src/hotspot/share/code/codeHeapState.cpp
changeset 49611 973c9504178e
child 49624 cfde7ece3113
equal deleted inserted replaced
49610:6790b1077a3f 49611:973c9504178e
       
     1 /*
       
     2  * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
       
     3  * Copyright (c) 2018 SAP SE. All rights reserved.
       
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     5  *
       
     6  * This code is free software; you can redistribute it and/or modify it
       
     7  * under the terms of the GNU General Public License version 2 only, as
       
     8  * published by the Free Software Foundation.
       
     9  *
       
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    13  * version 2 for more details (a copy is included in the LICENSE file that
       
    14  * accompanied this code).
       
    15  *
       
    16  * You should have received a copy of the GNU General Public License version
       
    17  * 2 along with this work; if not, write to the Free Software Foundation,
       
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    19  *
       
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    21  * or visit www.oracle.com if you need additional information or have any
       
    22  * questions.
       
    23  *
       
    24  */
       
    25 
       
    26 #include "precompiled.hpp"
       
    27 #include "code/codeHeapState.hpp"
       
    28 #include "compiler/compileBroker.hpp"
       
    29 #include "runtime/sweeper.hpp"
       
    30 
       
    31 // -------------------------
       
    32 // |  General Description  |
       
    33 // -------------------------
       
    34 // The CodeHeap state analytics are divided in two parts.
       
    35 // The first part examines the entire CodeHeap and aggregates all
       
    36 // information that is believed useful/important.
       
    37 //
       
    38 // Aggregation condenses the information of a piece of the CodeHeap
       
    39 // (4096 bytes by default) into an analysis granule. These granules
       
    40 // contain enough detail to gain initial insight while keeping the
       
    41 // internal sttructure sizes in check.
       
    42 //
       
    43 // The CodeHeap is a living thing. Therefore, the aggregate is collected
       
    44 // under the CodeCache_lock. The subsequent print steps are only locked
       
    45 // against concurrent aggregations. That keeps the impact on
       
    46 // "normal operation" (JIT compiler and sweeper activity) to a minimum.
       
    47 //
       
    48 // The second part, which consists of several, independent steps,
       
    49 // prints the previously collected information with emphasis on
       
    50 // various aspects.
       
    51 //
       
    52 // Data collection and printing is done on an "on request" basis.
       
    53 // While no request is being processed, there is no impact on performance.
       
    54 // The CodeHeap state analytics do have some memory footprint.
       
    55 // The "aggregate" step allocates some data structures to hold the aggregated
       
    56 // information for later output. These data structures live until they are
       
    57 // explicitly discarded (function "discard") or until the VM terminates.
       
    58 // There is one exception: the function "all" does not leave any data
       
    59 // structures allocated.
       
    60 //
       
    61 // Requests for real-time, on-the-fly analysis can be issued via
       
    62 //   jcmd <pid> Compiler.CodeHeap_Analytics [<function>] [<granularity>]
       
    63 //
       
    64 // If you are (only) interested in how the CodeHeap looks like after running
       
    65 // a sample workload, you can use the command line option
       
    66 //   -Xlog:codecache=Trace
       
    67 //
       
    68 // To see the CodeHeap state in case of a "CodeCache full" condition, start the
       
    69 // VM with the
       
    70 //   -Xlog:codecache=Debug
       
    71 // command line option. It will produce output only for the first time the
       
    72 // condition is recognized.
       
    73 //
       
    74 // Both command line option variants produce output identical to the jcmd function
       
    75 //   jcmd <pid> Compiler.CodeHeap_Analytics all 4096
       
    76 // ---------------------------------------------------------------------------------
       
    77 
       
    78 // With this declaration macro, it is possible to switch between
       
    79 //  - direct output into an argument-passed outputStream and
       
    80 //  - buffered output into a bufferedStream with subsequent flush
       
    81 //    of the filled buffer to the outputStream.
       
    82 #define USE_STRINGSTREAM
       
    83 #define HEX32_FORMAT  "0x%x"  // just a helper format string used below multiple times
       
    84 //
       
    85 // Writing to a bufferedStream buffer first has a significant advantage:
       
    86 // It uses noticeably less cpu cycles and reduces (when wirting to a
       
    87 // network file) the required bandwidth by at least a factor of ten.
       
    88 // That clearly makes up for the increased code complexity.
       
    89 #if defined(USE_STRINGSTREAM)
       
    90 #define STRINGSTREAM_DECL(_anyst, _outst)                 \
       
    91     /* _anyst  name of the stream as used in the code */  \
       
    92     /* _outst  stream where final output will go to   */  \
       
    93     ResourceMark rm;                                      \
       
    94     bufferedStream   _sstobj = bufferedStream(4*K);       \
       
    95     bufferedStream*  _sstbuf = &_sstobj;                  \
       
    96     outputStream*    _outbuf = _outst;                    \
       
    97     bufferedStream*  _anyst  = &_sstobj; /* any stream. Use this to just print - no buffer flush.  */
       
    98 
       
    99 #define STRINGSTREAM_FLUSH(termString)                    \
       
   100     _sstbuf->print("%s", termString);                     \
       
   101     _outbuf->print("%s", _sstbuf->as_string());           \
       
   102     _sstbuf->reset();
       
   103 
       
   104 #define STRINGSTREAM_FLUSH_LOCKED(termString)             \
       
   105     { ttyLocker ttyl;/* keep this output block together */\
       
   106       STRINGSTREAM_FLUSH(termString)                      \
       
   107     }
       
   108 #else
       
   109 #define STRINGSTREAM_DECL(_anyst, _outst)                 \
       
   110     outputStream*  _outbuf = _outst;                      \
       
   111     outputStream*  _anyst  = _outst;   /* any stream. Use this to just print - no buffer flush.  */
       
   112 
       
   113 #define STRINGSTREAM_FLUSH(termString)                    \
       
   114     _outbuf->print("%s", termString);
       
   115 
       
   116 #define STRINGSTREAM_FLUSH_LOCKED(termString)             \
       
   117     _outbuf->print("%s", termString);
       
   118 #endif
       
   119 
       
   120 const char  blobTypeChar[] = {' ', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' };
       
   121 const char* blobTypeName[] = {"noType"
       
   122                              ,     "nMethod (active)"
       
   123                              ,          "nMethod (inactive)"
       
   124                              ,               "nMethod (deopt)"
       
   125                              ,                    "nMethod (zombie)"
       
   126                              ,                         "nMethod (unloaded)"
       
   127                              ,                              "runtime stub"
       
   128                              ,                                   "ricochet stub"
       
   129                              ,                                        "deopt stub"
       
   130                              ,                                             "uncommon trap stub"
       
   131                              ,                                                  "exception stub"
       
   132                              ,                                                       "safepoint stub"
       
   133                              ,                                                            "adapter blob"
       
   134                              ,                                                                 "MH adapter blob"
       
   135                              ,                                                                      "buffer blob"
       
   136                              ,                                                                           "lastType"
       
   137                              };
       
   138 const char* compTypeName[] = { "none", "c1", "c2", "jvmci" };
       
   139 
       
   140 // Be prepared for ten different CodeHeap segments. Should be enough for a few years.
       
   141 const  unsigned int        nSizeDistElements = 31;  // logarithmic range growth, max size: 2**32
       
   142 const  unsigned int        maxTopSizeBlocks  = 50;
       
   143 const  unsigned int        tsbStopper        = 2 * maxTopSizeBlocks;
       
   144 const  unsigned int        maxHeaps          = 10;
       
   145 static unsigned int        nHeaps            = 0;
       
   146 static struct CodeHeapStat CodeHeapStatArray[maxHeaps];
       
   147 
       
   148 // static struct StatElement *StatArray      = NULL;
       
   149 static StatElement* StatArray             = NULL;
       
   150 static int          log2_seg_size         = 0;
       
   151 static size_t       seg_size              = 0;
       
   152 static size_t       alloc_granules        = 0;
       
   153 static size_t       granule_size          = 0;
       
   154 static bool         segment_granules      = false;
       
   155 static unsigned int nBlocks_t1            = 0;  // counting "in_use" nmethods only.
       
   156 static unsigned int nBlocks_t2            = 0;  // counting "in_use" nmethods only.
       
   157 static unsigned int nBlocks_alive         = 0;  // counting "not_used" and "not_entrant" nmethods only.
       
   158 static unsigned int nBlocks_dead          = 0;  // counting "zombie" and "unloaded" methods only.
       
   159 static unsigned int nBlocks_unloaded      = 0;  // counting "unloaded" nmethods only. This is a transien state.
       
   160 static unsigned int nBlocks_stub          = 0;
       
   161 
       
   162 static struct FreeBlk*          FreeArray = NULL;
       
   163 static unsigned int      alloc_freeBlocks = 0;
       
   164 
       
   165 static struct TopSizeBlk*    TopSizeArray = NULL;
       
   166 static unsigned int   alloc_topSizeBlocks = 0;
       
   167 static unsigned int    used_topSizeBlocks = 0;
       
   168 
       
   169 static struct SizeDistributionElement*  SizeDistributionArray = NULL;
       
   170 
       
   171 // nMethod temperature (hotness) indicators.
       
   172 static int                     avgTemp    = 0;
       
   173 static int                     maxTemp    = 0;
       
   174 static int                     minTemp    = 0;
       
   175 
       
   176 static unsigned int  latest_compilation_id   = 0;
       
   177 static volatile bool initialization_complete = false;
       
   178 
       
   179 const char* CodeHeapState::get_heapName(CodeHeap* heap) {
       
   180   if (SegmentedCodeCache) {
       
   181     return heap->name();
       
   182   } else {
       
   183     return "CodeHeap";
       
   184   }
       
   185 }
       
   186 
       
   187 // returns the index for the heap being processed.
       
   188 unsigned int CodeHeapState::findHeapIndex(outputStream* out, const char* heapName) {
       
   189   if (heapName == NULL) {
       
   190     return maxHeaps;
       
   191   }
       
   192   if (SegmentedCodeCache) {
       
   193     // Search for a pre-existing entry. If found, return that index.
       
   194     for (unsigned int i = 0; i < nHeaps; i++) {
       
   195       if (CodeHeapStatArray[i].heapName != NULL && strcmp(heapName, CodeHeapStatArray[i].heapName) == 0) {
       
   196         return i;
       
   197       }
       
   198     }
       
   199 
       
   200     // check if there are more code heap segments than we can handle.
       
   201     if (nHeaps == maxHeaps) {
       
   202       out->print_cr("Too many heap segments for current limit(%d).", maxHeaps);
       
   203       return maxHeaps;
       
   204     }
       
   205 
       
   206     // allocate new slot in StatArray.
       
   207     CodeHeapStatArray[nHeaps].heapName = heapName;
       
   208     return nHeaps++;
       
   209   } else {
       
   210     nHeaps = 1;
       
   211     CodeHeapStatArray[0].heapName = heapName;
       
   212     return 0; // This is the default index if CodeCache is not segmented.
       
   213   }
       
   214 }
       
   215 
       
   216 void CodeHeapState::get_HeapStatGlobals(outputStream* out, const char* heapName) {
       
   217   unsigned int ix = findHeapIndex(out, heapName);
       
   218   if (ix < maxHeaps) {
       
   219     StatArray             = CodeHeapStatArray[ix].StatArray;
       
   220     seg_size              = CodeHeapStatArray[ix].segment_size;
       
   221     log2_seg_size         = seg_size == 0 ? 0 : exact_log2(seg_size);
       
   222     alloc_granules        = CodeHeapStatArray[ix].alloc_granules;
       
   223     granule_size          = CodeHeapStatArray[ix].granule_size;
       
   224     segment_granules      = CodeHeapStatArray[ix].segment_granules;
       
   225     nBlocks_t1            = CodeHeapStatArray[ix].nBlocks_t1;
       
   226     nBlocks_t2            = CodeHeapStatArray[ix].nBlocks_t2;
       
   227     nBlocks_alive         = CodeHeapStatArray[ix].nBlocks_alive;
       
   228     nBlocks_dead          = CodeHeapStatArray[ix].nBlocks_dead;
       
   229     nBlocks_unloaded      = CodeHeapStatArray[ix].nBlocks_unloaded;
       
   230     nBlocks_stub          = CodeHeapStatArray[ix].nBlocks_stub;
       
   231     FreeArray             = CodeHeapStatArray[ix].FreeArray;
       
   232     alloc_freeBlocks      = CodeHeapStatArray[ix].alloc_freeBlocks;
       
   233     TopSizeArray          = CodeHeapStatArray[ix].TopSizeArray;
       
   234     alloc_topSizeBlocks   = CodeHeapStatArray[ix].alloc_topSizeBlocks;
       
   235     used_topSizeBlocks    = CodeHeapStatArray[ix].used_topSizeBlocks;
       
   236     SizeDistributionArray = CodeHeapStatArray[ix].SizeDistributionArray;
       
   237     avgTemp               = CodeHeapStatArray[ix].avgTemp;
       
   238     maxTemp               = CodeHeapStatArray[ix].maxTemp;
       
   239     minTemp               = CodeHeapStatArray[ix].minTemp;
       
   240   } else {
       
   241     StatArray             = NULL;
       
   242     seg_size              = 0;
       
   243     log2_seg_size         = 0;
       
   244     alloc_granules        = 0;
       
   245     granule_size          = 0;
       
   246     segment_granules      = false;
       
   247     nBlocks_t1            = 0;
       
   248     nBlocks_t2            = 0;
       
   249     nBlocks_alive         = 0;
       
   250     nBlocks_dead          = 0;
       
   251     nBlocks_unloaded      = 0;
       
   252     nBlocks_stub          = 0;
       
   253     FreeArray             = NULL;
       
   254     alloc_freeBlocks      = 0;
       
   255     TopSizeArray          = NULL;
       
   256     alloc_topSizeBlocks   = 0;
       
   257     used_topSizeBlocks    = 0;
       
   258     SizeDistributionArray = NULL;
       
   259     avgTemp               = 0;
       
   260     maxTemp               = 0;
       
   261     minTemp               = 0;
       
   262   }
       
   263 }
       
   264 
       
   265 void CodeHeapState::set_HeapStatGlobals(outputStream* out, const char* heapName) {
       
   266   unsigned int ix = findHeapIndex(out, heapName);
       
