src/hotspot/share/gc/parallel/cardTableExtension.cpp
changeset 49164 7e958a8ebcd3
parent 49163 580bb0b85f63
child 49165 75e2a82fed81
equal deleted inserted replaced
49163:580bb0b85f63 49164:7e958a8ebcd3
     1 /*
       
     2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "gc/parallel/cardTableExtension.hpp"
       
    27 #include "gc/parallel/gcTaskManager.hpp"
       
    28 #include "gc/parallel/objectStartArray.inline.hpp"
       
    29 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
       
    30 #include "gc/parallel/psPromotionManager.inline.hpp"
       
    31 #include "gc/parallel/psScavenge.hpp"
       
    32 #include "gc/parallel/psTasks.hpp"
       
    33 #include "gc/parallel/psYoungGen.hpp"
       
    34 #include "oops/oop.inline.hpp"
       
    35 #include "runtime/prefetch.inline.hpp"
       
    36 #include "utilities/align.hpp"
       
    37 
       
    38 // Checks an individual oop for missing precise marks. Mark
       
    39 // may be either dirty or newgen.
       
    40 class CheckForUnmarkedOops : public OopClosure {
       
    41  private:
       
    42   PSYoungGen*         _young_gen;
       
    43   CardTableExtension* _card_table;
       
    44   HeapWord*           _unmarked_addr;
       
    45 
       
    46  protected:
       
    47   template <class T> void do_oop_work(T* p) {
       
    48     oop obj = oopDesc::load_decode_heap_oop(p);
       
    49     if (_young_gen->is_in_reserved(obj) &&
       
    50         !_card_table->addr_is_marked_imprecise(p)) {
       
    51       // Don't overwrite the first missing card mark
       
    52       if (_unmarked_addr == NULL) {
       
    53         _unmarked_addr = (HeapWord*)p;
       
    54       }
       
    55     }
       
    56   }
       
    57 
       
    58  public:
       
    59   CheckForUnmarkedOops(PSYoungGen* young_gen, CardTableExtension* card_table) :
       
    60     _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
       
    61 
       
    62   virtual void do_oop(oop* p)       { CheckForUnmarkedOops::do_oop_work(p); }
       
    63   virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); }
       
    64 
       
    65   bool has_unmarked_oop() {
       
    66     return _unmarked_addr != NULL;
       
    67   }
       
    68 };
       
    69 
       
    70 // Checks all objects for the existence of some type of mark,
       
    71 // precise or imprecise, dirty or newgen.
       
    72 class CheckForUnmarkedObjects : public ObjectClosure {
       
    73  private:
       
    74   PSYoungGen*         _young_gen;
       
    75   CardTableExtension* _card_table;
       
    76 
       
    77  public:
       
    78   CheckForUnmarkedObjects() {
       
    79     ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
       
    80     _young_gen = heap->young_gen();
       
    81     _card_table = barrier_set_cast<CardTableExtension>(heap->barrier_set());
       
    82     // No point in asserting barrier set type here. Need to make CardTableExtension
       
    83     // a unique barrier set type.
       
    84   }
       
    85 
       
    86   // Card marks are not precise. The current system can leave us with
       
    87   // a mismatch of precise marks and beginning of object marks. This means
       
    88   // we test for missing precise marks first. If any are found, we don't
       
    89   // fail unless the object head is also unmarked.
       
    90   virtual void do_object(oop obj) {
       
    91     CheckForUnmarkedOops object_check(_young_gen, _card_table);
       
    92     obj->oop_iterate_no_header(&object_check);
       
    93     if (object_check.has_unmarked_oop()) {
       
    94       guarantee(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
       
    95     }
       
    96   }
       
    97 };
       
    98 
       
    99 // Checks for precise marking of oops as newgen.
       
   100 class CheckForPreciseMarks : public OopClosure {
       
   101  private:
       
   102   PSYoungGen*         _young_gen;
       
   103   CardTableExtension* _card_table;
       
   104 
       
   105  protected:
       
   106   template <class T> void do_oop_work(T* p) {
       
   107     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
       
   108     if (_young_gen->is_in_reserved(obj)) {
       
   109       assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
       
   110       _card_table->set_card_newgen(p);
       
   111     }
       
   112   }
       
   113 
       
   114  public:
       
   115   CheckForPreciseMarks( PSYoungGen* young_gen, CardTableExtension* card_table ) :
       
   116     _young_gen(young_gen), _card_table(card_table) { }
       
   117 
       
   118   virtual void do_oop(oop* p)       { CheckForPreciseMarks::do_oop_work(p); }
       
   119   virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); }
       
   120 };
       
   121 
       
   122 // We get passed the space_top value to prevent us from traversing into
       
   123 // the old_gen promotion labs, which cannot be safely parsed.
       
   124 
       
   125 // Do not call this method if the space is empty.
       
   126 // It is a waste to start tasks and get here only to
       
   127 // do no work.  If this method needs to be called
       
   128 // when the space is empty, fix the calculation of
       
   129 // end_card to allow sp_top == sp->bottom().
       
