hotspot/src/share/vm/opto/escape.cpp
changeset 238 803c80713999
parent 212 cd4963e67949
child 348 905c4cbf5d6a
child 250 8f3acb20ed88
equal deleted inserted replaced
237:fba97e902303 238:803c80713999
    58   "Field"
    58   "Field"
    59 };
    59 };
    60 
    60 
    61 static char *esc_names[] = {
    61 static char *esc_names[] = {
    62   "UnknownEscape",
    62   "UnknownEscape",
    63   "NoEscape     ",
    63   "NoEscape",
    64   "ArgEscape    ",
    64   "ArgEscape",
    65   "GlobalEscape "
    65   "GlobalEscape"
    66 };
    66 };
    67 
    67 
    68 static char *edge_type_suffix[] = {
    68 static char *edge_type_suffix[] = {
    69  "?", // UnknownEdge
    69  "?", // UnknownEdge
    70  "P", // PointsToEdge
    70  "P", // PointsToEdge
    73 };
    73 };
    74 
    74 
    75 void PointsToNode::dump() const {
    75 void PointsToNode::dump() const {
    76   NodeType nt = node_type();
    76   NodeType nt = node_type();
    77   EscapeState es = escape_state();
    77   EscapeState es = escape_state();
    78   tty->print("%s  %s  [[", node_type_names[(int) nt], esc_names[(int) es]);
    78   tty->print("%s %s %s [[", node_type_names[(int) nt], esc_names[(int) es], _scalar_replaceable ? "" : "NSR");
    79   for (uint i = 0; i < edge_count(); i++) {
    79   for (uint i = 0; i < edge_count(); i++) {
    80     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
    80     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
    81   }
    81   }
    82   tty->print("]]  ");
    82   tty->print("]]  ");
    83   if (_node == NULL)
    83   if (_node == NULL)
    89 
    89 
    90 ConnectionGraph::ConnectionGraph(Compile * C) : _processed(C->comp_arena()), _node_map(C->comp_arena()) {
    90 ConnectionGraph::ConnectionGraph(Compile * C) : _processed(C->comp_arena()), _node_map(C->comp_arena()) {
    91   _collecting = true;
    91   _collecting = true;
    92   this->_compile = C;
    92   this->_compile = C;
    93   const PointsToNode &dummy = PointsToNode();
    93   const PointsToNode &dummy = PointsToNode();
    94   _nodes = new(C->comp_arena()) GrowableArray<PointsToNode>(C->comp_arena(), (int) INITIAL_NODE_COUNT, 0, dummy);
    94   int sz = C->unique();
       
    95   _nodes = new(C->comp_arena()) GrowableArray<PointsToNode>(C->comp_arena(), sz, sz, dummy);
    95   _phantom_object = C->top()->_idx;
    96   _phantom_object = C->top()->_idx;
    96   PointsToNode *phn = ptnode_adr(_phantom_object);
    97   PointsToNode *phn = ptnode_adr(_phantom_object);
       
    98   phn->_node = C->top();
    97   phn->set_node_type(PointsToNode::JavaObject);
    99   phn->set_node_type(PointsToNode::JavaObject);
    98   phn->set_escape_state(PointsToNode::GlobalEscape);
   100   phn->set_escape_state(PointsToNode::GlobalEscape);
    99 }
   101 }
   100 
   102 
   101 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
   103 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
   119   // deferred edges
   121   // deferred edges
   120   if (from_i != to_i)
   122   if (from_i != to_i)
   121     f->add_edge(to_i, PointsToNode::DeferredEdge);
   123     f->add_edge(to_i, PointsToNode::DeferredEdge);
   122 }
   124 }
   123 
   125 
   124 int ConnectionGraph::type_to_offset(const Type *t) {
   126 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
   125   const TypePtr *t_ptr = t->isa_ptr();
   127   const Type *adr_type = phase->type(adr);
       
   128   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
       
   129       adr->in(AddPNode::Address)->is_Proj() &&
       
   130       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
       
   131     // We are computing a raw address for a store captured by an Initialize
       
   132     // compute an appropriate address type. AddP cases #3 and #5 (see below).
       
   133     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
       
   134     assert(offs != Type::OffsetBot ||
       
   135            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
       
   136            "offset must be a constant or it is initialization of array");
       
   137     return offs;
       
   138   }
       
   139   const TypePtr *t_ptr = adr_type->isa_ptr();
   126   assert(t_ptr != NULL, "must be a pointer type");
   140   assert(t_ptr != NULL, "must be a pointer type");
   127   return t_ptr->offset();
   141   return t_ptr->offset();
   128 }
   142 }
   129 
   143 
   130 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
   144 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
   145   PointsToNode::EscapeState old_es = npt->escape_state();
   159   PointsToNode::EscapeState old_es = npt->escape_state();
   146   if (es > old_es)
   160   if (es > old_es)
   147     npt->set_escape_state(es);
   161     npt->set_escape_state(es);
   148 }
   162 }
   149 
   163 
       
   164 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
       
   165                                PointsToNode::EscapeState es, bool done) {
       
   166   PointsToNode* ptadr = ptnode_adr(n->_idx);
       
   167   ptadr->_node = n;
       
   168   ptadr->set_node_type(nt);
       
   169 
       
   170   // inline set_escape_state(idx, es);
       
   171   PointsToNode::EscapeState old_es = ptadr->escape_state();
       
   172   if (es > old_es)
       
   173     ptadr->set_escape_state(es);
       
   174 
       
   175   if (done)
       
   176     _processed.set(n->_idx);
       
   177 }
       
   178 
   150 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
   179 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
   151   uint idx = n->_idx;
   180   uint idx = n->_idx;
   152   PointsToNode::EscapeState es;
   181   PointsToNode::EscapeState es;
   153 
   182 
   154   // If we are still collecting we don't know the answer yet
   183   // If we are still collecting or there were no non-escaping allocations
   155   if (_collecting)
   184   // we don't know the answer yet
       
   185   if (_collecting || !_has_allocations)
   156     return PointsToNode::UnknownEscape;
   186     return PointsToNode::UnknownEscape;
   157 
   187 
   158   // if the node was created after the escape computation, return
   188   // if the node was created after the escape computation, return
   159   // UnknownEscape
   189   // UnknownEscape
   160   if (idx >= (uint)_nodes->length())
   190   if (idx >= (uint)_nodes->length())
   167     return es;
   197     return es;
   168 
   198 
   169   // compute max escape state of anything this node could point to
   199   // compute max escape state of anything this node could point to
   170   VectorSet ptset(Thread::current()->resource_area());
   200   VectorSet ptset(Thread::current()->resource_area());
   171   PointsTo(ptset, n, phase);
   201   PointsTo(ptset, n, phase);
   172   for( VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i ) {
   202   for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
   173     uint pt = i.elem;
   203     uint pt = i.elem;
   174     PointsToNode::EscapeState pes = _nodes->at(pt).escape_state();
   204     PointsToNode::EscapeState pes = _nodes->adr_at(pt)->escape_state();
   175     if (pes > es)
   205     if (pes > es)
   176       es = pes;
   206       es = pes;
   177   }
   207   }
   178   // cache the computed escape state
   208   // cache the computed escape state
   179   assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
   209   assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
   183 
   213 
   184 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
   214 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
   185   VectorSet visited(Thread::current()->resource_area());
   215   VectorSet visited(Thread::current()->resource_area());
   186   GrowableArray<uint>  worklist;
   216   GrowableArray<uint>  worklist;
   187 
   217 
   188   n = skip_casts(n);
   218   n = n->uncast();
   189   PointsToNode  npt = _nodes->at_grow(n->_idx);
   219   PointsToNode  npt = _nodes->at_grow(n->_idx);
   190 
   220 
   191   // If we have a JavaObject, return just that object
   221   // If we have a JavaObject, return just that object
   192   if (npt.node_type() == PointsToNode::JavaObject) {
   222   if (npt.node_type() == PointsToNode::JavaObject) {
   193     ptset.set(n->_idx);
   223     ptset.set(n->_idx);
   194     return;
   224     return;
   195   }
   225   }
   196   // we may have a Phi which has not been processed
   226   assert(npt._node != NULL, "unregistered node");
   197   if (npt._node == NULL) {
   227 
   198     assert(n->is_Phi(), "unprocessed node must be a Phi");
       
   199     record_for_escape_analysis(n);
       
   200     npt = _nodes->at(n->_idx);
       
   201   }
       
   202   worklist.push(n->_idx);
   228   worklist.push(n->_idx);
   203   while(worklist.length() > 0) {
   229   while(worklist.length() > 0) {
   204     int ni = worklist.pop();
   230     int ni = worklist.pop();
   205     PointsToNode pn = _nodes->at_grow(ni);
   231     PointsToNode pn = _nodes->at_grow(ni);
   206     if (!visited.test(ni)) {
   232     if (!visited.test_set(ni)) {
   207       visited.set(ni);
       
   208 
       
   209       // ensure that all inputs of a Phi have been processed
   233       // ensure that all inputs of a Phi have been processed
   210       if (_collecting && pn._node->is_Phi()) {
   234       assert(!_collecting || !pn._node->is_Phi() || _processed.test(ni),"");
   211         PhiNode *phi = pn._node->as_Phi();
       
   212         process_phi_escape(phi, phase);
       
   213       }
       
   214 
   235 
   215       int edges_processed = 0;
   236       int edges_processed = 0;
   216       for (uint e = 0; e < pn.edge_count(); e++) {
   237       for (uint e = 0; e < pn.edge_count(); e++) {
       
   238         uint etgt = pn.edge_target(e);
   217         PointsToNode::EdgeType et = pn.edge_type(e);
   239         PointsToNode::EdgeType et = pn.edge_type(e);
   218         if (et == PointsToNode::PointsToEdge) {
   240         if (et == PointsToNode::PointsToEdge) {
   219           ptset.set(pn.edge_target(e));
   241           ptset.set(etgt);
   220           edges_processed++;
   242           edges_processed++;
   221         } else if (et == PointsToNode::DeferredEdge) {
   243         } else if (et == PointsToNode::DeferredEdge) {
   222           worklist.push(pn.edge_target(e));
   244           worklist.push(etgt);
   223           edges_processed++;
   245           edges_processed++;
       
   246         } else {
       
   247           assert(false,"neither PointsToEdge or DeferredEdge");
   224         }
   248         }
   225       }
   249       }
   226       if (edges_processed == 0) {
   250       if (edges_processed == 0) {
   227         // no deferred or pointsto edges found.  Assume the value was set outside
   251         // no deferred or pointsto edges found.  Assume the value was set
   228         // this method.  Add the phantom object to the pointsto set.
   252         // outside this method.  Add the phantom object to the pointsto set.
   229         ptset.set(_phantom_object);
   253         ptset.set(_phantom_object);
   230       }
   254       }
   231     }
   255     }
   232   }
   256   }
   233 }
   257 }
   237 
   261 
   238   uint i = 0;
   262   uint i = 0;
   239   PointsToNode *ptn = ptnode_adr(ni);
   263   PointsToNode *ptn = ptnode_adr(ni);
   240 
   264 
   241   while(i < ptn->edge_count()) {
   265   while(i < ptn->edge_count()) {
       
   266     uint t = ptn->edge_target(i);
       
   267     PointsToNode *ptt = ptnode_adr(t);
   242     if (ptn->edge_type(i) != PointsToNode::DeferredEdge) {
   268     if (ptn->edge_type(i) != PointsToNode::DeferredEdge) {
   243       i++;
   269       i++;
   244     } else {
   270     } else {
   245       uint t = ptn->edge_target(i);
       
   246       PointsToNode *ptt = ptnode_adr(t);
       
   247       ptn->remove_edge(t, PointsToNode::DeferredEdge);
   271       ptn->remove_edge(t, PointsToNode::DeferredEdge);
   248       if(!visited.test(t)) {
   272       if(!visited.test_set(t)) {
   249         visited.set(t);
       
   250         for (uint j = 0; j < ptt->edge_count(); j++) {
   273         for (uint j = 0; j < ptt->edge_count(); j++) {
   251           uint n1 = ptt->edge_target(j);
   274           uint n1 = ptt->edge_target(j);
   252           PointsToNode *pt1 = ptnode_adr(n1);
   275           PointsToNode *pt1 = ptnode_adr(n1);
   253           switch(ptt->edge_type(j)) {
   276           switch(ptt->edge_type(j)) {
   254             case PointsToNode::PointsToEdge:
   277             case PointsToNode::PointsToEdge:
   255                add_pointsto_edge(ni, n1);
   278               add_pointsto_edge(ni, n1);
       
   279               if(n1 == _phantom_object) {
       
   280                 // Special case - field set outside (globally escaping).
       
   281                 ptn->set_escape_state(PointsToNode::GlobalEscape);
       
   282               }
   256               break;
   283               break;
   257             case PointsToNode::DeferredEdge:
   284             case PointsToNode::DeferredEdge:
   258               add_deferred_edge(ni, n1);
   285               add_deferred_edge(ni, n1);
   259               break;
   286               break;
   260             case PointsToNode::FieldEdge:
   287             case PointsToNode::FieldEdge:
   289         add_pointsto_edge(fi, to_i);
   316         add_pointsto_edge(fi, to_i);
   290     }
   317     }
   291   }
   318   }
   292 }
   319 }
   293 
   320 
   294 //  Add a deferred  edge from node given by "from_i" to any field of adr_i whose offset
   321 // Add a deferred  edge from node given by "from_i" to any field of adr_i
   295 //  matches "offset"
   322 // whose offset matches "offset".
   296 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
   323 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
   297   PointsToNode an = _nodes->at_grow(adr_i);
   324   PointsToNode an = _nodes->at_grow(adr_i);
   298   for (uint fe = 0; fe < an.edge_count(); fe++) {
   325   for (uint fe = 0; fe < an.edge_count(); fe++) {
   299     assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
   326     assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
   300     int fi = an.edge_target(fe);
   327     int fi = an.edge_target(fe);
   308       add_deferred_edge(from_i, fi);
   335       add_deferred_edge(from_i, fi);
   309     }
   336     }
   310   }
   337   }
   311 }
   338 }
   312 
   339 
   313 //
   340 // Helper functions
   314 // Search memory chain of "mem" to find a MemNode whose address
   341 
   315 // is the specified alias index.  Returns the MemNode found or the
   342 static Node* get_addp_base(Node *addp) {
   316 // first non-MemNode encountered.
   343   assert(addp->is_AddP(), "must be AddP");
   317 //
   344   //
   318 Node *ConnectionGraph::find_mem(Node *mem, int alias_idx, PhaseGVN  *igvn) {
   345   // AddP cases for Base and Address inputs:
   319   if (mem == NULL)
   346   // case #1. Direct object's field reference:
   320     return mem;
   347   //     Allocate
   321   while (mem->is_Mem()) {
   348   //       |
   322     const Type *at = igvn->type(mem->in(MemNode::Address));
   349   //     Proj #5 ( oop result )
   323     if (at != Type::TOP) {
   350   //       |
   324       assert (at->isa_ptr() != NULL, "pointer type required.");
   351   //     CheckCastPP (cast to instance type)
   325       int idx = _compile->get_alias_index(at->is_ptr());
   352   //      | |
   326       if (idx == alias_idx)
   353   //     AddP  ( base == address )
   327         break;
   354   //
   328     }
   355   // case #2. Indirect object's field reference:
   329     mem = mem->in(MemNode::Memory);
   356   //      Phi
   330   }
   357   //       |
   331   return mem;
   358   //     CastPP (cast to instance type)
       
   359   //      | |
       
   360   //     AddP  ( base == address )
       
   361   //
       
   362   // case #3. Raw object's field reference for Initialize node:
       
   363   //      Allocate
       
   364   //        |
       
   365   //      Proj #5 ( oop result )
       
   366   //  top   |
       
   367   //     \  |
       
   368   //     AddP  ( base == top )
       
   369   //
       
   370   // case #4. Array's element reference:
       
   371   //   {CheckCastPP | CastPP}
       
   372   //     |  | |
       
   373   //     |  AddP ( array's element offset )
       
   374   //     |  |
       
   375   //     AddP ( array's offset )
       
   376   //
       
   377   // case #5. Raw object's field reference for arraycopy stub call:
       
   378   //          The inline_native_clone() case when the arraycopy stub is called
       
   379   //          after the allocation before Initialize and CheckCastPP nodes.
       
