src/hotspot/share/oops/access.hpp
changeset 49658 8237a91c1cca
parent 49591 272dff61a2de
child 50389 7e8c0409a747
equal deleted inserted replaced
49657:45071514f87a 49658:8237a91c1cca
    20  * or visit www.oracle.com if you need additional information or have any
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    21  * questions.
    22  *
    22  *
    23  */
    23  */
    24 
    24 
    25 #ifndef SHARE_VM_RUNTIME_ACCESS_HPP
    25 #ifndef SHARE_OOPS_ACCESS_HPP
    26 #define SHARE_VM_RUNTIME_ACCESS_HPP
    26 #define SHARE_OOPS_ACCESS_HPP
    27 
    27 
    28 #include "memory/allocation.hpp"
    28 #include "memory/allocation.hpp"
    29 #include "metaprogramming/decay.hpp"
    29 #include "oops/accessBackend.hpp"
    30 #include "metaprogramming/integralConstant.hpp"
    30 #include "oops/accessDecorators.hpp"
    31 #include "oops/oopsHierarchy.hpp"
    31 #include "oops/oopsHierarchy.hpp"
    32 #include "utilities/debug.hpp"
    32 #include "utilities/debug.hpp"
    33 #include "utilities/globalDefinitions.hpp"
    33 #include "utilities/globalDefinitions.hpp"
       
    34 
    34 
    35 
    35 // = GENERAL =
    36 // = GENERAL =
    36 // Access is an API for performing accesses with declarative semantics. Each access can have a number of "decorators".
    37 // Access is an API for performing accesses with declarative semantics. Each access can have a number of "decorators".
    37 // A decorator is an attribute or property that affects the way a memory access is performed in some way.
    38 // A decorator is an attribute or property that affects the way a memory access is performed in some way.
    38 // There are different groups of decorators. Some have to do with memory ordering, others to do with,
    39 // There are different groups of decorators. Some have to do with memory ordering, others to do with,
    39 // e.g. strength of references, strength of GC barriers, or whether compression should be applied or not.
    40 // e.g. strength of references, strength of GC barriers, or whether compression should be applied or not.
    40 // Some decorators are set at buildtime, such as whether primitives require GC barriers or not, others
    41 // Some decorators are set at buildtime, such as whether primitives require GC barriers or not, others
    41 // at callsites such as whether an access is in the heap or not, and others are resolved at runtime
    42 // at callsites such as whether an access is in the heap or not, and others are resolved at runtime
    42 // such as GC-specific barriers and encoding/decoding compressed oops.
    43 // such as GC-specific barriers and encoding/decoding compressed oops. For more information about what
       
    44 // decorators are available, cf. oops/accessDecorators.hpp.
    43 // By pipelining handling of these decorators, the design of the Access API allows separation of concern
    45 // By pipelining handling of these decorators, the design of the Access API allows separation of concern
    44 // over the different orthogonal concerns of decorators, while providing a powerful way of
    46 // over the different orthogonal concerns of decorators, while providing a powerful way of
    45 // expressing these orthogonal semantic properties in a unified way.
    47 // expressing these orthogonal semantic properties in a unified way.
    46 
    48 //
    47 // == OPERATIONS ==
    49 // == OPERATIONS ==
    48 // * load: Load a value from an address.
    50 // * load: Load a value from an address.
    49 // * load_at: Load a value from an internal pointer relative to a base object.
    51 // * load_at: Load a value from an internal pointer relative to a base object.
    50 // * store: Store a value at an address.
    52 // * store: Store a value at an address.
    51 // * store_at: Store a value in an internal pointer relative to a base object.
    53 // * store_at: Store a value in an internal pointer relative to a base object.
    54 // * atomic_xchg: Atomically swap a new value at an address if previous value matched the compared value.
    56 // * atomic_xchg: Atomically swap a new value at an address if previous value matched the compared value.
    55 // * atomic_xchg_at: Atomically swap a new value at an internal pointer address if previous value matched the compared value.
    57 // * atomic_xchg_at: Atomically swap a new value at an internal pointer address if previous value matched the compared value.
    56 // * arraycopy: Copy data from one heap array to another heap array.
    58 // * arraycopy: Copy data from one heap array to another heap array.
    57 // * clone: Clone the contents of an object to a newly allocated object.
    59 // * clone: Clone the contents of an object to a newly allocated object.
    58 // * resolve: Resolve a stable to-space invariant oop that is guaranteed not to relocate its payload until a subsequent thread transition.
    60 // * resolve: Resolve a stable to-space invariant oop that is guaranteed not to relocate its payload until a subsequent thread transition.
    59 
    61 // * equals: Object equality, e.g. when different copies of the same objects are in use (from-space vs. to-space)
    60 typedef uint64_t DecoratorSet;
       
