  1998     __ sarl(h, 1);                               // h = (i + j) >> 1;
       
  1999     // if (key < array[h].fast_match()) {
       
  2000     //   j = h;
       
  2001     // } else {
       
  2002     //   i = h;
       
  2003     // }
       
  2004     // Convert array[h].match to native byte-ordering before compare
       
  2005     __ movl(temp, Address(array, h, Address::times_8));
       
  2006     __ bswapl(temp);
       
  2007     __ cmpl(key, temp);
       
  2008     // j = h if (key <  array[h].fast_match())
       
  2009     __ cmovl(Assembler::less, j, h);
       
  2010     // i = h if (key >= array[h].fast_match())
       
  2011     __ cmovl(Assembler::greaterEqual, i, h);
       
  2012     // while (i+1 < j)
       
  2013     __ bind(entry);
       
  2014     __ leal(h, Address(i, 1)); // i+1
       
  2015     __ cmpl(h, j);             // i+1 < j
       
  2016     __ jcc(Assembler::less, loop);
       
  2017   }
       
  2018 
       
  2019   // end of binary search, result index is i (must check again!)
       
  2020   Label default_case;
       
  2021   // Convert array[i].match to native byte-ordering before compare
       
  2022   __ movl(temp, Address(array, i, Address::times_8));
       
  2023   __ bswapl(temp);
       
  2024   __ cmpl(key, temp);
       
  2025   __ jcc(Assembler::notEqual, default_case);
       
  2026 
       
  2027   // entry found -> j = offset
       
  2028   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
       
  2029   __ profile_switch_case(i, key, array);
       
  2030   __ bswapl(j);
       
  2031   __ movl2ptr(j, j);
       
  2032   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
       
  2033   __ addptr(r13, j);
       
  2034   __ dispatch_only(vtos);
       
  2035 
       
  2036   // default case -> j = default offset
       
  2037   __ bind(default_case);
       
  2038   __ profile_switch_default(i);
       
  2039   __ movl(j, Address(array, -2 * BytesPerInt));
       
  2040   __ bswapl(j);
       
  2041   __ movl2ptr(j, j);
       
  2042   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
       
  2043   __ addptr(r13, j);
       
  2044   __ dispatch_only(vtos);
       
  2045 }
       
  2046 
       
  2047 
       
  2048 void TemplateTable::_return(TosState state) {
       
  2049   transition(state, state);
       
  2050   assert(_desc->calls_vm(),
       
  2051          "inconsistent calls_vm information"); // call in remove_activation
       
  2052 
       
  2053   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
       
  2054     assert(state == vtos, "only valid state");
       
  2055     __ movptr(c_rarg1, aaddress(0));
       
  2056     __ load_klass(rdi, c_rarg1);
       
  2057     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
       
  2058     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
       
  2059     Label skip_register_finalizer;
       
  2060     __ jcc(Assembler::zero, skip_register_finalizer);
       
  2061 
       
  2062     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
       
  2063 
       
  2064     __ bind(skip_register_finalizer);
       
  2065   }
       
  2066 
       
  2067   __ remove_activation(state, r13);
       
  2068   __ jmp(r13);
       
  2069 }
       
  2070 
       
  2071 // ----------------------------------------------------------------------------
       
  2072 // Volatile variables demand their effects be made known to all CPU's
       
  2073 // in order.  Store buffers on most chips allow reads & writes to
       
  2074 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
       
  2075 // without some kind of memory barrier (i.e., it's not sufficient that
       
  2076 // the interpreter does not reorder volatile references, the hardware
       
  2077 // also must not reorder them).
       
  2078 //
       
  2079 // According to the new Java Memory Model (JMM):
       
  2080 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
       
  2081 //     writes act as aquire & release, so:
       
  2082 // (2) A read cannot let unrelated NON-volatile memory refs that
       
  2083 //     happen after the read float up to before the read.  It's OK for
       
  2084 //     non-volatile memory refs that happen before the volatile read to
       
  2085 //     float down below it.
       
  2086 // (3) Similar a volatile write cannot let unrelated NON-volatile
       
  2087 //     memory refs that happen BEFORE the write float down to after the
       
  2088 //     write.  It's OK for non-volatile memory refs that happen after the
       
  2089 //     volatile write to float up before it.
       
  2090 //
       
  2091 // We only put in barriers around volatile refs (they are expensive),
       
  2092 // not _between_ memory refs (that would require us to track the
       
  2093 // flavor of the previous memory refs).  Requirements (2) and (3)
       
  2094 // require some barriers before volatile stores and after volatile
       
  2095 // loads.  These nearly cover requirement (1) but miss the
       
  2096 // volatile-store-volatile-load case.  This final case is placed after
       
  2097 // volatile-stores although it could just as well go before
       
  2098 // volatile-loads.
       
  2099 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
       
  2100                                      order_constraint) {
       
  2101   // Helper function to insert a is-volatile test and memory barrier
       
  2102   if (os::is_MP()) { // Not needed on single CPU
       
  2103     __ membar(order_constraint);
       
  2104   }
       
  2105 }
       
  2106 
       
  2107 void TemplateTable::resolve_cache_and_index(int byte_no,
       
  2108                                             Register Rcache,
       
  2109                                             Register index,
       
  2110                                             size_t index_size) {
       
  2111   const Register temp = rbx;
       
  2112   assert_different_registers(Rcache, index, temp);
       
  2113 
       
  2114   Label resolved;
       
  2115     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
       
  2116     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
       
  2117     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
       
  2118     __ jcc(Assembler::equal, resolved);
       
  2119 
       
  2120   // resolve first time through
       
  2121   address entry;
       
  2122   switch (bytecode()) {
       
  2123   case Bytecodes::_getstatic:
       
  2124   case Bytecodes::_putstatic:
       
  2125   case Bytecodes::_getfield:
       
  2126   case Bytecodes::_putfield:
       
  2127     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
       
  2128     break;
       
  2129   case Bytecodes::_invokevirtual:
       
  2130   case Bytecodes::_invokespecial:
       
  2131   case Bytecodes::_invokestatic:
       
  2132   case Bytecodes::_invokeinterface:
       
  2133     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
       
  2134     break;
       
  2135   case Bytecodes::_invokehandle:
       
  2136     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);
       
  2137     break;
       
  2138   case Bytecodes::_invokedynamic:
       
  2139     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
       
  2140     break;
       
  2141   default:
       
  2142     fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
       
  2143     break;
       
  2144   }
       
  2145   __ movl(temp, (int) bytecode());
       
  2146   __ call_VM(noreg, entry, temp);
       
  2147 
       
  2148   // Update registers with resolved info
       
  2149   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
       
  2150   __ bind(resolved);
       
  2151 }
       
  2152 
       
  2153 // The cache and index registers must be set before call
       
  2154 void TemplateTable::load_field_cp_cache_entry(Register obj,
       
  2155                                               Register cache,
       
  2156                                               Register index,
       
  2157                                               Register off,
       
  2158                                               Register flags,
       
  2159                                               bool is_static = false) {
       
  2160   assert_different_registers(cache, index, flags, off);
       
  2161 
       
  2162   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
       
  2163   // Field offset
       
  2164   __ movptr(off, Address(cache, index, Address::times_ptr,
       
  2165                          in_bytes(cp_base_offset +
       
  2166                                   ConstantPoolCacheEntry::f2_offset())));
       
  2167   // Flags
       
  2168   __ movl(flags, Address(cache, index, Address::times_ptr,
       
  2169                          in_bytes(cp_base_offset +
       
  2170                                   ConstantPoolCacheEntry::flags_offset())));
       
  2171 
       
  2172   // klass overwrite register
       
  2173   if (is_static) {
       
  2174     __ movptr(obj, Address(cache, index, Address::times_ptr,
       
  2175                            in_bytes(cp_base_offset +
       
  2176                                     ConstantPoolCacheEntry::f1_offset())));
       
  2177     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
       
  2178     __ movptr(obj, Address(obj, mirror_offset));
       
  2179   }
       
  2180 }
       
  2181 
       
  2182 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
       
  2183                                                Register method,
       
  2184                                                Register itable_index,
       
  2185                                                Register flags,
       
  2186                                                bool is_invokevirtual,
       
  2187                                                bool is_invokevfinal, /*unused*/
       
  2188                                                bool is_invokedynamic) {
       
  2189   // setup registers
       
  2190   const Register cache = rcx;
       
  2191   const Register index = rdx;
       
  2192   assert_different_registers(method, flags);
       
  2193   assert_different_registers(method, cache, index);
       
  2194   assert_different_registers(itable_index, flags);
       
  2195   assert_different_registers(itable_index, cache, index);
       
  2196   // determine constant pool cache field offsets
       
  2197   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
       
  2198   const int method_offset = in_bytes(
       
  2199     ConstantPoolCache::base_offset() +
       
  2200       ((byte_no == f2_byte)
       
  2201        ? ConstantPoolCacheEntry::f2_offset()
       
  2202        : ConstantPoolCacheEntry::f1_offset()));
       
  2203   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
       
  2204                                     ConstantPoolCacheEntry::flags_offset());
       
  2205   // access constant pool cache fields
       
  2206   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
       
  2207                                     ConstantPoolCacheEntry::f2_offset());
       
  2208 
       
  2209   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
       
  2210   resolve_cache_and_index(byte_no, cache, index, index_size);
       
  2211     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
       
  2212 
       
  2213   if (itable_index != noreg) {
       
  2214     // pick up itable or appendix index from f2 also:
       
  2215     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
       
  2216   }
       
  2217   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
       
  2218 }
       
  2219 
       
  2220 // Correct values of the cache and index registers are preserved.
       