   267   if (ix < maxHeaps) {
       
   268     CodeHeapStatArray[ix].StatArray             = StatArray;
       
   269     CodeHeapStatArray[ix].segment_size          = seg_size;
       
   270     CodeHeapStatArray[ix].alloc_granules        = alloc_granules;
       
   271     CodeHeapStatArray[ix].granule_size          = granule_size;
       
   272     CodeHeapStatArray[ix].segment_granules      = segment_granules;
       
   273     CodeHeapStatArray[ix].nBlocks_t1            = nBlocks_t1;
       
   274     CodeHeapStatArray[ix].nBlocks_t2            = nBlocks_t2;
       
   275     CodeHeapStatArray[ix].nBlocks_alive         = nBlocks_alive;
       
   276     CodeHeapStatArray[ix].nBlocks_dead          = nBlocks_dead;
       
   277     CodeHeapStatArray[ix].nBlocks_unloaded      = nBlocks_unloaded;
       
   278     CodeHeapStatArray[ix].nBlocks_stub          = nBlocks_stub;
       
   279     CodeHeapStatArray[ix].FreeArray             = FreeArray;
       
   280     CodeHeapStatArray[ix].alloc_freeBlocks      = alloc_freeBlocks;
       
   281     CodeHeapStatArray[ix].TopSizeArray          = TopSizeArray;
       
   282     CodeHeapStatArray[ix].alloc_topSizeBlocks   = alloc_topSizeBlocks;
       
   283     CodeHeapStatArray[ix].used_topSizeBlocks    = used_topSizeBlocks;
       
   284     CodeHeapStatArray[ix].SizeDistributionArray = SizeDistributionArray;
       
   285     CodeHeapStatArray[ix].avgTemp               = avgTemp;
       
   286     CodeHeapStatArray[ix].maxTemp               = maxTemp;
       
   287     CodeHeapStatArray[ix].minTemp               = minTemp;
       
   288   }
       
   289 }
       
   290 
       
   291 //---<  get a new statistics array  >---
       
   292 void CodeHeapState::prepare_StatArray(outputStream* out, size_t nElem, size_t granularity, const char* heapName) {
       
   293   if (StatArray == NULL) {
       
   294     StatArray      = new StatElement[nElem];
       
   295     //---<  reset some counts  >---
       
   296     alloc_granules = nElem;
       
   297     granule_size   = granularity;
       
   298   }
       
   299 
       
   300   if (StatArray == NULL) {
       
   301     //---<  just do nothing if allocation failed  >---
       
   302     out->print_cr("Statistics could not be collected for %s, probably out of memory.", heapName);
       
   303     out->print_cr("Current granularity is " SIZE_FORMAT " bytes. Try a coarser granularity.", granularity);
       
   304     alloc_granules = 0;
       
   305     granule_size   = 0;
       
   306   } else {
       
   307     //---<  initialize statistics array  >---
       
   308     memset((void*)StatArray, 0, nElem*sizeof(StatElement));
       
   309   }
       
   310 }
       
   311 
       
   312 //---<  get a new free block array  >---
       
   313 void CodeHeapState::prepare_FreeArray(outputStream* out, unsigned int nElem, const char* heapName) {
       
   314   if (FreeArray == NULL) {
       
   315     FreeArray      = new FreeBlk[nElem];
       
   316     //---<  reset some counts  >---
       
   317     alloc_freeBlocks = nElem;
       
   318   }
       
   319 
       
   320   if (FreeArray == NULL) {
       
   321     //---<  just do nothing if allocation failed  >---
       
   322     out->print_cr("Free space analysis cannot be done for %s, probably out of memory.", heapName);
       
   323     alloc_freeBlocks = 0;
       
   324   } else {
       
   325     //---<  initialize free block array  >---
       
   326     memset((void*)FreeArray, 0, alloc_freeBlocks*sizeof(FreeBlk));
       
   327   }
       
   328 }
       
   329 
       
   330 //---<  get a new TopSizeArray  >---
       
   331 void CodeHeapState::prepare_TopSizeArray(outputStream* out, unsigned int nElem, const char* heapName) {
       
   332   if (TopSizeArray == NULL) {
       
   333     TopSizeArray   = new TopSizeBlk[nElem];
       
   334     //---<  reset some counts  >---
       
   335     alloc_topSizeBlocks = nElem;
       
   336     used_topSizeBlocks  = 0;
       
   337   }
       
   338 
       
   339   if (TopSizeArray == NULL) {
       
   340     //---<  just do nothing if allocation failed  >---
       
   341     out->print_cr("Top-%d list of largest CodeHeap blocks can not be collected for %s, probably out of memory.", nElem, heapName);
       
   342     alloc_topSizeBlocks = 0;
       
   343   } else {
       
   344     //---<  initialize TopSizeArray  >---
       
   345     memset((void*)TopSizeArray, 0, nElem*sizeof(TopSizeBlk));
       
   346     used_topSizeBlocks  = 0;
       
   347   }
       
   348 }
       
   349 
       
   350 //---<  get a new SizeDistributionArray  >---
       
   351 void CodeHeapState::prepare_SizeDistArray(outputStream* out, unsigned int nElem, const char* heapName) {
       
   352   if (SizeDistributionArray == NULL) {
       
   353     SizeDistributionArray = new SizeDistributionElement[nElem];
       
   354   }
       
   355 
       
   356   if (SizeDistributionArray == NULL) {
       
   357     //---<  just do nothing if allocation failed  >---
       
   358     out->print_cr("Size distribution can not be collected for %s, probably out of memory.", heapName);
       
   359   } else {
       
   360     //---<  initialize SizeDistArray  >---
       
   361     memset((void*)SizeDistributionArray, 0, nElem*sizeof(SizeDistributionElement));
       
   362     // Logarithmic range growth. First range starts at _segment_size.
       
   363     SizeDistributionArray[log2_seg_size-1].rangeEnd = 1U;
       
   364     for (unsigned int i = log2_seg_size; i < nElem; i++) {
       
   365       SizeDistributionArray[i].rangeStart = 1U << (i     - log2_seg_size);
       
   366       SizeDistributionArray[i].rangeEnd   = 1U << ((i+1) - log2_seg_size);
       
   367     }
       
   368   }
       
   369 }
       
   370 
       
   371 //---<  get a new SizeDistributionArray  >---
       
   372 void CodeHeapState::update_SizeDistArray(outputStream* out, unsigned int len) {
       
   373   if (SizeDistributionArray != NULL) {
       
   374     for (unsigned int i = log2_seg_size-1; i < nSizeDistElements; i++) {
       
   375       if ((SizeDistributionArray[i].rangeStart <= len) && (len < SizeDistributionArray[i].rangeEnd)) {
       
   376         SizeDistributionArray[i].lenSum += len;
       
   377         SizeDistributionArray[i].count++;
       
   378         break;
       
   379       }
       
   380     }
       
   381   }
       
   382 }
       
   383 
       
   384 void CodeHeapState::discard_StatArray(outputStream* out) {
       
   385   if (StatArray != NULL) {
       
   386     delete StatArray;
       
   387     StatArray        = NULL;
       
   388     alloc_granules   = 0;
       
   389     granule_size     = 0;
       
   390   }
       
   391 }
       
   392 
       
   393 void CodeHeapState::discard_FreeArray(outputStream* out) {
       
   394   if (FreeArray != NULL) {
       
   395     delete[] FreeArray;
       
   396     FreeArray        = NULL;
       
   397     alloc_freeBlocks = 0;
       
   398   }
       
   399 }
       
   400 
       
   401 void CodeHeapState::discard_TopSizeArray(outputStream* out) {
       
   402   if (TopSizeArray != NULL) {
       
   403     delete[] TopSizeArray;
       
   404     TopSizeArray        = NULL;
       
   405     alloc_topSizeBlocks = 0;
       
   406     used_topSizeBlocks  = 0;
       
   407   }
       
   408 }
       
   409 
       
   410 void CodeHeapState::discard_SizeDistArray(outputStream* out) {
       
   411   if (SizeDistributionArray != NULL) {
       
   412     delete[] SizeDistributionArray;
       
   413     SizeDistributionArray = NULL;
       
   414   }
       
   415 }
       
   416 
       
   417 // Discard all allocated internal data structures.
       
   418 // This should be done after an analysis session is completed.
       
   419 void CodeHeapState::discard(outputStream* out, CodeHeap* heap) {
       
   420   if (!initialization_complete) {
       
   421     return;
       
   422   }
       
   423 
       
   424   if (nHeaps > 0) {
       
   425     for (unsigned int ix = 0; ix < nHeaps; ix++) {
       
   426       get_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName);
       
   427       discard_StatArray(out);
       
   428       discard_FreeArray(out);
       
   429       discard_TopSizeArray(out);
       
   430       discard_SizeDistArray(out);
       
   431       set_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName);
       
   432       CodeHeapStatArray[ix].heapName = NULL;
       
   433     }
       
   434     nHeaps = 0;
       
   435   }
       
   436 }
       
   437 
       
   438 void CodeHeapState::aggregate(outputStream* out, CodeHeap* heap, const char* granularity_request) {
       
   439   unsigned int nBlocks_free    = 0;
       
   440   unsigned int nBlocks_used    = 0;
       
   441   unsigned int nBlocks_zomb    = 0;
       
   442   unsigned int nBlocks_disconn = 0;
       
   443   unsigned int nBlocks_notentr = 0;
       
   444 
       
   445   //---<  max & min of TopSizeArray  >---
       
   446   //  it is sufficient to have these sizes as 32bit unsigned ints.
       
   447   //  The CodeHeap is limited in size to 4GB. Furthermore, the sizes
       
   448   //  are stored in _segment_size units, scaling them down by a factor of 64 (at least).
       
   449   unsigned int  currMax          = 0;
       
   450   unsigned int  currMin          = 0;
       
   451   unsigned int  currMin_ix       = 0;
       
   452   unsigned long total_iterations = 0;
       
   453 
       
   454   bool  done             = false;
       
   455   const int min_granules = 256;
       
   456   const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M
       
   457                                   // results in StatArray size of 20M (= max_granules * 40 Bytes per element)
       
   458                                   // For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit.
       
   459   const char* heapName   = get_heapName(heap);
       
   460   STRINGSTREAM_DECL(ast, out)
       
   461 
       
   462   if (!initialization_complete) {
       
   463     memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray));
       
   464     initialization_complete = true;
       
   465 
       
   466     printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (general remarks)", NULL);
       
   467     ast->print_cr("   The code heap analysis function provides deep insights into\n"
       
   468                   "   the inner workings and the internal state of the Java VM's\n"
       
   469                   "   code cache - the place where all the JVM generated machine\n"
       
   470                   "   code is stored.\n"
       
   471                   "   \n"
       
   472                   "   This function is designed and provided for support engineers\n"
       
   473                   "   to help them understand and solve issues in customer systems.\n"
       
   474                   "   It is not intended for use and interpretation by other persons.\n"
       
   475                   "   \n");
       
   476     STRINGSTREAM_FLUSH("")
       
   477   }
       
   478   get_HeapStatGlobals(out, heapName);
       
   479 
       
   480 
       
   481   // Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock,
       
   482   // all heap information is "constant" and can be safely extracted/calculated before we
       
   483   // enter the while() loop. Actually, the loop will only be iterated once.
       
   484   char*  low_bound     = heap->low_boundary();
       
   485   size_t size          = heap->capacity();
       
   486   size_t res_size      = heap->max_capacity();
       
   487   seg_size             = heap->segment_size();
       
   488   log2_seg_size        = seg_size == 0 ? 0 : exact_log2(seg_size);  // This is a global static value.
       
   489 
       
   490   if (seg_size == 0) {
       
   491     printBox(ast, '-', "Heap not fully initialized yet, segment size is zero for segment ", heapName);
       
   492     STRINGSTREAM_FLUSH("")
       
   493     return;
       
   494   }
       
   495 
       
   496   // Calculate granularity of analysis (and output).
       
   497   //   The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize.
       
   498   //   The CodeHeap can become fairly large, in particular in productive real-life systems.
       
   499   //
       
   500   //   It is often neither feasible nor desirable to aggregate the data with the highest possible
       
   501   //   level of detail, i.e. inspecting and printing each segment on its own.
       
   502   //
       
   503   //   The granularity parameter allows to specify the level of detail available in the analysis.
       
   504   //   It must be a positive multiple of the segment size and should be selected such that enough
       
   505   //   detail is provided while, at the same time, the printed output does not explode.
       
   506   //
       
   507   //   By manipulating the granularity value, we enforce that at least min_granules units
       
   508   //   of analysis are available. We also enforce an upper limit of max_granules units to
       
   509   //   keep the amount of allocated storage in check.
       
   510   //
       
   511   //   Finally, we adjust the granularity such that each granule covers at most 64k-1 segments.
       
   512   //   This is necessary to prevent an unsigned short overflow while accumulating space information.
       
   513   //
       
   514   size_t granularity = strtol(granularity_request, NULL, 0);
       
   515   if (granularity > size) {
       
   516     granularity = size;
       
   517   }
       
   518   if (size/granularity < min_granules) {
       
   519     granularity = size/min_granules;                                   // at least min_granules granules
       
   520   }
       
   521   granularity = granularity & (~(seg_size - 1));                       // must be multiple of seg_size
       
   522   if (granularity < seg_size) {
       
   523     granularity = seg_size;                                            // must be at least seg_size
       
   524   }
       
   525   if (size/granularity > max_granules) {
       
   526     granularity = size/max_granules;                                   // at most max_granules granules
       
   527   }
       
   528   granularity = granularity & (~(seg_size - 1));                       // must be multiple of seg_size
       
   529   if (granularity>>log2_seg_size >= (1L<<sizeof(unsigned short)*8)) {
       
   530     granularity = ((1L<<(sizeof(unsigned short)*8))-1)<<log2_seg_size; // Limit: (64k-1) * seg_size
       
   531   }
       
   532   segment_granules = granularity == seg_size;
       
   533   size_t granules  = (size + (granularity-1))/granularity;
       
   534 
       
   535   printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (used blocks) for segment ", heapName);
       
   536   ast->print_cr("   The aggregate step takes an aggregated snapshot of the CodeHeap.\n"
       
   537                 "   Subsequent print functions create their output based on this snapshot.\n"
       
   538                 "   The CodeHeap is a living thing, and every effort has been made for the\n"
       
   539                 "   collected data to be consistent. Only the method names and signatures\n"
       
   540                 "   are retrieved at print time. That may lead to rare cases where the\n"
       
   541                 "   name of a method is no longer available, e.g. because it was unloaded.\n");
       
   542   ast->print_cr("   CodeHeap committed size " SIZE_FORMAT "K (" SIZE_FORMAT "M), reserved size " SIZE_FORMAT "K (" SIZE_FORMAT "M), %d%% occupied.",
       
   543                 size/(size_t)K, size/(size_t)M, res_size/(size_t)K, res_size/(size_t)M, (unsigned int)(100.0*size/res_size));
       
   544   ast->print_cr("   CodeHeap allocation segment size is " SIZE_FORMAT " bytes. This is the smallest possible granularity.", seg_size);
       
   545   ast->print_cr("   CodeHeap (committed part) is mapped to " SIZE_FORMAT " granules of size " SIZE_FORMAT " bytes.", granules, granularity);
       