    61 
       
    62 // == Internal Decorators - do not use ==
       
    63 // * INTERNAL_EMPTY: This is the name for the empty decorator set (in absence of other decorators).
       
    64 // * INTERNAL_CONVERT_COMPRESSED_OOPS: This is an oop access that will require converting an oop
       
    65 //   to a narrowOop or vice versa, if UseCompressedOops is known to be set.
       
    66 // * INTERNAL_VALUE_IS_OOP: Remember that the involved access is on oop rather than primitive.
       
    67 const DecoratorSet INTERNAL_EMPTY                    = UCONST64(0);
       
    68 const DecoratorSet INTERNAL_CONVERT_COMPRESSED_OOP   = UCONST64(1) << 1;
       
    69 const DecoratorSet INTERNAL_VALUE_IS_OOP             = UCONST64(1) << 2;
       
    70 
       
    71 // == Internal build-time Decorators ==
       
    72 // * INTERNAL_BT_BARRIER_ON_PRIMITIVES: This is set in the barrierSetConfig.hpp file.
       
    73 // * INTERNAL_BT_TO_SPACE_INVARIANT: This is set in the barrierSetConfig.hpp file iff
       
    74 //   no GC is bundled in the build that is to-space invariant.
       
    75 const DecoratorSet INTERNAL_BT_BARRIER_ON_PRIMITIVES = UCONST64(1) << 3;
       
    76 const DecoratorSet INTERNAL_BT_TO_SPACE_INVARIANT    = UCONST64(1) << 4;
       
    77 
       
    78 // == Internal run-time Decorators ==
       
    79 // * INTERNAL_RT_USE_COMPRESSED_OOPS: This decorator will be set in runtime resolved
       
    80 //   access backends iff UseCompressedOops is true.
       
    81 const DecoratorSet INTERNAL_RT_USE_COMPRESSED_OOPS   = UCONST64(1) << 5;
       
    82 
       
    83 const DecoratorSet INTERNAL_DECORATOR_MASK           = INTERNAL_CONVERT_COMPRESSED_OOP | INTERNAL_VALUE_IS_OOP |
       
    84                                                        INTERNAL_BT_BARRIER_ON_PRIMITIVES | INTERNAL_RT_USE_COMPRESSED_OOPS;
       
    85 
       
    86 // == Memory Ordering Decorators ==
       
    87 // The memory ordering decorators can be described in the following way:
       
    88 // === Decorator Rules ===
       
    89 // The different types of memory ordering guarantees have a strict order of strength.
       
    90 // Explicitly specifying the stronger ordering implies that the guarantees of the weaker
       
    91 // property holds too. The names come from the C++11 atomic operations, and typically
       
    92 // have a JMM equivalent property.
       
    93 // The equivalence may be viewed like this:
       
    94 // MO_UNORDERED is equivalent to JMM plain.
       
    95 // MO_VOLATILE has no equivalence in JMM, because it's a C++ thing.
       
    96 // MO_RELAXED is equivalent to JMM opaque.
       
    97 // MO_ACQUIRE is equivalent to JMM acquire.
       
    98 // MO_RELEASE is equivalent to JMM release.
       
    99 // MO_SEQ_CST is equivalent to JMM volatile.
       