  2221 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
       
  2222                                             bool is_static, bool has_tos) {
       
  2223   // do the JVMTI work here to avoid disturbing the register state below
       
  2224   // We use c_rarg registers here because we want to use the register used in
       
  2225   // the call to the VM
       
  2226   if (JvmtiExport::can_post_field_access()) {
       
  2227     // Check to see if a field access watch has been set before we
       
  2228     // take the time to call into the VM.
       
  2229     Label L1;
       
  2230     assert_different_registers(cache, index, rax);
       
  2231     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
       
  2232     __ testl(rax, rax);
       
  2233     __ jcc(Assembler::zero, L1);
       
  2234 
       
  2235     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
       
  2236 
       
  2237     // cache entry pointer
       
  2238     __ addptr(c_rarg2, in_bytes(ConstantPoolCache::base_offset()));
       
  2239     __ shll(c_rarg3, LogBytesPerWord);
       
  2240     __ addptr(c_rarg2, c_rarg3);
       
  2241     if (is_static) {
       
  2242       __ xorl(c_rarg1, c_rarg1); // NULL object reference
       
  2243     } else {
       
  2244       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
       
  2245       __ verify_oop(c_rarg1);
       
  2246     }
       
  2247     // c_rarg1: object pointer or NULL
       
  2248     // c_rarg2: cache entry pointer
       
  2249     // c_rarg3: jvalue object on the stack
       
  2250     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
       
  2251                                        InterpreterRuntime::post_field_access),
       
  2252                c_rarg1, c_rarg2, c_rarg3);
       
  2253     __ get_cache_and_index_at_bcp(cache, index, 1);
       
  2254     __ bind(L1);
       
  2255   }
       
  2256 }
       
  2257 
       
  2258 void TemplateTable::pop_and_check_object(Register r) {
       
  2259   __ pop_ptr(r);
       
  2260   __ null_check(r);  // for field access must check obj.
       
  2261   __ verify_oop(r);
       
  2262 }
       
  2263 
       
  2264 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
       
  2265   transition(vtos, vtos);
       
  2266 
       
  2267   const Register cache = rcx;
       
  2268   const Register index = rdx;
       
  2269   const Register obj   = c_rarg3;
       
  2270   const Register off   = rbx;
       
  2271   const Register flags = rax;
       
  2272   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
       
  2273 
       
  2274   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
       
  2275   jvmti_post_field_access(cache, index, is_static, false);
       
  2276   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
       
  2277 
       
  2278   if (!is_static) {
       
  2279     // obj is on the stack
       
  2280     pop_and_check_object(obj);
       
  2281   }
       
  2282 
       
  2283   const Address field(obj, off, Address::times_1);
       
  2284 
       
  2285   Label Done, notByte, notInt, notShort, notChar,
       
  2286               notLong, notFloat, notObj, notDouble;
       
  2287 
       
  2288   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
       
  2289   // Make sure we don't need to mask edx after the above shift
       
  2290   assert(btos == 0, "change code, btos != 0");
       
  2291 
       
  2292   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
       
  2293   __ jcc(Assembler::notZero, notByte);
       
  2294   // btos
       
  2295   __ load_signed_byte(rax, field);
       
  2296   __ push(btos);
       
  2297   // Rewrite bytecode to be faster
       
  2298   if (!is_static) {
       
  2299     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
       
  2300   }
       
  2301   __ jmp(Done);
       
  2302 
       
  2303   __ bind(notByte);
       
  2304   __ cmpl(flags, atos);
       
  2305   __ jcc(Assembler::notEqual, notObj);
       
  2306   // atos
       
  2307   __ load_heap_oop(rax, field);
       
  2308   __ push(atos);
       
  2309   if (!is_static) {
       
  2310     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
       
  2311   }
       
  2312   __ jmp(Done);
       
  2313 
       
  2314   __ bind(notObj);
       
  2315   __ cmpl(flags, itos);
       
  2316   __ jcc(Assembler::notEqual, notInt);
       
  2317   // itos
       
  2318   __ movl(rax, field);
       
  2319   __ push(itos);
       
  2320   // Rewrite bytecode to be faster
       
  2321   if (!is_static) {
       
  2322     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
       
  2323   }
       
  2324   __ jmp(Done);
       
  2325 
       
  2326   __ bind(notInt);
       
  2327   __ cmpl(flags, ctos);
       
  2328   __ jcc(Assembler::notEqual, notChar);
       
  2329   // ctos
       
  2330   __ load_unsigned_short(rax, field);
       
  2331   __ push(ctos);
       
  2332   // Rewrite bytecode to be faster
       
  2333   if (!is_static) {
       
  2334     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
       
  2335   }
       
  2336   __ jmp(Done);
       
  2337 
       
  2338   __ bind(notChar);
       
  2339   __ cmpl(flags, stos);
       
  2340   __ jcc(Assembler::notEqual, notShort);
       
  2341   // stos
       
  2342   __ load_signed_short(rax, field);
       
  2343   __ push(stos);
       
  2344   // Rewrite bytecode to be faster
       
  2345   if (!is_static) {
       
  2346     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
       
  2347   }
       
  2348   __ jmp(Done);
       
  2349 
       
  2350   __ bind(notShort);
       
  2351   __ cmpl(flags, ltos);
       
  2352   __ jcc(Assembler::notEqual, notLong);
       
  2353   // ltos
       
  2354   __ movq(rax, field);
       
  2355   __ push(ltos);
       
  2356   // Rewrite bytecode to be faster
       
  2357   if (!is_static) {
       
  2358     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
       
  2359   }
       
  2360   __ jmp(Done);
       
  2361 
       
  2362   __ bind(notLong);
       
  2363   __ cmpl(flags, ftos);
       
  2364   __ jcc(Assembler::notEqual, notFloat);
       
  2365   // ftos
       
  2366   __ movflt(xmm0, field);
       
  2367   __ push(ftos);
       
  2368   // Rewrite bytecode to be faster
       
  2369   if (!is_static) {
       
  2370     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
       
  2371   }
       
  2372   __ jmp(Done);
       
  2373 
       
  2374   __ bind(notFloat);
       
  2375 #ifdef ASSERT
       
  2376   __ cmpl(flags, dtos);
       
  2377   __ jcc(Assembler::notEqual, notDouble);
       
  2378 #endif
       
  2379   // dtos
       
  2380   __ movdbl(xmm0, field);
       
  2381   __ push(dtos);
       
  2382   // Rewrite bytecode to be faster
       
  2383   if (!is_static) {
       
  2384     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
       
  2385   }
       
  2386 #ifdef ASSERT
       
  2387   __ jmp(Done);
       
  2388 
       
  2389   __ bind(notDouble);
       
  2390   __ stop("Bad state");
       
  2391 #endif
       
  2392 
       
  2393   __ bind(Done);
       
  2394   // [jk] not needed currently
       
  2395   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
       
  2396   //                                              Assembler::LoadStore));
       
  2397 }
       
  2398 
       
  2399 
       
  2400 void TemplateTable::getfield(int byte_no) {
       
  2401   getfield_or_static(byte_no, false);
       
  2402 }
       
  2403 
       
  2404 void TemplateTable::getstatic(int byte_no) {
       
  2405   getfield_or_static(byte_no, true);
       
  2406 }
       
  2407 
       
  2408 // The registers cache and index expected to be set before call.
       
  2409 // The function may destroy various registers, just not the cache and index registers.
       
  2410 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
       
  2411   transition(vtos, vtos);
       
  2412 
       
  2413   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
       
  2414 
       
  2415   if (JvmtiExport::can_post_field_modification()) {
       
  2416     // Check to see if a field modification watch has been set before
       
  2417     // we take the time to call into the VM.
       
  2418     Label L1;
       
  2419     assert_different_registers(cache, index, rax);
       
  2420     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
       
  2421     __ testl(rax, rax);
       
  2422     __ jcc(Assembler::zero, L1);
       
  2423 
       
  2424     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
       
  2425 
       
  2426     if (is_static) {
       
  2427       // Life is simple.  Null out the object pointer.
       
