hotspot/src/share/vm/gc_implementation/parallelScavenge/parallelScavengeHeap.hpp
changeset 13728 882756847a04
parent 12379 2cf45b79ce3a
child 16685 41c34debcde0
equal deleted inserted replaced
13727:caf5eb7dd4a7 13728:882756847a04
    26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP
    27 
    27 
    28 #include "gc_implementation/parallelScavenge/objectStartArray.hpp"
    28 #include "gc_implementation/parallelScavenge/objectStartArray.hpp"
    29 #include "gc_implementation/parallelScavenge/psGCAdaptivePolicyCounters.hpp"
    29 #include "gc_implementation/parallelScavenge/psGCAdaptivePolicyCounters.hpp"
    30 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
    30 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
    31 #include "gc_implementation/parallelScavenge/psPermGen.hpp"
       
    32 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    31 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
    33 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    32 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    34 #include "gc_interface/collectedHeap.inline.hpp"
    33 #include "gc_interface/collectedHeap.inline.hpp"
    35 #include "utilities/ostream.hpp"
    34 #include "utilities/ostream.hpp"
    36 
    35 
    43 class ParallelScavengeHeap : public CollectedHeap {
    42 class ParallelScavengeHeap : public CollectedHeap {
    44   friend class VMStructs;
    43   friend class VMStructs;
    45  private:
    44  private:
    46   static PSYoungGen* _young_gen;
    45   static PSYoungGen* _young_gen;
    47   static PSOldGen*   _old_gen;
    46   static PSOldGen*   _old_gen;
    48   static PSPermGen*  _perm_gen;
       
    49 
    47 
    50   // Sizing policy for entire heap
    48   // Sizing policy for entire heap
    51   static PSAdaptiveSizePolicy* _size_policy;
    49   static PSAdaptiveSizePolicy* _size_policy;
    52   static PSGCAdaptivePolicyCounters*   _gc_policy_counters;
    50   static PSGCAdaptivePolicyCounters*   _gc_policy_counters;
    53 
    51 
    54   static ParallelScavengeHeap* _psh;
    52   static ParallelScavengeHeap* _psh;
    55 
    53 
    56   size_t _perm_gen_alignment;
       
    57   size_t _young_gen_alignment;
    54   size_t _young_gen_alignment;
    58   size_t _old_gen_alignment;
    55   size_t _old_gen_alignment;
    59 
    56 
    60   GenerationSizer* _collector_policy;
    57   GenerationSizer* _collector_policy;
    61 
    58 
    77   HeapWord* mem_allocate_old_gen(size_t size);
    74   HeapWord* mem_allocate_old_gen(size_t size);
    78 
    75 
    79  public:
    76  public:
    80   ParallelScavengeHeap() : CollectedHeap() {
    77   ParallelScavengeHeap() : CollectedHeap() {
    81     _death_march_count = 0;
    78     _death_march_count = 0;
    82     set_alignment(_perm_gen_alignment, intra_heap_alignment());
       
    83     set_alignment(_young_gen_alignment, intra_heap_alignment());
    79     set_alignment(_young_gen_alignment, intra_heap_alignment());
    84     set_alignment(_old_gen_alignment, intra_heap_alignment());
    80     set_alignment(_old_gen_alignment, intra_heap_alignment());
    85   }
    81   }
    86 
    82 
    87   // For use by VM operations
    83   // For use by VM operations
    92 
    88 
    93   ParallelScavengeHeap::Name kind() const {
    89   ParallelScavengeHeap::Name kind() const {
    94     return CollectedHeap::ParallelScavengeHeap;
    90     return CollectedHeap::ParallelScavengeHeap;
    95   }
    91   }
    96 
    92 
    97 CollectorPolicy* collector_policy() const { return (CollectorPolicy*) _collector_policy; }
    93   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) _collector_policy; }
    98   // GenerationSizer* collector_policy() const { return _collector_policy; }
       
    99 
    94 
   100   static PSYoungGen* young_gen()     { return _young_gen; }
    95   static PSYoungGen* young_gen()     { return _young_gen; }
   101   static PSOldGen* old_gen()         { return _old_gen; }
    96   static PSOldGen* old_gen()         { return _old_gen; }
   102   static PSPermGen* perm_gen()       { return _perm_gen; }
       