   546   ast->print_cr("   Each granule takes " SIZE_FORMAT " bytes of C heap, that is " SIZE_FORMAT "K in total for statistics data.", sizeof(StatElement), (sizeof(StatElement)*granules)/(size_t)K);
       
   547   ast->print_cr("   The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap.", (unsigned int)(max_granules/K), (unsigned int)(G/max_granules));
       
   548   STRINGSTREAM_FLUSH("\n")
       
   549 
       
   550 
       
   551   while (!done) {
       
   552     //---<  reset counters with every aggregation  >---
       
   553     nBlocks_t1       = 0;
       
   554     nBlocks_t2       = 0;
       
   555     nBlocks_alive    = 0;
       
   556     nBlocks_dead     = 0;
       
   557     nBlocks_unloaded = 0;
       
   558     nBlocks_stub     = 0;
       
   559 
       
   560     nBlocks_free     = 0;
       
   561     nBlocks_used     = 0;
       
   562     nBlocks_zomb     = 0;
       
   563     nBlocks_disconn  = 0;
       
   564     nBlocks_notentr  = 0;
       
   565 
       
   566     //---<  discard old arrays if size does not match  >---
       
   567     if (granules != alloc_granules) {
       
   568       discard_StatArray(out);
       
   569       discard_TopSizeArray(out);
       
   570     }
       
   571 
       
   572     //---<  allocate arrays if they don't yet exist, initialize  >---
       
   573     prepare_StatArray(out, granules, granularity, heapName);
       
   574     if (StatArray == NULL) {
       
   575       set_HeapStatGlobals(out, heapName);
       
   576       return;
       
   577     }
       
   578     prepare_TopSizeArray(out, maxTopSizeBlocks, heapName);
       
   579     prepare_SizeDistArray(out, nSizeDistElements, heapName);
       
   580 
       
   581     latest_compilation_id = CompileBroker::get_compilation_id();
       
   582     unsigned int highest_compilation_id = 0;
       
   583     size_t       usedSpace     = 0;
       
   584     size_t       t1Space       = 0;
       
   585     size_t       t2Space       = 0;
       
   586     size_t       aliveSpace    = 0;
       
   587     size_t       disconnSpace  = 0;
       
   588     size_t       notentrSpace  = 0;
       
   589     size_t       deadSpace     = 0;
       
   590     size_t       unloadedSpace = 0;
       
   591     size_t       stubSpace     = 0;
       
   592     size_t       freeSpace     = 0;
       
   593     size_t       maxFreeSize   = 0;
       
   594     HeapBlock*   maxFreeBlock  = NULL;
       
   595     bool         insane        = false;
       
   596 
       
   597     int64_t hotnessAccumulator = 0;
       
   598     unsigned int n_methods     = 0;
       
   599     avgTemp       = 0;
       
   600     minTemp       = (int)(res_size > M ? (res_size/M)*2 : 1);
       
   601     maxTemp       = -minTemp;
       
   602 
       
   603     for (HeapBlock *h = heap->first_block(); h != NULL && !insane; h = heap->next_block(h)) {
       
   604       unsigned int hb_len     = (unsigned int)h->length();  // despite being size_t, length can never overflow an unsigned int.
       
   605       size_t       hb_bytelen = ((size_t)hb_len)<<log2_seg_size;
       
   606       unsigned int ix_beg     = (unsigned int)(((char*)h-low_bound)/granule_size);
       
   607       unsigned int ix_end     = (unsigned int)(((char*)h-low_bound+(hb_bytelen-1))/granule_size);
       
   608       unsigned int compile_id = 0;
       
   609       CompLevel    comp_lvl   = CompLevel_none;
       
   610       compType     cType      = noComp;
       
   611       blobType     cbType     = noType;
       
   612 
       
   613       //---<  some sanity checks  >---
       
   614       // Do not assert here, just check, print error message and return.
       
   615       // This is a diagnostic function. It is not supposed to tear down the VM.
       
   616       if ((char*)h <  low_bound ) {
       
   617         insane = true; ast->print_cr("Sanity check: HeapBlock @%p below low bound (%p)", (char*)h, low_bound);
       
   618       }
       
   619       if (ix_end   >= granules  ) {
       
   620         insane = true; ast->print_cr("Sanity check: end index (%d) out of bounds (" SIZE_FORMAT ")", ix_end, granules);
       
   621       }
       
   622       if (size     != heap->capacity()) {
       
   623         insane = true; ast->print_cr("Sanity check: code heap capacity has changed (" SIZE_FORMAT "K to " SIZE_FORMAT "K)", size/(size_t)K, heap->capacity()/(size_t)K);
       
   624       }
       
   625       if (ix_beg   >  ix_end    ) {
       
   626         insane = true; ast->print_cr("Sanity check: end index (%d) lower than begin index (%d)", ix_end, ix_beg);
       
   627       }
       
   628       if (insane) {
       
   629         STRINGSTREAM_FLUSH("")
       
   630         continue;
       
   631       }
       
   632 
       
   633       if (h->free()) {
       
   634         nBlocks_free++;
       
   635         freeSpace    += hb_bytelen;
       
   636         if (hb_bytelen > maxFreeSize) {
       
   637           maxFreeSize   = hb_bytelen;
       
   638           maxFreeBlock  = h;
       
   639         }
       
   640       } else {
       
   641         update_SizeDistArray(out, hb_len);
       
   642         nBlocks_used++;
       
   643         usedSpace    += hb_bytelen;
       
   644         CodeBlob* cb  = (CodeBlob*)heap->find_start(h);
       
   645         if (cb != NULL) {
       
   646           cbType = get_cbType(cb);
       
   647           if (cb->is_nmethod()) {
       
   648             compile_id = ((nmethod*)cb)->compile_id();
       
   649             comp_lvl   = (CompLevel)((nmethod*)cb)->comp_level();
       
   650             if (((nmethod*)cb)->is_compiled_by_c1()) {
       
   651               cType = c1;
       
   652             }
       
   653             if (((nmethod*)cb)->is_compiled_by_c2()) {
       
   654               cType = c2;
       
   655             }
       
   656             if (((nmethod*)cb)->is_compiled_by_jvmci()) {
       
   657               cType = jvmci;
       
   658             }
       
   659             switch (cbType) {
       
   660               case nMethod_inuse: { // only for executable methods!!!
       
   661                 // space for these cbs is accounted for later.
       
   662                 int temperature = ((nmethod*)cb)->hotness_counter();
       
   663                 hotnessAccumulator += temperature;
       
   664                 n_methods++;
       
   665                 maxTemp = (temperature > maxTemp) ? temperature : maxTemp;
       
   666                 minTemp = (temperature < minTemp) ? temperature : minTemp;
       
   667                 break;
       
   668               }
       
   669               case nMethod_notused:
       
   670                 nBlocks_alive++;
       
   671                 nBlocks_disconn++;
       
   672                 aliveSpace     += hb_bytelen;
       
   673                 disconnSpace   += hb_bytelen;
       
   674                 break;
       
   675               case nMethod_notentrant:  // equivalent to nMethod_alive
       
   676                 nBlocks_alive++;
       
   677                 nBlocks_notentr++;
       
   678                 aliveSpace     += hb_bytelen;
       
   679                 notentrSpace   += hb_bytelen;
       
   680                 break;
       
   681               case nMethod_unloaded:
       
   682                 nBlocks_unloaded++;
       
   683                 unloadedSpace  += hb_bytelen;
       
   684                 break;
       
   685               case nMethod_dead:
       
   686                 nBlocks_dead++;
       
   687                 deadSpace      += hb_bytelen;
       
   688                 break;
       
   689               default:
       
   690                 break;
       
   691             }
       
   692           }
       
   693 
       
   694           //------------------------------------------
       
   695           //---<  register block in TopSizeArray  >---
       
   696           //------------------------------------------
       
   697           if (alloc_topSizeBlocks > 0) {
       
   698             if (used_topSizeBlocks == 0) {
       
   699               TopSizeArray[0].start    = h;
       
   700               TopSizeArray[0].len      = hb_len;
       
   701               TopSizeArray[0].index    = tsbStopper;
       
   702               TopSizeArray[0].compiler = cType;
       
   703               TopSizeArray[0].level    = comp_lvl;
       
   704               TopSizeArray[0].type     = cbType;
       
   705               currMax    = hb_len;
       
   706               currMin    = hb_len;
       
   707               currMin_ix = 0;
       
   708               used_topSizeBlocks++;
       
   709             // This check roughly cuts 5000 iterations (JVM98, mixed, dbg, termination stats):
       
   710             } else if ((used_topSizeBlocks < alloc_topSizeBlocks) && (hb_len < currMin)) {
       
   711               //---<  all blocks in list are larger, but there is room left in array  >---
       
   712               TopSizeArray[currMin_ix].index = used_topSizeBlocks;
       
   713               TopSizeArray[used_topSizeBlocks].start    = h;
       
   714               TopSizeArray[used_topSizeBlocks].len      = hb_len;
       
   715               TopSizeArray[used_topSizeBlocks].index    = tsbStopper;
       
   716               TopSizeArray[used_topSizeBlocks].compiler = cType;
       
   717               TopSizeArray[used_topSizeBlocks].level    = comp_lvl;
       
   718               TopSizeArray[used_topSizeBlocks].type     = cbType;
       
   719               currMin    = hb_len;
       
   720               currMin_ix = used_topSizeBlocks;
       
   721               used_topSizeBlocks++;
       
   722             } else {
       
   723               // This check cuts total_iterations by a factor of 6 (JVM98, mixed, dbg, termination stats):
       
   724               //   We don't need to search the list if we know beforehand that the current block size is
       
   725               //   smaller than the currently recorded minimum and there is no free entry left in the list.
       
   726               if (!((used_topSizeBlocks == alloc_topSizeBlocks) && (hb_len <= currMin))) {
       
   727                 if (currMax < hb_len) {
       
   728                   currMax = hb_len;
       
   729                 }
       
   730                 unsigned int i;
       
   731                 unsigned int prev_i  = tsbStopper;
       
   732                 unsigned int limit_i =  0;
       
   733                 for (i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
       
   734                   if (limit_i++ >= alloc_topSizeBlocks) {
       
   735                     insane = true; break; // emergency exit
       
   736                   }
       
   737                   if (i >= used_topSizeBlocks)  {
       
   738                     insane = true; break; // emergency exit
       
   739                   }
       
   740                   total_iterations++;
       
   741                   if (TopSizeArray[i].len < hb_len) {
       
   742                     //---<  We want to insert here, element <i> is smaller than the current one  >---
       
   743                     if (used_topSizeBlocks < alloc_topSizeBlocks) { // still room for a new entry to insert
       
   744                       // old entry gets moved to the next free element of the array.
       
   745                       // That's necessary to keep the entry for the largest block at index 0.
       
   746                       // This move might cause the current minimum to be moved to another place
       
   747                       if (i == currMin_ix) {
       
   748                         assert(TopSizeArray[i].len == currMin, "sort error");
       
   749                         currMin_ix = used_topSizeBlocks;
       
   750                       }
       
   751                       memcpy((void*)&TopSizeArray[used_topSizeBlocks], (void*)&TopSizeArray[i], sizeof(TopSizeBlk));
       
   752                       TopSizeArray[i].start    = h;
       
   753                       TopSizeArray[i].len      = hb_len;
       
   754                       TopSizeArray[i].index    = used_topSizeBlocks;
       
   755                       TopSizeArray[i].compiler = cType;
       
   756                       TopSizeArray[i].level    = comp_lvl;
       
   757                       TopSizeArray[i].type     = cbType;
       
   758                       used_topSizeBlocks++;
       
   759                     } else { // no room for new entries, current block replaces entry for smallest block
       
   760                       //---<  Find last entry (entry for smallest remembered block)  >---
       
   761                       unsigned int      j  = i;
       
   762                       unsigned int prev_j  = tsbStopper;
       
   763                       unsigned int limit_j = 0;
       
   764                       while (TopSizeArray[j].index != tsbStopper) {
       
   765                         if (limit_j++ >= alloc_topSizeBlocks) {
       
   766                           insane = true; break; // emergency exit
       
   767                         }
       
   768                         if (j >= used_topSizeBlocks)  {
       
   769                           insane = true; break; // emergency exit
       
   770                         }
       
   771                         total_iterations++;
       
   772                         prev_j = j;
       
   773                         j      = TopSizeArray[j].index;
       
   774                       }
       
   775                       if (!insane) {
       
   776                         if (prev_j == tsbStopper) {
       
   777                           //---<  Above while loop did not iterate, we already are the min entry  >---
       
   778                           //---<  We have to just replace the smallest entry                      >---
       
   779                           currMin    = hb_len;
       
   780                           currMin_ix = j;
       
   781                           TopSizeArray[j].start    = h;
       
   782                           TopSizeArray[j].len      = hb_len;
       
   783                           TopSizeArray[j].index    = tsbStopper; // already set!!
       
   784                           TopSizeArray[j].compiler = cType;
       
   785                           TopSizeArray[j].level    = comp_lvl;
       
   786                           TopSizeArray[j].type     = cbType;
       
   787                         } else {
       
   788                           //---<  second-smallest entry is now smallest  >---
       
   789                           TopSizeArray[prev_j].index = tsbStopper;
       
   790                           currMin    = TopSizeArray[prev_j].len;
       
   791                           currMin_ix = prev_j;
       
   792                           //---<  smallest entry gets overwritten  >---
       
   793                           memcpy((void*)&TopSizeArray[j], (void*)&TopSizeArray[i], sizeof(TopSizeBlk));
       
   794                           TopSizeArray[i].start    = h;
       
   795                           TopSizeArray[i].len      = hb_len;
       
   796                           TopSizeArray[i].index    = j;
       
   797                           TopSizeArray[i].compiler = cType;
       
   798                           TopSizeArray[i].level    = comp_lvl;
       
   799                           TopSizeArray[i].type     = cbType;
       
   800                         }
       
   801                       } // insane
       
   802                     }
       
   803                     break;
       
   804                   }
       
   805                   prev_i = i;
       
   806                 }
       
   807                 if (insane) {
       
   808                   // Note: regular analysis could probably continue by resetting "insane" flag.
       