  2428       __ xorl(c_rarg1, c_rarg1);
       
  2429     } else {
       
  2430       // Life is harder. The stack holds the value on top, followed by
       
  2431       // the object.  We don't know the size of the value, though; it
       
  2432       // could be one or two words depending on its type. As a result,
       
  2433       // we must find the type to determine where the object is.
       
  2434       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
       
  2435                            Address::times_8,
       
  2436                            in_bytes(cp_base_offset +
       
  2437                                      ConstantPoolCacheEntry::flags_offset())));
       
  2438       __ shrl(c_rarg3, ConstantPoolCacheEntry::tos_state_shift);
       
  2439       // Make sure we don't need to mask rcx after the above shift
       
  2440       ConstantPoolCacheEntry::verify_tos_state_shift();
       
  2441       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
       
  2442       __ cmpl(c_rarg3, ltos);
       
  2443       __ cmovptr(Assembler::equal,
       
  2444                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
       
  2445       __ cmpl(c_rarg3, dtos);
       
  2446       __ cmovptr(Assembler::equal,
       
  2447                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
       
  2448     }
       
  2449     // cache entry pointer
       
  2450     __ addptr(c_rarg2, in_bytes(cp_base_offset));
       
  2451     __ shll(rscratch1, LogBytesPerWord);
       
  2452     __ addptr(c_rarg2, rscratch1);
       
  2453     // object (tos)
       
  2454     __ mov(c_rarg3, rsp);
       
  2455     // c_rarg1: object pointer set up above (NULL if static)
       
  2456     // c_rarg2: cache entry pointer
       
  2457     // c_rarg3: jvalue object on the stack
       
  2458     __ call_VM(noreg,
       
  2459                CAST_FROM_FN_PTR(address,
       
  2460                                 InterpreterRuntime::post_field_modification),
       
  2461                c_rarg1, c_rarg2, c_rarg3);
       
  2462     __ get_cache_and_index_at_bcp(cache, index, 1);
       
  2463     __ bind(L1);
       
  2464   }
       
  2465 }
       
  2466 
       
  2467 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
       
  2468   transition(vtos, vtos);
       
  2469 
       
  2470   const Register cache = rcx;
       
  2471   const Register index = rdx;
       
  2472   const Register obj   = rcx;
       
  2473   const Register off   = rbx;
       
  2474   const Register flags = rax;
       
  2475   const Register bc    = c_rarg3;
       
  2476 
       
  2477   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
       
  2478   jvmti_post_field_mod(cache, index, is_static);
       
  2479   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
       
  2480 
       
  2481   // [jk] not needed currently
       
  2482   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
       
  2483   //                                              Assembler::StoreStore));
       
  2484 
       
  2485   Label notVolatile, Done;
       
  2486   __ movl(rdx, flags);
       
  2487   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
       
  2488   __ andl(rdx, 0x1);
       
  2489 
       
  2490   // field address
       
  2491   const Address field(obj, off, Address::times_1);
       
  2492 
       
  2493   Label notByte, notInt, notShort, notChar,
       
  2494         notLong, notFloat, notObj, notDouble;
       
  2495 
       
  2496   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
       
  2497 
       
  2498   assert(btos == 0, "change code, btos != 0");
       
  2499   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
       
  2500   __ jcc(Assembler::notZero, notByte);
       
  2501 
       
  2502   // btos
       
  2503   {
       
  2504     __ pop(btos);
       
  2505     if (!is_static) pop_and_check_object(obj);
       
  2506     __ movb(field, rax);
       
  2507     if (!is_static) {
       
  2508       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
       
  2509     }
       
  2510     __ jmp(Done);
       
  2511   }
       
  2512 
       
  2513   __ bind(notByte);
       
  2514   __ cmpl(flags, atos);
       
  2515   __ jcc(Assembler::notEqual, notObj);
       
  2516 
       
  2517   // atos
       
  2518   {
       
  2519     __ pop(atos);
       
  2520     if (!is_static) pop_and_check_object(obj);
       
  2521     // Store into the field
       
  2522     do_oop_store(_masm, field, rax, _bs->kind(), false);
       
  2523     if (!is_static) {
       
  2524       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
       
  2525     }
       
  2526     __ jmp(Done);
       
  2527   }
       
  2528 
       
  2529   __ bind(notObj);
       
  2530   __ cmpl(flags, itos);
       
  2531   __ jcc(Assembler::notEqual, notInt);
       
  2532 
       
  2533   // itos
       
  2534   {
       
  2535     __ pop(itos);
       
  2536     if (!is_static) pop_and_check_object(obj);
       
  2537     __ movl(field, rax);
       
  2538     if (!is_static) {
       
  2539       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
       
  2540     }
       
  2541     __ jmp(Done);
       
  2542   }
       
  2543 
       
  2544   __ bind(notInt);
       
  2545   __ cmpl(flags, ctos);
       
  2546   __ jcc(Assembler::notEqual, notChar);
       
  2547 
       
  2548   // ctos
       
  2549   {
       
  2550     __ pop(ctos);
       
  2551     if (!is_static) pop_and_check_object(obj);
       
  2552     __ movw(field, rax);
       
  2553     if (!is_static) {
       
  2554       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
       
  2555     }
       
  2556     __ jmp(Done);
       
  2557   }
       
  2558 
       
  2559   __ bind(notChar);
       
  2560   __ cmpl(flags, stos);
       
  2561   __ jcc(Assembler::notEqual, notShort);
       
  2562 
       
  2563   // stos
       
  2564   {
       
  2565     __ pop(stos);
       
  2566     if (!is_static) pop_and_check_object(obj);
       
  2567     __ movw(field, rax);
       
  2568     if (!is_static) {
       
  2569       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
       
  2570     }
       
  2571     __ jmp(Done);
       
  2572   }
       
  2573 
       
  2574   __ bind(notShort);
       
  2575   __ cmpl(flags, ltos);
       
  2576   __ jcc(Assembler::notEqual, notLong);
       
  2577 
       
  2578   // ltos
       
  2579   {
       
  2580     __ pop(ltos);
       
  2581     if (!is_static) pop_and_check_object(obj);
       
  2582     __ movq(field, rax);
       
  2583     if (!is_static) {
       
  2584       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
       
  2585     }
       
  2586     __ jmp(Done);
       
  2587   }
       
  2588 
       
  2589   __ bind(notLong);
       
  2590   __ cmpl(flags, ftos);
       
  2591   __ jcc(Assembler::notEqual, notFloat);
       
  2592 
       
  2593   // ftos
       
  2594   {
       
  2595     __ pop(ftos);
       
  2596     if (!is_static) pop_and_check_object(obj);
       
  2597     __ movflt(field, xmm0);
       
  2598     if (!is_static) {
       
  2599       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
       
  2600     }
       
  2601     __ jmp(Done);
       
  2602   }
       
  2603 
       
  2604   __ bind(notFloat);
       
  2605 #ifdef ASSERT
       
  2606   __ cmpl(flags, dtos);
       
  2607   __ jcc(Assembler::notEqual, notDouble);
       
  2608 #endif
       
  2609 
       
  2610   // dtos
       
  2611   {
       
  2612     __ pop(dtos);
       
  2613     if (!is_static) pop_and_check_object(obj);
       
  2614     __ movdbl(field, xmm0);
       
  2615     if (!is_static) {
       
  2616       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
       
  2617     }
       
  2618   }
       
  2619 
       
  2620 #ifdef ASSERT
       
  2621   __ jmp(Done);
       
  2622 
       
  2623   __ bind(notDouble);
       
  2624   __ stop("Bad state");
       
  2625 #endif
       
  2626 
       
  2627   __ bind(Done);
       
  2628 
       
  2629   // Check for volatile store
       
  2630   __ testl(rdx, rdx);
       
  2631   __ jcc(Assembler::zero, notVolatile);
       
  2632   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
       
  2633                                                Assembler::StoreStore));
       
  2634   __ bind(notVolatile);
       
  2635 }
       
  2636 
       
  2637 void TemplateTable::putfield(int byte_no) {
       
  2638   putfield_or_static(byte_no, false);
       
  2639 }
       
  2640 
       
  2641 void TemplateTable::putstatic(int byte_no) {
       
  2642   putfield_or_static(byte_no, true);
       
  2643 }
       
  2644 
       
  2645 void TemplateTable::jvmti_post_fast_field_mod() {
       
  2646   if (JvmtiExport::can_post_field_modification()) {
       
  2647     // Check to see if a field modification watch has been set before
       
  2648     // we take the time to call into the VM.
       
  2649     Label L2;
       
  2650     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
       
  2651     __ testl(c_rarg3, c_rarg3);
       
  2652     __ jcc(Assembler::zero, L2);
       
  2653     __ pop_ptr(rbx);                  // copy the object pointer from tos
       
  2654     __ verify_oop(rbx);
       
  2655     __ push_ptr(rbx);                 // put the object pointer back on tos
       
  2656     // Save tos values before call_VM() clobbers them. Since we have
       
  2657     // to do it for every data type, we use the saved values as the
       
  2658     // jvalue object.
       