   100 //
    62 //
   101 // === Stores ===
    63 // == IMPLEMENTATION ==
   102 //  * MO_UNORDERED (Default): No guarantees.
    64 // Each access goes through the following steps in a template pipeline.
   103 //    - The compiler and hardware are free to reorder aggressively. And they will.
    65 // There are essentially 5 steps for each access:
   104 //  * MO_VOLATILE: Volatile stores (in the C++ sense).
    66 // * Step 1:   Set default decorators and decay types. This step gets rid of CV qualifiers
   105 //    - The stores are not reordered by the compiler (but possibly the HW) w.r.t. other
    67 //             and sets default decorators to sensible values.
   106 //      volatile accesses in program order (but possibly non-volatile accesses).
    68 // * Step 2:   Reduce types. This step makes sure there is only a single T type and not
   107 //  * MO_RELAXED: Relaxed atomic stores.
    69 //             multiple types. The P type of the address and T type of the value must
   108 //    - The stores are atomic.
    70 //             match.
   109 //    - Guarantees from volatile stores hold.
    71 // * Step 3:   Pre-runtime dispatch. This step checks whether a runtime call can be
   110 //  * MO_RELEASE: Releasing stores.
    72 //             avoided, and in that case avoids it (calling raw accesses or
   111 //    - The releasing store will make its preceding memory accesses observable to memory accesses
    73 //             primitive accesses in a build that does not require primitive GC barriers)
   112 //      subsequent to an acquiring load observing this releasing store.
    74 // * Step 4:   Runtime-dispatch. This step performs a runtime dispatch to the corresponding
   113 //    - Guarantees from relaxed stores hold.
    75 //             BarrierSet::AccessBarrier accessor that attaches GC-required barriers
   114 //  * MO_SEQ_CST: Sequentially consistent stores.
    76 //             to the access.
   115 //    - The stores are observed in the same order by MO_SEQ_CST loads on other processors
    77 // * Step 5.a: Barrier resolution. This step is invoked the first time a runtime-dispatch
   116 //    - Preceding loads and stores in program order are not reordered with subsequent loads and stores in program order.
    78 //             happens for an access. The appropriate BarrierSet::AccessBarrier accessor
   117 //    - Guarantees from releasing stores hold.
    79 //             is resolved, then the function pointer is updated to that accessor for
   118 // === Loads ===
    80 //             future invocations.
   119 //  * MO_UNORDERED (Default): No guarantees
    81 // * Step 5.b: Post-runtime dispatch. This step now casts previously unknown types such
   120 //    - The compiler and hardware are free to reorder aggressively. And they will.
    82 //             as the address type of an oop on the heap (is it oop* or narrowOop*) to
   121 //  * MO_VOLATILE: Volatile loads (in the C++ sense).
    83 //             the appropriate type. It also splits sufficiently orthogonal accesses into
   122 //    - The loads are not reordered by the compiler (but possibly the HW) w.r.t. other
    84 //             different functions, such as whether the access involves oops or primitives
   123 //      volatile accesses in program order (but possibly non-volatile accesses).
    85 //             and whether the access is performed on the heap or outside. Then the
   124 //  * MO_RELAXED: Relaxed atomic loads.
    86 //             appropriate BarrierSet::AccessBarrier is called to perform the access.
   125 //    - The stores are atomic.
    87 //
   126 //    - Guarantees from volatile loads hold.
    88 // The implementation of step 1-4 resides in in accessBackend.hpp, to allow selected
   127 //  * MO_ACQUIRE: Acquiring loads.
    89 // accesses to be accessible from only access.hpp, as opposed to access.inline.hpp.
   128 //    - An acquiring load will make subsequent memory accesses observe the memory accesses
    90 // Steps 5.a and 5.b require knowledge about the GC backends, and therefore needs to
   129 //      preceding the releasing store that the acquiring load observed.
    91 // include the various GC backend .inline.hpp headers. Their implementation resides in
   130 //    - Guarantees from relaxed loads hold.
    92 // access.inline.hpp. The accesses that are allowed through the access.hpp file
   131 //  * MO_SEQ_CST: Sequentially consistent loads.
    93 // must be instantiated in access.cpp using the INSTANTIATE_HPP_ACCESS macro.
   132 //    - These loads observe MO_SEQ_CST stores in the same order on other processors
       
   133 //    - Preceding loads and stores in program order are not reordered with subsequent loads and stores in program order.
       
   134 //    - Guarantees from acquiring loads hold.
       
   135 // === Atomic Cmpxchg ===
       
   136 //  * MO_RELAXED: Atomic but relaxed cmpxchg.
       
   137 //    - Guarantees from MO_RELAXED loads and MO_RELAXED stores hold unconditionally.
       