   809                   out->print_cr("Possible loop in TopSizeBlocks list detected. Analysis aborted.");
       
   810                   discard_TopSizeArray(out);
       
   811                 }
       
   812               }
       
   813             }
       
   814           }
       
   815           //----------------------------------------------
       
   816           //---<  END register block in TopSizeArray  >---
       
   817           //----------------------------------------------
       
   818         } else {
       
   819           nBlocks_zomb++;
       
   820         }
       
   821 
       
   822         if (ix_beg == ix_end) {
       
   823           StatArray[ix_beg].type = cbType;
       
   824           switch (cbType) {
       
   825             case nMethod_inuse:
       
   826               highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id;
       
   827               if (comp_lvl < CompLevel_full_optimization) {
       
   828                 nBlocks_t1++;
       
   829                 t1Space   += hb_bytelen;
       
   830                 StatArray[ix_beg].t1_count++;
       
   831                 StatArray[ix_beg].t1_space += (unsigned short)hb_len;
       
   832                 StatArray[ix_beg].t1_age    = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age;
       
   833               } else {
       
   834                 nBlocks_t2++;
       
   835                 t2Space   += hb_bytelen;
       
   836                 StatArray[ix_beg].t2_count++;
       
   837                 StatArray[ix_beg].t2_space += (unsigned short)hb_len;
       
   838                 StatArray[ix_beg].t2_age    = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age;
       
   839               }
       
   840               StatArray[ix_beg].level     = comp_lvl;
       
   841               StatArray[ix_beg].compiler  = cType;
       
   842               break;
       
   843             case nMethod_alive:
       
   844               StatArray[ix_beg].tx_count++;
       
   845               StatArray[ix_beg].tx_space += (unsigned short)hb_len;
       
   846               StatArray[ix_beg].tx_age    = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age;
       
   847               StatArray[ix_beg].level     = comp_lvl;
       
   848               StatArray[ix_beg].compiler  = cType;
       
   849               break;
       
   850             case nMethod_dead:
       
   851             case nMethod_unloaded:
       
   852               StatArray[ix_beg].dead_count++;
       
   853               StatArray[ix_beg].dead_space += (unsigned short)hb_len;
       
   854               break;
       
   855             default:
       
   856               // must be a stub, if it's not a dead or alive nMethod
       
   857               nBlocks_stub++;
       
   858               stubSpace   += hb_bytelen;
       
   859               StatArray[ix_beg].stub_count++;
       
   860               StatArray[ix_beg].stub_space += (unsigned short)hb_len;
       
   861               break;
       
   862           }
       
   863         } else {
       
   864           unsigned int beg_space = (unsigned int)(granule_size - ((char*)h - low_bound - ix_beg*granule_size));
       
   865           unsigned int end_space = (unsigned int)(hb_bytelen - beg_space - (ix_end-ix_beg-1)*granule_size);
       
   866           beg_space = beg_space>>log2_seg_size;  // store in units of _segment_size
       
   867           end_space = end_space>>log2_seg_size;  // store in units of _segment_size
       
   868           StatArray[ix_beg].type = cbType;
       
   869           StatArray[ix_end].type = cbType;
       
   870           switch (cbType) {
       
   871             case nMethod_inuse:
       
   872               highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id;
       
   873               if (comp_lvl < CompLevel_full_optimization) {
       
   874                 nBlocks_t1++;
       
   875                 t1Space   += hb_bytelen;
       
   876                 StatArray[ix_beg].t1_count++;
       
   877                 StatArray[ix_beg].t1_space += (unsigned short)beg_space;
       
   878                 StatArray[ix_beg].t1_age    = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age;
       
   879 
       
   880                 StatArray[ix_end].t1_count++;
       
   881                 StatArray[ix_end].t1_space += (unsigned short)end_space;
       
   882                 StatArray[ix_end].t1_age    = StatArray[ix_end].t1_age < compile_id ? compile_id : StatArray[ix_end].t1_age;
       
   883               } else {
       
   884                 nBlocks_t2++;
       
   885                 t2Space   += hb_bytelen;
       
   886                 StatArray[ix_beg].t2_count++;
       
   887                 StatArray[ix_beg].t2_space += (unsigned short)beg_space;
       
   888                 StatArray[ix_beg].t2_age    = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age;
       
   889 
       
   890                 StatArray[ix_end].t2_count++;
       
   891                 StatArray[ix_end].t2_space += (unsigned short)end_space;
       
   892                 StatArray[ix_end].t2_age    = StatArray[ix_end].t2_age < compile_id ? compile_id : StatArray[ix_end].t2_age;
       
   893               }
       
   894               StatArray[ix_beg].level     = comp_lvl;
       
   895               StatArray[ix_beg].compiler  = cType;
       
   896               StatArray[ix_end].level     = comp_lvl;
       
   897               StatArray[ix_end].compiler  = cType;
       
   898               break;
       
   899             case nMethod_alive:
       
   900               StatArray[ix_beg].tx_count++;
       
   901               StatArray[ix_beg].tx_space += (unsigned short)beg_space;
       
   902               StatArray[ix_beg].tx_age    = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age;
       
   903 
       
   904               StatArray[ix_end].tx_count++;
       
   905               StatArray[ix_end].tx_space += (unsigned short)end_space;
       
   906               StatArray[ix_end].tx_age    = StatArray[ix_end].tx_age < compile_id ? compile_id : StatArray[ix_end].tx_age;
       
   907 
       
   908               StatArray[ix_beg].level     = comp_lvl;
       
   909               StatArray[ix_beg].compiler  = cType;
       
   910               StatArray[ix_end].level     = comp_lvl;
       
   911               StatArray[ix_end].compiler  = cType;
       
   912               break;
       
   913             case nMethod_dead:
       
   914             case nMethod_unloaded:
       
   915               StatArray[ix_beg].dead_count++;
       
   916               StatArray[ix_beg].dead_space += (unsigned short)beg_space;
       
   917               StatArray[ix_end].dead_count++;
       
   918               StatArray[ix_end].dead_space += (unsigned short)end_space;
       
   919               break;
       
   920             default:
       
   921               // must be a stub, if it's not a dead or alive nMethod
       
   922               nBlocks_stub++;
       
   923               stubSpace   += hb_bytelen;
       
   924               StatArray[ix_beg].stub_count++;
       
   925               StatArray[ix_beg].stub_space += (unsigned short)beg_space;
       
   926               StatArray[ix_end].stub_count++;
       
   927               StatArray[ix_end].stub_space += (unsigned short)end_space;
       
   928               break;
       
   929           }
       
   930           for (unsigned int ix = ix_beg+1; ix < ix_end; ix++) {
       
   931             StatArray[ix].type = cbType;
       
   932             switch (cbType) {
       
   933               case nMethod_inuse:
       
   934                 if (comp_lvl < CompLevel_full_optimization) {
       
   935                   StatArray[ix].t1_count++;
       
   936                   StatArray[ix].t1_space += (unsigned short)(granule_size>>log2_seg_size);
       
   937                   StatArray[ix].t1_age    = StatArray[ix].t1_age < compile_id ? compile_id : StatArray[ix].t1_age;
       
   938                 } else {
       
   939                   StatArray[ix].t2_count++;
       
   940                   StatArray[ix].t2_space += (unsigned short)(granule_size>>log2_seg_size);
       
   941                   StatArray[ix].t2_age    = StatArray[ix].t2_age < compile_id ? compile_id : StatArray[ix].t2_age;
       
   942                 }
       
   943                 StatArray[ix].level     = comp_lvl;
       
   944                 StatArray[ix].compiler  = cType;
       
   945                 break;
       
   946               case nMethod_alive:
       
   947                 StatArray[ix].tx_count++;
       
   948                 StatArray[ix].tx_space += (unsigned short)(granule_size>>log2_seg_size);
       
   949                 StatArray[ix].tx_age    = StatArray[ix].tx_age < compile_id ? compile_id : StatArray[ix].tx_age;
       
   950                 StatArray[ix].level     = comp_lvl;
       
   951                 StatArray[ix].compiler  = cType;
       
   952                 break;
       
   953               case nMethod_dead:
       
   954               case nMethod_unloaded:
       
   955                 StatArray[ix].dead_count++;
       
   956                 StatArray[ix].dead_space += (unsigned short)(granule_size>>log2_seg_size);
       
   957                 break;
       
   958               default:
       
   959                 // must be a stub, if it's not a dead or alive nMethod
       
   960                 StatArray[ix].stub_count++;
       
   961                 StatArray[ix].stub_space += (unsigned short)(granule_size>>log2_seg_size);
       
   962                 break;
       
   963             }
       
   964           }
       
   965         }
       
   966       }
       
   967     }
       
   968     if (n_methods > 0) {
       
   969       avgTemp = hotnessAccumulator/n_methods;
       
   970     } else {
       
   971       avgTemp = 0;
       
   972     }
       
   973     done = true;
       
   974 
       
   975     if (!insane) {
       
   976       // There is a risk for this block (because it contains many print statements) to get
       
   977       // interspersed with print data from other threads. We take this risk intentionally.
       
   978       // Getting stalled waiting for tty_lock while holding the CodeCache_lock is not desirable.
       
   979       printBox(ast, '-', "Global CodeHeap statistics for segment ", heapName);
       
   980       ast->print_cr("freeSpace        = " SIZE_FORMAT_W(8) "k, nBlocks_free     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", freeSpace/(size_t)K,     nBlocks_free,     (100.0*freeSpace)/size,     (100.0*freeSpace)/res_size);
       
   981       ast->print_cr("usedSpace        = " SIZE_FORMAT_W(8) "k, nBlocks_used     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", usedSpace/(size_t)K,     nBlocks_used,     (100.0*usedSpace)/size,     (100.0*usedSpace)/res_size);
       
   982       ast->print_cr("  Tier1 Space    = " SIZE_FORMAT_W(8) "k, nBlocks_t1       = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t1Space/(size_t)K,       nBlocks_t1,       (100.0*t1Space)/size,       (100.0*t1Space)/res_size);
       
   983       ast->print_cr("  Tier2 Space    = " SIZE_FORMAT_W(8) "k, nBlocks_t2       = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t2Space/(size_t)K,       nBlocks_t2,       (100.0*t2Space)/size,       (100.0*t2Space)/res_size);
       
   984       ast->print_cr("  Alive Space    = " SIZE_FORMAT_W(8) "k, nBlocks_alive    = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", aliveSpace/(size_t)K,    nBlocks_alive,    (100.0*aliveSpace)/size,    (100.0*aliveSpace)/res_size);
       
   985       ast->print_cr("    disconnected = " SIZE_FORMAT_W(8) "k, nBlocks_disconn  = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", disconnSpace/(size_t)K,  nBlocks_disconn,  (100.0*disconnSpace)/size,  (100.0*disconnSpace)/res_size);
       
   986       ast->print_cr("    not entrant  = " SIZE_FORMAT_W(8) "k, nBlocks_notentr  = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", notentrSpace/(size_t)K,  nBlocks_notentr,  (100.0*notentrSpace)/size,  (100.0*notentrSpace)/res_size);
       
   987       ast->print_cr("  unloadedSpace  = " SIZE_FORMAT_W(8) "k, nBlocks_unloaded = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", unloadedSpace/(size_t)K, nBlocks_unloaded, (100.0*unloadedSpace)/size, (100.0*unloadedSpace)/res_size);
       
   988       ast->print_cr("  deadSpace      = " SIZE_FORMAT_W(8) "k, nBlocks_dead     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", deadSpace/(size_t)K,     nBlocks_dead,     (100.0*deadSpace)/size,     (100.0*deadSpace)/res_size);
       
   989       ast->print_cr("  stubSpace      = " SIZE_FORMAT_W(8) "k, nBlocks_stub     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", stubSpace/(size_t)K,     nBlocks_stub,     (100.0*stubSpace)/size,     (100.0*stubSpace)/res_size);
       
   990       ast->print_cr("ZombieBlocks     = %8d. These are HeapBlocks which could not be identified as CodeBlobs.", nBlocks_zomb);
       
   991       ast->print_cr("latest allocated compilation id = %d", latest_compilation_id);
       
   992       ast->print_cr("highest observed compilation id = %d", highest_compilation_id);
       
   993       ast->print_cr("Building TopSizeList iterations = %ld", total_iterations);
       
   994       ast->cr();
       
   995 
       
   996       int             reset_val = NMethodSweeper::hotness_counter_reset_val();
       
   997       double reverse_free_ratio = (res_size > size) ? (double)res_size/(double)(res_size-size) : (double)res_size;
       
   998       printBox(ast, '-', "Method hotness information at time of this analysis", NULL);
       
   999       ast->print_cr("Highest possible method temperature:          %12d", reset_val);
       
  1000       ast->print_cr("Threshold for method to be considered 'cold': %12.3f", -reset_val + reverse_free_ratio * NmethodSweepActivity);
       
  1001       ast->print_cr("min. hotness = %6d", minTemp);
       
  1002       ast->print_cr("avg. hotness = %6d", avgTemp);
       
  1003       ast->print_cr("max. hotness = %6d", maxTemp);
       
  1004       STRINGSTREAM_FLUSH("\n")
       
  1005 
       
  1006       // This loop is intentionally printing directly to "out".
       
  1007       out->print("Verifying collected data...");
       
  1008       size_t granule_segs = granule_size>>log2_seg_size;
       
  1009       for (unsigned int ix = 0; ix < granules; ix++) {
       
  1010         if (StatArray[ix].t1_count   > granule_segs) {
       
  1011           out->print_cr("t1_count[%d]   = %d", ix, StatArray[ix].t1_count);
       
  1012         }
       
  1013         if (StatArray[ix].t2_count   > granule_segs) {
       
  1014           out->print_cr("t2_count[%d]   = %d", ix, StatArray[ix].t2_count);
       
  1015         }
       
  1016         if (StatArray[ix].stub_count > granule_segs) {
       
  1017           out->print_cr("stub_count[%d] = %d", ix, StatArray[ix].stub_count);
       
  1018         }
       
  1019         if (StatArray[ix].dead_count > granule_segs) {
       
  1020           out->print_cr("dead_count[%d] = %d", ix, StatArray[ix].dead_count);
       
  1021         }
       
  1022         if (StatArray[ix].t1_space   > granule_segs) {
       
  1023           out->print_cr("t1_space[%d]   = %d", ix, StatArray[ix].t1_space);
       
  1024         }
       
  1025         if (StatArray[ix].t2_space   > granule_segs) {
       
  1026           out->print_cr("t2_space[%d]   = %d", ix, StatArray[ix].t2_space);
       
  1027         }
       
  1028         if (StatArray[ix].stub_space > granule_segs) {
       
  1029           out->print_cr("stub_space[%d] = %d", ix, StatArray[ix].stub_space);
       
  1030         }
       
  1031         if (StatArray[ix].dead_space > granule_segs) {
       
  1032           out->print_cr("dead_space[%d] = %d", ix, StatArray[ix].dead_space);
       
  1033         }
       
  1034         //   this cast is awful! I need it because NT/Intel reports a signed/unsigned mismatch.
       