  2659     switch (bytecode()) {          // load values into the jvalue object
       
  2660     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
       
  2661     case Bytecodes::_fast_bputfield: // fall through
       
  2662     case Bytecodes::_fast_sputfield: // fall through
       
  2663     case Bytecodes::_fast_cputfield: // fall through
       
  2664     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
       
  2665     case Bytecodes::_fast_dputfield: __ push_d(); break;
       
  2666     case Bytecodes::_fast_fputfield: __ push_f(); break;
       
  2667     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
       
  2668 
       
  2669     default:
       
  2670       ShouldNotReachHere();
       
  2671     }
       
  2672     __ mov(c_rarg3, rsp);             // points to jvalue on the stack
       
  2673     // access constant pool cache entry
       
  2674     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
       
  2675     __ verify_oop(rbx);
       
  2676     // rbx: object pointer copied above
       
  2677     // c_rarg2: cache entry pointer
       
  2678     // c_rarg3: jvalue object on the stack
       
  2679     __ call_VM(noreg,
       
  2680                CAST_FROM_FN_PTR(address,
       
  2681                                 InterpreterRuntime::post_field_modification),
       
  2682                rbx, c_rarg2, c_rarg3);
       
  2683 
       
  2684     switch (bytecode()) {             // restore tos values
       
  2685     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
       
  2686     case Bytecodes::_fast_bputfield: // fall through
       
  2687     case Bytecodes::_fast_sputfield: // fall through
       
  2688     case Bytecodes::_fast_cputfield: // fall through
       
  2689     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
       
  2690     case Bytecodes::_fast_dputfield: __ pop_d(); break;
       
  2691     case Bytecodes::_fast_fputfield: __ pop_f(); break;
       
  2692     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
       
  2693     }
       
  2694     __ bind(L2);
       
  2695   }
       
  2696 }
       
  2697 
       
  2698 void TemplateTable::fast_storefield(TosState state) {
       
  2699   transition(state, vtos);
       
  2700 
       
  2701   ByteSize base = ConstantPoolCache::base_offset();
       
  2702 
       
  2703   jvmti_post_fast_field_mod();
       
  2704 
       
  2705   // access constant pool cache
       
  2706   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
       
  2707 
       
  2708   // test for volatile with rdx
       
  2709   __ movl(rdx, Address(rcx, rbx, Address::times_8,
       
  2710                        in_bytes(base +
       
  2711                                 ConstantPoolCacheEntry::flags_offset())));
       
  2712 
       
  2713   // replace index with field offset from cache entry
       
  2714   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
       
  2715                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
       
  2716 
       
  2717   // [jk] not needed currently
       
  2718   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
       
  2719   //                                              Assembler::StoreStore));
       
  2720 
       
  2721   Label notVolatile;
       
  2722   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
       
  2723   __ andl(rdx, 0x1);
       
  2724 
       
  2725   // Get object from stack
       
  2726   pop_and_check_object(rcx);
       
  2727 
       
  2728   // field address
       
  2729   const Address field(rcx, rbx, Address::times_1);
       
  2730 
       
  2731   // access field
       
  2732   switch (bytecode()) {
       
  2733   case Bytecodes::_fast_aputfield:
       
  2734     do_oop_store(_masm, field, rax, _bs->kind(), false);
       
  2735     break;
       
  2736   case Bytecodes::_fast_lputfield:
       
  2737     __ movq(field, rax);
       
  2738     break;
       
  2739   case Bytecodes::_fast_iputfield:
       
  2740     __ movl(field, rax);
       
  2741     break;
       
  2742   case Bytecodes::_fast_bputfield:
       
  2743     __ movb(field, rax);
       
  2744     break;
       
  2745   case Bytecodes::_fast_sputfield:
       
  2746     // fall through
       
  2747   case Bytecodes::_fast_cputfield:
       
  2748     __ movw(field, rax);
       
  2749     break;
       
  2750   case Bytecodes::_fast_fputfield:
       
  2751     __ movflt(field, xmm0);
       
  2752     break;
       
  2753   case Bytecodes::_fast_dputfield:
       
  2754     __ movdbl(field, xmm0);
       
  2755     break;
       
  2756   default:
       
  2757     ShouldNotReachHere();
       
  2758   }
       
  2759 
       
  2760   // Check for volatile store
       
  2761   __ testl(rdx, rdx);
       
  2762   __ jcc(Assembler::zero, notVolatile);
       
  2763   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
       
  2764                                                Assembler::StoreStore));
       
  2765   __ bind(notVolatile);
       
  2766 }
       
  2767 
       
  2768 
       
  2769 void TemplateTable::fast_accessfield(TosState state) {
       
  2770   transition(atos, state);
       
  2771 
       
  2772   // Do the JVMTI work here to avoid disturbing the register state below
       
  2773   if (JvmtiExport::can_post_field_access()) {
       
  2774     // Check to see if a field access watch has been set before we
       
  2775     // take the time to call into the VM.
       
  2776     Label L1;
       
  2777     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
       
  2778     __ testl(rcx, rcx);
       
  2779     __ jcc(Assembler::zero, L1);
       
  2780     // access constant pool cache entry
       
  2781     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
       
  2782     __ verify_oop(rax);
       
  2783     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
       
  2784     __ mov(c_rarg1, rax);
       
  2785     // c_rarg1: object pointer copied above
       
  2786     // c_rarg2: cache entry pointer
       
  2787     __ call_VM(noreg,
       
  2788                CAST_FROM_FN_PTR(address,
       
  2789                                 InterpreterRuntime::post_field_access),
       
  2790                c_rarg1, c_rarg2);
       
  2791     __ pop_ptr(rax); // restore object pointer
       
  2792     __ bind(L1);
       
  2793   }
       
  2794 
       
  2795   // access constant pool cache
       
  2796   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
       
  2797   // replace index with field offset from cache entry
       
  2798   // [jk] not needed currently
       
  2799   // if (os::is_MP()) {
       
  2800   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
       
  2801   //                        in_bytes(ConstantPoolCache::base_offset() +
       
  2802   //                                 ConstantPoolCacheEntry::flags_offset())));
       
  2803   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
       
  2804   //   __ andl(rdx, 0x1);
       
  2805   // }
       
  2806   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
       
  2807                          in_bytes(ConstantPoolCache::base_offset() +
       
  2808                                   ConstantPoolCacheEntry::f2_offset())));
       
  2809 
       
  2810   // rax: object
       
  2811   __ verify_oop(rax);
       
  2812   __ null_check(rax);
       
  2813   Address field(rax, rbx, Address::times_1);
       
  2814 
       
  2815   // access field
       
  2816   switch (bytecode()) {
       
  2817   case Bytecodes::_fast_agetfield:
       
  2818     __ load_heap_oop(rax, field);
       
  2819     __ verify_oop(rax);
       
  2820     break;
       
  2821   case Bytecodes::_fast_lgetfield:
       
  2822     __ movq(rax, field);
       
  2823     break;
       
  2824   case Bytecodes::_fast_igetfield:
       
  2825     __ movl(rax, field);
       
  2826     break;
       
  2827   case Bytecodes::_fast_bgetfield:
       
  2828     __ movsbl(rax, field);
       
  2829     break;
       
  2830   case Bytecodes::_fast_sgetfield:
       
  2831     __ load_signed_short(rax, field);
       
  2832     break;
       
  2833   case Bytecodes::_fast_cgetfield:
       
  2834     __ load_unsigned_short(rax, field);
       
  2835     break;
       
  2836   case Bytecodes::_fast_fgetfield:
       
  2837     __ movflt(xmm0, field);
       
  2838     break;
       
  2839   case Bytecodes::_fast_dgetfield:
       
  2840     __ movdbl(xmm0, field);
       
  2841     break;
       
  2842   default:
       
  2843     ShouldNotReachHere();
       
  2844   }
       
  2845   // [jk] not needed currently
       
  2846   // if (os::is_MP()) {
       
  2847   //   Label notVolatile;
       
  2848   //   __ testl(rdx, rdx);
       
  2849   //   __ jcc(Assembler::zero, notVolatile);
       
  2850   //   __ membar(Assembler::LoadLoad);
       
  2851   //   __ bind(notVolatile);
       
  2852   //};
       
  2853 }
       
  2854 
       
  2855 void TemplateTable::fast_xaccess(TosState state) {
       
  2856   transition(vtos, state);
       
  2857 
       
  2858   // get receiver
       
  2859   __ movptr(rax, aaddress(0));
       