   138 //  * MO_SEQ_CST: Sequentially consistent cmpxchg.
       
   139 //    - Guarantees from MO_SEQ_CST loads and MO_SEQ_CST stores hold unconditionally.
       
   140 // === Atomic Xchg ===
       
   141 //  * MO_RELAXED: Atomic but relaxed atomic xchg.
       
   142 //    - Guarantees from MO_RELAXED loads and MO_RELAXED stores hold.
       
   143 //  * MO_SEQ_CST: Sequentially consistent xchg.
       
   144 //    - Guarantees from MO_SEQ_CST loads and MO_SEQ_CST stores hold.
       
   145 const DecoratorSet MO_UNORDERED      = UCONST64(1) << 6;
       
   146 const DecoratorSet MO_VOLATILE       = UCONST64(1) << 7;
       
   147 const DecoratorSet MO_RELAXED        = UCONST64(1) << 8;
       
   148 const DecoratorSet MO_ACQUIRE        = UCONST64(1) << 9;
       
   149 const DecoratorSet MO_RELEASE        = UCONST64(1) << 10;
       
   150 const DecoratorSet MO_SEQ_CST        = UCONST64(1) << 11;
       
   151 const DecoratorSet MO_DECORATOR_MASK = MO_UNORDERED | MO_VOLATILE | MO_RELAXED |
       
   152                                        MO_ACQUIRE | MO_RELEASE | MO_SEQ_CST;
       
   153 
       
   154 // === Barrier Strength Decorators ===
       
   155 // * AS_RAW: The access will translate into a raw memory access, hence ignoring all semantic concerns
       
   156 //   except memory ordering and compressed oops. This will bypass runtime function pointer dispatching
       
   157 //   in the pipeline and hardwire to raw accesses without going trough the GC access barriers.
       
   158 //  - Accesses on oop* translate to raw memory accesses without runtime checks
       
   159 //  - Accesses on narrowOop* translate to encoded/decoded memory accesses without runtime checks
       
   160 //  - Accesses on HeapWord* translate to a runtime check choosing one of the above
       
   161 //  - Accesses on other types translate to raw memory accesses without runtime checks
       
   162 // * AS_DEST_NOT_INITIALIZED: This property can be important to e.g. SATB barriers by
       
   163 //   marking that the previous value is uninitialized nonsense rather than a real value.
       
   164 // * AS_NO_KEEPALIVE: The barrier is used only on oop references and will not keep any involved objects
       
   165 //   alive, regardless of the type of reference being accessed. It will however perform the memory access
       
   166 //   in a consistent way w.r.t. e.g. concurrent compaction, so that the right field is being accessed,
       
   167 //   or maintain, e.g. intergenerational or interregional pointers if applicable. This should be used with
       
   168 //   extreme caution in isolated scopes.
       
   169 // * AS_NORMAL: The accesses will be resolved to an accessor on the BarrierSet class, giving the
       
   170 //   responsibility of performing the access and what barriers to be performed to the GC. This is the default.
       
   171 //   Note that primitive accesses will only be resolved on the barrier set if the appropriate build-time
       
   172 //   decorator for enabling primitive barriers is enabled for the build.
       
   173 const DecoratorSet AS_RAW                  = UCONST64(1) << 12;
       
   174 const DecoratorSet AS_DEST_NOT_INITIALIZED = UCONST64(1) << 13;
       
   175 const DecoratorSet AS_NO_KEEPALIVE         = UCONST64(1) << 14;
       
   176 const DecoratorSet AS_NORMAL               = UCONST64(1) << 15;
       
   177 const DecoratorSet AS_DECORATOR_MASK       = AS_RAW | AS_DEST_NOT_INITIALIZED |
       
   178                                              AS_NO_KEEPALIVE | AS_NORMAL;
       
   179 
       
   180 // === Reference Strength Decorators ===
       
   181 // These decorators only apply to accesses on oop-like types (oop/narrowOop).
       
   182 // * ON_STRONG_OOP_REF: Memory access is performed on a strongly reachable reference.
       
   183 // * ON_WEAK_OOP_REF: The memory access is performed on a weakly reachable reference.
       
   184 // * ON_PHANTOM_OOP_REF: The memory access is performed on a phantomly reachable reference.
       