  1035         if ((size_t)(StatArray[ix].t1_count+StatArray[ix].t2_count+StatArray[ix].stub_count+StatArray[ix].dead_count) > granule_segs) {
       
  1036           out->print_cr("t1_count[%d] = %d, t2_count[%d] = %d, stub_count[%d] = %d", ix, StatArray[ix].t1_count, ix, StatArray[ix].t2_count, ix, StatArray[ix].stub_count);
       
  1037         }
       
  1038         if ((size_t)(StatArray[ix].t1_space+StatArray[ix].t2_space+StatArray[ix].stub_space+StatArray[ix].dead_space) > granule_segs) {
       
  1039           out->print_cr("t1_space[%d] = %d, t2_space[%d] = %d, stub_space[%d] = %d", ix, StatArray[ix].t1_space, ix, StatArray[ix].t2_space, ix, StatArray[ix].stub_space);
       
  1040         }
       
  1041       }
       
  1042 
       
  1043       // This loop is intentionally printing directly to "out".
       
  1044       if (used_topSizeBlocks > 0) {
       
  1045         unsigned int j = 0;
       
  1046         if (TopSizeArray[0].len != currMax) {
       
  1047           out->print_cr("currMax(%d) differs from TopSizeArray[0].len(%d)", currMax, TopSizeArray[0].len);
       
  1048         }
       
  1049         for (unsigned int i = 0; (TopSizeArray[i].index != tsbStopper) && (j++ < alloc_topSizeBlocks); i = TopSizeArray[i].index) {
       
  1050           if (TopSizeArray[i].len < TopSizeArray[TopSizeArray[i].index].len) {
       
  1051             out->print_cr("sort error at index %d: %d !>= %d", i, TopSizeArray[i].len, TopSizeArray[TopSizeArray[i].index].len);
       
  1052           }
       
  1053         }
       
  1054         if (j >= alloc_topSizeBlocks) {
       
  1055           out->print_cr("Possible loop in TopSizeArray chaining!\n  allocBlocks = %d, usedBlocks = %d", alloc_topSizeBlocks, used_topSizeBlocks);
       
  1056           for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
       
  1057             out->print_cr("  TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
       
  1058           }
       
  1059         }
       
  1060       }
       
  1061       out->print_cr("...done\n\n");
       
  1062     } else {
       
  1063       // insane heap state detected. Analysis data incomplete. Just throw it away.
       
  1064       discard_StatArray(out);
       
  1065       discard_TopSizeArray(out);
       
  1066     }
       
  1067   }
       
  1068 
       
  1069 
       
  1070   done        = false;
       
  1071   while (!done && (nBlocks_free > 0)) {
       
  1072 
       
  1073     printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (free blocks) for segment ", heapName);
       
  1074     ast->print_cr("   The aggregate step collects information about all free blocks in CodeHeap.\n"
       
  1075                   "   Subsequent print functions create their output based on this snapshot.\n");
       
  1076     ast->print_cr("   Free space in %s is distributed over %d free blocks.", heapName, nBlocks_free);
       
  1077     ast->print_cr("   Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT "K in total.", sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K);
       
  1078     STRINGSTREAM_FLUSH("\n")
       
  1079 
       
  1080     //----------------------------------------
       
  1081     //--  Prepare the FreeArray of FreeBlks --
       
  1082     //----------------------------------------
       
  1083 
       
  1084     //---< discard old array if size does not match  >---
       
  1085     if (nBlocks_free != alloc_freeBlocks) {
       
  1086       discard_FreeArray(out);
       
  1087     }
       
  1088 
       
  1089     prepare_FreeArray(out, nBlocks_free, heapName);
       
  1090     if (FreeArray == NULL) {
       
  1091       done = true;
       
  1092       continue;
       
  1093     }
       
  1094 
       
  1095     //----------------------------------------
       
  1096     //--  Collect all FreeBlks in FreeArray --
       
  1097     //----------------------------------------
       
  1098 
       
  1099     unsigned int ix = 0;
       
  1100     FreeBlock* cur  = heap->freelist();
       
  1101 
       
  1102     while (cur != NULL) {
       
  1103       if (ix < alloc_freeBlocks) { // don't index out of bounds if _freelist has more blocks than anticipated
       
  1104         FreeArray[ix].start = cur;
       
  1105         FreeArray[ix].len   = (unsigned int)(cur->length()<<log2_seg_size);
       
  1106         FreeArray[ix].index = ix;
       
  1107       }
       
  1108       cur  = cur->link();
       
  1109       ix++;
       
  1110     }
       
  1111     if (ix != alloc_freeBlocks) {
       
  1112       ast->print_cr("Free block count mismatch. Expected %d free blocks, but found %d.", alloc_freeBlocks, ix);
       
  1113       ast->print_cr("I will update the counter and retry data collection");
       
  1114       STRINGSTREAM_FLUSH("\n")
       
  1115       nBlocks_free = ix;
       
  1116       continue;
       
  1117     }
       
  1118     done = true;
       
  1119   }
       
  1120 
       
  1121   if (!done || (nBlocks_free == 0)) {
       
  1122     if (nBlocks_free == 0) {
       
  1123       printBox(ast, '-', "no free blocks found in", heapName);
       
  1124     } else if (!done) {
       
  1125       ast->print_cr("Free block count mismatch could not be resolved.");
       
  1126       ast->print_cr("Try to run \"aggregate\" function to update counters");
       
  1127     }
       
  1128     STRINGSTREAM_FLUSH("")
       
  1129 
       
  1130     //---< discard old array and update global values  >---
       
  1131     discard_FreeArray(out);
       
  1132     set_HeapStatGlobals(out, heapName);
       
  1133     return;
       
  1134   }
       
  1135 
       
  1136   //---<  calculate and fill remaining fields  >---
       
  1137   if (FreeArray != NULL) {
       
  1138     // This loop is intentionally printing directly to "out".
       
  1139     for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
       
  1140       size_t lenSum = 0;
       
  1141       FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len));
       
  1142       for (HeapBlock *h = heap->next_block(FreeArray[ix].start); (h != NULL) && (h != FreeArray[ix+1].start); h = heap->next_block(h)) {
       
  1143         CodeBlob *cb  = (CodeBlob*)(heap->find_start(h));
       
  1144         if ((cb != NULL) && !cb->is_nmethod()) {
       
  1145           FreeArray[ix].stubs_in_gap = true;
       
  1146         }
       
  1147         FreeArray[ix].n_gapBlocks++;
       
  1148         lenSum += h->length()<<log2_seg_size;
       
  1149         if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) {
       
  1150           out->print_cr("unsorted occupied CodeHeap block found @ %p, gap interval [%p, %p)", h, (address)FreeArray[ix].start+FreeArray[ix].len, FreeArray[ix+1].start);
       
  1151         }
       
  1152       }
       
  1153       if (lenSum != FreeArray[ix].gap) {
       
  1154         out->print_cr("Length mismatch for gap between FreeBlk[%d] and FreeBlk[%d]. Calculated: %d, accumulated: %d.", ix, ix+1, FreeArray[ix].gap, (unsigned int)lenSum);
       
  1155       }
       
  1156     }
       
  1157   }
       
  1158   set_HeapStatGlobals(out, heapName);
       
  1159 
       
  1160   printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   C O M P L E T E   for segment ", heapName);
       
  1161   STRINGSTREAM_FLUSH("\n")
       
  1162 }
       
  1163 
       
  1164 
       
  1165 void CodeHeapState::print_usedSpace(outputStream* out, CodeHeap* heap) {
       
  1166   if (!initialization_complete) {
       
  1167     return;
       
  1168   }
       
  1169 
       
  1170   const char* heapName   = get_heapName(heap);
       
  1171   get_HeapStatGlobals(out, heapName);
       
  1172 
       
  1173   if ((StatArray == NULL) || (TopSizeArray == NULL) || (used_topSizeBlocks == 0)) {
       
  1174     return;
       
  1175   }
       
  1176   STRINGSTREAM_DECL(ast, out)
       
  1177 
       
  1178   {
       
  1179     printBox(ast, '=', "U S E D   S P A C E   S T A T I S T I C S   for ", heapName);
       
  1180     ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n"
       
  1181                   "      and other identifying information with the block size data.\n"
       
  1182                   "\n"
       
  1183                   "      Method names are dynamically retrieved from the code cache at print time.\n"
       
  1184                   "      Due to the living nature of the code cache and because the CodeCache_lock\n"
       
  1185                   "      is not continuously held, the displayed name might be wrong or no name\n"
       
  1186                   "      might be found at all. The likelihood for that to happen increases\n"
       
  1187                   "      over time passed between analysis and print step.\n", used_topSizeBlocks);
       
  1188     STRINGSTREAM_FLUSH_LOCKED("\n")
       
  1189   }
       
  1190 
       
  1191   //----------------------------
       
  1192   //--  Print Top Used Blocks --
       
  1193   //----------------------------
       
  1194   {
       
  1195     char*     low_bound = heap->low_boundary();
       
  1196 
       
  1197     printBox(ast, '-', "Largest Used Blocks in ", heapName);
       
  1198     print_blobType_legend(ast);
       
  1199 
       
  1200     ast->fill_to(51);
       
  1201     ast->print("%4s", "blob");
       
  1202     ast->fill_to(56);
       
  1203     ast->print("%9s", "compiler");
       
  1204     ast->fill_to(66);
       
  1205     ast->print_cr("%6s", "method");
       
  1206     ast->print_cr("%18s %13s %17s %4s %9s  %5s %s",      "Addr(module)      ", "offset", "size", "type", " type lvl", " temp", "Name");
       
  1207     STRINGSTREAM_FLUSH_LOCKED("")
       
  1208 
       
  1209     //---<  print Top Ten Used Blocks  >---
       
  1210     if (used_topSizeBlocks > 0) {
       
  1211       unsigned int printed_topSizeBlocks = 0;
       
  1212       for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
       
  1213         printed_topSizeBlocks++;
       
  1214         CodeBlob*   this_blob = (CodeBlob*)(heap->find_start(TopSizeArray[i].start));
       
  1215         nmethod*           nm = NULL;
       
  1216         const char* blob_name = "unnamed blob";
       
  1217         if (this_blob != NULL) {
       
  1218           blob_name = this_blob->name();
       
  1219           nm        = this_blob->as_nmethod_or_null();
       
  1220           //---<  blob address  >---
       
  1221           ast->print("%p", this_blob);
       
  1222           ast->fill_to(19);
       
  1223           //---<  blob offset from CodeHeap begin  >---
       
  1224           ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
       
  1225           ast->fill_to(33);
       
  1226         } else {
       
  1227           //---<  block address  >---
       
  1228           ast->print("%p", TopSizeArray[i].start);
       
  1229           ast->fill_to(19);
       
  1230           //---<  block offset from CodeHeap begin  >---
       
  1231           ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)TopSizeArray[i].start-low_bound));
       
  1232           ast->fill_to(33);
       
  1233         }
       
  1234 
       
  1235 
       
  1236         //---<  print size, name, and signature (for nMethods)  >---
       
  1237         if ((nm != NULL) && (nm->method() != NULL)) {
       
  1238           ResourceMark rm;
       
  1239           //---<  nMethod size in hex  >---
       
  1240           unsigned int total_size = nm->total_size();
       
  1241           ast->print(PTR32_FORMAT, total_size);
       
  1242           ast->print("(%4ldK)", total_size/K);
       
  1243           ast->fill_to(51);
       
  1244           ast->print("  %c", blobTypeChar[TopSizeArray[i].type]);
       
  1245           //---<  compiler information  >---
       
  1246           ast->fill_to(56);
       
  1247           ast->print("%5s %3d", compTypeName[TopSizeArray[i].compiler], TopSizeArray[i].level);
       
  1248           //---<  method temperature  >---
       
  1249           ast->fill_to(67);
       
  1250           ast->print("%5d", nm->hotness_counter());
       
  1251           //---<  name and signature  >---
       
  1252           ast->fill_to(67+6);
       
  1253           if (nm->is_in_use())      {blob_name = nm->method()->name_and_sig_as_C_string(); }
       
  1254           if (nm->is_not_entrant()) {blob_name = nm->method()->name_and_sig_as_C_string(); }
       
  1255           if (nm->is_zombie())      {ast->print("%14s", " zombie method"); }
       
  1256           ast->print("%s", blob_name);
       
  1257         } else {
       
  1258           //---<  block size in hex  >---
       
  1259           ast->print(PTR32_FORMAT, (unsigned int)(TopSizeArray[i].len<<log2_seg_size));
       
  1260           ast->print("(%4ldK)", (TopSizeArray[i].len<<log2_seg_size)/K);
       
  1261           //---<  no compiler information  >---
       
  1262           ast->fill_to(56);
       
  1263           //---<  name and signature  >---
       
  1264           ast->fill_to(67+6);
       
  1265           ast->print("%s", blob_name);
       
  1266         }
       
  1267         STRINGSTREAM_FLUSH_LOCKED("\n")
       
  1268       }
       
  1269       if (used_topSizeBlocks != printed_topSizeBlocks) {
       
  1270         ast->print_cr("used blocks: %d, printed blocks: %d", used_topSizeBlocks, printed_topSizeBlocks);
       
  1271         STRINGSTREAM_FLUSH("")
       
  1272         for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
       
  1273           ast->print_cr("  TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
       
  1274           STRINGSTREAM_FLUSH("")
       
  1275         }
       
  1276       }
       
  1277       STRINGSTREAM_FLUSH_LOCKED("\n\n")
       
  1278     }
       
  1279   }
       
  1280 
       
  1281   //-----------------------------
       
  1282   //--  Print Usage Histogram  --
       
  1283   //-----------------------------
       
  1284 
       
  1285   if (SizeDistributionArray != NULL) {
       
  1286     unsigned long total_count = 0;
       
  1287     unsigned long total_size  = 0;
       
  1288     const unsigned long pctFactor = 200;
       
  1289 
       
  1290     for (unsigned int i = 0; i < nSizeDistElements; i++) {
       
  1291       total_count += SizeDistributionArray[i].count;
       
  1292       total_size  += SizeDistributionArray[i].lenSum;
       
  1293     }
       
  1294 
       
  1295     if ((total_count > 0) && (total_size > 0)) {
       
  1296       printBox(ast, '-', "Block count histogram for ", heapName);
       
  1297       ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n"
       
  1298                     "      of all blocks) have a size in the given range.\n"
       
  1299                     "      %ld characters are printed per percentage point.\n", pctFactor/100);
       
  1300       ast->print_cr("total size   of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
       
  1301       ast->print_cr("total number of all blocks: %7ld\n", total_count);
       
  1302       STRINGSTREAM_FLUSH_LOCKED("")
       
  1303 
       
  1304       ast->print_cr("[Size Range)------avg.-size-+----count-+");
       
  1305       for (unsigned int i = 0; i < nSizeDistElements; i++) {
       
  1306         if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
       
  1307           ast->print("[%5d ..%5d ): "
       
  1308                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)
       
  1309                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
       
  1310                     );
       
  1311         } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
       
  1312           ast->print("[%5ldK..%5ldK): "
       
  1313                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
       
  1314                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
       
  1315                     );
       
  1316         } else {
       
  1317           ast->print("[%5ldM..%5ldM): "
       
  1318                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
       
  1319                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
       
  1320                     );
       