   380   //      Allocate
       
   381   //        |
       
   382   //      Proj #5 ( oop result )
       
   383   //       | |
       
   384   //       AddP  ( base == address )
       
   385   //
       
   386   // case #6. Constant Pool or ThreadLocal or Raw object's field reference:
       
   387   //      ConP # Object from Constant Pool.
       
   388   //  top   |
       
   389   //     \  |
       
   390   //     AddP  ( base == top )
       
   391   //
       
   392   Node *base = addp->in(AddPNode::Base)->uncast();
       
   393   if (base->is_top()) { // The AddP case #3 and #6.
       
   394     base = addp->in(AddPNode::Address)->uncast();
       
   395     assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
       
   396            base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL ||
       
   397            base->is_Proj() && base->in(0)->is_Allocate(), "sanity");
       
   398   }
       
   399   return base;
       
   400 }
       
   401 
       
   402 static Node* find_second_addp(Node* addp, Node* n) {
       
   403   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
       
   404 
       
   405   Node* addp2 = addp->raw_out(0);
       
   406   if (addp->outcnt() == 1 && addp2->is_AddP() &&
       
   407       addp2->in(AddPNode::Base) == n &&
       
   408       addp2->in(AddPNode::Address) == addp) {
       
   409 
       
   410     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
       
   411     //
       
   412     // Find array's offset to push it on worklist first and
       
   413     // as result process an array's element offset first (pushed second)
       
   414     // to avoid CastPP for the array's offset.
       
   415     // Otherwise the inserted CastPP (LocalVar) will point to what
       
   416     // the AddP (Field) points to. Which would be wrong since
       
   417     // the algorithm expects the CastPP has the same point as
       
   418     // as AddP's base CheckCastPP (LocalVar).
       
   419     //
       
   420     //    ArrayAllocation
       
   421     //     |
       
   422     //    CheckCastPP
       
   423     //     |
       
   424     //    memProj (from ArrayAllocation CheckCastPP)
       
   425     //     |  ||
       
   426     //     |  ||   Int (element index)
       
   427     //     |  ||    |   ConI (log(element size))
       
   428     //     |  ||    |   /
       
   429     //     |  ||   LShift
       
   430     //     |  ||  /
       
   431     //     |  AddP (array's element offset)
       
   432     //     |  |
       
   433     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
       
   434     //     | / /
       
   435     //     AddP (array's offset)
       
   436     //      |
       
   437     //     Load/Store (memory operation on array's element)
       
   438     //
       
   439     return addp2;
       
   440   }
       
   441   return NULL;
   332 }
   442 }
   333 
   443 
   334 //
   444 //
   335 // Adjust the type and inputs of an AddP which computes the
   445 // Adjust the type and inputs of an AddP which computes the
   336 // address of a field of an instance
   446 // address of a field of an instance
   337 //
   447 //
   338 void ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
   448 void ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
       
   449   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
       
   450   assert(base_t != NULL && base_t->is_instance(), "expecting instance oopptr");
   339   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
   451   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
   340   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
   452   if (t == NULL) {
   341   assert(t != NULL,  "expecting oopptr");
   453     // We are computing a raw address for a store captured by an Initialize
   342   assert(base_t != NULL && base_t->is_instance(), "expecting instance oopptr");
   454     // compute an appropriate address type.
       
   455     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
       
   456     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
       
   457     int offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
       
   458     assert(offs != Type::OffsetBot, "offset must be a constant");
       
   459     t = base_t->add_offset(offs)->is_oopptr();
       
   460   }
   343   uint inst_id =  base_t->instance_id();
   461   uint inst_id =  base_t->instance_id();
   344   assert(!t->is_instance() || t->instance_id() == inst_id,
   462   assert(!t->is_instance() || t->instance_id() == inst_id,
   345                              "old type must be non-instance or match new type");
   463                              "old type must be non-instance or match new type");
   346   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
   464   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
   347   // ensure an alias index is allocated for the instance type
   465   // Do NOT remove the next call: ensure an new alias index is allocated
       
   466   // for the instance type
   348   int alias_idx = _compile->get_alias_index(tinst);
   467   int alias_idx = _compile->get_alias_index(tinst);
   349   igvn->set_type(addp, tinst);
   468   igvn->set_type(addp, tinst);
   350   // record the allocation in the node map
   469   // record the allocation in the node map
   351   set_map(addp->_idx, get_map(base->_idx));
   470   set_map(addp->_idx, get_map(base->_idx));
   352   // if the Address input is not the appropriate instance type (due to intervening
   471   // if the Address input is not the appropriate instance type
   353   // casts,) insert a cast
   472   // (due to intervening casts,) insert a cast
   354   Node *adr = addp->in(AddPNode::Address);
   473   Node *adr = addp->in(AddPNode::Address);
   355   const TypeOopPtr  *atype = igvn->type(adr)->isa_oopptr();
   474   const TypeOopPtr  *atype = igvn->type(adr)->isa_oopptr();
   356   if (atype->instance_id() != inst_id) {
   475   if (atype != NULL && atype->instance_id() != inst_id) {
   357     assert(!atype->is_instance(), "no conflicting instances");
   476     assert(!atype->is_instance(), "no conflicting instances");
   358     const TypeOopPtr *new_atype = base_t->add_offset(atype->offset())->isa_oopptr();
   477     const TypeOopPtr *new_atype = base_t->add_offset(atype->offset())->isa_oopptr();
   359     Node *acast = new (_compile, 2) CastPPNode(adr, new_atype);
   478     Node *acast = new (_compile, 2) CastPPNode(adr, new_atype);
   360     acast->set_req(0, adr->in(0));
   479     acast->set_req(0, adr->in(0));
   361     igvn->set_type(acast, new_atype);
   480     igvn->set_type(acast, new_atype);
   370     }
   489     }
   371     igvn->hash_delete(addp);
   490     igvn->hash_delete(addp);
   372     addp->set_req(AddPNode::Base, bcast);
   491     addp->set_req(AddPNode::Base, bcast);
   373     addp->set_req(AddPNode::Address, acast);
   492     addp->set_req(AddPNode::Address, acast);
   374     igvn->hash_insert(addp);
   493     igvn->hash_insert(addp);
   375     record_for_optimizer(addp);
   494   }
   376   }
   495   // Put on IGVN worklist since at least addp's type was changed above.
       
   496   record_for_optimizer(addp);
   377 }
   497 }
   378 
   498 
   379 //
   499 //
   380 // Create a new version of orig_phi if necessary. Returns either the newly
   500 // Create a new version of orig_phi if necessary. Returns either the newly
   381 // created phi or an existing phi.  Sets create_new to indicate wheter  a new
   501 // created phi or an existing phi.  Sets create_new to indicate wheter  a new
   384 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
   504 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
   385   Compile *C = _compile;
   505   Compile *C = _compile;
   386   new_created = false;
   506   new_created = false;
   387   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
   507   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
   388   // nothing to do if orig_phi is bottom memory or matches alias_idx
   508   // nothing to do if orig_phi is bottom memory or matches alias_idx
   389   if (phi_alias_idx == Compile::AliasIdxBot || phi_alias_idx == alias_idx) {
   509   if (phi_alias_idx == alias_idx) {
   390     return orig_phi;
   510     return orig_phi;
   391   }
   511   }
   392   // have we already created a Phi for this alias index?
   512   // have we already created a Phi for this alias index?
   393   PhiNode *result = get_map_phi(orig_phi->_idx);
   513   PhiNode *result = get_map_phi(orig_phi->_idx);
   394   const TypePtr *atype = C->get_adr_type(alias_idx);
       
   395   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
   514   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
   396     return result;
   515     return result;
   397   }
   516   }
   398   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
   517   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
   399     if (C->do_escape_analysis() == true && !C->failing()) {
   518     if (C->do_escape_analysis() == true && !C->failing()) {
   402       // to the Compile object, and the C2Compiler will see it and retry.
   521       // to the Compile object, and the C2Compiler will see it and retry.
   403       C->record_failure(C2Compiler::retry_no_escape_analysis());
   522       C->record_failure(C2Compiler::retry_no_escape_analysis());
   404     }
   523     }
   405     return NULL;
   524     return NULL;
   406   }
   525   }
   407 
       
   408   orig_phi_worklist.append_if_missing(orig_phi);
   526   orig_phi_worklist.append_if_missing(orig_phi);
       
   527   const TypePtr *atype = C->get_adr_type(alias_idx);
   409   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
   528   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
   410   set_map_phi(orig_phi->_idx, result);
   529   set_map_phi(orig_phi->_idx, result);
   411   igvn->set_type(result, result->bottom_type());
   530   igvn->set_type(result, result->bottom_type());
   412   record_for_optimizer(result);
   531   record_for_optimizer(result);
   413   new_created = true;
   532   new_created = true;
   421 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
   540 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
   422 
   541 
   423   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
   542   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
   424   Compile *C = _compile;
   543   Compile *C = _compile;
   425   bool new_phi_created;
   544   bool new_phi_created;
   426   PhiNode *result =  create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
   545   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
   427   if (!new_phi_created) {
   546   if (!new_phi_created) {
   428     return result;
   547     return result;
   429   }
   548   }
   430 
   549 
   431   GrowableArray<PhiNode *>  phi_list;
   550   GrowableArray<PhiNode *>  phi_list;
   434   PhiNode *phi = orig_phi;
   553   PhiNode *phi = orig_phi;
   435   uint idx = 1;
   554   uint idx = 1;
   436   bool finished = false;
   555   bool finished = false;
   437   while(!finished) {
   556   while(!finished) {
   438     while (idx < phi->req()) {
   557     while (idx < phi->req()) {
   439       Node *mem = find_mem(phi->in(idx), alias_idx, igvn);
   558       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
   440       if (mem != NULL && mem->is_Phi()) {
   559       if (mem != NULL && mem->is_Phi()) {
   441         PhiNode *nphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
   560         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
   442         if (new_phi_created) {
   561         if (new_phi_created) {
   443           // found an phi for which we created a new split, push current one on worklist and begin
   562           // found an phi for which we created a new split, push current one on worklist and begin
   444           // processing new one
   563           // processing new one
   445           phi_list.push(phi);
   564           phi_list.push(phi);
   446           cur_input.push(idx);
   565           cur_input.push(idx);
   447           phi = mem->as_Phi();
   566           phi = mem->as_Phi();
   448           result = nphi;
   567           result = newphi;
   449           idx = 1;
   568           idx = 1;
   450           continue;
   569           continue;
   451         } else {
   570         } else {
   452           mem = nphi;
   571           mem = newphi;
   453         }
   572         }
   454       }
   573       }
   455       if (C->failing()) {
   574       if (C->failing()) {
   456         return NULL;
   575         return NULL;
   457       }
   576       }
   459     }
   578     }
   460 #ifdef ASSERT
   579 #ifdef ASSERT
   461     // verify that the new Phi has an input for each input of the original
   580     // verify that the new Phi has an input for each input of the original
   462     assert( phi->req() == result->req(), "must have same number of inputs.");
   581     assert( phi->req() == result->req(), "must have same number of inputs.");
   463     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
   582     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
       
   583 #endif
       
   584     // Check if all new phi's inputs have specified alias index.
       
   585     // Otherwise use old phi.
   464     for (uint i = 1; i < phi->req(); i++) {
   586     for (uint i = 1; i < phi->req(); i++) {
   465       assert((phi->in(i) == NULL) == (result->in(i) == NULL), "inputs must correspond.");
   587       Node* in = result->in(i);
   466     }
   588       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
   467 #endif
   589     }
   468     // we have finished processing a Phi, see if there are any more to do
   590     // we have finished processing a Phi, see if there are any more to do
   469     finished = (phi_list.length() == 0 );
   591     finished = (phi_list.length() == 0 );
   470     if (!finished) {
   592     if (!finished) {
   471       phi = phi_list.pop();
   593       phi = phi_list.pop();
   472       idx = cur_input.pop();
   594       idx = cur_input.pop();
   473       PhiNode *prev_phi = get_map_phi(phi->_idx);
   595       PhiNode *prev_result = get_map_phi(phi->_idx);
   474       prev_phi->set_req(idx++, result);
   596       prev_result->set_req(idx++, result);
   475       result = prev_phi;
   597       result = prev_result;
   476     }
   598     }
   477   }
   599   }
   478   return result;
   600   return result;
   479 }
   601 }
       
   602 
       
   603 
       
   604 //
       
   605 // The next methods are derived from methods in MemNode.
       
   606 //
       
   607 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
       
   608   Node *mem = mmem;
       
   609   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
       
   610   // means an array I have not precisely typed yet.  Do not do any
       
   611   // alias stuff with it any time soon.
       
   612   if( tinst->base() != Type::AnyPtr &&
       
   613       !(tinst->klass()->is_java_lang_Object() &&
       
   614         tinst->offset() == Type::OffsetBot) ) {
       
   615     mem = mmem->memory_at(alias_idx);
       
   616     // Update input if it is progress over what we have now
       
   617   }
       
   618   return mem;
       
   619 }
       
   620 
       
   621 //
       
   622 // Search memory chain of "mem" to find a MemNode whose address
       
   623 // is the specified alias index.
       