  2860   // access constant pool cache
       
  2861   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
       
  2862   __ movptr(rbx,
       
  2863             Address(rcx, rdx, Address::times_8,
       
  2864                     in_bytes(ConstantPoolCache::base_offset() +
       
  2865                              ConstantPoolCacheEntry::f2_offset())));
       
  2866   // make sure exception is reported in correct bcp range (getfield is
       
  2867   // next instruction)
       
  2868   __ increment(r13);
       
  2869   __ null_check(rax);
       
  2870   switch (state) {
       
  2871   case itos:
       
  2872     __ movl(rax, Address(rax, rbx, Address::times_1));
       
  2873     break;
       
  2874   case atos:
       
  2875     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
       
  2876     __ verify_oop(rax);
       
  2877     break;
       
  2878   case ftos:
       
  2879     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
       
  2880     break;
       
  2881   default:
       
  2882     ShouldNotReachHere();
       
  2883   }
       
  2884 
       
  2885   // [jk] not needed currently
       
  2886   // if (os::is_MP()) {
       
  2887   //   Label notVolatile;
       
  2888   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
       
  2889   //                        in_bytes(ConstantPoolCache::base_offset() +
       
  2890   //                                 ConstantPoolCacheEntry::flags_offset())));
       
  2891   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
       
  2892   //   __ testl(rdx, 0x1);
       
  2893   //   __ jcc(Assembler::zero, notVolatile);
       
  2894   //   __ membar(Assembler::LoadLoad);
       
  2895   //   __ bind(notVolatile);
       
  2896   // }
       
  2897 
       
  2898   __ decrement(r13);
       
  2899 }
       
  2900 
       
  2901 
       
  2902 
       
  2903 //-----------------------------------------------------------------------------
       
  2904 // Calls
       
  2905 
       
  2906 void TemplateTable::count_calls(Register method, Register temp) {
       
  2907   // implemented elsewhere
       
  2908   ShouldNotReachHere();
       
  2909 }
       
  2910 
       
  2911 void TemplateTable::prepare_invoke(int byte_no,
       
  2912                                    Register method,  // linked method (or i-klass)
       
  2913                                    Register index,   // itable index, MethodType, etc.
       
  2914                                    Register recv,    // if caller wants to see it
       
  2915                                    Register flags    // if caller wants to test it
       
  2916                                    ) {
       
  2917   // determine flags
       
  2918   const Bytecodes::Code code = bytecode();
       
  2919   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
       
  2920   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
       
  2921   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
       
  2922   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
       
  2923   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
       
  2924   const bool load_receiver       = (recv  != noreg);
       
  2925   const bool save_flags          = (flags != noreg);
       
  2926   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
       
  2927   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
       
  2928   assert(flags == noreg || flags == rdx, "");
       
  2929   assert(recv  == noreg || recv  == rcx, "");
       
  2930 
       
  2931   // setup registers & access constant pool cache
       
  2932   if (recv  == noreg)  recv  = rcx;
       
  2933   if (flags == noreg)  flags = rdx;
       
  2934   assert_different_registers(method, index, recv, flags);
       
  2935 
       
  2936   // save 'interpreter return address'
       
  2937   __ save_bcp();
       
  2938 
       
  2939   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
       
  2940 
       
  2941   // maybe push appendix to arguments (just before return address)
       
  2942   if (is_invokedynamic || is_invokehandle) {
       
  2943     Label L_no_push;
       
  2944     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
       
  2945     __ jcc(Assembler::zero, L_no_push);
       
  2946     // Push the appendix as a trailing parameter.
       
  2947     // This must be done before we get the receiver,
       
  2948     // since the parameter_size includes it.
       
  2949     __ push(rbx);
       
  2950     __ mov(rbx, index);
       
  2951     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
       
  2952     __ load_resolved_reference_at_index(index, rbx);
       
  2953     __ pop(rbx);
       
  2954     __ push(index);  // push appendix (MethodType, CallSite, etc.)
       
  2955     __ bind(L_no_push);
       
  2956   }
       
  2957 
       
  2958   // load receiver if needed (after appendix is pushed so parameter size is correct)
       
  2959   // Note: no return address pushed yet
       
  2960   if (load_receiver) {
       
  2961     __ movl(recv, flags);
       
  2962     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
       
  2963     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
       
  2964     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
       
  2965     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
       
  2966     __ movptr(recv, recv_addr);
       
  2967     __ verify_oop(recv);
       
  2968   }
       
  2969 
       
  2970   if (save_flags) {
       
  2971     __ movl(r13, flags);
       
  2972   }
       
  2973 
       
  2974   // compute return type
       
  2975   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
       
  2976   // Make sure we don't need to mask flags after the above shift
       
  2977   ConstantPoolCacheEntry::verify_tos_state_shift();
       
  2978   // load return address
       
  2979   {
       
  2980     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
       
  2981     ExternalAddress table(table_addr);
       
  2982     __ lea(rscratch1, table);
       
  2983     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
       
  2984   }
       
  2985 
       
  2986   // push return address
       
  2987   __ push(flags);
       
  2988 
       
  2989   // Restore flags value from the constant pool cache, and restore rsi
       
  2990   // for later null checks.  r13 is the bytecode pointer
       
  2991   if (save_flags) {
       
  2992     __ movl(flags, r13);
       
  2993     __ restore_bcp();
       
  2994   }
       
  2995 }
       
  2996 
       
  2997 
       
  2998 void TemplateTable::invokevirtual_helper(Register index,
       
  2999                                          Register recv,
       
  3000                                          Register flags) {
       
  3001   // Uses temporary registers rax, rdx
       
  3002   assert_different_registers(index, recv, rax, rdx);
       
  3003   assert(index == rbx, "");
       
  3004   assert(recv  == rcx, "");
       
  3005 
       
  3006   // Test for an invoke of a final method
       
  3007   Label notFinal;
       
  3008   __ movl(rax, flags);
       
  3009   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
       
  3010   __ jcc(Assembler::zero, notFinal);
       
  3011 
       
  3012   const Register method = index;  // method must be rbx
       
  3013   assert(method == rbx,
       
  3014          "Method* must be rbx for interpreter calling convention");
       
  3015 
       
  3016   // do the call - the index is actually the method to call
       
  3017   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
       
  3018 
       
  3019   // It's final, need a null check here!
       
  3020   __ null_check(recv);
       
  3021 
       
  3022   // profile this call
       
  3023   __ profile_final_call(rax);
       
  3024   __ profile_arguments_type(rax, method, r13, true);
       
  3025 
       
  3026   __ jump_from_interpreted(method, rax);
       
  3027 
       
  3028   __ bind(notFinal);
       
  3029 
       
  3030   // get receiver klass
       
  3031   __ null_check(recv, oopDesc::klass_offset_in_bytes());
       
  3032   __ load_klass(rax, recv);
       
  3033 
       
  3034   // profile this call
       
  3035   __ profile_virtual_call(rax, r14, rdx);
       
  3036 
       
  3037   // get target Method* & entry point
       
  3038   __ lookup_virtual_method(rax, index, method);
       
  3039   __ profile_arguments_type(rdx, method, r13, true);
       
  3040   __ jump_from_interpreted(method, rdx);
       
  3041 }
       
  3042 
       
  3043 
       
  3044 void TemplateTable::invokevirtual(int byte_no) {
       
  3045   transition(vtos, vtos);
       
  3046   assert(byte_no == f2_byte, "use this argument");
       
  3047   prepare_invoke(byte_no,
       
  3048                  rbx,    // method or vtable index
       
  3049                  noreg,  // unused itable index
       
  3050                  rcx, rdx); // recv, flags
       
  3051 
       
  3052   // rbx: index
       
  3053   // rcx: receiver
       
  3054   // rdx: flags
       
  3055 
       
  3056   invokevirtual_helper(rbx, rcx, rdx);
       
  3057 }
       
  3058 
       
  3059 
       
  3060 void TemplateTable::invokespecial(int byte_no) {
       
  3061   transition(vtos, vtos);
       
  3062   assert(byte_no == f1_byte, "use this argument");
       
  3063   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
       
  3064                  rcx);  // get receiver also for null check
       
  3065   __ verify_oop(rcx);
       
  3066   __ null_check(rcx);
       
  3067   // do the call
       
  3068   __ profile_call(rax);
       
  3069   __ profile_arguments_type(rax, rbx, r13, false);
       
  3070   __ jump_from_interpreted(rbx, rax);
       
  3071 }
       
  3072 
       
  3073 
       
  3074 void TemplateTable::invokestatic(int byte_no) {
       
  3075   transition(vtos, vtos);
       
  3076   assert(byte_no == f1_byte, "use this argument");
       
  3077   prepare_invoke(byte_no, rbx);  // get f1 Method*
       
  3078   // do the call
       
  3079   __ profile_call(rax);
       
  3080   __ profile_arguments_type(rax, rbx, r13, false);
       
  3081   __ jump_from_interpreted(rbx, rax);
       
  3082 }
       
  3083 
       
  3084 void TemplateTable::fast_invokevfinal(int byte_no) {
       
  3085   transition(vtos, vtos);
       
  3086   assert(byte_no == f2_byte, "use this argument");
       
  3087   __ stop("fast_invokevfinal not used on amd64");
       
  3088 }
       
  3089 
       
  3090 void TemplateTable::invokeinterface(int byte_no) {
       
  3091   transition(vtos, vtos);
       
  3092   assert(byte_no == f1_byte, "use this argument");
       
  3093   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 itable index
       
  3094                  rcx, rdx); // recv, flags
       
  3095 
       
  3096   // rax: interface klass (from f1)
       
  3097   // rbx: itable index (from f2)
       
  3098   // rcx: receiver
       
  3099   // rdx: flags
       
  3100 
       
  3101   // Special case of invokeinterface called for virtual method of
       
  3102   // java.lang.Object.  See cpCacheOop.cpp for details.
       