  1321         }
       
  1322         ast->print(" %8d | %8d |",
       
  1323                    SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
       
  1324                    SizeDistributionArray[i].count);
       
  1325 
       
  1326         unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count;
       
  1327         for (unsigned int j = 1; j <= percent; j++) {
       
  1328           ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
       
  1329         }
       
  1330         ast->cr();
       
  1331       }
       
  1332       ast->print_cr("----------------------------+----------+\n\n");
       
  1333       STRINGSTREAM_FLUSH_LOCKED("\n")
       
  1334 
       
  1335       printBox(ast, '-', "Contribution per size range to total size for ", heapName);
       
  1336       ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n"
       
  1337                     "      occupied space) is used by the blocks in the given size range.\n"
       
  1338                     "      %ld characters are printed per percentage point.\n", pctFactor/100);
       
  1339       ast->print_cr("total size   of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
       
  1340       ast->print_cr("total number of all blocks: %7ld\n", total_count);
       
  1341       STRINGSTREAM_FLUSH_LOCKED("")
       
  1342 
       
  1343       ast->print_cr("[Size Range)------avg.-size-+----count-+");
       
  1344       for (unsigned int i = 0; i < nSizeDistElements; i++) {
       
  1345         if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
       
  1346           ast->print("[%5d ..%5d ): "
       
  1347                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)
       
  1348                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
       
  1349                     );
       
  1350         } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
       
  1351           ast->print("[%5ldK..%5ldK): "
       
  1352                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
       
  1353                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
       
  1354                     );
       
  1355         } else {
       
  1356           ast->print("[%5ldM..%5ldM): "
       
  1357                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
       
  1358                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
       
  1359                     );
       
  1360         }
       
  1361         ast->print(" %8d | %8d |",
       
  1362                    SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
       
  1363                    SizeDistributionArray[i].count);
       
  1364 
       
  1365         unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size;
       
  1366         for (unsigned int j = 1; j <= percent; j++) {
       
  1367           ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
       
  1368         }
       
  1369         ast->cr();
       
  1370       }
       
  1371       ast->print_cr("----------------------------+----------+");
       
  1372       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
       
  1373     }
       
  1374   }
       
  1375 }
       
  1376 
       
  1377 
       
  1378 void CodeHeapState::print_freeSpace(outputStream* out, CodeHeap* heap) {
       
  1379   if (!initialization_complete) {
       
  1380     return;
       
  1381   }
       
  1382 
       
  1383   const char* heapName   = get_heapName(heap);
       
  1384   get_HeapStatGlobals(out, heapName);
       
  1385 
       
  1386   if ((StatArray == NULL) || (FreeArray == NULL) || (alloc_granules == 0)) {
       
  1387     return;
       
  1388   }
       
  1389   STRINGSTREAM_DECL(ast, out)
       
  1390 
       
  1391   {
       
  1392     printBox(ast, '=', "F R E E   S P A C E   S T A T I S T I C S   for ", heapName);
       
  1393     ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n"
       
  1394                   "      Those gaps are of interest if there is a chance that they become\n"
       
  1395                   "      unoccupied, e.g. by class unloading. Then, the two adjacent free\n"
       
  1396                   "      blocks, together with the now unoccupied space, form a new, large\n"
       
  1397                   "      free block.");
       
  1398     STRINGSTREAM_FLUSH_LOCKED("\n")
       
  1399   }
       
  1400 
       
  1401   {
       
  1402     printBox(ast, '-', "List of all Free Blocks in ", heapName);
       
  1403     STRINGSTREAM_FLUSH_LOCKED("")
       
  1404 
       
  1405     unsigned int ix = 0;
       
  1406     for (ix = 0; ix < alloc_freeBlocks-1; ix++) {
       
  1407       ast->print("%p: Len[%4d] = " HEX32_FORMAT ",", FreeArray[ix].start, ix, FreeArray[ix].len);
       
  1408       ast->fill_to(38);
       
  1409       ast->print("Gap[%4d..%4d]: " HEX32_FORMAT " bytes,", ix, ix+1, FreeArray[ix].gap);
       
  1410       ast->fill_to(71);
       
  1411       ast->print("block count: %6d", FreeArray[ix].n_gapBlocks);
       
  1412       if (FreeArray[ix].stubs_in_gap) {
       
  1413         ast->print(" !! permanent gap, contains stubs and/or blobs !!");
       
  1414       }
       
  1415       STRINGSTREAM_FLUSH_LOCKED("\n")
       
  1416     }
       
  1417     ast->print_cr("%p: Len[%4d] = " HEX32_FORMAT, FreeArray[ix].start, ix, FreeArray[ix].len);
       
  1418     STRINGSTREAM_FLUSH_LOCKED("\n\n")
       
  1419   }
       
  1420 
       
  1421 
       
  1422   //-----------------------------------------
       
  1423   //--  Find and Print Top Ten Free Blocks --
       
  1424   //-----------------------------------------
       
  1425 
       
  1426   //---<  find Top Ten Free Blocks  >---
       
  1427   const unsigned int nTop = 10;
       
  1428   unsigned int  currMax10 = 0;
       
  1429   struct FreeBlk* FreeTopTen[nTop];
       
  1430   memset(FreeTopTen, 0, sizeof(FreeTopTen));
       
  1431 
       
  1432   for (unsigned int ix = 0; ix < alloc_freeBlocks; ix++) {
       
  1433     if (FreeArray[ix].len > currMax10) {  // larger than the ten largest found so far
       
  1434       unsigned int currSize = FreeArray[ix].len;
       
  1435 
       
  1436       unsigned int iy;
       
  1437       for (iy = 0; iy < nTop && FreeTopTen[iy] != NULL; iy++) {
       
  1438         if (FreeTopTen[iy]->len < currSize) {
       
  1439           for (unsigned int iz = nTop-1; iz > iy; iz--) { // make room to insert new free block
       
  1440             FreeTopTen[iz] = FreeTopTen[iz-1];
       
  1441           }
       
  1442           FreeTopTen[iy] = &FreeArray[ix];        // insert new free block
       
  1443           if (FreeTopTen[nTop-1] != NULL) {
       
  1444             currMax10 = FreeTopTen[nTop-1]->len;
       
  1445           }
       
  1446           break; // done with this, check next free block
       
  1447         }
       
  1448       }
       
  1449       if (iy >= nTop) {
       
  1450         ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
       
  1451                       currSize, currMax10);
       
  1452         continue;
       
  1453       }
       
  1454       if (FreeTopTen[iy] == NULL) {
       
  1455         FreeTopTen[iy] = &FreeArray[ix];
       
  1456         if (iy == (nTop-1)) {
       
  1457           currMax10 = currSize;
       
  1458         }
       
  1459       }
       
  1460     }
       
  1461   }
       
  1462   STRINGSTREAM_FLUSH_LOCKED("")
       
  1463 
       
  1464   {
       
  1465     printBox(ast, '-', "Top Ten Free Blocks in ", heapName);
       
  1466 
       
  1467     //---<  print Top Ten Free Blocks  >---
       
  1468     for (unsigned int iy = 0; (iy < nTop) && (FreeTopTen[iy] != NULL); iy++) {
       
  1469       ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTen[iy]->index, FreeTopTen[iy]->len);
       
  1470       ast->fill_to(39);
       
  1471       if (FreeTopTen[iy]->index == (alloc_freeBlocks-1)) {
       
  1472         ast->print("last free block in list.");
       
  1473       } else {
       
  1474         ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTen[iy]->gap);
       
  1475         ast->fill_to(63);
       
  1476         ast->print("#blocks (in gap) %d", FreeTopTen[iy]->n_gapBlocks);
       
  1477       }
       
  1478       ast->cr();
       
  1479     }
       
  1480     STRINGSTREAM_FLUSH_LOCKED("\n\n")
       
  1481   }
       
  1482 
       
  1483 
       
  1484   //--------------------------------------------------------
       
  1485   //--  Find and Print Top Ten Free-Occupied-Free Triples --
       
  1486   //--------------------------------------------------------
       
  1487 
       
  1488   //---<  find and print Top Ten Triples (Free-Occupied-Free)  >---
       
  1489   currMax10 = 0;
       
  1490   struct FreeBlk  *FreeTopTenTriple[nTop];
       
  1491   memset(FreeTopTenTriple, 0, sizeof(FreeTopTenTriple));
       
  1492 
       
  1493   for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
       
  1494     // If there are stubs in the gap, this gap will never become completely free.
       
  1495     // The triple will thus never merge to one free block.
       
  1496     unsigned int lenTriple  = FreeArray[ix].len + (FreeArray[ix].stubs_in_gap ? 0 : FreeArray[ix].gap + FreeArray[ix+1].len);
       
  1497     FreeArray[ix].len = lenTriple;
       
  1498     if (lenTriple > currMax10) {  // larger than the ten largest found so far
       
  1499 
       
  1500       unsigned int iy;
       
  1501       for (iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
       
  1502         if (FreeTopTenTriple[iy]->len < lenTriple) {
       
  1503           for (unsigned int iz = nTop-1; iz > iy; iz--) {
       
  1504             FreeTopTenTriple[iz] = FreeTopTenTriple[iz-1];
       
  1505           }
       
  1506           FreeTopTenTriple[iy] = &FreeArray[ix];
       
  1507           if (FreeTopTenTriple[nTop-1] != NULL) {
       
  1508             currMax10 = FreeTopTenTriple[nTop-1]->len;
       
  1509           }
       
  1510           break;
       
  1511         }
       
  1512       }
       
  1513       if (iy == nTop) {
       
  1514         ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
       
  1515                       lenTriple, currMax10);
       
  1516         continue;
       
  1517       }
       
  1518       if (FreeTopTenTriple[iy] == NULL) {
       
  1519         FreeTopTenTriple[iy] = &FreeArray[ix];
       
  1520         if (iy == (nTop-1)) {
       
  1521           currMax10 = lenTriple;
       
  1522         }
       
  1523       }
       
  1524     }
       
  1525   }
       
  1526   STRINGSTREAM_FLUSH_LOCKED("")
       
  1527 
       
  1528   {
       
  1529     printBox(ast, '-', "Top Ten Free-Occupied-Free Triples in ", heapName);
       
  1530     ast->print_cr("  Use this information to judge how likely it is that a large(r) free block\n"
       
  1531                   "  might get created by code cache sweeping.\n"
       
  1532                   "  If all the occupied blocks can be swept, the three free blocks will be\n"
       
  1533                   "  merged into one (much larger) free block. That would reduce free space\n"
       
  1534                   "  fragmentation.\n");
       
  1535 
       
  1536     //---<  print Top Ten Free-Occupied-Free Triples  >---
       
  1537     for (unsigned int iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
       
  1538       ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTenTriple[iy]->index, FreeTopTenTriple[iy]->len);
       
  1539       ast->fill_to(39);
       
  1540       ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTenTriple[iy]->gap);
       
  1541       ast->fill_to(63);
       
  1542       ast->print("#blocks (in gap) %d", FreeTopTenTriple[iy]->n_gapBlocks);
       
  1543       ast->cr();
       
  1544     }
       
  1545     STRINGSTREAM_FLUSH_LOCKED("\n\n")
       
  1546   }
       
  1547 }
       
  1548 
       
  1549 
       
  1550 void CodeHeapState::print_count(outputStream* out, CodeHeap* heap) {
       
  1551   if (!initialization_complete) {
       
  1552     return;
       
  1553   }
       
  1554 
       
  1555   const char* heapName   = get_heapName(heap);
       
  1556   get_HeapStatGlobals(out, heapName);
       
  1557 
       
  1558   if ((StatArray == NULL) || (alloc_granules == 0)) {
       
  1559     return;
       
  1560   }
       
  1561   STRINGSTREAM_DECL(ast, out)
       
  1562 
       
  1563   unsigned int granules_per_line = 32;
       
  1564   char*        low_bound         = heap->low_boundary();
       
  1565 
       
  1566   {
       
  1567     printBox(ast, '=', "B L O C K   C O U N T S   for ", heapName);
       
  1568     ast->print_cr("  Each granule contains an individual number of heap blocks. Large blocks\n"
       
  1569                   "  may span multiple granules and are counted for each granule they touch.\n");
       
  1570     if (segment_granules) {
       
  1571       ast->print_cr("  You have selected granule size to be as small as segment size.\n"
       
  1572                     "  As a result, each granule contains exactly one block (or a part of one block)\n"
       
  1573                     "  or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
       
  1574                     "  Occupied granules show their BlobType character, see legend.\n");
       
  1575       print_blobType_legend(ast);
       
  1576     }
       
  1577     STRINGSTREAM_FLUSH_LOCKED("")
       
  1578   }
       
  1579 
       
  1580   {
       
  1581     if (segment_granules) {
       
  1582       printBox(ast, '-', "Total (all types) count for granule size == segment size", NULL);
       
  1583       STRINGSTREAM_FLUSH_LOCKED("")
       
  1584 
       
  1585       granules_per_line = 128;
       
  1586       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1587         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1588         print_blobType_single(ast, StatArray[ix].type);
       
  1589       }
       
  1590     } else {
       
  1591       printBox(ast, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
       
  1592       STRINGSTREAM_FLUSH_LOCKED("")
       
  1593 
       
  1594       granules_per_line = 128;
       
  1595       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1596         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1597         unsigned int count = StatArray[ix].t1_count   + StatArray[ix].t2_count   + StatArray[ix].tx_count
       
  1598                            + StatArray[ix].stub_count + StatArray[ix].dead_count;
       
  1599         print_count_single(ast, count);
       
  1600       }
       
  1601     }
       
  1602     STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  1603   }
       
  1604 
       
  1605   {
       
  1606     if (nBlocks_t1 > 0) {
       
  1607       printBox(ast, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
       
  1608       STRINGSTREAM_FLUSH_LOCKED("")
       
  1609 
       
  1610       granules_per_line = 128;
       
  1611       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1612         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1613         if (segment_granules && StatArray[ix].t1_count > 0) {
       
  1614           print_blobType_single(ast, StatArray[ix].type);
       
  1615         } else {
       
  1616           print_count_single(ast, StatArray[ix].t1_count);
       
  1617         }
       
  1618       }
       
  1619       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  1620     } else {
       
  1621       ast->print("No Tier1 nMethods found in CodeHeap.");
       
  1622       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
       
  1623     }
       
  1624   }
       
  1625 
       
  1626   {
       
  1627     if (nBlocks_t2 > 0) {
       
  1628       printBox(ast, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
       
  1629       STRINGSTREAM_FLUSH_LOCKED("")
       
  1630 
       
  1631       granules_per_line = 128;
       
  1632       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1633         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1634         if (segment_granules && StatArray[ix].t2_count > 0) {
       
  1635           print_blobType_single(ast, StatArray[ix].type);
       
  1636         } else {
       
  1637           print_count_single(ast, StatArray[ix].t2_count);
       