   185 //   This is the same ring of strength as jweak and weak oops in the VM.
       
   186 // * ON_UNKNOWN_OOP_REF: The memory access is performed on a reference of unknown strength.
       
   187 //   This could for example come from the unsafe API.
       
   188 // * Default (no explicit reference strength specified): ON_STRONG_OOP_REF
       
   189 const DecoratorSet ON_STRONG_OOP_REF  = UCONST64(1) << 16;
       
   190 const DecoratorSet ON_WEAK_OOP_REF    = UCONST64(1) << 17;
       
   191 const DecoratorSet ON_PHANTOM_OOP_REF = UCONST64(1) << 18;
       
   192 const DecoratorSet ON_UNKNOWN_OOP_REF = UCONST64(1) << 19;
       
   193 const DecoratorSet ON_DECORATOR_MASK  = ON_STRONG_OOP_REF | ON_WEAK_OOP_REF |
       
   194                                         ON_PHANTOM_OOP_REF | ON_UNKNOWN_OOP_REF;
       
   195 
       
   196 // === Access Location ===
       
   197 // Accesses can take place in, e.g. the heap, old or young generation and different native roots.
       
   198 // The location is important to the GC as it may imply different actions. The following decorators are used:
       
   199 // * IN_HEAP: The access is performed in the heap. Many barriers such as card marking will
       
   200 //   be omitted if this decorator is not set.
       
   201 // * IN_HEAP_ARRAY: The access is performed on a heap allocated array. This is sometimes a special case
       
   202 //   for some GCs, and implies that it is an IN_HEAP.
       
   203 // * IN_ROOT: The access is performed in an off-heap data structure pointing into the Java heap.
       
   204 // * IN_CONCURRENT_ROOT: The access is performed in an off-heap data structure pointing into the Java heap,
       
   205 //   but is notably not scanned during safepoints. This is sometimes a special case for some GCs and
       
   206 //   implies that it is also an IN_ROOT.
       
   207 const DecoratorSet IN_HEAP            = UCONST64(1) << 20;
       
   208 const DecoratorSet IN_HEAP_ARRAY      = UCONST64(1) << 21;
       
   209 const DecoratorSet IN_ROOT            = UCONST64(1) << 22;
       
   210 const DecoratorSet IN_CONCURRENT_ROOT = UCONST64(1) << 23;
       
   211 const DecoratorSet IN_ARCHIVE_ROOT    = UCONST64(1) << 24;
       
   212 const DecoratorSet IN_DECORATOR_MASK  = IN_HEAP | IN_HEAP_ARRAY |
       
   213                                         IN_ROOT | IN_CONCURRENT_ROOT |
       
   214                                         IN_ARCHIVE_ROOT;
       
   215 
       
   216 // == Value Decorators ==
       
   217 // * OOP_NOT_NULL: This property can make certain barriers faster such as compressing oops.
       
   218 const DecoratorSet OOP_NOT_NULL       = UCONST64(1) << 25;
       
   219 const DecoratorSet OOP_DECORATOR_MASK = OOP_NOT_NULL;
       
   220 
       
   221 // == Arraycopy Decorators ==
       
   222 // * ARRAYCOPY_CHECKCAST: This property means that the class of the objects in source
       
   223 //   are not guaranteed to be subclasses of the class of the destination array. This requires
       
   224 //   a check-cast barrier during the copying operation. If this is not set, it is assumed
       
   225 //   that the array is covariant: (the source array type is-a destination array type)
       
   226 // * ARRAYCOPY_DISJOINT: This property means that it is known that the two array ranges
       
   227 //   are disjoint.
       
   228 // * ARRAYCOPY_ARRAYOF: The copy is in the arrayof form.
       
   229 // * ARRAYCOPY_ATOMIC: The accesses have to be atomic over the size of its elements.
       
   230 // * ARRAYCOPY_ALIGNED: The accesses have to be aligned on a HeapWord.
       