   103 
    97 
   104   virtual PSAdaptiveSizePolicy* size_policy() { return _size_policy; }
    98   virtual PSAdaptiveSizePolicy* size_policy() { return _size_policy; }
   105 
    99 
   106   static PSGCAdaptivePolicyCounters* gc_policy_counters() { return _gc_policy_counters; }
   100   static PSGCAdaptivePolicyCounters* gc_policy_counters() { return _gc_policy_counters; }
   107 
   101 
   115   virtual jint initialize();
   109   virtual jint initialize();
   116 
   110 
   117   void post_initialize();
   111   void post_initialize();
   118   void update_counters();
   112   void update_counters();
   119   // The alignment used for the various generations.
   113   // The alignment used for the various generations.
   120   size_t perm_gen_alignment()  const { return _perm_gen_alignment; }
       
   121   size_t young_gen_alignment() const { return _young_gen_alignment; }
   114   size_t young_gen_alignment() const { return _young_gen_alignment; }
   122   size_t old_gen_alignment()  const { return _old_gen_alignment; }
   115   size_t old_gen_alignment()  const { return _old_gen_alignment; }
   123 
   116 
   124   // The alignment used for eden and survivors within the young gen
   117   // The alignment used for eden and survivors within the young gen
   125   // and for boundary between young gen and old gen.
   118   // and for boundary between young gen and old gen.
   126   size_t intra_heap_alignment() const { return 64 * K; }
   119   size_t intra_heap_alignment() const { return 64 * K; }
   127 
   120 
   128   size_t capacity() const;
   121   size_t capacity() const;
   129   size_t used() const;
   122   size_t used() const;
   130 
   123 
   131   // Return "true" if all generations (but perm) have reached the
   124   // Return "true" if all generations have reached the
   132   // maximal committed limit that they can reach, without a garbage
   125   // maximal committed limit that they can reach, without a garbage
   133   // collection.
   126   // collection.
   134   virtual bool is_maximal_no_gc() const;
   127   virtual bool is_maximal_no_gc() const;
   135 
   128 
   136   // Return true if the reference points to an object that
   129   // Return true if the reference points to an object that
   140   virtual bool is_scavengable(const void* addr);
   133   virtual bool is_scavengable(const void* addr);
   141 
   134 
   142   // Does this heap support heap inspection? (+PrintClassHistogram)
   135   // Does this heap support heap inspection? (+PrintClassHistogram)
   143   bool supports_heap_inspection() const { return true; }
   136   bool supports_heap_inspection() const { return true; }
   144 
   137 
   145   size_t permanent_capacity() const;
       
   146   size_t permanent_used() const;
       
   147 
       
   148   size_t max_capacity() const;
   138   size_t max_capacity() const;
   149 
   139 
   150   // Whether p is in the allocated part of the heap
   140   // Whether p is in the allocated part of the heap
   151   bool is_in(const void* p) const;
   141   bool is_in(const void* p) const;
   152 
   142 
   153   bool is_in_reserved(const void* p) const;
   143   bool is_in_reserved(const void* p) const;
   154   bool is_in_permanent(const void *p) const {    // reserved part
       
   155     return perm_gen()->reserved().contains(p);
       
   156   }
       
   157 
   144 
   158 #ifdef ASSERT
   145 #ifdef ASSERT
   159   virtual bool is_in_partial_collection(const void *p);
   146   virtual bool is_in_partial_collection(const void *p);
   160 #endif
   147 #endif
   161 
   148 
   162   bool is_permanent(const void *p) const {    // committed part
   149   bool is_in_young(oop p);        // reserved part
   163     return perm_gen()->is_in(p);
   150   bool is_in_old(oop p);          // reserved part
   164   }
       
   165 
       
   166   inline bool is_in_young(oop p);        // reserved part
       
   167   inline bool is_in_old_or_perm(oop p);  // reserved part
       
   168 
   151 
   169   // Memory allocation.   "gc_time_limit_was_exceeded" will
   152   // Memory allocation.   "gc_time_limit_was_exceeded" will
   170   // be set to true if the adaptive size policy determine that
   153   // be set to true if the adaptive size policy determine that
   171   // an excessive amount of time is being spent doing collections
   154   // an excessive amount of time is being spent doing collections
   172   // and caused a NULL to be returned.  If a NULL is not returned,
   155   // and caused a NULL to be returned.  If a NULL is not returned,
   177   // Allocation attempt(s) during a safepoint. It should never be called
   160   // Allocation attempt(s) during a safepoint. It should never be called
   178   // to allocate a new TLAB as this allocation might be satisfied out
   161   // to allocate a new TLAB as this allocation might be satisfied out
   179   // of the old generation.
   162   // of the old generation.
   180   HeapWord* failed_mem_allocate(size_t size);
   163   HeapWord* failed_mem_allocate(size_t size);
   181 
   164 
   182   HeapWord* permanent_mem_allocate(size_t size);
       