  1638         }
       
  1639       }
       
  1640       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  1641     } else {
       
  1642       ast->print("No Tier2 nMethods found in CodeHeap.");
       
  1643       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
       
  1644     }
       
  1645   }
       
  1646 
       
  1647   {
       
  1648     if (nBlocks_alive > 0) {
       
  1649       printBox(ast, '-', "not_used/not_entrant nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
       
  1650       STRINGSTREAM_FLUSH_LOCKED("")
       
  1651 
       
  1652       granules_per_line = 128;
       
  1653       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1654         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1655         if (segment_granules && StatArray[ix].tx_count > 0) {
       
  1656           print_blobType_single(ast, StatArray[ix].type);
       
  1657         } else {
       
  1658           print_count_single(ast, StatArray[ix].tx_count);
       
  1659         }
       
  1660       }
       
  1661       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  1662     } else {
       
  1663       ast->print("No not_used/not_entrant nMethods found in CodeHeap.");
       
  1664       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
       
  1665     }
       
  1666   }
       
  1667 
       
  1668   {
       
  1669     if (nBlocks_stub > 0) {
       
  1670       printBox(ast, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
       
  1671       STRINGSTREAM_FLUSH_LOCKED("")
       
  1672 
       
  1673       granules_per_line = 128;
       
  1674       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1675         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1676         if (segment_granules && StatArray[ix].stub_count > 0) {
       
  1677           print_blobType_single(ast, StatArray[ix].type);
       
  1678         } else {
       
  1679           print_count_single(ast, StatArray[ix].stub_count);
       
  1680         }
       
  1681       }
       
  1682       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  1683     } else {
       
  1684       ast->print("No Stubs and Blobs found in CodeHeap.");
       
  1685       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
       
  1686     }
       
  1687   }
       
  1688 
       
  1689   {
       
  1690     if (nBlocks_dead > 0) {
       
  1691       printBox(ast, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
       
  1692       STRINGSTREAM_FLUSH_LOCKED("")
       
  1693 
       
  1694       granules_per_line = 128;
       
  1695       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1696         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1697         if (segment_granules && StatArray[ix].dead_count > 0) {
       
  1698           print_blobType_single(ast, StatArray[ix].type);
       
  1699         } else {
       
  1700           print_count_single(ast, StatArray[ix].dead_count);
       
  1701         }
       
  1702       }
       
  1703       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  1704     } else {
       
  1705       ast->print("No dead nMethods found in CodeHeap.");
       
  1706       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
       
  1707     }
       
  1708   }
       
  1709 
       
  1710   {
       
  1711     if (!segment_granules) { // Prevent totally redundant printouts
       
  1712       printBox(ast, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks", NULL);
       
  1713       STRINGSTREAM_FLUSH_LOCKED("")
       
  1714 
       
  1715       granules_per_line = 24;
       
  1716       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1717         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1718 
       
  1719         print_count_single(ast, StatArray[ix].t1_count);
       
  1720         ast->print(":");
       
  1721         print_count_single(ast, StatArray[ix].t2_count);
       
  1722         ast->print(":");
       
  1723         if (segment_granules && StatArray[ix].stub_count > 0) {
       
  1724           print_blobType_single(ast, StatArray[ix].type);
       
  1725         } else {
       
  1726           print_count_single(ast, StatArray[ix].stub_count);
       
  1727         }
       
  1728         ast->print(" ");
       
  1729       }
       
  1730       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  1731     }
       
  1732   }
       
  1733 }
       
  1734 
       
  1735 
       
  1736 void CodeHeapState::print_space(outputStream* out, CodeHeap* heap) {
       
  1737   if (!initialization_complete) {
       
  1738     return;
       
  1739   }
       
  1740 
       
  1741   const char* heapName   = get_heapName(heap);
       
  1742   get_HeapStatGlobals(out, heapName);
       
  1743 
       
  1744   if ((StatArray == NULL) || (alloc_granules == 0)) {
       
  1745     return;
       
  1746   }
       
  1747   STRINGSTREAM_DECL(ast, out)
       
  1748 
       
  1749   unsigned int granules_per_line = 32;
       
  1750   char*        low_bound         = heap->low_boundary();
       
  1751 
       
  1752   {
       
  1753     printBox(ast, '=', "S P A C E   U S A G E  &  F R A G M E N T A T I O N   for ", heapName);
       
  1754     ast->print_cr("  The heap space covered by one granule is occupied to a various extend.\n"
       
  1755                   "  The granule occupancy is displayed by one decimal digit per granule.\n");
       
  1756     if (segment_granules) {
       
  1757       ast->print_cr("  You have selected granule size to be as small as segment size.\n"
       
  1758                     "  As a result, each granule contains exactly one block (or a part of one block)\n"
       
  1759                     "  or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
       
  1760                     "  Occupied granules show their BlobType character, see legend.\n");
       
  1761       print_blobType_legend(ast);
       
  1762     } else {
       
  1763       ast->print_cr("  These digits represent a fill percentage range (see legend).\n");
       
  1764       print_space_legend(ast);
       
  1765     }
       
  1766     STRINGSTREAM_FLUSH_LOCKED("")
       
  1767   }
       
  1768 
       
  1769   {
       
  1770     if (segment_granules) {
       
  1771       printBox(ast, '-', "Total (all types) space consumption for granule size == segment size", NULL);
       
  1772       STRINGSTREAM_FLUSH_LOCKED("")
       
  1773 
       
  1774       granules_per_line = 128;
       
  1775       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1776         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1777         print_blobType_single(ast, StatArray[ix].type);
       
  1778       }
       
  1779     } else {
       
  1780       printBox(ast, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full.", NULL);
       
  1781       STRINGSTREAM_FLUSH_LOCKED("")
       
  1782 
       
  1783       granules_per_line = 128;
       
  1784       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1785         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1786         unsigned int space    = StatArray[ix].t1_space   + StatArray[ix].t2_space  + StatArray[ix].tx_space
       
  1787                               + StatArray[ix].stub_space + StatArray[ix].dead_space;
       
  1788         print_space_single(ast, space);
       
  1789       }
       
  1790     }
       
  1791     STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  1792   }
       
  1793 
       
  1794   {
       
  1795     if (nBlocks_t1 > 0) {
       
  1796       printBox(ast, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full", NULL);
       
  1797       STRINGSTREAM_FLUSH_LOCKED("")
       
  1798 
       
  1799       granules_per_line = 128;
       
  1800       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1801         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1802         if (segment_granules && StatArray[ix].t1_space > 0) {
       
  1803           print_blobType_single(ast, StatArray[ix].type);
       
  1804         } else {
       
  1805           print_space_single(ast, StatArray[ix].t1_space);
       
  1806         }
       
  1807       }
       
  1808       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  1809     } else {
       
  1810       ast->print("No Tier1 nMethods found in CodeHeap.");
       
  1811       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
       
  1812     }
       
  1813   }
       
  1814 
       
  1815   {
       
  1816     if (nBlocks_t2 > 0) {
       
  1817       printBox(ast, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full", NULL);
       
  1818       STRINGSTREAM_FLUSH_LOCKED("")
       
  1819 
       
  1820       granules_per_line = 128;
       
  1821       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1822         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1823         if (segment_granules && StatArray[ix].t2_space > 0) {
       
  1824           print_blobType_single(ast, StatArray[ix].type);
       
  1825         } else {
       
  1826           print_space_single(ast, StatArray[ix].t2_space);
       
  1827         }
       
  1828       }
       
  1829       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  1830     } else {
       
  1831       ast->print("No Tier2 nMethods found in CodeHeap.");
       
  1832       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
       
  1833     }
       
  1834   }
       
  1835 
       
  1836   {
       
  1837     if (nBlocks_alive > 0) {
       
  1838       printBox(ast, '-', "not_used/not_entrant space consumption. ' ' indicates empty, '*' indicates full", NULL);
       
  1839 
       
  1840       granules_per_line = 128;
       
  1841       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1842         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1843         if (segment_granules && StatArray[ix].tx_space > 0) {
       
  1844           print_blobType_single(ast, StatArray[ix].type);
       
  1845         } else {
       
  1846           print_space_single(ast, StatArray[ix].tx_space);
       
  1847         }
       
  1848       }
       
  1849       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  1850     } else {
       
  1851       ast->print("No Tier2 nMethods found in CodeHeap.");
       
  1852       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
       
  1853     }
       
  1854   }
       
  1855 
       
  1856   {
       
  1857     if (nBlocks_stub > 0) {
       
  1858       printBox(ast, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full", NULL);
       
  1859       STRINGSTREAM_FLUSH_LOCKED("")
       
  1860 
       
  1861       granules_per_line = 128;
       
  1862       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1863         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1864         if (segment_granules && StatArray[ix].stub_space > 0) {
       
  1865           print_blobType_single(ast, StatArray[ix].type);
       
  1866         } else {
       
  1867           print_space_single(ast, StatArray[ix].stub_space);
       
  1868         }
       
  1869       }
       
  1870       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  1871     } else {
       
  1872       ast->print("No Stubs and Blobs found in CodeHeap.");
       
  1873       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
       
  1874     }
       
  1875   }
       
  1876 
       
  1877   {
       
  1878     if (nBlocks_dead > 0) {
       
  1879       printBox(ast, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full", NULL);
       
  1880       STRINGSTREAM_FLUSH_LOCKED("")
       
  1881 
       
  1882       granules_per_line = 128;
       
  1883       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1884         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1885         print_space_single(ast, StatArray[ix].dead_space);
       
  1886       }
       
  1887       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  1888     } else {
       
  1889       ast->print("No dead nMethods found in CodeHeap.");
       
  1890       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
       
  1891     }
       
  1892   }
       
  1893 
       
  1894   {
       
  1895     if (!segment_granules) { // Prevent totally redundant printouts
       
  1896       printBox(ast, '-', "Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full", NULL);
       
  1897       STRINGSTREAM_FLUSH_LOCKED("")
       
  1898 
       
  1899       granules_per_line = 24;
       
  1900       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1901         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1902 
       
  1903         if (segment_granules && StatArray[ix].t1_space > 0) {
       
  1904           print_blobType_single(ast, StatArray[ix].type);
       
  1905         } else {
       
  1906           print_space_single(ast, StatArray[ix].t1_space);
       
  1907         }
       
  1908         ast->print(":");
       
  1909         if (segment_granules && StatArray[ix].t2_space > 0) {
       
  1910           print_blobType_single(ast, StatArray[ix].type);
       
  1911         } else {
       
  1912           print_space_single(ast, StatArray[ix].t2_space);
       
  1913         }
       
  1914         ast->print(":");
       
  1915         if (segment_granules && StatArray[ix].stub_space > 0) {
       
  1916           print_blobType_single(ast, StatArray[ix].type);
       
  1917         } else {
       
  1918           print_space_single(ast, StatArray[ix].stub_space);
       
  1919         }
       
  1920         ast->print(" ");
       
  1921       }
       
  1922       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  1923     }
       
  1924   }
       
  1925 }
       
  1926 
       
  1927 void CodeHeapState::print_age(outputStream* out, CodeHeap* heap) {
       
  1928   if (!initialization_complete) {
       
  1929     return;
       
  1930   }
       
  1931 
       
  1932   const char* heapName   = get_heapName(heap);
       
  1933   get_HeapStatGlobals(out, heapName);
       
  1934 
       
  1935   if ((StatArray == NULL) || (alloc_granules == 0)) {
       
  1936     return;
       
  1937   }
       
  1938   STRINGSTREAM_DECL(ast, out)
       
  1939 
       
  1940   unsigned int granules_per_line = 32;
       
  1941   char*        low_bound         = heap->low_boundary();
       
  1942 
       
  1943   {
       
  1944     printBox(ast, '=', "M E T H O D   A G E   by CompileID for ", heapName);
       
  1945     ast->print_cr("  The age of a compiled method in the CodeHeap is not available as a\n"
       
  1946                   "  time stamp. Instead, a relative age is deducted from the method's compilation ID.\n"
       
  1947                   "  Age information is available for tier1 and tier2 methods only. There is no\n"
       
  1948                   "  age information for stubs and blobs, because they have no compilation ID assigned.\n"
       
  1949                   "  Information for the youngest method (highest ID) in the granule is printed.\n"
       
  1950                   "  Refer to the legend to learn how method age is mapped to the displayed digit.");
       
  1951     print_age_legend(ast);
       
  1952     STRINGSTREAM_FLUSH_LOCKED("")
       
  1953   }
       
  1954 
       
  1955   {
       
  1956     printBox(ast, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
       
  1957     STRINGSTREAM_FLUSH_LOCKED("")
       
  1958 
       
  1959     granules_per_line = 128;
       
  1960     for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1961       print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1962       unsigned int age1      = StatArray[ix].t1_age;
       
  1963       unsigned int age2      = StatArray[ix].t2_age;
       
  1964       unsigned int agex      = StatArray[ix].tx_age;
       
  1965       unsigned int age       = age1 > age2 ? age1 : age2;
       
  1966       age       = age > agex ? age : agex;
       
  1967       print_age_single(ast, age);
       
  1968     }
       
  1969     STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  1970   }
       
  1971 
       
  1972   {
       
  1973     if (nBlocks_t1 > 0) {
       
  1974       printBox(ast, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
       
  1975       STRINGSTREAM_FLUSH_LOCKED("")
       
  1976 
       
  1977       granules_per_line = 128;
       
  1978       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1979         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1980         print_age_single(ast, StatArray[ix].t1_age);
       
  1981       }
       
  1982       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  1983     } else {
       
  1984       ast->print("No Tier1 nMethods found in CodeHeap.");
       
  1985       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
       
  1986     }
       
  1987   }
       
  1988 
       
  1989   {
       
  1990     if (nBlocks_t2 > 0) {
       
  1991       printBox(ast, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
       
  1992       STRINGSTREAM_FLUSH_LOCKED("")
       
  1993 
       
  1994       granules_per_line = 128;
       
  1995       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  1996         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  1997         print_age_single(ast, StatArray[ix].t2_age);
       
  1998       }
       
  1999       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  2000     } else {
       
  2001       ast->print("No Tier2 nMethods found in CodeHeap.");
       
  2002       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
       
  2003     }
       
  2004   }
       
  2005 
       
  2006   {
       
  2007     if (nBlocks_alive > 0) {
       
  2008       printBox(ast, '-', "not_used/not_entrant age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
       
  2009       STRINGSTREAM_FLUSH_LOCKED("")
       
  2010 
       
  2011       granules_per_line = 128;
       
  2012       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  2013         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  2014         print_age_single(ast, StatArray[ix].tx_age);
       
  2015       }
       
  2016       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  2017     } else {
       
  2018       ast->print("No Tier2 nMethods found in CodeHeap.");
       