   231 const DecoratorSet ARRAYCOPY_CHECKCAST            = UCONST64(1) << 26;
       
   232 const DecoratorSet ARRAYCOPY_DISJOINT             = UCONST64(1) << 27;
       
   233 const DecoratorSet ARRAYCOPY_ARRAYOF              = UCONST64(1) << 28;
       
   234 const DecoratorSet ARRAYCOPY_ATOMIC               = UCONST64(1) << 29;
       
   235 const DecoratorSet ARRAYCOPY_ALIGNED              = UCONST64(1) << 30;
       
   236 const DecoratorSet ARRAYCOPY_DECORATOR_MASK       = ARRAYCOPY_CHECKCAST | ARRAYCOPY_DISJOINT |
       
   237                                                     ARRAYCOPY_DISJOINT | ARRAYCOPY_ARRAYOF |
       
   238                                                     ARRAYCOPY_ATOMIC | ARRAYCOPY_ALIGNED;
       
   239 
       
   240 // The HasDecorator trait can help at compile-time determining whether a decorator set
       
   241 // has an intersection with a certain other decorator set
       
   242 template <DecoratorSet decorators, DecoratorSet decorator>
       
   243 struct HasDecorator: public IntegralConstant<bool, (decorators & decorator) != 0> {};
       
   244 
       
   245 namespace AccessInternal {
       
   246   template <typename T>
       
   247   struct OopOrNarrowOopInternal: AllStatic {
       
   248     typedef oop type;
       
   249   };
       
   250 
       
   251   template <>
       
   252   struct OopOrNarrowOopInternal<narrowOop>: AllStatic {
       
   253     typedef narrowOop type;
       
   254   };
       
   255 
       
   256   // This metafunction returns a canonicalized oop/narrowOop type for a passed
       
   257   // in oop-like types passed in from oop_* overloads where the user has sworn
       
   258   // that the passed in values should be oop-like (e.g. oop, oopDesc*, arrayOop,
       
   259   // narrowOoop, instanceOopDesc*, and random other things).
       
   260   // In the oop_* overloads, it must hold that if the passed in type T is not
       
   261   // narrowOop, then it by contract has to be one of many oop-like types implicitly
       
   262   // convertible to oop, and hence returns oop as the canonical oop type.
       
   263   // If it turns out it was not, then the implicit conversion to oop will fail
       
   264   // to compile, as desired.
       
   265   template <typename T>
       
   266   struct OopOrNarrowOop: AllStatic {
       
   267     typedef typename OopOrNarrowOopInternal<typename Decay<T>::type>::type type;
       
   268   };
       
   269 
       
   270   inline void* field_addr(oop base, ptrdiff_t byte_offset) {
       
   271     return reinterpret_cast<void*>(reinterpret_cast<intptr_t>((void*)base) + byte_offset);
       
   272   }
       
   273 
       
   274   template <DecoratorSet decorators, typename T>
       
   275   void store_at(oop base, ptrdiff_t offset, T value);
       
   276 
       
   277   template <DecoratorSet decorators, typename T>
       
   278   T load_at(oop base, ptrdiff_t offset);
       
   279 
       
   280   template <DecoratorSet decorators, typename T>
       
   281   T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value);
       
   282 
       
   283   template <DecoratorSet decorators, typename T>
       
   284   T atomic_xchg_at(T new_value, oop base, ptrdiff_t offset);
       
   285 
       
   286   template <DecoratorSet decorators, typename P, typename T>
       
   287   void store(P* addr, T value);
       
   288 
       
   289   template <DecoratorSet decorators, typename P, typename T>
       
   290   T load(P* addr);
       
   291 
       
   292   template <DecoratorSet decorators, typename P, typename T>
       
   293   T atomic_cmpxchg(T new_value, P* addr, T compare_value);
       
   294 
       
   295   template <DecoratorSet decorators, typename P, typename T>
       
   296   T atomic_xchg(T new_value, P* addr);
       
   297 
       
   298   template <DecoratorSet decorators, typename T>
       
   299   bool arraycopy(arrayOop src_obj, arrayOop dst_obj, T *src, T *dst, size_t length);
       
   300 
       
   301   template <DecoratorSet decorators>
       
   302   void clone(oop src, oop dst, size_t size);
       
   303 
       
   304   template <DecoratorSet decorators>
       
   305   oop resolve(oop src);
       
   306 
       
   307   // Infer the type that should be returned from a load.
       