   183   HeapWord* failed_permanent_mem_allocate(size_t size);
       
   184 
       
   185   // Support for System.gc()
   165   // Support for System.gc()
   186   void collect(GCCause::Cause cause);
   166   void collect(GCCause::Cause cause);
   187 
       
   188   // This interface assumes that it's being called by the
       
   189   // vm thread. It collects the heap assuming that the
       
   190   // heap lock is already held and that we are executing in
       
   191   // the context of the vm thread.
       
   192   void collect_as_vm_thread(GCCause::Cause cause);
       
   193 
   167 
   194   // These also should be called by the vm thread at a safepoint (e.g., from a
   168   // These also should be called by the vm thread at a safepoint (e.g., from a
   195   // VM operation).
   169   // VM operation).
   196   //
   170   //
   197   // The first collects the young generation only, unless the scavenge fails; it
   171   // The first collects the young generation only, unless the scavenge fails; it
   198   // will then attempt a full gc.  The second collects the entire heap; if
   172   // will then attempt a full gc.  The second collects the entire heap; if
   199   // maximum_compaction is true, it will compact everything and clear all soft
   173   // maximum_compaction is true, it will compact everything and clear all soft
   200   // references.
   174   // references.
   201   inline void invoke_scavenge();
   175   inline void invoke_scavenge();
   202   inline void invoke_full_gc(bool maximum_compaction);
   176 
       
   177   // Perform a full collection
       
   178   virtual void do_full_collection(bool clear_all_soft_refs);
   203 
   179 
   204   bool supports_inline_contig_alloc() const { return !UseNUMA; }
   180   bool supports_inline_contig_alloc() const { return !UseNUMA; }
   205 
   181 
   206   HeapWord** top_addr() const { return !UseNUMA ? young_gen()->top_addr() : (HeapWord**)-1; }
   182   HeapWord** top_addr() const { return !UseNUMA ? young_gen()->top_addr() : (HeapWord**)-1; }
   207   HeapWord** end_addr() const { return !UseNUMA ? young_gen()->end_addr() : (HeapWord**)-1; }
   183   HeapWord** end_addr() const { return !UseNUMA ? young_gen()->end_addr() : (HeapWord**)-1; }
   230 
   206 
   231   // Return true if we don't we need a store barrier for
   207   // Return true if we don't we need a store barrier for
   232   // initializing stores to an object at this address.
   208   // initializing stores to an object at this address.
   233   virtual bool can_elide_initializing_store_barrier(oop new_obj);
   209   virtual bool can_elide_initializing_store_barrier(oop new_obj);
   234 
   210 
   235   // Can a compiler elide a store barrier when it writes
   211   void oop_iterate(ExtendedOopClosure* cl);
   236   // a permanent oop into the heap?  Applies when the compiler
       
   237   // is storing x to the heap, where x->is_perm() is true.
       
   238   virtual bool can_elide_permanent_oop_store_barriers() const {
       
   239     return true;
       
   240   }
       
   241 
       
   242   void oop_iterate(OopClosure* cl);
       
   243   void object_iterate(ObjectClosure* cl);
   212   void object_iterate(ObjectClosure* cl);
   244   void safe_object_iterate(ObjectClosure* cl) { object_iterate(cl); }
   213   void safe_object_iterate(ObjectClosure* cl) { object_iterate(cl); }
   245   void permanent_oop_iterate(OopClosure* cl);
       
   246   void permanent_object_iterate(ObjectClosure* cl);
       
   247 
   214 
   248   HeapWord* block_start(const void* addr) const;
   215   HeapWord* block_start(const void* addr) const;
   249   size_t block_size(const HeapWord* addr) const;
   216   size_t block_size(const HeapWord* addr) const;
   250   bool block_is_obj(const HeapWord* addr) const;
   217   bool block_is_obj(const HeapWord* addr) const;
   251 
   218