   624 //
       
   625 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
       
   626   if (orig_mem == NULL)
       
   627     return orig_mem;
       
   628   Compile* C = phase->C;
       
   629   const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
       
   630   bool is_instance = (tinst != NULL) && tinst->is_instance();
       
   631   Node *prev = NULL;
       
   632   Node *result = orig_mem;
       
   633   while (prev != result) {
       
   634     prev = result;
       
   635     if (result->is_Mem()) {
       
   636       MemNode *mem = result->as_Mem();
       
   637       const Type *at = phase->type(mem->in(MemNode::Address));
       
   638       if (at != Type::TOP) {
       
   639         assert (at->isa_ptr() != NULL, "pointer type required.");
       
   640         int idx = C->get_alias_index(at->is_ptr());
       
   641         if (idx == alias_idx)
       
   642           break;
       
   643       }
       
   644       result = mem->in(MemNode::Memory);
       
   645     }
       
   646     if (!is_instance)
       
   647       continue;  // don't search further for non-instance types
       
   648     // skip over a call which does not affect this memory slice
       
   649     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
       
   650       Node *proj_in = result->in(0);
       
   651       if (proj_in->is_Call()) {
       
   652         CallNode *call = proj_in->as_Call();
       
   653         if (!call->may_modify(tinst, phase)) {
       
   654           result = call->in(TypeFunc::Memory);
       
   655         }
       
   656       } else if (proj_in->is_Initialize()) {
       
   657         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
       
   658         // Stop if this is the initialization for the object instance which
       
   659         // which contains this memory slice, otherwise skip over it.
       
   660         if (alloc == NULL || alloc->_idx != tinst->instance_id()) {
       
   661           result = proj_in->in(TypeFunc::Memory);
       
   662         }
       
   663       } else if (proj_in->is_MemBar()) {
       
   664         result = proj_in->in(TypeFunc::Memory);
       
   665       }
       
   666     } else if (result->is_MergeMem()) {
       
   667       MergeMemNode *mmem = result->as_MergeMem();
       
   668       result = step_through_mergemem(mmem, alias_idx, tinst);
       
   669       if (result == mmem->base_memory()) {
       
   670         // Didn't find instance memory, search through general slice recursively.
       
   671         result = mmem->memory_at(C->get_general_index(alias_idx));
       
   672         result = find_inst_mem(result, alias_idx, orig_phis, phase);
       
   673         if (C->failing()) {
       
   674           return NULL;
       
   675         }
       
   676         mmem->set_memory_at(alias_idx, result);
       
   677       }
       
   678     } else if (result->is_Phi() &&
       
   679                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
       
   680       Node *un = result->as_Phi()->unique_input(phase);
       
   681       if (un != NULL) {
       
   682         result = un;
       
   683       } else {
       
   684         break;
       
   685       }
       
   686     }
       
   687   }
       
   688   if (is_instance && result->is_Phi()) {
       
   689     PhiNode *mphi = result->as_Phi();
       
   690     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
       
   691     const TypePtr *t = mphi->adr_type();
       
   692     if (C->get_alias_index(t) != alias_idx) {
       
   693       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
       
   694     }
       
   695   }
       
   696   // the result is either MemNode, PhiNode, InitializeNode.
       
   697   return result;
       
   698 }
       
   699 
   480 
   700 
   481 //
   701 //
   482 //  Convert the types of unescaped object to instance types where possible,
   702 //  Convert the types of unescaped object to instance types where possible,
   483 //  propagate the new type information through the graph, and update memory
   703 //  propagate the new type information through the graph, and update memory
   484 //  edges and MergeMem inputs to reflect the new type.
   704 //  edges and MergeMem inputs to reflect the new type.
   574   PhaseGVN  *igvn = _compile->initial_gvn();
   794   PhaseGVN  *igvn = _compile->initial_gvn();
   575   uint new_index_start = (uint) _compile->num_alias_types();
   795   uint new_index_start = (uint) _compile->num_alias_types();
   576   VectorSet visited(Thread::current()->resource_area());
   796   VectorSet visited(Thread::current()->resource_area());
   577   VectorSet ptset(Thread::current()->resource_area());
   797   VectorSet ptset(Thread::current()->resource_area());
   578 
   798 
   579   //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
   799 
   580   //            types for the CheckCastPP for allocations where possible.
   800   //  Phase 1:  Process possible allocations from alloc_worklist.
       
   801   //  Create instance types for the CheckCastPP for allocations where possible.
   581   while (alloc_worklist.length() != 0) {
   802   while (alloc_worklist.length() != 0) {
   582     Node *n = alloc_worklist.pop();
   803     Node *n = alloc_worklist.pop();
   583     uint ni = n->_idx;
   804     uint ni = n->_idx;
       
   805     const TypeOopPtr* tinst = NULL;
   584     if (n->is_Call()) {
   806     if (n->is_Call()) {
   585       CallNode *alloc = n->as_Call();
   807       CallNode *alloc = n->as_Call();
   586       // copy escape information to call node
   808       // copy escape information to call node
   587       PointsToNode ptn = _nodes->at(alloc->_idx);
   809       PointsToNode* ptn = _nodes->adr_at(alloc->_idx);
   588       PointsToNode::EscapeState es = escape_state(alloc, igvn);
   810       PointsToNode::EscapeState es = escape_state(alloc, igvn);
   589       alloc->_escape_state = es;
   811       // We have an allocation or call which returns a Java object,
   590       // find CheckCastPP of call return value
   812       // see if it is unescaped.
   591       n = alloc->proj_out(TypeFunc::Parms);
   813       if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
   592       if (n != NULL && n->outcnt() == 1) {
       
   593         n = n->unique_out();
       
   594         if (n->Opcode() != Op_CheckCastPP) {
       
   595           continue;
       
   596         }
       
   597       } else {
       
   598         continue;
   814         continue;
   599       }
       
   600       // we have an allocation or call which returns a Java object, see if it is unescaped
       
   601       if (es != PointsToNode::NoEscape || !ptn._unique_type) {
       
   602         continue; //  can't make a unique type
       
   603       }
       
   604       if (alloc->is_Allocate()) {
   815       if (alloc->is_Allocate()) {
   605         // Set the scalar_replaceable flag before the next check.
   816         // Set the scalar_replaceable flag before the next check.
   606         alloc->as_Allocate()->_is_scalar_replaceable = true;
   817         alloc->as_Allocate()->_is_scalar_replaceable = true;
   607       }
   818       }
   608 
   819       // find CheckCastPP of call return value
       
   820       n = alloc->result_cast();
       
   821       if (n == NULL ||          // No uses accept Initialize or
       
   822           !n->is_CheckCastPP()) // not unique CheckCastPP.
       
   823         continue;
       
   824       // The inline code for Object.clone() casts the allocation result to
       
   825       // java.lang.Object and then to the the actual type of the allocated
       
   826       // object. Detect this case and use the second cast.
       
   827       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
       
   828           && igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT) {
       
   829         Node *cast2 = NULL;
       
   830         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
       
   831           Node *use = n->fast_out(i);
       
   832           if (use->is_CheckCastPP()) {
       
   833             cast2 = use;
       
   834             break;
       
   835           }
       
   836         }
       
   837         if (cast2 != NULL) {
       
   838           n = cast2;
       
   839         } else {
       
   840           continue;
       
   841         }
       
   842       }
       
   843       set_escape_state(n->_idx, es);
       
   844       // in order for an object to be stackallocatable, it must be:
       
   845       //   - a direct allocation (not a call returning an object)
       
   846       //   - non-escaping
       
   847       //   - eligible to be a unique type
       
   848       //   - not determined to be ineligible by escape analysis
   609       set_map(alloc->_idx, n);
   849       set_map(alloc->_idx, n);
   610       set_map(n->_idx, alloc);
   850       set_map(n->_idx, alloc);
   611       const TypeInstPtr *t = igvn->type(n)->isa_instptr();
   851       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
   612       // Unique types which are arrays are not currently supported.
   852       if (t == NULL)
   613       // The check for AllocateArray is needed in case an array
       
   614       // allocation is immediately cast to Object
       
   615       if (t == NULL || alloc->is_AllocateArray())
       
   616         continue;  // not a TypeInstPtr
   853         continue;  // not a TypeInstPtr
   617       const TypeOopPtr *tinst = t->cast_to_instance(ni);
   854       tinst = t->cast_to_instance(ni);
   618       igvn->hash_delete(n);
   855       igvn->hash_delete(n);
   619       igvn->set_type(n,  tinst);
   856       igvn->set_type(n,  tinst);
   620       n->raise_bottom_type(tinst);
   857       n->raise_bottom_type(tinst);
   621       igvn->hash_insert(n);
   858       igvn->hash_insert(n);
       
   859       record_for_optimizer(n);
       
   860       if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
       
   861           (t->isa_instptr() || t->isa_aryptr())) {
       
   862         // An allocation may have an Initialize which has raw stores. Scan
       
   863         // the users of the raw allocation result and push AddP users
       
   864         // on alloc_worklist.
       
   865         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
       
   866         assert (raw_result != NULL, "must have an allocation result");
       
   867         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
       
   868           Node *use = raw_result->fast_out(i);
       
   869           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
       
   870             Node* addp2 = find_second_addp(use, raw_result);
       
   871             if (addp2 != NULL) {
       
   872               assert(alloc->is_AllocateArray(),"array allocation was expected");
       
   873               alloc_worklist.append_if_missing(addp2);
       
   874             }
       
   875             alloc_worklist.append_if_missing(use);
       
   876           } else if (use->is_Initialize()) {
       
   877             memnode_worklist.append_if_missing(use);
       
   878           }
       
   879         }
       
   880       }
   622     } else if (n->is_AddP()) {
   881     } else if (n->is_AddP()) {
   623       ptset.Clear();
   882       ptset.Clear();
   624       PointsTo(ptset, n->in(AddPNode::Address), igvn);
   883       PointsTo(ptset, get_addp_base(n), igvn);
   625       assert(ptset.Size() == 1, "AddP address is unique");
   884       assert(ptset.Size() == 1, "AddP address is unique");
   626       Node *base = get_map(ptset.getelem());
   885       uint elem = ptset.getelem(); // Allocation node's index
       
   886       if (elem == _phantom_object)
       
   887         continue; // Assume the value was set outside this method.
       
   888       Node *base = get_map(elem);  // CheckCastPP node
   627       split_AddP(n, base, igvn);
   889       split_AddP(n, base, igvn);
   628     } else if (n->is_Phi() || n->Opcode() == Op_CastPP || n->Opcode() == Op_CheckCastPP) {
   890       tinst = igvn->type(base)->isa_oopptr();
       
   891     } else if (n->is_Phi() ||
       
   892                n->is_CheckCastPP() ||
       
   893                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
   629       if (visited.test_set(n->_idx)) {
   894       if (visited.test_set(n->_idx)) {
   630         assert(n->is_Phi(), "loops only through Phi's");
   895         assert(n->is_Phi(), "loops only through Phi's");
   631         continue;  // already processed
   896         continue;  // already processed
   632       }
   897       }
   633       ptset.Clear();
   898       ptset.Clear();
   634       PointsTo(ptset, n, igvn);
   899       PointsTo(ptset, n, igvn);
   635       if (ptset.Size() == 1) {
   900       if (ptset.Size() == 1) {
       
   901         uint elem = ptset.getelem(); // Allocation node's index
       
   902         if (elem == _phantom_object)
       
   903           continue; // Assume the value was set outside this method.
       
   904         Node *val = get_map(elem);   // CheckCastPP node
   636         TypeNode *tn = n->as_Type();
   905         TypeNode *tn = n->as_Type();
   637         Node *val = get_map(ptset.getelem());
   906         tinst = igvn->type(val)->isa_oopptr();
   638         const TypeInstPtr *val_t = igvn->type(val)->isa_instptr();;
   907         assert(tinst != NULL && tinst->is_instance() &&
   639         assert(val_t != NULL && val_t->is_instance(), "instance type expected.");
   908                tinst->instance_id() == elem , "instance type expected.");
   640         const TypeInstPtr *tn_t = igvn->type(tn)->isa_instptr();;
   909         const TypeOopPtr *tn_t = igvn->type(tn)->isa_oopptr();
   641 
   910 
   642         if (tn_t != NULL && val_t->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE)->higher_equal(tn_t)) {
   911         if (tn_t != NULL &&
       
   912  tinst->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE)->higher_equal(tn_t)) {
   643           igvn->hash_delete(tn);
   913           igvn->hash_delete(tn);
   644           igvn->set_type(tn, val_t);
   914           igvn->set_type(tn, tinst);
   645           tn->set_type(val_t);
   915           tn->set_type(tinst);
   646           igvn->hash_insert(tn);
   916           igvn->hash_insert(tn);
       
   917           record_for_optimizer(n);
   647         }
   918         }
   648       }
   919       }
   649     } else {
   920     } else {
   650       continue;
   921       continue;
   651     }
   922     }
   652     // push users on appropriate worklist
   923     // push users on appropriate worklist
   653     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   924     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   654       Node *use = n->fast_out(i);
   925       Node *use = n->fast_out(i);
   655       if(use->is_Mem() && use->in(MemNode::Address) == n) {
   926       if(use->is_Mem() && use->in(MemNode::Address) == n) {
   656         memnode_worklist.push(use);
   927         memnode_worklist.append_if_missing(use);
   657       } else if (use->is_AddP() || use->is_Phi() || use->Opcode() == Op_CastPP || use->Opcode() == Op_CheckCastPP) {
   928       } else if (use->is_Initialize()) {
   658         alloc_worklist.push(use);
   929         memnode_worklist.append_if_missing(use);
   659       }
   930       } else if (use->is_MergeMem()) {
   660     }
   931         mergemem_worklist.append_if_missing(use);
   661 
   932       } else if (use->is_Call() && tinst != NULL) {
   662   }
   933         // Look for MergeMem nodes for calls which reference unique allocation
       
   934         // (through CheckCastPP nodes) even for debug info.
       