  2019       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
       
  2020     }
       
  2021   }
       
  2022 
       
  2023   {
       
  2024     if (!segment_granules) { // Prevent totally redundant printouts
       
  2025       printBox(ast, '-', "age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
       
  2026       STRINGSTREAM_FLUSH_LOCKED("")
       
  2027 
       
  2028       granules_per_line = 32;
       
  2029       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  2030         print_line_delim(out, ast, low_bound, ix, granules_per_line);
       
  2031         print_age_single(ast, StatArray[ix].t1_age);
       
  2032         ast->print(":");
       
  2033         print_age_single(ast, StatArray[ix].t2_age);
       
  2034         ast->print(" ");
       
  2035       }
       
  2036       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
       
  2037     }
       
  2038   }
       
  2039 }
       
  2040 
       
  2041 
       
  2042 void CodeHeapState::print_names(outputStream* out, CodeHeap* heap) {
       
  2043   if (!initialization_complete) {
       
  2044     return;
       
  2045   }
       
  2046 
       
  2047   const char* heapName   = get_heapName(heap);
       
  2048   get_HeapStatGlobals(out, heapName);
       
  2049 
       
  2050   if ((StatArray == NULL) || (alloc_granules == 0)) {
       
  2051     return;
       
  2052   }
       
  2053   STRINGSTREAM_DECL(ast, out)
       
  2054 
       
  2055   unsigned int granules_per_line  = 128;
       
  2056   char*        low_bound          = heap->low_boundary();
       
  2057   CodeBlob*    last_blob          = NULL;
       
  2058   bool         name_in_addr_range = true;
       
  2059 
       
  2060   //---<  print at least 128K per block  >---
       
  2061   if (granules_per_line*granule_size < 128*K) {
       
  2062     granules_per_line = (unsigned int)((128*K)/granule_size);
       
  2063   }
       
  2064 
       
  2065   printBox(ast, '=', "M E T H O D   N A M E S   for ", heapName);
       
  2066   ast->print_cr("  Method names are dynamically retrieved from the code cache at print time.\n"
       
  2067                 "  Due to the living nature of the code heap and because the CodeCache_lock\n"
       
  2068                 "  is not continuously held, the displayed name might be wrong or no name\n"
       
  2069                 "  might be found at all. The likelihood for that to happen increases\n"
       
  2070                 "  over time passed between analysis and print step.\n");
       
  2071   STRINGSTREAM_FLUSH_LOCKED("")
       
  2072 
       
  2073   for (unsigned int ix = 0; ix < alloc_granules; ix++) {
       
  2074     //---<  print a new blob on a new line  >---
       
  2075     if (ix%granules_per_line == 0) {
       
  2076       if (!name_in_addr_range) {
       
  2077         ast->print_cr("No methods, blobs, or stubs found in this address range");
       
  2078       }
       
  2079       name_in_addr_range = false;
       
  2080 
       
  2081       ast->cr();
       
  2082       ast->print_cr("--------------------------------------------------------------------");
       
  2083       ast->print_cr("Address range [%p,%p), " SIZE_FORMAT "k", low_bound+ix*granule_size, low_bound+(ix+granules_per_line)*granule_size, granules_per_line*granule_size/(size_t)K);
       
  2084       ast->print_cr("--------------------------------------------------------------------");
       
  2085       STRINGSTREAM_FLUSH_LOCKED("")
       
  2086     }
       
  2087     for (unsigned int is = 0; is < granule_size; is+=(unsigned int)seg_size) {
       
  2088       CodeBlob* this_blob = (CodeBlob *)(heap->find_start(low_bound+ix*granule_size+is));
       
  2089       if ((this_blob != NULL) && (this_blob != last_blob)) {
       
  2090         if (!name_in_addr_range) {
       
  2091           name_in_addr_range = true;
       
  2092           ast->fill_to(51);
       
  2093           ast->print("%9s", "compiler");
       
  2094           ast->fill_to(61);
       
  2095           ast->print_cr("%6s", "method");
       
  2096           ast->print_cr("%18s %13s %17s %9s  %5s %18s  %s", "Addr(module)      ", "offset", "size", " type lvl", " temp", "blobType          ", "Name");
       
  2097         }
       
  2098 
       
  2099         //---<  Print blobTypeName as recorded during analysis  >---
       
  2100         ast->print("%p", this_blob);
       
  2101         ast->fill_to(19);
       
  2102         ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
       
  2103         ast->fill_to(33);
       
  2104 
       
  2105         //---<  print size, name, and signature (for nMethods)  >---
       
  2106         const char *blob_name = this_blob->name();
       
  2107         nmethod*           nm = this_blob->as_nmethod_or_null();
       
  2108         blobType       cbType = noType;
       
  2109         if (segment_granules) {
       
  2110           cbType = (blobType)StatArray[ix].type;
       
  2111         } else {
       
  2112           cbType = get_cbType(this_blob);
       
  2113         }
       
  2114         if ((nm != NULL) && (nm->method() != NULL)) {
       
  2115           ResourceMark rm;
       
  2116           //---<  nMethod size in hex  >---
       
  2117           unsigned int total_size = nm->total_size();
       
  2118           ast->print(PTR32_FORMAT, total_size);
       
  2119           ast->print("(%4ldK)", total_size/K);
       
  2120           //---<  compiler information  >---
       
  2121           ast->fill_to(51);
       
  2122           ast->print("%5s %3d", compTypeName[StatArray[ix].compiler], StatArray[ix].level);
       
  2123           //---<  method temperature  >---
       
  2124           ast->fill_to(62);
       
  2125           ast->print("%5d", nm->hotness_counter());
       
  2126           //---<  name and signature  >---
       
  2127           ast->fill_to(62+6);
       
  2128           ast->print("%s", blobTypeName[cbType]);
       
  2129           ast->fill_to(82+6);
       
  2130           if (nm->is_in_use()) {
       
  2131             blob_name = nm->method()->name_and_sig_as_C_string();
       
  2132           }
       
  2133           if (nm->is_not_entrant()) {
       
  2134             blob_name = nm->method()->name_and_sig_as_C_string();
       
  2135           }
       
  2136           if (nm->is_zombie()) {
       
  2137             ast->print("%14s", " zombie method");
       
  2138           }
       
  2139           ast->print("%s", blob_name);
       
  2140         } else {
       
  2141           ast->fill_to(62+6);
       
  2142           ast->print("%s", blobTypeName[cbType]);
       
  2143           ast->fill_to(82+6);
       
  2144           ast->print("%s", blob_name);
       
  2145         }
       
  2146         STRINGSTREAM_FLUSH_LOCKED("\n")
       
  2147         last_blob          = this_blob;
       
  2148       }
       
  2149     }
       
  2150   }
       
  2151   STRINGSTREAM_FLUSH_LOCKED("\n\n")
       
  2152 }
       
  2153 
       
  2154 
       
  2155 void CodeHeapState::printBox(outputStream* ast, const char border, const char* text1, const char* text2) {
       
  2156   unsigned int lineLen = 1 + 2 + 2 + 1;
       
  2157   char edge, frame;
       
  2158 
       
  2159   if (text1 != NULL) {
       
  2160     lineLen += (unsigned int)strlen(text1); // text1 is much shorter than MAX_INT chars.
       
  2161   }
       
  2162   if (text2 != NULL) {
       
  2163     lineLen += (unsigned int)strlen(text2); // text2 is much shorter than MAX_INT chars.
       
  2164   }
       
  2165   if (border == '-') {
       
  2166     edge  = '+';
       
  2167     frame = '|';
       
  2168   } else {
       
  2169     edge  = border;
       
  2170     frame = border;
       
  2171   }
       
  2172 
       
  2173   ast->print("%c", edge);
       
  2174   for (unsigned int i = 0; i < lineLen-2; i++) {
       
  2175     ast->print("%c", border);
       
  2176   }
       
  2177   ast->print_cr("%c", edge);
       
  2178 
       
  2179   ast->print("%c  ", frame);
       
  2180   if (text1 != NULL) {
       
  2181     ast->print("%s", text1);
       
  2182   }
       
  2183   if (text2 != NULL) {
       
  2184     ast->print("%s", text2);
       
  2185   }
       
  2186   ast->print_cr("  %c", frame);
       
  2187 
       
  2188   ast->print("%c", edge);
       
  2189   for (unsigned int i = 0; i < lineLen-2; i++) {
       
  2190     ast->print("%c", border);
       
  2191   }
       
  2192   ast->print_cr("%c", edge);
       
  2193 }
       
  2194 
       
  2195 void CodeHeapState::print_blobType_legend(outputStream* out) {
       
  2196   out->cr();
       
  2197   printBox(out, '-', "Block types used in the following CodeHeap dump", NULL);
       
  2198   for (int type = noType; type < lastType; type += 1) {
       
  2199     out->print_cr("  %c - %s", blobTypeChar[type], blobTypeName[type]);
       
  2200   }
       
  2201   out->print_cr("  -----------------------------------------------------");
       
  2202   out->cr();
       
  2203 }
       
  2204 
       
  2205 void CodeHeapState::print_space_legend(outputStream* out) {
       
  2206   unsigned int indicator = 0;
       
  2207   unsigned int age_range = 256;
       
  2208   unsigned int range_beg = latest_compilation_id;
       
  2209   out->cr();
       
  2210   printBox(out, '-', "Space ranges, based on granule occupancy", NULL);
       
  2211   out->print_cr("    -   0%% == occupancy");
       
  2212   for (int i=0; i<=9; i++) {
       
  2213     out->print_cr("  %d - %3d%% < occupancy < %3d%%", i, 10*i, 10*(i+1));
       
  2214   }
       
  2215   out->print_cr("  * - 100%% == occupancy");
       
  2216   out->print_cr("  ----------------------------------------------");
       
  2217   out->cr();
       
  2218 }
       
  2219 
       
  2220 void CodeHeapState::print_age_legend(outputStream* out) {
       
  2221   unsigned int indicator = 0;
       
  2222   unsigned int age_range = 256;
       
  2223   unsigned int range_beg = latest_compilation_id;
       
  2224   out->cr();
       
  2225   printBox(out, '-', "Age ranges, based on compilation id", NULL);
       
  2226   while (age_range > 0) {
       
  2227     out->print_cr("  %d - %6d to %6d", indicator, range_beg, latest_compilation_id - latest_compilation_id/age_range);
       
  2228     range_beg = latest_compilation_id - latest_compilation_id/age_range;
       
  2229     age_range /= 2;
       
  2230     indicator += 1;
       
  2231   }
       
  2232   out->print_cr("  -----------------------------------------");
       
  2233   out->cr();
       
  2234 }
       
  2235 
       
  2236 void CodeHeapState::print_blobType_single(outputStream* out, u2 /* blobType */ type) {
       
  2237   out->print("%c", blobTypeChar[type]);
       
  2238 }
       
  2239 
       
  2240 void CodeHeapState::print_count_single(outputStream* out, unsigned short count) {
       
  2241   if (count >= 16)    out->print("*");
       
  2242   else if (count > 0) out->print("%1.1x", count);
       
  2243   else                out->print(" ");
       
  2244 }
       
  2245 
       
  2246 void CodeHeapState::print_space_single(outputStream* out, unsigned short space) {
       
  2247   size_t  space_in_bytes = ((unsigned int)space)<<log2_seg_size;
       
  2248   char    fraction       = (space == 0) ? ' ' : (space_in_bytes >= granule_size-1) ? '*' : char('0'+10*space_in_bytes/granule_size);
       
  2249   out->print("%c", fraction);
       
  2250 }
       
  2251 
       
  2252 void CodeHeapState::print_age_single(outputStream* out, unsigned int age) {
       
  2253   unsigned int indicator = 0;
       
  2254   unsigned int age_range = 256;
       
  2255   if (age > 0) {
       
  2256     while ((age_range > 0) && (latest_compilation_id-age > latest_compilation_id/age_range)) {
       
  2257       age_range /= 2;
       
  2258       indicator += 1;
       
  2259     }
       
  2260     out->print("%c", char('0'+indicator));
       
  2261   } else {
       
  2262     out->print(" ");
       
  2263   }
       
  2264 }
       
  2265 
       
  2266 void CodeHeapState::print_line_delim(outputStream* out, outputStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
       
  2267   if (ix % gpl == 0) {
       
  2268     if (ix > 0) {
       
  2269       ast->print("|");
       
  2270     }
       
  2271     ast->cr();
       
  2272     assert(out == ast, "must use the same stream!");
       
  2273 
       
  2274     ast->print("%p", low_bound + ix*granule_size);
       
  2275     ast->fill_to(19);
       
  2276     ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
       
  2277   }
       
  2278 }
       
  2279 
       
  2280 void CodeHeapState::print_line_delim(outputStream* out, bufferedStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
       
  2281   assert(out != ast, "must not use the same stream!");
       
  2282   if (ix % gpl == 0) {
       
  2283     if (ix > 0) {
       
  2284       ast->print("|");
       
  2285     }
       
  2286     ast->cr();
       
  2287 
       
  2288     { // can't use STRINGSTREAM_FLUSH_LOCKED("") here.
       
  2289       ttyLocker ttyl;
       
  2290       out->print("%s", ast->as_string());
       
  2291       ast->reset();
       
  2292     }
       
  2293 
       
  2294     ast->print("%p", low_bound + ix*granule_size);
       
  2295     ast->fill_to(19);
       
  2296     ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
       
  2297   }
       
  2298 }
       
  2299 
       
  2300 CodeHeapState::blobType CodeHeapState::get_cbType(CodeBlob* cb) {
       
  2301   if (cb != NULL ) {
       
  2302     if (cb->is_runtime_stub())                return runtimeStub;
       
  2303     if (cb->is_deoptimization_stub())         return deoptimizationStub;
       
  2304     if (cb->is_uncommon_trap_stub())          return uncommonTrapStub;
       
  2305     if (cb->is_exception_stub())              return exceptionStub;
       
  2306     if (cb->is_safepoint_stub())              return safepointStub;
       
  2307     if (cb->is_adapter_blob())                return adapterBlob;
       
  2308     if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob;
       
  2309     if (cb->is_buffer_blob())                 return bufferBlob;
       
  2310 
       
  2311     if (cb->is_nmethod() ) {
       
  2312       if (((nmethod*)cb)->is_in_use())        return nMethod_inuse;
       
  2313       if (((nmethod*)cb)->is_alive() && !(((nmethod*)cb)->is_not_entrant()))   return nMethod_notused;
       
  2314       if (((nmethod*)cb)->is_alive())         return nMethod_alive;
       
  2315       if (((nmethod*)cb)->is_unloaded())      return nMethod_unloaded;
       
  2316       if (((nmethod*)cb)->is_zombie())        return nMethod_dead;
       
  2317       tty->print_cr("unhandled nmethod state");
       
  2318       return nMethod_dead;
       
  2319     }
       
  2320   }
       
  2321   return noType;
       
  2322 }