  3103   // This code isn't produced by javac, but could be produced by
       
  3104   // another compliant java compiler.
       
  3105   Label notMethod;
       
  3106   __ movl(r14, rdx);
       
  3107   __ andl(r14, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
       
  3108   __ jcc(Assembler::zero, notMethod);
       
  3109 
       
  3110   invokevirtual_helper(rbx, rcx, rdx);
       
  3111   __ bind(notMethod);
       
  3112 
       
  3113   // Get receiver klass into rdx - also a null check
       
  3114   __ restore_locals();  // restore r14
       
  3115   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
       
  3116   __ load_klass(rdx, rcx);
       
  3117 
       
  3118   // profile this call
       
  3119   __ profile_virtual_call(rdx, r13, r14);
       
  3120 
       
  3121   Label no_such_interface, no_such_method;
       
  3122 
       
  3123   __ lookup_interface_method(// inputs: rec. class, interface, itable index
       
  3124                              rdx, rax, rbx,
       
  3125                              // outputs: method, scan temp. reg
       
  3126                              rbx, r13,
       
  3127                              no_such_interface);
       
  3128 
       
  3129   // rbx: Method* to call
       
  3130   // rcx: receiver
       
  3131   // Check for abstract method error
       
  3132   // Note: This should be done more efficiently via a throw_abstract_method_error
       
  3133   //       interpreter entry point and a conditional jump to it in case of a null
       
  3134   //       method.
       
  3135   __ testptr(rbx, rbx);
       
  3136   __ jcc(Assembler::zero, no_such_method);
       
  3137 
       
  3138   __ profile_arguments_type(rdx, rbx, r13, true);
       
  3139 
       
  3140   // do the call
       
  3141   // rcx: receiver
       
  3142   // rbx,: Method*
       
  3143   __ jump_from_interpreted(rbx, rdx);
       
  3144   __ should_not_reach_here();
       
  3145 
       
  3146   // exception handling code follows...
       
  3147   // note: must restore interpreter registers to canonical
       
  3148   //       state for exception handling to work correctly!
       
  3149 
       
  3150   __ bind(no_such_method);
       
  3151   // throw exception
       
  3152   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
       
  3153   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
       
  3154   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
       
  3155   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
       
  3156   // the call_VM checks for exception, so we should never return here.
       
  3157   __ should_not_reach_here();
       
  3158 
       
  3159   __ bind(no_such_interface);
       
  3160   // throw exception
       
  3161   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
       
  3162   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
       
  3163   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
       
  3164   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
       
  3165                    InterpreterRuntime::throw_IncompatibleClassChangeError));
       
  3166   // the call_VM checks for exception, so we should never return here.
       
  3167   __ should_not_reach_here();
       
  3168 }
       
  3169 
       
  3170 
       
  3171 void TemplateTable::invokehandle(int byte_no) {
       
  3172   transition(vtos, vtos);
       
  3173   assert(byte_no == f1_byte, "use this argument");
       
  3174   const Register rbx_method = rbx;
       
  3175   const Register rax_mtype  = rax;
       
  3176   const Register rcx_recv   = rcx;
       
  3177   const Register rdx_flags  = rdx;
       
  3178 
       
  3179   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
       
  3180   __ verify_method_ptr(rbx_method);
       
  3181   __ verify_oop(rcx_recv);
       
  3182   __ null_check(rcx_recv);
       
  3183 
       
  3184   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
       
  3185   // rbx: MH.invokeExact_MT method (from f2)
       
  3186 
       
  3187   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
       
  3188 
       
  3189   // FIXME: profile the LambdaForm also
       
  3190   __ profile_final_call(rax);
       
  3191   __ profile_arguments_type(rdx, rbx_method, r13, true);
       
  3192 
       
  3193   __ jump_from_interpreted(rbx_method, rdx);
       
  3194 }
       
  3195 
       
  3196 
       
  3197 void TemplateTable::invokedynamic(int byte_no) {
       
  3198   transition(vtos, vtos);
       
  3199   assert(byte_no == f1_byte, "use this argument");
       
  3200 
       
  3201   const Register rbx_method   = rbx;
       
  3202   const Register rax_callsite = rax;
       
  3203 
       
  3204   prepare_invoke(byte_no, rbx_method, rax_callsite);
       
  3205 
       
  3206   // rax: CallSite object (from cpool->resolved_references[f1])
       
  3207   // rbx: MH.linkToCallSite method (from f2)
       
  3208 
       
  3209   // Note:  rax_callsite is already pushed by prepare_invoke
       
  3210 
       
  3211   // %%% should make a type profile for any invokedynamic that takes a ref argument
       
  3212   // profile this call
       
  3213   __ profile_call(r13);
       
  3214   __ profile_arguments_type(rdx, rbx_method, r13, false);
       
  3215 
       
  3216   __ verify_oop(rax_callsite);
       
  3217 
       
  3218   __ jump_from_interpreted(rbx_method, rdx);
       
  3219 }
       
  3220 
       
  3221 
       
  3222 //-----------------------------------------------------------------------------
       
  3223 // Allocation
       
  3224 
       
  3225 void TemplateTable::_new() {
       
  3226   transition(vtos, atos);
       
  3227   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
       
  3228   Label slow_case;
       
  3229   Label done;
       
  3230   Label initialize_header;
       
  3231   Label initialize_object; // including clearing the fields
       
  3232   Label allocate_shared;
       
  3233 
       
  3234   __ get_cpool_and_tags(rsi, rax);
       
  3235   // Make sure the class we're about to instantiate has been resolved.
       
  3236   // This is done before loading InstanceKlass to be consistent with the order
       
  3237   // how Constant Pool is updated (see ConstantPool::klass_at_put)
       
  3238   const int tags_offset = Array<u1>::base_offset_in_bytes();
       
  3239   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
       
  3240           JVM_CONSTANT_Class);
       
  3241   __ jcc(Assembler::notEqual, slow_case);
       
  3242 
       
  3243   // get InstanceKlass
       
  3244   __ movptr(rsi, Address(rsi, rdx,
       
  3245             Address::times_8, sizeof(ConstantPool)));
       
  3246 
       
  3247   // make sure klass is initialized & doesn't have finalizer
       
  3248   // make sure klass is fully initialized
       
  3249   __ cmpb(Address(rsi,
       
  3250                   InstanceKlass::init_state_offset()),
       
  3251           InstanceKlass::fully_initialized);
       
  3252   __ jcc(Assembler::notEqual, slow_case);
       
  3253 
       
  3254   // get instance_size in InstanceKlass (scaled to a count of bytes)
       
  3255   __ movl(rdx,
       
  3256           Address(rsi,
       
  3257                   Klass::layout_helper_offset()));
       
  3258   // test to see if it has a finalizer or is malformed in some way
       
  3259   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
       
  3260   __ jcc(Assembler::notZero, slow_case);
       
  3261 
       
  3262   // Allocate the instance
       
  3263   // 1) Try to allocate in the TLAB
       
  3264   // 2) if fail and the object is large allocate in the shared Eden
       
  3265   // 3) if the above fails (or is not applicable), go to a slow case
       
  3266   // (creates a new TLAB, etc.)
       
  3267 
       
  3268   const bool allow_shared_alloc =
       
  3269     Universe::heap()->supports_inline_contig_alloc();
       
  3270 
       
  3271   if (UseTLAB) {
       
  3272     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
       
  3273     __ lea(rbx, Address(rax, rdx, Address::times_1));
       
  3274     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
       
  3275     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
       
  3276     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
       
  3277     if (ZeroTLAB) {
       
  3278       // the fields have been already cleared
       
  3279       __ jmp(initialize_header);
       
  3280     } else {
       
  3281       // initialize both the header and fields
       
  3282       __ jmp(initialize_object);
       
  3283     }
       
  3284   }
       
  3285 
       
  3286   // Allocation in the shared Eden, if allowed.
       