   935         Node* m = use->in(TypeFunc::Memory);
       
   936         uint iid = tinst->instance_id();
       
   937         while (m->is_Proj() && m->in(0)->is_Call() &&
       
   938                m->in(0) != use && !m->in(0)->_idx != iid) {
       
   939           m = m->in(0)->in(TypeFunc::Memory);
       
   940         }
       
   941         if (m->is_MergeMem()) {
       
   942           mergemem_worklist.append_if_missing(m);
       
   943         }
       
   944       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
       
   945         Node* addp2 = find_second_addp(use, n);
       
   946         if (addp2 != NULL) {
       
   947           alloc_worklist.append_if_missing(addp2);
       
   948         }
       
   949         alloc_worklist.append_if_missing(use);
       
   950       } else if (use->is_Phi() ||
       
   951                  use->is_CheckCastPP() ||
       
   952                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
       
   953         alloc_worklist.append_if_missing(use);
       
   954       }
       
   955     }
       
   956 
       
   957   }
       
   958   // New alias types were created in split_AddP().
   663   uint new_index_end = (uint) _compile->num_alias_types();
   959   uint new_index_end = (uint) _compile->num_alias_types();
   664 
   960 
   665   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
   961   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
   666   //            compute new values for Memory inputs  (the Memory inputs are not
   962   //            compute new values for Memory inputs  (the Memory inputs are not
   667   //            actually updated until phase 4.)
   963   //            actually updated until phase 4.)
   668   if (memnode_worklist.length() == 0)
   964   if (memnode_worklist.length() == 0)
   669     return;  // nothing to do
   965     return;  // nothing to do
   670 
   966 
   671 
       
   672   while (memnode_worklist.length() != 0) {
   967   while (memnode_worklist.length() != 0) {
   673     Node *n = memnode_worklist.pop();
   968     Node *n = memnode_worklist.pop();
       
   969     if (visited.test_set(n->_idx))
       
   970       continue;
   674     if (n->is_Phi()) {
   971     if (n->is_Phi()) {
   675       assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
   972       assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
   676       // we don't need to do anything, but the users must be pushed if we haven't processed
   973       // we don't need to do anything, but the users must be pushed if we haven't processed
   677       // this Phi before
   974       // this Phi before
   678       if (visited.test_set(n->_idx))
   975     } else if (n->is_Initialize()) {
       
   976       // we don't need to do anything, but the users of the memory projection must be pushed
       
   977       n = n->as_Initialize()->proj_out(TypeFunc::Memory);
       
   978       if (n == NULL)
   679         continue;
   979         continue;
   680     } else {
   980     } else {
   681       assert(n->is_Mem(), "memory node required.");
   981       assert(n->is_Mem(), "memory node required.");
   682       Node *addr = n->in(MemNode::Address);
   982       Node *addr = n->in(MemNode::Address);
       
   983       assert(addr->is_AddP(), "AddP required");
   683       const Type *addr_t = igvn->type(addr);
   984       const Type *addr_t = igvn->type(addr);
   684       if (addr_t == Type::TOP)
   985       if (addr_t == Type::TOP)
   685         continue;
   986         continue;
   686       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
   987       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
   687       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
   988       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
   688       Node *mem = find_mem(n->in(MemNode::Memory), alias_idx, igvn);
   989       assert ((uint)alias_idx < new_index_end, "wrong alias index");
   689       if (mem->is_Phi()) {
   990       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
   690         mem = split_memory_phi(mem->as_Phi(), alias_idx, orig_phis, igvn);
       
   691       }
       
   692       if (_compile->failing()) {
   991       if (_compile->failing()) {
   693         return;
   992         return;
   694       }
   993       }
   695       if (mem != n->in(MemNode::Memory))
   994       if (mem != n->in(MemNode::Memory)) {
   696         set_map(n->_idx, mem);
   995         set_map(n->_idx, mem);
       
   996         _nodes->adr_at(n->_idx)->_node = n;
       
   997       }
   697       if (n->is_Load()) {
   998       if (n->is_Load()) {
   698         continue;  // don't push users
   999         continue;  // don't push users
   699       } else if (n->is_LoadStore()) {
  1000       } else if (n->is_LoadStore()) {
   700         // get the memory projection
  1001         // get the memory projection
   701         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1002         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   710     }
  1011     }
   711     // push user on appropriate worklist
  1012     // push user on appropriate worklist
   712     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1013     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   713       Node *use = n->fast_out(i);
  1014       Node *use = n->fast_out(i);
   714       if (use->is_Phi()) {
  1015       if (use->is_Phi()) {
   715         memnode_worklist.push(use);
  1016         memnode_worklist.append_if_missing(use);
   716       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
  1017       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
   717         memnode_worklist.push(use);
  1018         memnode_worklist.append_if_missing(use);
       
  1019       } else if (use->is_Initialize()) {
       
  1020         memnode_worklist.append_if_missing(use);
   718       } else if (use->is_MergeMem()) {
  1021       } else if (use->is_MergeMem()) {
   719         mergemem_worklist.push(use);
  1022         mergemem_worklist.append_if_missing(use);
   720       }
  1023       }
   721     }
  1024     }
   722   }
  1025   }
   723 
  1026 
   724   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
  1027   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
   725   //            moving the first node encountered of each  instance type to the
  1028   //            Walk each memory moving the first node encountered of each
   726   //            the input corresponding to its alias index.
  1029   //            instance type to the the input corresponding to its alias index.
   727   while (mergemem_worklist.length() != 0) {
  1030   while (mergemem_worklist.length() != 0) {
   728     Node *n = mergemem_worklist.pop();
  1031     Node *n = mergemem_worklist.pop();
   729     assert(n->is_MergeMem(), "MergeMem node required.");
  1032     assert(n->is_MergeMem(), "MergeMem node required.");
       
  1033     if (visited.test_set(n->_idx))
       
  1034       continue;
   730     MergeMemNode *nmm = n->as_MergeMem();
  1035     MergeMemNode *nmm = n->as_MergeMem();
   731     // Note: we don't want to use MergeMemStream here because we only want to
  1036     // Note: we don't want to use MergeMemStream here because we only want to
   732     //       scan inputs which exist at the start, not ones we add during processing
  1037     //  scan inputs which exist at the start, not ones we add during processing.
   733     uint nslices = nmm->req();
  1038     uint nslices = nmm->req();
   734     igvn->hash_delete(nmm);
  1039     igvn->hash_delete(nmm);
   735     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
  1040     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
   736       Node * mem = nmm->in(i);
  1041       Node* mem = nmm->in(i);
   737       Node * cur = NULL;
  1042       Node* cur = NULL;
   738       if (mem == NULL || mem->is_top())
  1043       if (mem == NULL || mem->is_top())
   739         continue;
  1044         continue;
   740       while (mem->is_Mem()) {
  1045       while (mem->is_Mem()) {
   741         const Type *at = igvn->type(mem->in(MemNode::Address));
  1046         const Type *at = igvn->type(mem->in(MemNode::Address));
   742         if (at != Type::TOP) {
  1047         if (at != Type::TOP) {
   752           }
  1057           }
   753         }
  1058         }
   754         mem = mem->in(MemNode::Memory);
  1059         mem = mem->in(MemNode::Memory);
   755       }
  1060       }
   756       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
  1061       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
   757       if (mem->is_Phi()) {
  1062       // Find any instance of the current type if we haven't encountered
   758         // We have encountered a Phi, we need to split the Phi for
  1063       // a value of the instance along the chain.
   759         // any  instance of the current type if we haven't encountered
  1064       for (uint ni = new_index_start; ni < new_index_end; ni++) {
   760         //  a value of the instance along the chain.
  1065         if((uint)_compile->get_general_index(ni) == i) {
   761         for (uint ni = new_index_start; ni < new_index_end; ni++) {
  1066           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
   762           if((uint)_compile->get_general_index(ni) == i) {
  1067           if (nmm->is_empty_memory(m)) {
   763             Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
  1068             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
   764             if (nmm->is_empty_memory(m)) {
  1069             if (_compile->failing()) {
   765               m = split_memory_phi(mem->as_Phi(), ni, orig_phis, igvn);
  1070               return;
   766               if (_compile->failing()) {
  1071             }
   767                 return;
  1072             nmm->set_memory_at(ni, result);
   768               }
  1073           }
   769               nmm->set_memory_at(ni, m);
  1074         }
       
  1075       }
       
  1076     }
       
  1077     // Find the rest of instances values
       
  1078     for (uint ni = new_index_start; ni < new_index_end; ni++) {
       
  1079       const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
       
  1080       Node* result = step_through_mergemem(nmm, ni, tinst);
       
  1081       if (result == nmm->base_memory()) {
       
  1082         // Didn't find instance memory, search through general slice recursively.
       
  1083         result = nmm->memory_at(igvn->C->get_general_index(ni));
       
  1084         result = find_inst_mem(result, ni, orig_phis, igvn);
       
  1085         if (_compile->failing()) {
       
  1086           return;
       
  1087         }
       
  1088         nmm->set_memory_at(ni, result);
       
  1089       }
       
  1090     }
       
  1091     igvn->hash_insert(nmm);
       
  1092     record_for_optimizer(nmm);
       
  1093 
       
  1094     // Propagate new memory slices to following MergeMem nodes.
       
  1095     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
       
  1096       Node *use = n->fast_out(i);
       
  1097       if (use->is_Call()) {
       
  1098         CallNode* in = use->as_Call();
       
  1099         if (in->proj_out(TypeFunc::Memory) != NULL) {
       
  1100           Node* m = in->proj_out(TypeFunc::Memory);
       
  1101           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
       
  1102             Node* mm = m->fast_out(j);
       
  1103             if (mm->is_MergeMem()) {
       
  1104               mergemem_worklist.append_if_missing(mm);
   770             }
  1105             }
   771           }
  1106           }
   772         }
  1107         }
   773       }
  1108         if (use->is_Allocate()) {
   774     }
  1109           use = use->as_Allocate()->initialization();
   775     igvn->hash_insert(nmm);
  1110           if (use == NULL) {
   776     record_for_optimizer(nmm);
  1111             continue;
   777   }
  1112           }
   778 
  1113         }
   779   //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes
  1114       }
   780   //
  1115       if (use->is_Initialize()) {
       
  1116         InitializeNode* in = use->as_Initialize();
       
  1117         if (in->proj_out(TypeFunc::Memory) != NULL) {
       
  1118           Node* m = in->proj_out(TypeFunc::Memory);
       
  1119           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
       
  1120             Node* mm = m->fast_out(j);
       
  1121             if (mm->is_MergeMem()) {
       
  1122               mergemem_worklist.append_if_missing(mm);
       
  1123             }
       
  1124           }
       
  1125         }
       
  1126       }
       
  1127     }
       
  1128   }
       
  1129 
       
  1130   //  Phase 4:  Update the inputs of non-instance memory Phis and
       
  1131   //            the Memory input of memnodes
   781   // First update the inputs of any non-instance Phi's from
  1132   // First update the inputs of any non-instance Phi's from
   782   // which we split out an instance Phi.  Note we don't have
  1133   // which we split out an instance Phi.  Note we don't have
   783   // to recursively process Phi's encounted on the input memory
  1134   // to recursively process Phi's encounted on the input memory
   784   // chains as is done in split_memory_phi() since they  will
  1135   // chains as is done in split_memory_phi() since they  will
   785   // also be processed here.
  1136   // also be processed here.
   787     PhiNode *phi = orig_phis.pop();
  1138     PhiNode *phi = orig_phis.pop();
   788     int alias_idx = _compile->get_alias_index(phi->adr_type());
  1139     int alias_idx = _compile->get_alias_index(phi->adr_type());
   789     igvn->hash_delete(phi);
  1140     igvn->hash_delete(phi);
   790     for (uint i = 1; i < phi->req(); i++) {
  1141     for (uint i = 1; i < phi->req(); i++) {
   791       Node *mem = phi->in(i);
  1142       Node *mem = phi->in(i);
   792       Node *new_mem = find_mem(mem, alias_idx, igvn);
  1143       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
       
  1144       if (_compile->failing()) {
       
  1145         return;
       
  1146       }
   793       if (mem != new_mem) {
  1147       if (mem != new_mem) {
   794         phi->set_req(i, new_mem);
  1148         phi->set_req(i, new_mem);
   795       }
  1149       }
   796     }
  1150     }
   797     igvn->hash_insert(phi);
  1151     igvn->hash_insert(phi);
   801   // Update the memory inputs of MemNodes with the value we computed
  1155   // Update the memory inputs of MemNodes with the value we computed
   802   // in Phase 2.
  1156   // in Phase 2.
   803   for (int i = 0; i < _nodes->length(); i++) {
  1157   for (int i = 0; i < _nodes->length(); i++) {
   804     Node *nmem = get_map(i);
  1158     Node *nmem = get_map(i);
   805     if (nmem != NULL) {
  1159     if (nmem != NULL) {
   806       Node *n = _nodes->at(i)._node;
  1160       Node *n = _nodes->adr_at(i)->_node;
   807       if (n != NULL && n->is_Mem()) {
  1161       if (n != NULL && n->is_Mem()) {
   808         igvn->hash_delete(n);
  1162         igvn->hash_delete(n);
   809         n->set_req(MemNode::Memory, nmem);
  1163         n->set_req(MemNode::Memory, nmem);
   810         igvn->hash_insert(n);
  1164         igvn->hash_insert(n);
   811         record_for_optimizer(n);
  1165         record_for_optimizer(n);
   813     }
  1167     }
   814   }
  1168   }
   815 }
  1169 }
   816 
  1170 
   817 void ConnectionGraph::compute_escape() {
  1171 void ConnectionGraph::compute_escape() {
       
  1172 
       
  1173   // 1. Populate Connection Graph with Ideal nodes.
       
  1174 
       
  1175   Unique_Node_List worklist_init;
       
  1176   worklist_init.map(_compile->unique(), NULL);  // preallocate space
       
  1177 
       
  1178   // Initialize worklist
       
  1179   if (_compile->root() != NULL) {
       
  1180     worklist_init.push(_compile->root());
       
  1181   }
       
  1182 
       
  1183   GrowableArray<int> cg_worklist;
       
  1184   PhaseGVN* igvn = _compile->initial_gvn();
       
  1185   bool has_allocations = false;
       
  1186 
       
  1187   // Push all useful nodes onto CG list and set their type.
       
  1188   for( uint next = 0; next < worklist_init.size(); ++next ) {
       
  1189     Node* n = worklist_init.at(next);
       
  1190     record_for_escape_analysis(n, igvn);
       
  1191     if (n->is_Call() &&
       
  1192         _nodes->adr_at(n->_idx)->node_type() == PointsToNode::JavaObject) {
       
  1193       has_allocations = true;
       
  1194     }
       
  1195     if(n->is_AddP())
       
  1196       cg_worklist.append(n->_idx);
       
  1197     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
       
  1198       Node* m = n->fast_out(i);   // Get user
       
  1199       worklist_init.push(m);
       
  1200     }
       
  1201   }
       
  1202 
       
  1203   if (has_allocations) {
       
  1204     _has_allocations = true;
       
  1205   } else {
       
  1206     _has_allocations = false;
       
  1207     _collecting = false;
       
  1208     return; // Nothing to do.
       
  1209   }
       
  1210 
       
  1211   // 2. First pass to create simple CG edges (doesn't require to walk CG).
       
  1212   for( uint next = 0; next < _delayed_worklist.size(); ++next ) {
       
  1213     Node* n = _delayed_worklist.at(next);
       
  1214     build_connection_graph(n, igvn);
       
  1215   }
       
  1216 
       
  1217   // 3. Pass to create fields edges (Allocate -F-> AddP).
       