   308   template <typename P, DecoratorSet decorators>
       
   309   class OopLoadProxy: public StackObj {
       
   310   private:
       
   311     P *const _addr;
       
   312   public:
       
   313     OopLoadProxy(P* addr) : _addr(addr) {}
       
   314 
       
   315     inline operator oop() {
       
   316       return load<decorators | INTERNAL_VALUE_IS_OOP, P, oop>(_addr);
       
   317     }
       
   318 
       
   319     inline operator narrowOop() {
       
   320       return load<decorators | INTERNAL_VALUE_IS_OOP, P, narrowOop>(_addr);
       
   321     }
       
   322 
       
   323     template <typename T>
       
   324     inline bool operator ==(const T& other) const {
       
   325       return load<decorators | INTERNAL_VALUE_IS_OOP, P, T>(_addr) == other;
       
   326     }
       
   327 
       
   328     template <typename T>
       
   329     inline bool operator !=(const T& other) const {
       
   330       return load<decorators | INTERNAL_VALUE_IS_OOP, P, T>(_addr) != other;
       
   331     }
       
   332   };
       
   333 
       
   334   // Infer the type that should be returned from a load_at.
       
   335   template <DecoratorSet decorators>
       
   336   class LoadAtProxy: public StackObj {
       
   337   private:
       
   338     const oop _base;
       
   339     const ptrdiff_t _offset;
       
   340   public:
       
   341     LoadAtProxy(oop base, ptrdiff_t offset) : _base(base), _offset(offset) {}
       
   342 
       
   343     template <typename T>
       
   344     inline operator T() const {
       
   345       return load_at<decorators, T>(_base, _offset);
       
   346     }
       
   347 
       
   348     template <typename T>
       
   349     inline bool operator ==(const T& other) const { return load_at<decorators, T>(_base, _offset) == other; }
       
   350 
       
   351     template <typename T>
       
   352     inline bool operator !=(const T& other) const { return load_at<decorators, T>(_base, _offset) != other; }
       
   353   };
       
   354 
       
   355   template <DecoratorSet decorators>
       
   356   class OopLoadAtProxy: public StackObj {
       
   357   private:
       
   358     const oop _base;
       
   359     const ptrdiff_t _offset;
       
   360   public:
       
   361     OopLoadAtProxy(oop base, ptrdiff_t offset) : _base(base), _offset(offset) {}
       
   362 
       
   363     inline operator oop() const {
       
   364       return load_at<decorators | INTERNAL_VALUE_IS_OOP, oop>(_base, _offset);
       
   365     }
       
   366 
       
   367     inline operator narrowOop() const {
       
   368       return load_at<decorators | INTERNAL_VALUE_IS_OOP, narrowOop>(_base, _offset);
       
   369     }
       
   370 
       
   371     template <typename T>
       
   372     inline bool operator ==(const T& other) const {
       
   373       return load_at<decorators | INTERNAL_VALUE_IS_OOP, T>(_base, _offset) == other;
       
   374     }
       
   375 
       
   376     template <typename T>
       
   377     inline bool operator !=(const T& other) const {
       
   378       return load_at<decorators | INTERNAL_VALUE_IS_OOP, T>(_base, _offset) != other;
       
   379     }
       
   380   };
       
   381 }
       
   382 
    94 
   383 template <DecoratorSet decorators = INTERNAL_EMPTY>
    95 template <DecoratorSet decorators = INTERNAL_EMPTY>
   384 class Access: public AllStatic {
    96 class Access: public AllStatic {
   385   // This function asserts that if an access gets passed in a decorator outside
    97   // This function asserts that if an access gets passed in a decorator outside
   386   // of the expected_decorators, then something is wrong. It additionally checks
    98   // of the expected_decorators, then something is wrong. It additionally checks
   552 
   264 
   553   static oop resolve(oop obj) {
   265   static oop resolve(oop obj) {
   554     verify_decorators<INTERNAL_EMPTY>();
   266     verify_decorators<INTERNAL_EMPTY>();
   555     return AccessInternal::resolve<decorators>(obj);
   267     return AccessInternal::resolve<decorators>(obj);
   556   }
   268   }
       
   269 
       
   270   static bool equals(oop o1, oop o2) {
       
   271     verify_decorators<INTERNAL_EMPTY>();
       
   272     return AccessInternal::equals<decorators>(o1, o2);
       