  3287   //
       
  3288   // rdx: instance size in bytes
       
  3289   if (allow_shared_alloc) {
       
  3290     __ bind(allocate_shared);
       
  3291 
       
  3292     ExternalAddress top((address)Universe::heap()->top_addr());
       
  3293     ExternalAddress end((address)Universe::heap()->end_addr());
       
  3294 
       
  3295     const Register RtopAddr = rscratch1;
       
  3296     const Register RendAddr = rscratch2;
       
  3297 
       
  3298     __ lea(RtopAddr, top);
       
  3299     __ lea(RendAddr, end);
       
  3300     __ movptr(rax, Address(RtopAddr, 0));
       
  3301 
       
  3302     // For retries rax gets set by cmpxchgq
       
  3303     Label retry;
       
  3304     __ bind(retry);
       
  3305     __ lea(rbx, Address(rax, rdx, Address::times_1));
       
  3306     __ cmpptr(rbx, Address(RendAddr, 0));
       
  3307     __ jcc(Assembler::above, slow_case);
       
  3308 
       
  3309     // Compare rax with the top addr, and if still equal, store the new
       
  3310     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
       
  3311     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
       
  3312     //
       
  3313     // rax: object begin
       
  3314     // rbx: object end
       
  3315     // rdx: instance size in bytes
       
  3316     if (os::is_MP()) {
       
  3317       __ lock();
       
  3318     }
       
  3319     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
       
  3320 
       
  3321     // if someone beat us on the allocation, try again, otherwise continue
       
  3322     __ jcc(Assembler::notEqual, retry);
       
  3323 
       
  3324     __ incr_allocated_bytes(r15_thread, rdx, 0);
       
  3325   }
       
  3326 
       
  3327   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
       
  3328     // The object is initialized before the header.  If the object size is
       
  3329     // zero, go directly to the header initialization.
       
  3330     __ bind(initialize_object);
       
  3331     __ decrementl(rdx, sizeof(oopDesc));
       
  3332     __ jcc(Assembler::zero, initialize_header);
       
  3333 
       
  3334     // Initialize object fields
       
  3335     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
       
  3336     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
       
  3337     {
       
  3338       Label loop;
       
  3339       __ bind(loop);
       
  3340       __ movq(Address(rax, rdx, Address::times_8,
       
  3341                       sizeof(oopDesc) - oopSize),
       
  3342               rcx);
       
  3343       __ decrementl(rdx);
       
  3344       __ jcc(Assembler::notZero, loop);
       
  3345     }
       
  3346 
       
  3347     // initialize object header only.
       
  3348     __ bind(initialize_header);
       
  3349     if (UseBiasedLocking) {
       
  3350       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset()));
       
  3351       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
       
  3352     } else {
       
  3353       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
       
  3354                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
       
  3355     }
       
  3356     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
       
  3357     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
       
  3358     __ store_klass(rax, rsi);      // store klass last
       
  3359 
       
  3360     {
       
  3361       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
       
  3362       // Trigger dtrace event for fastpath
       
  3363       __ push(atos); // save the return value
       
  3364       __ call_VM_leaf(
       
  3365            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
       
  3366       __ pop(atos); // restore the return value
       
  3367 
       
  3368     }
       
  3369     __ jmp(done);
       
  3370   }
       
  3371 
       
  3372 
       
  3373   // slow case
       
  3374   __ bind(slow_case);
       
  3375   __ get_constant_pool(c_rarg1);
       
  3376   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
       
  3377   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
       
  3378   __ verify_oop(rax);
       
  3379 
       
  3380   // continue
       
  3381   __ bind(done);
       
  3382 }
       
  3383 
       
  3384 void TemplateTable::newarray() {
       
  3385   transition(itos, atos);
       
  3386   __ load_unsigned_byte(c_rarg1, at_bcp(1));
       
  3387   __ movl(c_rarg2, rax);
       
  3388   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
       
  3389           c_rarg1, c_rarg2);
       
  3390 }
       
  3391 
       
  3392 void TemplateTable::anewarray() {
       
  3393   transition(itos, atos);
       
  3394   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
       
  3395   __ get_constant_pool(c_rarg1);
       
  3396   __ movl(c_rarg3, rax);
       
  3397   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
       
  3398           c_rarg1, c_rarg2, c_rarg3);
       
  3399 }
       
  3400 
       
  3401 void TemplateTable::arraylength() {
       
  3402   transition(atos, itos);
       
  3403   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
       
  3404   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
       
  3405 }
       
  3406 
       
  3407 void TemplateTable::checkcast() {
       
  3408   transition(atos, atos);
       
  3409   Label done, is_null, ok_is_subtype, quicked, resolved;
       
  3410   __ testptr(rax, rax); // object is in rax
       
  3411   __ jcc(Assembler::zero, is_null);
       
  3412 
       
  3413   // Get cpool & tags index
       
  3414   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
       
  3415   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
       
  3416   // See if bytecode has already been quicked
       
  3417   __ cmpb(Address(rdx, rbx,
       
  3418                   Address::times_1,
       
  3419                   Array<u1>::base_offset_in_bytes()),
       
  3420           JVM_CONSTANT_Class);
       
  3421   __ jcc(Assembler::equal, quicked);
       
  3422   __ push(atos); // save receiver for result, and for GC
       
  3423   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
       
  3424   // vm_result_2 has metadata result
       
  3425   __ get_vm_result_2(rax, r15_thread);
       
  3426   __ pop_ptr(rdx); // restore receiver
       
  3427   __ jmpb(resolved);
       
  3428 
       
  3429   // Get superklass in rax and subklass in rbx
       
  3430   __ bind(quicked);
       
  3431   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
       
  3432   __ movptr(rax, Address(rcx, rbx,
       
  3433                        Address::times_8, sizeof(ConstantPool)));
       
  3434 
       
  3435   __ bind(resolved);
       
  3436   __ load_klass(rbx, rdx);
       
  3437 
       
  3438   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
       
  3439   // Superklass in rax.  Subklass in rbx.
       
  3440   __ gen_subtype_check(rbx, ok_is_subtype);
       
  3441 
       
  3442   // Come here on failure
       
  3443   __ push_ptr(rdx);
       
  3444   // object is at TOS
       
  3445   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
       
  3446 
       
  3447   // Come here on success
       
  3448   __ bind(ok_is_subtype);
       
  3449   __ mov(rax, rdx); // Restore object in rdx
       
  3450 
       
  3451   // Collect counts on whether this check-cast sees NULLs a lot or not.
       
  3452   if (ProfileInterpreter) {
       
  3453     __ jmp(done);
       
  3454     __ bind(is_null);
       
  3455     __ profile_null_seen(rcx);
       
  3456   } else {
       
  3457     __ bind(is_null);   // same as 'done'
       
  3458   }
       
  3459   __ bind(done);
       
  3460 }
       
  3461 
       
  3462 void TemplateTable::instanceof() {
       
  3463   transition(atos, itos);
       
  3464   Label done, is_null, ok_is_subtype, quicked, resolved;
       
  3465   __ testptr(rax, rax);
       
  3466   __ jcc(Assembler::zero, is_null);
       
  3467 
       
  3468   // Get cpool & tags index
       
  3469   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
       
  3470   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
       
  3471   // See if bytecode has already been quicked
       
  3472   __ cmpb(Address(rdx, rbx,
       
  3473                   Address::times_1,
       
  3474                   Array<u1>::base_offset_in_bytes()),
       
  3475           JVM_CONSTANT_Class);
       
  3476   __ jcc(Assembler::equal, quicked);
       
  3477 
       
  3478   __ push(atos); // save receiver for result, and for GC
       
  3479   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
       
  3480   // vm_result_2 has metadata result
       
  3481   __ get_vm_result_2(rax, r15_thread);
       
  3482   __ pop_ptr(rdx); // restore receiver
       
  3483   __ verify_oop(rdx);
       
  3484   __ load_klass(rdx, rdx);
       
  3485   __ jmpb(resolved);
       
  3486 
       
  3487   // Get superklass in rax and subklass in rdx
       
  3488   __ bind(quicked);
       
  3489   __ load_klass(rdx, rax);
       
  3490   __ movptr(rax, Address(rcx, rbx,
       
  3491                          Address::times_8, sizeof(ConstantPool)));
       
  3492 
       
  3493   __ bind(resolved);
       
  3494 
       
  3495   // Generate subtype check.  Blows rcx, rdi
       
  3496   // Superklass in rax.  Subklass in rdx.
       
  3497   __ gen_subtype_check(rdx, ok_is_subtype);
       
  3498 
       
  3499   // Come here on failure
       
  3500   __ xorl(rax, rax);
       
  3501   __ jmpb(done);
       
  3502   // Come here on success
       
  3503   __ bind(ok_is_subtype);
       
  3504   __ movl(rax, 1);
       
  3505 
       
  3506   // Collect counts on whether this test sees NULLs a lot or not.
       