  1218   for( int next = 0; next < cg_worklist.length(); ++next ) {
       
  1219     int ni = cg_worklist.at(next);
       
  1220     build_connection_graph(_nodes->adr_at(ni)->_node, igvn);
       
  1221   }
       
  1222 
       
  1223   cg_worklist.clear();
       
  1224   cg_worklist.append(_phantom_object);
       
  1225 
       
  1226   // 4. Build Connection Graph which need
       
  1227   //    to walk the connection graph.
       
  1228   for (uint ni = 0; ni < (uint)_nodes->length(); ni++) {
       
  1229     PointsToNode* ptn = _nodes->adr_at(ni);
       
  1230     Node *n = ptn->_node;
       
  1231     if (n != NULL) { // Call, AddP, LoadP, StoreP
       
  1232       build_connection_graph(n, igvn);
       
  1233       if (ptn->node_type() != PointsToNode::UnknownType)
       
  1234         cg_worklist.append(n->_idx); // Collect CG nodes
       
  1235     }
       
  1236   }
       
  1237 
       
  1238   VectorSet ptset(Thread::current()->resource_area());
       
  1239   GrowableArray<Node*>  alloc_worklist;
   818   GrowableArray<int>  worklist;
  1240   GrowableArray<int>  worklist;
   819   GrowableArray<Node *>  alloc_worklist;
       
   820   VectorSet visited(Thread::current()->resource_area());
       
   821   PhaseGVN  *igvn = _compile->initial_gvn();
       
   822 
       
   823   // process Phi nodes from the deferred list, they may not have
       
   824   while(_deferred.size() > 0) {
       
   825     Node * n = _deferred.pop();
       
   826     PhiNode * phi = n->as_Phi();
       
   827 
       
   828     process_phi_escape(phi, igvn);
       
   829   }
       
   830 
       
   831   VectorSet ptset(Thread::current()->resource_area());
       
   832 
  1241 
   833   // remove deferred edges from the graph and collect
  1242   // remove deferred edges from the graph and collect
   834   // information we will need for type splitting
  1243   // information we will need for type splitting
   835   for (uint ni = 0; ni < (uint)_nodes->length(); ni++) {
  1244   for( int next = 0; next < cg_worklist.length(); ++next ) {
   836     PointsToNode * ptn = _nodes->adr_at(ni);
  1245     int ni = cg_worklist.at(next);
       
  1246     PointsToNode* ptn = _nodes->adr_at(ni);
   837     PointsToNode::NodeType nt = ptn->node_type();
  1247     PointsToNode::NodeType nt = ptn->node_type();
   838 
       
   839     if (nt == PointsToNode::UnknownType) {
       
   840       continue;  // not a node we are interested in
       
   841     }
       
   842     Node *n = ptn->_node;
  1248     Node *n = ptn->_node;
   843     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
  1249     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
   844       remove_deferred(ni);
  1250       remove_deferred(ni);
   845       if (n->is_AddP()) {
  1251       if (n->is_AddP()) {
   846         // if this AddP computes an address which may point to more that one
  1252         // If this AddP computes an address which may point to more that one
   847         // object, nothing the address points to can be a unique type.
  1253         // object, nothing the address points to can be scalar replaceable.
   848         Node *base = n->in(AddPNode::Base);
  1254         Node *base = get_addp_base(n);
   849         ptset.Clear();
  1255         ptset.Clear();
   850         PointsTo(ptset, base, igvn);
  1256         PointsTo(ptset, base, igvn);
   851         if (ptset.Size() > 1) {
  1257         if (ptset.Size() > 1) {
   852           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1258           for( VectorSetI j(&ptset); j.test(); ++j ) {
   853             PointsToNode *ptaddr = _nodes->adr_at(j.elem);
  1259             uint pt = j.elem;
   854             ptaddr->_unique_type = false;
  1260             ptnode_adr(pt)->_scalar_replaceable = false;
   855           }
  1261           }
   856         }
  1262         }
   857       }
  1263       }
   858     } else if (n->is_Call()) {
  1264     } else if (nt == PointsToNode::JavaObject && n->is_Call()) {
   859         // initialize _escape_state of calls to GlobalEscape
  1265       // Push call on alloc_worlist (alocations are calls)
   860         n->as_Call()->_escape_state = PointsToNode::GlobalEscape;
  1266       // for processing by split_unique_types().
   861         // push call on alloc_worlist (alocations are calls)
  1267       alloc_worklist.append(n);
   862         // for processing by split_unique_types()
  1268     }
   863         alloc_worklist.push(n);
  1269   }
   864     }
  1270 
   865   }
       
   866   // push all GlobalEscape nodes on the worklist
  1271   // push all GlobalEscape nodes on the worklist
   867   for (uint nj = 0; nj < (uint)_nodes->length(); nj++) {
  1272   for( int next = 0; next < cg_worklist.length(); ++next ) {
   868     if (_nodes->at(nj).escape_state() == PointsToNode::GlobalEscape) {
  1273     int nk = cg_worklist.at(next);
   869       worklist.append(nj);
  1274     if (_nodes->adr_at(nk)->escape_state() == PointsToNode::GlobalEscape)
   870     }
  1275       worklist.append(nk);
   871   }
  1276   }
   872   // mark all node reachable from GlobalEscape nodes
  1277   // mark all node reachable from GlobalEscape nodes
   873   while(worklist.length() > 0) {
  1278   while(worklist.length() > 0) {
   874     PointsToNode n = _nodes->at(worklist.pop());
  1279     PointsToNode n = _nodes->at(worklist.pop());
   875     for (uint ei = 0; ei < n.edge_count(); ei++) {
  1280     for (uint ei = 0; ei < n.edge_count(); ei++) {
   876       uint npi = n.edge_target(ei);
  1281       uint npi = n.edge_target(ei);
   877       PointsToNode *np = ptnode_adr(npi);
  1282       PointsToNode *np = ptnode_adr(npi);
   878       if (np->escape_state() != PointsToNode::GlobalEscape) {
  1283       if (np->escape_state() < PointsToNode::GlobalEscape) {
   879         np->set_escape_state(PointsToNode::GlobalEscape);
  1284         np->set_escape_state(PointsToNode::GlobalEscape);
   880         worklist.append_if_missing(npi);
  1285         worklist.append_if_missing(npi);
   881       }
  1286       }
   882     }
  1287     }
   883   }
  1288   }
   884 
  1289 
   885   // push all ArgEscape nodes on the worklist
  1290   // push all ArgEscape nodes on the worklist
   886   for (uint nk = 0; nk < (uint)_nodes->length(); nk++) {
  1291   for( int next = 0; next < cg_worklist.length(); ++next ) {
   887     if (_nodes->at(nk).escape_state() == PointsToNode::ArgEscape)
  1292     int nk = cg_worklist.at(next);
       
  1293     if (_nodes->adr_at(nk)->escape_state() == PointsToNode::ArgEscape)
   888       worklist.push(nk);
  1294       worklist.push(nk);
   889   }
  1295   }
   890   // mark all node reachable from ArgEscape nodes
  1296   // mark all node reachable from ArgEscape nodes
   891   while(worklist.length() > 0) {
  1297   while(worklist.length() > 0) {
   892     PointsToNode n = _nodes->at(worklist.pop());
  1298     PointsToNode n = _nodes->at(worklist.pop());
   893 
       
   894     for (uint ei = 0; ei < n.edge_count(); ei++) {
  1299     for (uint ei = 0; ei < n.edge_count(); ei++) {
   895       uint npi = n.edge_target(ei);
  1300       uint npi = n.edge_target(ei);
   896       PointsToNode *np = ptnode_adr(npi);
  1301       PointsToNode *np = ptnode_adr(npi);
   897       if (np->escape_state() != PointsToNode::ArgEscape) {
  1302       if (np->escape_state() < PointsToNode::ArgEscape) {
   898         np->set_escape_state(PointsToNode::ArgEscape);
  1303         np->set_escape_state(PointsToNode::ArgEscape);
   899         worklist.append_if_missing(npi);
  1304         worklist.append_if_missing(npi);
   900       }
  1305       }
   901     }
  1306     }
   902   }
  1307   }
       
  1308 
       
  1309   // push all NoEscape nodes on the worklist
       
  1310   for( int next = 0; next < cg_worklist.length(); ++next ) {
       
  1311     int nk = cg_worklist.at(next);
       
  1312     if (_nodes->adr_at(nk)->escape_state() == PointsToNode::NoEscape)
       
  1313       worklist.push(nk);
       
  1314   }
       
  1315   // mark all node reachable from NoEscape nodes
       
  1316   while(worklist.length() > 0) {
       
  1317     PointsToNode n = _nodes->at(worklist.pop());
       
  1318     for (uint ei = 0; ei < n.edge_count(); ei++) {
       
  1319       uint npi = n.edge_target(ei);
       
  1320       PointsToNode *np = ptnode_adr(npi);
       
  1321       if (np->escape_state() < PointsToNode::NoEscape) {
       
  1322         np->set_escape_state(PointsToNode::NoEscape);
       
  1323         worklist.append_if_missing(npi);
       
  1324       }
       
  1325     }
       
  1326   }
       
  1327 
   903   _collecting = false;
  1328   _collecting = false;
   904 
  1329 
   905   // Now use the escape information to create unique types for
  1330   has_allocations = false; // Are there scalar replaceable allocations?
   906   // unescaped objects
  1331 
   907   split_unique_types(alloc_worklist);
  1332   for( int next = 0; next < alloc_worklist.length(); ++next ) {
   908   if (_compile->failing())  return;
  1333     Node* n = alloc_worklist.at(next);
   909 
  1334     uint ni = n->_idx;
   910   // Clean up after split unique types.
  1335     PointsToNode* ptn = _nodes->adr_at(ni);
   911   ResourceMark rm;
  1336     PointsToNode::EscapeState es = ptn->escape_state();
   912   PhaseRemoveUseless pru(_compile->initial_gvn(), _compile->for_igvn());
  1337     if (ptn->escape_state() == PointsToNode::NoEscape &&
   913 }
  1338         ptn->_scalar_replaceable) {
   914 
  1339       has_allocations = true;
   915 Node * ConnectionGraph::skip_casts(Node *n) {
  1340       break;
   916   while(n->Opcode() == Op_CastPP || n->Opcode() == Op_CheckCastPP) {
  1341     }
   917     n = n->in(1);
  1342   }
   918   }
  1343   if (!has_allocations) {
   919   return n;
  1344     return; // Nothing to do.
   920 }
  1345   }
   921 
  1346 
   922 void ConnectionGraph::process_phi_escape(PhiNode *phi, PhaseTransform *phase) {
  1347   if(_compile->AliasLevel() >= 3 && EliminateAllocations) {
   923 
  1348     // Now use the escape information to create unique types for
   924   if (phi->type()->isa_oopptr() == NULL)
  1349     // unescaped objects
   925     return;  // nothing to do if not an oop
  1350     split_unique_types(alloc_worklist);
   926 
  1351     if (_compile->failing())  return;
   927   PointsToNode *ptadr = ptnode_adr(phi->_idx);
  1352 
   928   int incount = phi->req();
  1353     // Clean up after split unique types.
   929   int non_null_inputs = 0;
  1354     ResourceMark rm;
   930 
  1355     PhaseRemoveUseless pru(_compile->initial_gvn(), _compile->for_igvn());
   931   for (int i = 1; i < incount ; i++) {
  1356 
   932     if (phi->in(i) != NULL)
  1357 #ifdef ASSERT
   933       non_null_inputs++;
  1358   } else if (PrintEscapeAnalysis || PrintEliminateAllocations) {
   934   }
  1359     tty->print("=== No allocations eliminated for ");
   935   if (non_null_inputs == ptadr->_inputs_processed)
  1360     C()->method()->print_short_name();
   936     return;  // no new inputs since the last time this node was processed,
  1361     if(!EliminateAllocations) {
   937              // the current information is valid
  1362       tty->print(" since EliminateAllocations is off ===");
   938 
  1363     } else if(_compile->AliasLevel() < 3) {
   939   ptadr->_inputs_processed = non_null_inputs;  // prevent recursive processing of this node
  1364       tty->print(" since AliasLevel < 3 ===");
   940   for (int j = 1; j < incount ; j++) {
  1365     }
   941     Node * n = phi->in(j);
  1366     tty->cr();
   942     if (n == NULL)
  1367 #endif
   943       continue;  // ignore NULL
       
   944     n =  skip_casts(n);
       
   945     if (n->is_top() || n == phi)
       
   946       continue;  // ignore top or inputs which go back this node
       
   947     int nopc = n->Opcode();
       
   948     PointsToNode  npt = _nodes->at(n->_idx);
       
   949     if (_nodes->at(n->_idx).node_type() == PointsToNode::JavaObject) {
       
   950       add_pointsto_edge(phi->_idx, n->_idx);
       
   951     } else {
       
   952       add_deferred_edge(phi->_idx, n->_idx);
       
   953     }
       
   954   }
  1368   }
   955 }
  1369 }
   956 
  1370 
   957 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
  1371 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
   958 
  1372 
   959     _processed.set(call->_idx);
       
   960     switch (call->Opcode()) {
  1373     switch (call->Opcode()) {
   961 
  1374 #ifdef ASSERT
   962     // arguments to allocation and locking don't escape
       
   963     case Op_Allocate:
  1375     case Op_Allocate:
   964     case Op_AllocateArray:
  1376     case Op_AllocateArray:
   965     case Op_Lock:
  1377     case Op_Lock:
   966     case Op_Unlock:
  1378     case Op_Unlock:
   967       break;
  1379       assert(false, "should be done already");
       
  1380       break;
       
  1381 #endif
       
  1382     case Op_CallLeafNoFP:
       
  1383     {
       
  1384       // Stub calls, objects do not escape but they are not scale replaceable.
       
  1385       // Adjust escape state for outgoing arguments.
       
  1386       const TypeTuple * d = call->tf()->domain();
       
  1387       VectorSet ptset(Thread::current()->resource_area());
       
  1388       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
       
  1389         const Type* at = d->field_at(i);
       
  1390         Node *arg = call->in(i)->uncast();
       
  1391         const Type *aat = phase->type(arg);
       
  1392         if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
       
  1393           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
       
  1394                  aat->isa_ptr() != NULL, "expecting an Ptr");
       
  1395           set_escape_state(arg->_idx, PointsToNode::ArgEscape);
       
  1396           if (arg->is_AddP()) {
       
  1397             //
       
  1398             // The inline_native_clone() case when the arraycopy stub is called
       
  1399             // after the allocation before Initialize and CheckCastPP nodes.
       