   273   }
   557 };
   274 };
   558 
   275 
   559 // Helper for performing raw accesses (knows only of memory ordering
   276 // Helper for performing raw accesses (knows only of memory ordering
   560 // atomicity decorators as well as compressed oops)
   277 // atomicity decorators as well as compressed oops)
   561 template <DecoratorSet decorators = INTERNAL_EMPTY>
   278 template <DecoratorSet decorators = INTERNAL_EMPTY>
   569 // Helper for performing normal accesses in roots. These accesses
   286 // Helper for performing normal accesses in roots. These accesses
   570 // may resolve an accessor on a GC barrier set
   287 // may resolve an accessor on a GC barrier set
   571 template <DecoratorSet decorators = INTERNAL_EMPTY>
   288 template <DecoratorSet decorators = INTERNAL_EMPTY>
   572 class RootAccess: public Access<IN_ROOT | decorators> {};
   289 class RootAccess: public Access<IN_ROOT | decorators> {};
   573 
   290 
   574 #endif // SHARE_VM_RUNTIME_ACCESS_HPP
   291 template <DecoratorSet decorators>
       
   292 template <DecoratorSet expected_decorators>
       
   293 void Access<decorators>::verify_decorators() {
       
   294   STATIC_ASSERT((~expected_decorators & decorators) == 0); // unexpected decorator used
       
   295   const DecoratorSet barrier_strength_decorators = decorators & AS_DECORATOR_MASK;
       
   296   STATIC_ASSERT(barrier_strength_decorators == 0 || ( // make sure barrier strength decorators are disjoint if set
       
   297     (barrier_strength_decorators ^ AS_NO_KEEPALIVE) == 0 ||
       
   298     (barrier_strength_decorators ^ AS_DEST_NOT_INITIALIZED) == 0 ||
       
   299     (barrier_strength_decorators ^ AS_RAW) == 0 ||
       
   300     (barrier_strength_decorators ^ AS_NORMAL) == 0
       
   301   ));
       
   302   const DecoratorSet ref_strength_decorators = decorators & ON_DECORATOR_MASK;
       
   303   STATIC_ASSERT(ref_strength_decorators == 0 || ( // make sure ref strength decorators are disjoint if set
       
   304     (ref_strength_decorators ^ ON_STRONG_OOP_REF) == 0 ||
       
   305     (ref_strength_decorators ^ ON_WEAK_OOP_REF) == 0 ||
       
   306     (ref_strength_decorators ^ ON_PHANTOM_OOP_REF) == 0 ||
       
   307     (ref_strength_decorators ^ ON_UNKNOWN_OOP_REF) == 0
       
   308   ));
       
   309   const DecoratorSet memory_ordering_decorators = decorators & MO_DECORATOR_MASK;
       
   310   STATIC_ASSERT(memory_ordering_decorators == 0 || ( // make sure memory ordering decorators are disjoint if set
       
   311     (memory_ordering_decorators ^ MO_UNORDERED) == 0 ||
       
   312     (memory_ordering_decorators ^ MO_VOLATILE) == 0 ||
       
   313     (memory_ordering_decorators ^ MO_RELAXED) == 0 ||
       
   314     (memory_ordering_decorators ^ MO_ACQUIRE) == 0 ||
       
   315     (memory_ordering_decorators ^ MO_RELEASE) == 0 ||
       
   316     (memory_ordering_decorators ^ MO_SEQ_CST) == 0
       
   317   ));
       
   318   const DecoratorSet location_decorators = decorators & IN_DECORATOR_MASK;
       
   319   STATIC_ASSERT(location_decorators == 0 || ( // make sure location decorators are disjoint if set
       
   320     (location_decorators ^ IN_ROOT) == 0 ||
       
   321     (location_decorators ^ IN_HEAP) == 0 ||
       
   322     (location_decorators ^ (IN_HEAP | IN_HEAP_ARRAY)) == 0 ||
       
   323     (location_decorators ^ (IN_ROOT | IN_CONCURRENT_ROOT)) == 0 ||
       
   324     (location_decorators ^ (IN_ROOT | IN_ARCHIVE_ROOT)) == 0
       
   325   ));
       
   326 }
       
   327 
       
   328 #endif // SHARE_OOPS_ACCESS_HPP