  3507   if (ProfileInterpreter) {
       
  3508     __ jmp(done);
       
  3509     __ bind(is_null);
       
  3510     __ profile_null_seen(rcx);
       
  3511   } else {
       
  3512     __ bind(is_null);   // same as 'done'
       
  3513   }
       
  3514   __ bind(done);
       
  3515   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
       
  3516   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
       
  3517 }
       
  3518 
       
  3519 //-----------------------------------------------------------------------------
       
  3520 // Breakpoints
       
  3521 void TemplateTable::_breakpoint() {
       
  3522   // Note: We get here even if we are single stepping..
       
  3523   // jbug inists on setting breakpoints at every bytecode
       
  3524   // even if we are in single step mode.
       
  3525 
       
  3526   transition(vtos, vtos);
       
  3527 
       
  3528   // get the unpatched byte code
       
  3529   __ get_method(c_rarg1);
       
  3530   __ call_VM(noreg,
       
  3531              CAST_FROM_FN_PTR(address,
       
  3532                               InterpreterRuntime::get_original_bytecode_at),
       
  3533              c_rarg1, r13);
       
  3534   __ mov(rbx, rax);
       
  3535 
       
  3536   // post the breakpoint event
       
  3537   __ get_method(c_rarg1);
       
  3538   __ call_VM(noreg,
       
  3539              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
       
  3540              c_rarg1, r13);
       
  3541 
       
  3542   // complete the execution of original bytecode
       
  3543   __ dispatch_only_normal(vtos);
       
  3544 }
       
  3545 
       
  3546 //-----------------------------------------------------------------------------
       
  3547 // Exceptions
       
  3548 
       
  3549 void TemplateTable::athrow() {
       
  3550   transition(atos, vtos);
       
  3551   __ null_check(rax);
       
  3552   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
       
  3553 }
       
  3554 
       
  3555 //-----------------------------------------------------------------------------
       
  3556 // Synchronization
       
  3557 //
       
  3558 // Note: monitorenter & exit are symmetric routines; which is reflected
       
  3559 //       in the assembly code structure as well
       
  3560 //
       
  3561 // Stack layout:
       
  3562 //
       
  3563 // [expressions  ] <--- rsp               = expression stack top
       
  3564 // ..
       
  3565 // [expressions  ]
       
  3566 // [monitor entry] <--- monitor block top = expression stack bot
       
  3567 // ..
       
  3568 // [monitor entry]
       
  3569 // [frame data   ] <--- monitor block bot
       
  3570 // ...
       
  3571 // [saved rbp    ] <--- rbp
       
  3572 void TemplateTable::monitorenter() {
       
  3573   transition(atos, vtos);
       
  3574 
       
  3575   // check for NULL object
       
  3576   __ null_check(rax);
       
  3577 
       
  3578   const Address monitor_block_top(
       
  3579         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
       
  3580   const Address monitor_block_bot(
       
  3581         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
       
  3582   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
       
  3583 
       
  3584   Label allocated;
       
  3585 
       
  3586   // initialize entry pointer
       
  3587   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
       
  3588 
       
  3589   // find a free slot in the monitor block (result in c_rarg1)
       
  3590   {
       
  3591     Label entry, loop, exit;
       
  3592     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
       
  3593                                      // starting with top-most entry
       
  3594     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
       
  3595                                      // of monitor block
       
  3596     __ jmpb(entry);
       
  3597 
       
  3598     __ bind(loop);
       
  3599     // check if current entry is used
       
  3600     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
       
  3601     // if not used then remember entry in c_rarg1
       
  3602     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
       
  3603     // check if current entry is for same object
       
  3604     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
       
  3605     // if same object then stop searching
       
  3606     __ jccb(Assembler::equal, exit);
       
  3607     // otherwise advance to next entry
       
  3608     __ addptr(c_rarg3, entry_size);
       
  3609     __ bind(entry);
       
  3610     // check if bottom reached
       
  3611     __ cmpptr(c_rarg3, c_rarg2);
       
  3612     // if not at bottom then check this entry
       
  3613     __ jcc(Assembler::notEqual, loop);
       
  3614     __ bind(exit);
       
  3615   }
       
  3616 
       
  3617   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
       
  3618   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
       
  3619 
       
  3620   // allocate one if there's no free slot
       
  3621   {
       
  3622     Label entry, loop;
       
  3623     // 1. compute new pointers             // rsp: old expression stack top
       
  3624     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
       
  3625     __ subptr(rsp, entry_size);            // move expression stack top
       
  3626     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
       
  3627     __ mov(c_rarg3, rsp);                  // set start value for copy loop
       
  3628     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
       
  3629     __ jmp(entry);
       
  3630     // 2. move expression stack contents
       
  3631     __ bind(loop);
       
  3632     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
       
  3633                                                       // word from old location
       
  3634     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
       
  3635     __ addptr(c_rarg3, wordSize);                     // advance to next word
       
  3636     __ bind(entry);
       
  3637     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
       
  3638     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
       
  3639                                             // copy next word
       
  3640   }
       
  3641 
       
  3642   // call run-time routine
       
  3643   // c_rarg1: points to monitor entry
       
  3644   __ bind(allocated);
       
  3645 
       
  3646   // Increment bcp to point to the next bytecode, so exception
       
  3647   // handling for async. exceptions work correctly.
       
  3648   // The object has already been poped from the stack, so the
       
  3649   // expression stack looks correct.
       
  3650   __ increment(r13);
       
  3651 
       
  3652   // store object
       
  3653   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
       
  3654   __ lock_object(c_rarg1);
       
  3655 
       
  3656   // check to make sure this monitor doesn't cause stack overflow after locking
       
  3657   __ save_bcp();  // in case of exception
       
  3658   __ generate_stack_overflow_check(0);
       
  3659 
       
  3660   // The bcp has already been incremented. Just need to dispatch to
       
  3661   // next instruction.
       
  3662   __ dispatch_next(vtos);
       
  3663 }
       
  3664 
       
  3665 
       
  3666 void TemplateTable::monitorexit() {
       
  3667   transition(atos, vtos);
       
  3668 
       
  3669   // check for NULL object
       
  3670   __ null_check(rax);
       
  3671 
       
  3672   const Address monitor_block_top(
       
  3673         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
       
  3674   const Address monitor_block_bot(
       
  3675         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
       
  3676   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
       
  3677 
       
  3678   Label found;
       
  3679 
       
  3680   // find matching slot
       
  3681   {
       
  3682     Label entry, loop;
       
  3683     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
       
  3684                                      // starting with top-most entry
       
  3685     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
       
  3686                                      // of monitor block
       
  3687     __ jmpb(entry);
       
  3688 
       
  3689     __ bind(loop);
       
  3690     // check if current entry is for same object
       
  3691     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
       
  3692     // if same object then stop searching
       
  3693     __ jcc(Assembler::equal, found);
       
  3694     // otherwise advance to next entry
       
  3695     __ addptr(c_rarg1, entry_size);
       
  3696     __ bind(entry);
       
  3697     // check if bottom reached
       
  3698     __ cmpptr(c_rarg1, c_rarg2);
       
  3699     // if not at bottom then check this entry
       
  3700     __ jcc(Assembler::notEqual, loop);
       
  3701   }
       
  3702 
       
  3703   // error handling. Unlocking was not block-structured
       
  3704   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
       
  3705                    InterpreterRuntime::throw_illegal_monitor_state_exception));
       
  3706   __ should_not_reach_here();
       
  3707 
       
  3708   // call run-time routine
       
  3709   // rsi: points to monitor entry
       
  3710   __ bind(found);
       
  3711   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
       
  3712   __ unlock_object(c_rarg1);
       
  3713   __ pop_ptr(rax); // discard object
       
  3714 }
       
  3715 
       
  3716 
       
  3717 // Wide instructions
       
  3718 void TemplateTable::wide() {
       
  3719   transition(vtos, vtos);
       
  3720   __ load_unsigned_byte(rbx, at_bcp(1));
       
  3721   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
       
  3722   __ jmp(Address(rscratch1, rbx, Address::times_8));
       
  3723   // Note: the r13 increment step is part of the individual wide
       
  3724   // bytecode implementations
       
  3725 }
       
  3726 
       
  3727 
       
  3728 // Multi arrays
       
  3729 void TemplateTable::multianewarray() {
       
  3730   transition(vtos, atos);
       
  3731   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
       
  3732   // last dim is on top of stack; we want address of first one:
       
  3733   // first_addr = last_addr + (ndims - 1) * wordSize
       
  3734   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
       
  3735   call_VM(rax,
       
  3736           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
       
  3737           c_rarg1);
       
  3738   __ load_unsigned_byte(rbx, at_bcp(3));
       
  3739   __ lea(rsp, Address(rsp, rbx, Address::times_8));
       
  3740 }
       
  3741 #endif // !CC_INTERP