  1400             //
       
  1401             // Set AddP's base (Allocate) as not scalar replaceable since
       
  1402             // pointer to the base (with offset) is passed as argument.
       
  1403             //
       
  1404             arg = get_addp_base(arg);
       
  1405           }
       
  1406           ptset.Clear();
       
  1407           PointsTo(ptset, arg, phase);
       
  1408           for( VectorSetI j(&ptset); j.test(); ++j ) {
       
  1409             uint pt = j.elem;
       
  1410             set_escape_state(pt, PointsToNode::ArgEscape);
       
  1411           }
       
  1412         }
       
  1413       }
       
  1414       break;
       
  1415     }
   968 
  1416 
   969     case Op_CallStaticJava:
  1417     case Op_CallStaticJava:
   970     // For a static call, we know exactly what method is being called.
  1418     // For a static call, we know exactly what method is being called.
   971     // Use bytecode estimator to record the call's escape affects
  1419     // Use bytecode estimator to record the call's escape affects
   972     {
  1420     {
   973       ciMethod *meth = call->as_CallJava()->method();
  1421       ciMethod *meth = call->as_CallJava()->method();
   974       if (meth != NULL) {
  1422       BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
       
  1423       // fall-through if not a Java method or no analyzer information
       
  1424       if (call_analyzer != NULL) {
   975         const TypeTuple * d = call->tf()->domain();
  1425         const TypeTuple * d = call->tf()->domain();
   976         BCEscapeAnalyzer call_analyzer(meth);
       
   977         VectorSet ptset(Thread::current()->resource_area());
  1426         VectorSet ptset(Thread::current()->resource_area());
       
  1427         bool copy_dependencies = false;
   978         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1428         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   979           const Type* at = d->field_at(i);
  1429           const Type* at = d->field_at(i);
   980           int k = i - TypeFunc::Parms;
  1430           int k = i - TypeFunc::Parms;
   981 
  1431 
   982           if (at->isa_oopptr() != NULL) {
  1432           if (at->isa_oopptr() != NULL) {
   983             Node *arg = skip_casts(call->in(i));
  1433             Node *arg = call->in(i)->uncast();
   984 
  1434 
   985             if (!call_analyzer.is_arg_stack(k)) {
  1435             bool global_escapes = false;
       
  1436             bool fields_escapes = false;
       
  1437             if (!call_analyzer->is_arg_stack(k)) {
   986               // The argument global escapes, mark everything it could point to
  1438               // The argument global escapes, mark everything it could point to
   987               ptset.Clear();
  1439               set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
   988               PointsTo(ptset, arg, phase);
  1440               global_escapes = true;
   989               for( VectorSetI j(&ptset); j.test(); ++j ) {
  1441             } else {
   990                 uint pt = j.elem;
  1442               if (!call_analyzer->is_arg_local(k)) {
   991 
  1443                 // The argument itself doesn't escape, but any fields might
       
  1444                 fields_escapes = true;
       
  1445               }
       
  1446               set_escape_state(arg->_idx, PointsToNode::ArgEscape);
       
  1447               copy_dependencies = true;
       
  1448             }
       
  1449 
       
  1450             ptset.Clear();
       
  1451             PointsTo(ptset, arg, phase);
       
  1452             for( VectorSetI j(&ptset); j.test(); ++j ) {
       
  1453               uint pt = j.elem;
       
  1454               if (global_escapes) {
       
  1455                 //The argument global escapes, mark everything it could point to
   992                 set_escape_state(pt, PointsToNode::GlobalEscape);
  1456                 set_escape_state(pt, PointsToNode::GlobalEscape);
   993               }
  1457               } else {
   994             } else if (!call_analyzer.is_arg_local(k)) {
  1458                 if (fields_escapes) {
   995               // The argument itself doesn't escape, but any fields might
  1459                   // The argument itself doesn't escape, but any fields might
   996               ptset.Clear();
  1460                   add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
   997               PointsTo(ptset, arg, phase);
  1461                 }
   998               for( VectorSetI j(&ptset); j.test(); ++j ) {
  1462                 set_escape_state(pt, PointsToNode::ArgEscape);
   999                 uint pt = j.elem;
       
  1000                 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
       
  1001               }
  1463               }
  1002             }
  1464             }
  1003           }
  1465           }
  1004         }
  1466         }
  1005         call_analyzer.copy_dependencies(C()->dependencies());
  1467         if (copy_dependencies)
       
  1468           call_analyzer->copy_dependencies(C()->dependencies());
  1006         break;
  1469         break;
  1007       }
  1470       }
  1008       // fall-through if not a Java method
       
  1009     }
  1471     }
  1010 
  1472 
  1011     default:
  1473     default:
  1012     // Some other type of call, assume the worst case: all arguments
  1474     // Fall-through here if not a Java method or no analyzer information
       
  1475     // or some other type of call, assume the worst case: all arguments
  1013     // globally escape.
  1476     // globally escape.
  1014     {
  1477     {
  1015       // adjust escape state for  outgoing arguments
  1478       // adjust escape state for  outgoing arguments
  1016       const TypeTuple * d = call->tf()->domain();
  1479       const TypeTuple * d = call->tf()->domain();
  1017       VectorSet ptset(Thread::current()->resource_area());
  1480       VectorSet ptset(Thread::current()->resource_area());
  1018       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1481       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1019         const Type* at = d->field_at(i);
  1482         const Type* at = d->field_at(i);
  1020 
       
  1021         if (at->isa_oopptr() != NULL) {
  1483         if (at->isa_oopptr() != NULL) {
  1022           Node *arg = skip_casts(call->in(i));
  1484           Node *arg = call->in(i)->uncast();
       
  1485           set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
  1023           ptset.Clear();
  1486           ptset.Clear();
  1024           PointsTo(ptset, arg, phase);
  1487           PointsTo(ptset, arg, phase);
  1025           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1488           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1026             uint pt = j.elem;
  1489             uint pt = j.elem;
  1027 
       
  1028             set_escape_state(pt, PointsToNode::GlobalEscape);
  1490             set_escape_state(pt, PointsToNode::GlobalEscape);
       
  1491             PointsToNode *ptadr = ptnode_adr(pt);
  1029           }
  1492           }
  1030         }
  1493         }
  1031       }
  1494       }
  1032     }
  1495     }
  1033   }
  1496   }
  1034 }
  1497 }
  1035 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
  1498 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
       
  1499   PointsToNode *ptadr = ptnode_adr(resproj->_idx);
       
  1500 
  1036   CallNode *call = resproj->in(0)->as_Call();
  1501   CallNode *call = resproj->in(0)->as_Call();
  1037 
       
  1038   PointsToNode *ptadr = ptnode_adr(resproj->_idx);
       
  1039 
       
  1040   ptadr->_node = resproj;
       
  1041   ptadr->set_node_type(PointsToNode::LocalVar);
       
  1042   set_escape_state(resproj->_idx, PointsToNode::UnknownEscape);
       
  1043   _processed.set(resproj->_idx);
       
  1044 
       
  1045   switch (call->Opcode()) {
  1502   switch (call->Opcode()) {
  1046     case Op_Allocate:
  1503     case Op_Allocate:
  1047     {
  1504     {
  1048       Node *k = call->in(AllocateNode::KlassNode);
  1505       Node *k = call->in(AllocateNode::KlassNode);
  1049       const TypeKlassPtr *kt;
  1506       const TypeKlassPtr *kt;
  1055       assert(kt != NULL, "TypeKlassPtr  required.");
  1512       assert(kt != NULL, "TypeKlassPtr  required.");
  1056       ciKlass* cik = kt->klass();
  1513       ciKlass* cik = kt->klass();
  1057       ciInstanceKlass* ciik = cik->as_instance_klass();
  1514       ciInstanceKlass* ciik = cik->as_instance_klass();
  1058 
  1515 
  1059       PointsToNode *ptadr = ptnode_adr(call->_idx);
  1516       PointsToNode *ptadr = ptnode_adr(call->_idx);
  1060       ptadr->set_node_type(PointsToNode::JavaObject);
  1517       PointsToNode::EscapeState es;
       
  1518       uint edge_to;
  1061       if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
  1519       if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
  1062         set_escape_state(call->_idx, PointsToNode::GlobalEscape);
  1520         es = PointsToNode::GlobalEscape;
  1063         add_pointsto_edge(resproj->_idx, _phantom_object);
  1521         edge_to = _phantom_object; // Could not be worse
  1064       } else {
  1522       } else {
  1065         set_escape_state(call->_idx, PointsToNode::NoEscape);
  1523         es = PointsToNode::NoEscape;
  1066         add_pointsto_edge(resproj->_idx, call->_idx);
  1524         edge_to = call->_idx;
  1067       }
  1525       }
  1068       _processed.set(call->_idx);
  1526       set_escape_state(call->_idx, es);
       
  1527       add_pointsto_edge(resproj->_idx, edge_to);
       
  1528       _processed.set(resproj->_idx);
  1069       break;
  1529       break;
  1070     }
  1530     }
  1071 
  1531 
  1072     case Op_AllocateArray:
  1532     case Op_AllocateArray:
  1073     {
  1533     {
  1074       PointsToNode *ptadr = ptnode_adr(call->_idx);
  1534       PointsToNode *ptadr = ptnode_adr(call->_idx);
  1075       ptadr->set_node_type(PointsToNode::JavaObject);
  1535       int length = call->in(AllocateNode::ALength)->find_int_con(-1);
       
  1536       if (length < 0 || length > EliminateAllocationArraySizeLimit) {
       
  1537         // Not scalar replaceable if the length is not constant or too big.
       
  1538         ptadr->_scalar_replaceable = false;
       
  1539       }
  1076       set_escape_state(call->_idx, PointsToNode::NoEscape);
  1540       set_escape_state(call->_idx, PointsToNode::NoEscape);
  1077       _processed.set(call->_idx);
       
  1078       add_pointsto_edge(resproj->_idx, call->_idx);
  1541       add_pointsto_edge(resproj->_idx, call->_idx);
  1079       break;
  1542       _processed.set(resproj->_idx);
  1080     }
  1543       break;
  1081 
  1544     }
  1082     case Op_Lock:
       
  1083     case Op_Unlock:
       
  1084       break;
       
  1085 
  1545 
  1086     case Op_CallStaticJava:
  1546     case Op_CallStaticJava:
  1087     // For a static call, we know exactly what method is being called.
  1547     // For a static call, we know exactly what method is being called.
  1088     // Use bytecode estimator to record whether the call's return value escapes
  1548     // Use bytecode estimator to record whether the call's return value escapes
  1089     {
  1549     {
       
  1550       bool done = true;
  1090       const TypeTuple *r = call->tf()->range();
  1551       const TypeTuple *r = call->tf()->range();
  1091       const Type* ret_type = NULL;
  1552       const Type* ret_type = NULL;
  1092 
  1553 
  1093       if (r->cnt() > TypeFunc::Parms)
  1554       if (r->cnt() > TypeFunc::Parms)
  1094         ret_type = r->field_at(TypeFunc::Parms);
  1555         ret_type = r->field_at(TypeFunc::Parms);
  1095 
  1556 
  1096       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
  1557       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
  1097       //        _multianewarray functions return a TypeRawPtr.
  1558       //        _multianewarray functions return a TypeRawPtr.
  1098       if (ret_type == NULL || ret_type->isa_ptr() == NULL)
  1559       if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
       
  1560         _processed.set(resproj->_idx);
  1099         break;  // doesn't return a pointer type
  1561         break;  // doesn't return a pointer type
  1100 
  1562       }
  1101       ciMethod *meth = call->as_CallJava()->method();
  1563       ciMethod *meth = call->as_CallJava()->method();
       
  1564       const TypeTuple * d = call->tf()->domain();
  1102       if (meth == NULL) {
  1565       if (meth == NULL) {
  1103         // not a Java method, assume global escape
  1566         // not a Java method, assume global escape
  1104         set_escape_state(call->_idx, PointsToNode::GlobalEscape);
  1567         set_escape_state(call->_idx, PointsToNode::GlobalEscape);
  1105         if (resproj != NULL)
  1568         if (resproj != NULL)
  1106           add_pointsto_edge(resproj->_idx, _phantom_object);
  1569           add_pointsto_edge(resproj->_idx, _phantom_object);
  1107       } else {
  1570       } else {
  1108         BCEscapeAnalyzer call_analyzer(meth);
  1571         BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
  1109         VectorSet ptset(Thread::current()->resource_area());
  1572         VectorSet ptset(Thread::current()->resource_area());
  1110 
  1573         bool copy_dependencies = false;
  1111         if (call_analyzer.is_return_local() && resproj != NULL) {
  1574 
       
  1575         if (call_analyzer->is_return_allocated()) {
       
  1576           // Returns a newly allocated unescaped object, simply
       
  1577           // update dependency information.
       
  1578           // Mark it as NoEscape so that objects referenced by
       
  1579           // it's fields will be marked as NoEscape at least.
       
  1580           set_escape_state(call->_idx, PointsToNode::NoEscape);
       
  1581           if (resproj != NULL)
       
  1582             add_pointsto_edge(resproj->_idx, call->_idx);
       
  1583           copy_dependencies = true;
       
  1584         } else if (call_analyzer->is_return_local() && resproj != NULL) {
  1112           // determine whether any arguments are returned
  1585           // determine whether any arguments are returned
  1113           const TypeTuple * d = call->tf()->domain();
       
  1114           set_escape_state(call->_idx, PointsToNode::NoEscape);
  1586           set_escape_state(call->_idx, PointsToNode::NoEscape);
  1115           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1587           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1116             const Type* at = d->field_at(i);
  1588             const Type* at = d->field_at(i);
  1117 
  1589 
  1118             if (at->isa_oopptr() != NULL) {
  1590             if (at->isa_oopptr() != NULL) {
  1119               Node *arg = skip_casts(call->in(i));
  1591               Node *arg = call->in(i)->uncast();
  1120 
  1592 
  1121               if (call_analyzer.is_arg_returned(i - TypeFunc::Parms)) {
  1593               if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
  1122                 PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
  1594                 PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
  1123                 if (arg_esp->node_type() == PointsToNode::JavaObject)
  1595                 if (arg_esp->node_type() == PointsToNode::UnknownType)
       
  1596                   done = false;
       
  1597                 else if (arg_esp->node_type() == PointsToNode::JavaObject)
  1124                   add_pointsto_edge(resproj->_idx, arg->_idx);
  1598                   add_pointsto_edge(resproj->_idx, arg->_idx);
  1125                 else
  1599                 else
  1126                   add_deferred_edge(resproj->_idx, arg->_idx);
  1600                   add_deferred_edge(resproj->_idx, arg->_idx);
  1127                 arg_esp->_hidden_alias = true;
  1601                 arg_esp->_hidden_alias = true;
  1128               }
  1602               }
  1129             }
  1603             }
  1130           }
  1604           }
       
  1605           copy_dependencies = true;
  1131         } else {
  1606         } else {
  1132           set_escape_state(call->_idx, PointsToNode::GlobalEscape);
  1607           set_escape_state(call->_idx, PointsToNode::GlobalEscape);
  1133           if (resproj != NULL)
  1608           if (resproj != NULL)
  1134             add_pointsto_edge(resproj->_idx, _phantom_object);
  1609             add_pointsto_edge(resproj->_idx, _phantom_object);
  1135         }
  1610           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1136         call_analyzer.copy_dependencies(C()->dependencies());
  1611             const Type* at = d->field_at(i);
  1137       }
  1612             if (at->isa_oopptr() != NULL) {
       
  1613               Node *arg = call->in(i)->uncast();
       
  1614               PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
       
  1615               arg_esp->_hidden_alias = true;
       
  1616             }
       
  1617           }
       
  1618         }
       
  1619         if (copy_dependencies)
       
  1620           call_analyzer->copy_dependencies(C()->dependencies());
       
  1621       }
       
  1622       if (done)
       
  1623         _processed.set(resproj->_idx);
  1138       break;
  1624       break;
  1139     }
  1625     }
  1140 
  1626 
  1141     default:
  1627     default:
  1142     // Some other type of call, assume the worst case that the
  1628     // Some other type of call, assume the worst case that the
  1143     // returned value, if any, globally escapes.
  1629     // returned value, if any, globally escapes.
  1144     {
  1630     {
  1145       const TypeTuple *r = call->tf()->range();
  1631       const TypeTuple *r = call->tf()->range();
  1146 
       
  1147       if (r->cnt() > TypeFunc::Parms) {
  1632       if (r->cnt() > TypeFunc::Parms) {
  1148         const Type* ret_type = r->field_at(TypeFunc::Parms);
  1633         const Type* ret_type = r->field_at(TypeFunc::Parms);
  1149 
  1634 
  1150         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
  1635         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
  1151         //        _multianewarray functions return a TypeRawPtr.
  1636         //        _multianewarray functions return a TypeRawPtr.
  1152         if (ret_type->isa_ptr() != NULL) {
  1637         if (ret_type->isa_ptr() != NULL) {
  1153           PointsToNode *ptadr = ptnode_adr(call->_idx);
  1638           PointsToNode *ptadr = ptnode_adr(call->_idx);
  1154           ptadr->set_node_type(PointsToNode::JavaObject);
       
  1155           set_escape_state(call->_idx, PointsToNode::GlobalEscape);
  1639           set_escape_state(call->_idx, PointsToNode::GlobalEscape);
  1156           if (resproj != NULL)
  1640           if (resproj != NULL)
  1157             add_pointsto_edge(resproj->_idx, _phantom_object);
  1641             add_pointsto_edge(resproj->_idx, _phantom_object);
  1158         }
  1642         }
  1159       }
  1643       }
  1160     }
  1644       _processed.set(resproj->_idx);
  1161   }
  1645     }
  1162 }
  1646   }
  1163 
  1647 }
  1164 void ConnectionGraph::record_for_escape_analysis(Node *n) {
  1648 
  1165   if (_collecting) {
  1649 // Populate Connection Graph with Ideal nodes and create simple
  1166     if (n->is_Phi()) {
  1650 // connection graph edges (do not need to check the node_type of inputs
  1167       PhiNode *phi = n->as_Phi();
  1651 // or to call PointsTo() to walk the connection graph).
  1168       const Type *pt = phi->type();
  1652 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
  1169       if ((pt->isa_oopptr() != NULL) || pt == TypePtr::NULL_PTR) {
  1653   if (_processed.test(n->_idx))
  1170         PointsToNode *ptn = ptnode_adr(phi->_idx);
  1654     return; // No need to redefine node's state.
  1171         ptn->set_node_type(PointsToNode::LocalVar);
  1655 
  1172         ptn->_node = n;
  1656   if (n->is_Call()) {
  1173         _deferred.push(n);
  1657     // Arguments to allocation and locking don't escape.
  1174       }
  1658     if (n->is_Allocate()) {
  1175     }
  1659       add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
  1176   }
  1660       record_for_optimizer(n);
  1177 }
  1661     } else if (n->is_Lock() || n->is_Unlock()) {
  1178 
  1662       // Put Lock and Unlock nodes on IGVN worklist to process them during
  1179 void ConnectionGraph::record_escape_work(Node *n, PhaseTransform *phase) {
  1663       // the first IGVN optimization when escape information is still available.
  1180 
  1664       record_for_optimizer(n);
  1181   int opc = n->Opcode();
  1665       _processed.set(n->_idx);
       
  1666     } else {
       
  1667       // Have to process call's arguments first.
       
  1668       PointsToNode::NodeType nt = PointsToNode::UnknownType;
       
  1669 
       
  1670       // Check if a call returns an object.
       
  1671       const TypeTuple *r = n->as_Call()->tf()->range();
       
  1672       if (r->cnt() > TypeFunc::Parms &&
       
  1673           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
       
  1674         // Note:  use isa_ptr() instead of isa_oopptr() here because
       
  1675         //        the _multianewarray functions return a TypeRawPtr.
       
  1676         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
       
  1677           nt = PointsToNode::JavaObject;
       
  1678         }
       
  1679       }
       
  1680       add_node(n, nt, PointsToNode::UnknownEscape, false);
       
  1681     }
       
  1682     return;
       
  1683   }
       
  1684 
       
  1685   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
       
  1686   // ThreadLocal has RawPrt type.
       
  1687   switch (n->Opcode()) {
       
  1688     case Op_AddP:
       
  1689     {
       
  1690       add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
       
  1691       break;
       
  1692     }
       
  1693     case Op_CastX2P:
       
  1694     { // "Unsafe" memory access.
       
  1695       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
       
  1696       break;
       
  1697     }
       
  1698     case Op_CastPP:
       
  1699     case Op_CheckCastPP:
       
  1700     {
       
  1701       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
       
  1702       int ti = n->in(1)->_idx;
       
  1703       PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
       
  1704       if (nt == PointsToNode::UnknownType) {
       
  1705         _delayed_worklist.push(n); // Process it later.
       
  1706         break;
       
  1707       } else if (nt == PointsToNode::JavaObject) {
       
  1708         add_pointsto_edge(n->_idx, ti);
       
  1709       } else {
       
  1710         add_deferred_edge(n->_idx, ti);
       
  1711       }
       
  1712       _processed.set(n->_idx);
       
  1713       break;
       
  1714     }
       
  1715     case Op_ConP:
       
  1716     {
       
  1717       // assume all pointer constants globally escape except for null
       
  1718       PointsToNode::EscapeState es;
       
  1719       if (phase->type(n) == TypePtr::NULL_PTR)
       
  1720         es = PointsToNode::NoEscape;
       
  1721       else
       
  1722         es = PointsToNode::GlobalEscape;
       
  1723 
       
  1724       add_node(n, PointsToNode::JavaObject, es, true);
       
  1725       break;
       
  1726     }
       
  1727     case Op_CreateEx:
       
  1728     {
       
  1729       // assume that all exception objects globally escape
       
  1730       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
       
  1731       break;
       
  1732     }
       
  1733     case Op_LoadKlass:
       
  1734     {
       
  1735       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
       
  1736       break;
       
  1737     }
       
  1738     case Op_LoadP:
       
  1739     {
       
  1740       const Type *t = phase->type(n);
       
  1741       if (t->isa_ptr() == NULL) {
       
  1742         _processed.set(n->_idx);
       
  1743         return;
       
  1744       }
       
  1745       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
       
  1746       break;
       
  1747     }
       
  1748     case Op_Parm:
       
  1749     {
       
  1750       _processed.set(n->_idx); // No need to redefine it state.
       
  1751       uint con = n->as_Proj()->_con;
       
  1752       if (con < TypeFunc::Parms)
       
  1753         return;
       
  1754       const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
       
  1755       if (t->isa_ptr() == NULL)
       
  1756         return;
       
  1757       // We have to assume all input parameters globally escape
       
  1758       // (Note: passing 'false' since _processed is already set).
       
  1759       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
       
  1760       break;
       
  1761     }
       
  1762     case Op_Phi:
       
  1763     {
       
  1764       if (n->as_Phi()->type()->isa_ptr() == NULL) {
       
  1765         // nothing to do if not an oop
       
  1766         _processed.set(n->_idx);
       
  1767         return;
       
  1768       }
       
  1769       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
       
  1770       uint i;
       
  1771       for (i = 1; i < n->req() ; i++) {
       
  1772         Node* in = n->in(i);
       
  1773         if (in == NULL)
       
  1774           continue;  // ignore NULL
       
  1775         in = in->uncast();
       
  1776         if (in->is_top() || in == n)
       
  1777           continue;  // ignore top or inputs which go back this node
       
  1778         int ti = in->_idx;
       
  1779         PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
       
  1780         if (nt == PointsToNode::UnknownType) {
       
  1781           break;
       
  1782         } else if (nt == PointsToNode::JavaObject) {
       
  1783           add_pointsto_edge(n->_idx, ti);
       
  1784         } else {
       
  1785           add_deferred_edge(n->_idx, ti);
       
  1786         }
       
  1787       }
       
  1788       if (i >= n->req())
       
  1789         _processed.set(n->_idx);
       
  1790       else
       
  1791         _delayed_worklist.push(n);
       
  1792       break;
       
  1793     }
       
  1794     case Op_Proj:
       
  1795     {
       
  1796       // we are only interested in the result projection from a call
       
  1797       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
       
  1798         add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
       
  1799         process_call_result(n->as_Proj(), phase);
       
  1800         if (!_processed.test(n->_idx)) {
       
  1801           // The call's result may need to be processed later if the call
       
  1802           // returns it's argument and the argument is not processed yet.
       
  1803           _delayed_worklist.push(n);
       
  1804         }
       
  1805       } else {
       
  1806         _processed.set(n->_idx);
       
  1807       }
       
  1808       break;
       
  1809     }
       
  1810     case Op_Return:
       
  1811     {
       
  1812       if( n->req() > TypeFunc::Parms &&
       
  1813           phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
       
  1814         // Treat Return value as LocalVar with GlobalEscape escape state.
       
  1815         add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
       
  1816         int ti = n->in(TypeFunc::Parms)->_idx;
       
  1817         PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
       
  1818         if (nt == PointsToNode::UnknownType) {
       
  1819           _delayed_worklist.push(n); // Process it later.
       
  1820           break;
       
  1821         } else if (nt == PointsToNode::JavaObject) {
       
  1822           add_pointsto_edge(n->_idx, ti);
       
  1823         } else {
       
  1824           add_deferred_edge(n->_idx, ti);
       
  1825         }
       
  1826       }
       
  1827       _processed.set(n->_idx);
       
  1828       break;
       
  1829     }
       
  1830     case Op_StoreP:
       
  1831     {
       
  1832       const Type *adr_type = phase->type(n->in(MemNode::Address));
       
  1833       if (adr_type->isa_oopptr()) {
       
  1834         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
       
  1835       } else {
       
  1836         Node* adr = n->in(MemNode::Address);
       
  1837         if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
       
  1838             adr->in(AddPNode::Address)->is_Proj() &&
       
  1839             adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
       
  1840           add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
       
  1841           // We are computing a raw address for a store captured
       
  1842           // by an Initialize compute an appropriate address type.
       
  1843           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
       
  1844           assert(offs != Type::OffsetBot, "offset must be a constant");
       
  1845         } else {
       
  1846           _processed.set(n->_idx);
       
  1847           return;
       
  1848         }
       
  1849       }
       
  1850       break;
       
  1851     }
       
  1852     case Op_StorePConditional:
       
  1853     case Op_CompareAndSwapP:
       
  1854     {
       
  1855       const Type *adr_type = phase->type(n->in(MemNode::Address));
       
  1856       if (adr_type->isa_oopptr()) {
       
  1857         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
       
  1858       } else {
       
  1859         _processed.set(n->_idx);
       
  1860         return;
       
  1861       }
       
  1862       break;
       
  1863     }
       
  1864     case Op_ThreadLocal:
       
  1865     {
       
  1866       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
       
  1867       break;
       
  1868     }
       
  1869     default:
       
  1870       ;
       
  1871       // nothing to do
       
  1872   }
       
  1873   return;
       
  1874 }
       
  1875 
       
  1876 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
       
  1877   // Don't set processed bit for AddP, LoadP, StoreP since
       
  1878   // they may need more then one pass to process.
       
  1879   if (_processed.test(n->_idx))
       
  1880     return; // No need to redefine node's state.
       
  1881 
  1182   PointsToNode *ptadr = ptnode_adr(n->_idx);
  1882   PointsToNode *ptadr = ptnode_adr(n->_idx);
  1183 
  1883 
  1184   if (_processed.test(n->_idx))
       
  1185     return;
       
  1186 
       
  1187   ptadr->_node = n;
       
  1188   if (n->is_Call()) {
  1884   if (n->is_Call()) {
  1189     CallNode *call = n->as_Call();
  1885     CallNode *call = n->as_Call();
  1190     process_call_arguments(call, phase);
  1886     process_call_arguments(call, phase);
       
  1887     _processed.set(n->_idx);
  1191     return;
  1888     return;
  1192   }
  1889   }
  1193 
  1890 
  1194   switch (opc) {
  1891   switch (n->Opcode()) {
  1195     case Op_AddP:
  1892     case Op_AddP:
  1196     {
  1893     {
  1197       Node *base = skip_casts(n->in(AddPNode::Base));
  1894       Node *base = get_addp_base(n);
  1198       ptadr->set_node_type(PointsToNode::Field);
  1895       // Create a field edge to this node from everything base could point to.
  1199 
       
  1200       // create a field edge to this node from everything adr could point to
       
  1201       VectorSet ptset(Thread::current()->resource_area());
  1896       VectorSet ptset(Thread::current()->resource_area());
  1202       PointsTo(ptset, base, phase);
  1897       PointsTo(ptset, base, phase);
  1203       for( VectorSetI i(&ptset); i.test(); ++i ) {
  1898       for( VectorSetI i(&ptset); i.test(); ++i ) {
  1204         uint pt = i.elem;
  1899         uint pt = i.elem;
  1205         add_field_edge(pt, n->_idx, type_to_offset(phase->type(n)));
  1900         add_field_edge(pt, n->_idx, address_offset(n, phase));
  1206       }
  1901       }
  1207       break;
  1902       break;
  1208     }
  1903     }
  1209     case Op_Parm:
  1904     case Op_CastX2P:
  1210     {
  1905     {
  1211       ProjNode *nproj = n->as_Proj();
  1906       assert(false, "Op_CastX2P");
  1212       uint con = nproj->_con;
  1907       break;
  1213       if (con < TypeFunc::Parms)
  1908     }
  1214         return;
  1909     case Op_CastPP:
  1215       const Type *t = nproj->in(0)->as_Start()->_domain->field_at(con);
  1910     case Op_CheckCastPP:
       
  1911     {
       
  1912       int ti = n->in(1)->_idx;
       
  1913       if (_nodes->adr_at(ti)->node_type() == PointsToNode::JavaObject) {
       
  1914         add_pointsto_edge(n->_idx, ti);
       
  1915       } else {
       
  1916         add_deferred_edge(n->_idx, ti);
       
  1917       }
       
  1918       _processed.set(n->_idx);
       
  1919       break;
       
  1920     }
       
  1921     case Op_ConP:
       
  1922     {
       
  1923       assert(false, "Op_ConP");
       
  1924       break;
       
  1925     }
       
  1926     case Op_CreateEx:
       
  1927     {
       
  1928       assert(false, "Op_CreateEx");
       
  1929       break;
       
  1930     }
       
  1931     case Op_LoadKlass:
       
  1932     {
       
  1933       assert(false, "Op_LoadKlass");
       
  1934       break;
       
  1935     }
       
  1936     case Op_LoadP:
       
  1937     {
       
  1938       const Type *t = phase->type(n);
       
  1939 #ifdef ASSERT
  1216       if (t->isa_ptr() == NULL)
  1940       if (t->isa_ptr() == NULL)
  1217         return;
  1941         assert(false, "Op_LoadP");
  1218       ptadr->set_node_type(PointsToNode::JavaObject);
  1942 #endif
  1219       if (t->isa_oopptr() != NULL) {
  1943 
  1220         set_escape_state(n->_idx, PointsToNode::ArgEscape);
  1944       Node* adr = n->in(MemNode::Address)->uncast();
       
  1945       const Type *adr_type = phase->type(adr);
       
  1946       Node* adr_base;
       
  1947       if (adr->is_AddP()) {
       
  1948         adr_base = get_addp_base(adr);
  1221       } else {
  1949       } else {
  1222         // this must be the incoming state of an OSR compile, we have to assume anything
  1950         adr_base = adr;
  1223         // passed in globally escapes
  1951       }
  1224         assert(_compile->is_osr_compilation(), "bad argument type for non-osr compilation");
  1952 
  1225         set_escape_state(n->_idx, PointsToNode::GlobalEscape);
  1953       // For everything "adr_base" could point to, create a deferred edge from
  1226       }
  1954       // this node to each field with the same offset.
  1227       _processed.set(n->_idx);
       
  1228       break;
       
  1229     }
       
  1230     case Op_Phi:
       
  1231     {
       
  1232       PhiNode *phi = n->as_Phi();
       
  1233       if (phi->type()->isa_oopptr() == NULL)
       
  1234         return;  // nothing to do if not an oop
       
  1235       ptadr->set_node_type(PointsToNode::LocalVar);
       
  1236       process_phi_escape(phi, phase);
       
  1237       break;
       
  1238     }
       
  1239     case Op_CreateEx:
       
  1240     {
       
  1241       // assume that all exception objects globally escape
       
  1242       ptadr->set_node_type(PointsToNode::JavaObject);
       
  1243       set_escape_state(n->_idx, PointsToNode::GlobalEscape);
       
  1244       _processed.set(n->_idx);
       
  1245       break;
       
  1246     }
       
  1247     case Op_ConP:
       
  1248     {
       
  1249       const Type *t = phase->type(n);
       
  1250       ptadr->set_node_type(PointsToNode::JavaObject);
       
  1251       // assume all pointer constants globally escape except for null
       
  1252       if (t == TypePtr::NULL_PTR)
       
  1253         set_escape_state(n->_idx, PointsToNode::NoEscape);
       
  1254       else
       
  1255         set_escape_state(n->_idx, PointsToNode::GlobalEscape);
       
  1256       _processed.set(n->_idx);
       
  1257       break;
       
  1258     }
       
  1259     case Op_LoadKlass:
       
  1260     {
       
  1261       ptadr->set_node_type(PointsToNode::JavaObject);
       
  1262       set_escape_state(n->_idx, PointsToNode::GlobalEscape);
       
  1263       _processed.set(n->_idx);
       
  1264       break;
       
  1265     }
       
  1266     case Op_LoadP:
       
  1267     {
       
  1268       const Type *t = phase->type(n);
       
  1269       if (!t->isa_oopptr())
       
  1270         return;
       
  1271       ptadr->set_node_type(PointsToNode::LocalVar);
       
  1272       set_escape_state(n->_idx, PointsToNode::UnknownEscape);
       
  1273 
       
  1274       Node *adr = skip_casts(n->in(MemNode::Address));
       
  1275       const Type *adr_type = phase->type(adr);
       
  1276       Node *adr_base = skip_casts((adr->Opcode() == Op_AddP) ? adr->in(AddPNode::Base) : adr);
       
  1277 
       
  1278       // For everything "adr" could point to, create a deferred edge from
       
  1279       // this node to each field with the same offset as "adr_type"
       
  1280       VectorSet ptset(Thread::current()->resource_area());
  1955       VectorSet ptset(Thread::current()->resource_area());
  1281       PointsTo(ptset, adr_base, phase);
  1956       PointsTo(ptset, adr_base, phase);
  1282       // If ptset is empty, then this value must have been set outside
  1957       int offset = address_offset(adr, phase);
  1283       // this method, so we add the phantom node
       
  1284       if (ptset.Size() == 0)
       
  1285         ptset.set(_phantom_object);
       
  1286       for( VectorSetI i(&ptset); i.test(); ++i ) {
  1958       for( VectorSetI i(&ptset); i.test(); ++i ) {
  1287         uint pt = i.elem;
  1959         uint pt = i.elem;
  1288         add_deferred_edge_to_fields(n->_idx, pt, type_to_offset(adr_type));
  1960         add_deferred_edge_to_fields(n->_idx, pt, offset);
  1289       }
  1961       }
       
  1962       break;
       
  1963     }
       
  1964     case Op_Parm:
       
  1965     {
       
  1966       assert(false, "Op_Parm");
       
  1967       break;
       
  1968     }
       
  1969     case Op_Phi:
       
  1970     {
       
  1971 #ifdef ASSERT
       
  1972       if (n->as_Phi()->type()->isa_ptr() == NULL)
       
  1973         assert(false, "Op_Phi");
       
  1974 #endif
       
  1975       for (uint i = 1; i < n->req() ; i++) {
       
  1976         Node* in = n->in(i);
       
  1977         if (in == NULL)
       
  1978           continue;  // ignore NULL
       
  1979         in = in->uncast();
       
  1980         if (in->is_top() || in == n)
       
  1981           continue;  // ignore top or inputs which go back this node
       
  1982         int ti = in->_idx;
       
  1983         if (_nodes->adr_at(in->_idx)->node_type() == PointsToNode::JavaObject) {
       
  1984           add_pointsto_edge(n->_idx, ti);
       
  1985         } else {
       
  1986           add_deferred_edge(n->_idx, ti);
       
  1987         }
       
  1988       }
       
  1989       _processed.set(n->_idx);
       
  1990       break;
       
  1991     }
       
  1992     case Op_Proj:
       
  1993     {
       
  1994       // we are only interested in the result projection from a call
       
  1995       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
       
  1996         process_call_result(n->as_Proj(), phase);
       
  1997         assert(_processed.test(n->_idx), "all call results should be processed");
       
  1998       } else {
       
  1999         assert(false, "Op_Proj");
       
  2000       }
       
  2001       break;
       
  2002     }
       
  2003     case Op_Return:
       
  2004     {
       
  2005 #ifdef ASSERT
       
  2006       if( n->req() <= TypeFunc::Parms ||
       
  2007           !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
       
  2008         assert(false, "Op_Return");
       
  2009       }
       
  2010 #endif
       
  2011       int ti = n->in(TypeFunc::Parms)->_idx;
       
  2012       if (_nodes->adr_at(ti)->node_type() == PointsToNode::JavaObject) {
       
  2013         add_pointsto_edge(n->_idx, ti);
       
  2014       } else {
       
  2015         add_deferred_edge(n->_idx, ti);
       
  2016       }
       
  2017       _processed.set(n->_idx);
  1290       break;
  2018       break;
  1291     }
  2019     }
  1292     case Op_StoreP:
  2020     case Op_StoreP:
  1293     case Op_StorePConditional:
  2021     case Op_StorePConditional:
  1294     case Op_CompareAndSwapP:
  2022     case Op_CompareAndSwapP:
  1295     {
  2023     {
  1296       Node *adr = n->in(MemNode::Address);
  2024       Node *adr = n->in(MemNode::Address);
  1297       Node *val = skip_casts(n->in(MemNode::ValueIn));
       
  1298       const Type *adr_type = phase->type(adr);
  2025       const Type *adr_type = phase->type(adr);
       
  2026 #ifdef ASSERT
  1299       if (!adr_type->isa_oopptr())
  2027       if (!adr_type->isa_oopptr())
  1300         return;
  2028         assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
  1301 
  2029 #endif
  1302       assert(adr->Opcode() == Op_AddP, "expecting an AddP");
  2030 
  1303       Node *adr_base = adr->in(AddPNode::Base);
  2031       assert(adr->is_AddP(), "expecting an AddP");
  1304 
  2032       Node *adr_base = get_addp_base(adr);
  1305       // For everything "adr_base" could point to, create a deferred edge to "val" from each field
  2033       Node *val = n->in(MemNode::ValueIn)->uncast();
  1306       // with the same offset as "adr_type"
  2034       // For everything "adr_base" could point to, create a deferred edge
       
  2035       // to "val" from each field with the same offset.
  1307       VectorSet ptset(Thread::current()->resource_area());
  2036       VectorSet ptset(Thread::current()->resource_area());
  1308       PointsTo(ptset, adr_base, phase);
  2037       PointsTo(ptset, adr_base, phase);
  1309       for( VectorSetI i(&ptset); i.test(); ++i ) {
  2038       for( VectorSetI i(&ptset); i.test(); ++i ) {
  1310         uint pt = i.elem;
  2039         uint pt = i.elem;
  1311         add_edge_from_fields(pt, val->_idx, type_to_offset(adr_type));
  2040         add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
  1312       }
  2041       }
  1313       break;
  2042       break;
  1314     }
  2043     }
  1315     case Op_Proj:
  2044     case Op_ThreadLocal:
  1316     {
  2045     {
  1317       ProjNode *nproj = n->as_Proj();
  2046       assert(false, "Op_ThreadLocal");
  1318       Node *n0 = nproj->in(0);
       
  1319       // we are only interested in the result projection from a call
       
  1320       if (nproj->_con == TypeFunc::Parms && n0->is_Call() ) {
       
  1321         process_call_result(nproj, phase);
       
  1322       }
       
  1323 
       
  1324       break;
       
  1325     }
       
  1326     case Op_CastPP:
       
  1327     case Op_CheckCastPP:
       
  1328     {
       
  1329       ptadr->set_node_type(PointsToNode::LocalVar);
       
  1330       int ti = n->in(1)->_idx;
       
  1331       if (_nodes->at(ti).node_type() == PointsToNode::JavaObject) {
       
  1332         add_pointsto_edge(n->_idx, ti);
       
  1333       } else {
       
  1334         add_deferred_edge(n->_idx, ti);
       
  1335       }
       
  1336       break;
  2047       break;
  1337     }
  2048     }
  1338     default:
  2049     default:
  1339       ;
  2050       ;
  1340       // nothing to do
  2051       // nothing to do
  1341   }
  2052   }
  1342 }
       
  1343 
       
  1344 void ConnectionGraph::record_escape(Node *n, PhaseTransform *phase) {
       
  1345   if (_collecting)
       
  1346     record_escape_work(n, phase);
       
  1347 }
  2053 }
  1348 
  2054 
  1349 #ifndef PRODUCT
  2055 #ifndef PRODUCT
  1350 void ConnectionGraph::dump() {
  2056 void ConnectionGraph::dump() {
  1351   PhaseGVN  *igvn = _compile->initial_gvn();
  2057   PhaseGVN  *igvn = _compile->initial_gvn();
  1352   bool first = true;
  2058   bool first = true;
  1353 
  2059 
  1354   for (uint ni = 0; ni < (uint)_nodes->length(); ni++) {
  2060   uint size = (uint)_nodes->length();
  1355     PointsToNode *esp = _nodes->adr_at(ni);
  2061   for (uint ni = 0; ni < size; ni++) {
  1356     if (esp->node_type() == PointsToNode::UnknownType || esp->_node == NULL)
  2062     PointsToNode *ptn = _nodes->adr_at(ni);
       
  2063     PointsToNode::NodeType ptn_type = ptn->node_type();
       
  2064 
       
  2065     if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
  1357       continue;
  2066       continue;
  1358     PointsToNode::EscapeState es = escape_state(esp->_node, igvn);
  2067     PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
  1359     if (es == PointsToNode::NoEscape || (Verbose &&
  2068     if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
  1360             (es != PointsToNode::UnknownEscape || esp->edge_count() != 0))) {
  2069       if (first) {
  1361       // don't print null pointer node which almost every method has
  2070         tty->cr();
  1362       if (esp->_node->Opcode() != Op_ConP || igvn->type(esp->_node) != TypePtr::NULL_PTR) {
  2071         tty->print("======== Connection graph for ");
  1363         if (first) {
  2072         C()->method()->print_short_name();
  1364           tty->print("======== Connection graph for ");
  2073         tty->cr();
  1365           C()->method()->print_short_name();
  2074         first = false;
  1366           tty->cr();
  2075       }
  1367           first = false;
  2076       tty->print("%6d ", ni);
  1368         }
  2077       ptn->dump();
  1369         tty->print("%4d  ", ni);
  2078       // Print all locals which reference this allocation
  1370         esp->dump();
  2079       for (uint li = ni; li < size; li++) {
  1371       }
  2080         PointsToNode *ptn_loc = _nodes->adr_at(li);
       
  2081         PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
       
  2082         if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
       
  2083              ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
       
  2084           tty->print("%6d  LocalVar [[%d]]", li, ni);
       
  2085           _nodes->adr_at(li)->_node->dump();
       
  2086         }
       
  2087       }
       
  2088       if (Verbose) {
       
  2089         // Print all fields which reference this allocation
       
  2090         for (uint i = 0; i < ptn->edge_count(); i++) {
       
  2091           uint ei = ptn->edge_target(i);
       
  2092           tty->print("%6d  Field [[%d]]", ei, ni);
       
  2093           _nodes->adr_at(ei)->_node->dump();
       
  2094         }
       
  2095       }
       
  2096       tty->cr();
  1372     }
  2097     }
  1373   }
  2098   }
  1374 }
  2099 }
  1375 #endif
  2100 #endif