   130 
       
   131 void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_array,
       
   132                                                     MutableSpace* sp,
       
   133                                                     HeapWord* space_top,
       
   134                                                     PSPromotionManager* pm,
       
   135                                                     uint stripe_number,
       
   136                                                     uint stripe_total) {
       
   137   int ssize = 128; // Naked constant!  Work unit = 64k.
       
   138   int dirty_card_count = 0;
       
   139 
       
   140   // It is a waste to get here if empty.
       
   141   assert(sp->bottom() < sp->top(), "Should not be called if empty");
       
   142   oop* sp_top = (oop*)space_top;
       
   143   jbyte* start_card = byte_for(sp->bottom());
       
   144   jbyte* end_card   = byte_for(sp_top - 1) + 1;
       
   145   oop* last_scanned = NULL; // Prevent scanning objects more than once
       
   146   // The width of the stripe ssize*stripe_total must be
       
   147   // consistent with the number of stripes so that the complete slice
       
   148   // is covered.
       
   149   size_t slice_width = ssize * stripe_total;
       
   150   for (jbyte* slice = start_card; slice < end_card; slice += slice_width) {
       
   151     jbyte* worker_start_card = slice + stripe_number * ssize;
       
   152     if (worker_start_card >= end_card)
       
   153       return; // We're done.
       
   154 
       
   155     jbyte* worker_end_card = worker_start_card + ssize;
       
   156     if (worker_end_card > end_card)
       
   157       worker_end_card = end_card;
       
   158 
       
   159     // We do not want to scan objects more than once. In order to accomplish
       
   160     // this, we assert that any object with an object head inside our 'slice'
       
   161     // belongs to us. We may need to extend the range of scanned cards if the
       
   162     // last object continues into the next 'slice'.
       
   163     //
       
   164     // Note! ending cards are exclusive!
       
   165     HeapWord* slice_start = addr_for(worker_start_card);
       
   166     HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
       
   167 
       
   168 #ifdef ASSERT
       
   169     if (GCWorkerDelayMillis > 0) {
       
   170       // Delay 1 worker so that it proceeds after all the work
       
   171       // has been completed.
       
   172       if (stripe_number < 2) {
       
   173         os::sleep(Thread::current(), GCWorkerDelayMillis, false);
       
   174       }
       
   175     }
       
   176 #endif
       
   177 
       
   178     // If there are not objects starting within the chunk, skip it.
       
   179     if (!start_array->object_starts_in_range(slice_start, slice_end)) {
       
   180       continue;
       
   181     }
       
   182     // Update our beginning addr
       
   183     HeapWord* first_object = start_array->object_start(slice_start);
       
   184     debug_only(oop* first_object_within_slice = (oop*) first_object;)
       
   185     if (first_object < slice_start) {
       
   186       last_scanned = (oop*)(first_object + oop(first_object)->size());
       
   187       debug_only(first_object_within_slice = last_scanned;)
       
   188       worker_start_card = byte_for(last_scanned);
       
   189     }
       
   190 
       
   191     // Update the ending addr
       
   192     if (slice_end < (HeapWord*)sp_top) {
       
   193       // The subtraction is important! An object may start precisely at slice_end.
       
   194       HeapWord* last_object = start_array->object_start(slice_end - 1);
       
   195       slice_end = last_object + oop(last_object)->size();
       
   196       // worker_end_card is exclusive, so bump it one past the end of last_object's
       
   197       // covered span.
       
   198       worker_end_card = byte_for(slice_end) + 1;
       
   199 
       
   200       if (worker_end_card > end_card)
       
   201         worker_end_card = end_card;
       
   202     }
       
   203 
       
   204     assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
       
   205     assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
       
   206     assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
       
   207     // Note that worker_start_card >= worker_end_card is legal, and happens when
       
   208     // an object spans an entire slice.
       
   209     assert(worker_start_card <= end_card, "worker start card beyond end card");
       
   210     assert(worker_end_card <= end_card, "worker end card beyond end card");
       
   211 
       
   212     jbyte* current_card = worker_start_card;
       
   213     while (current_card < worker_end_card) {
       
   214       // Find an unclean card.
       
   215       while (current_card < worker_end_card && card_is_clean(*current_card)) {
       
   216         current_card++;
       
   217       }
       
   218       jbyte* first_unclean_card = current_card;
       
   219 
       
   220       // Find the end of a run of contiguous unclean cards
       
   221       while (current_card < worker_end_card && !card_is_clean(*current_card)) {
       
   222         while (current_card < worker_end_card && !card_is_clean(*current_card)) {
       
   223           current_card++;
       
   224         }
       
   225 
       
   226         if (current_card < worker_end_card) {
       
   227           // Some objects may be large enough to span several cards. If such
       
   228           // an object has more than one dirty card, separated by a clean card,
       
   229           // we will attempt to scan it twice. The test against "last_scanned"
       
   230           // prevents the redundant object scan, but it does not prevent newly
       
   231           // marked cards from being cleaned.
       
   232           HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
       
   233           size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
       
   234           HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
       
   235           jbyte* ending_card_of_last_object = byte_for(end_of_last_object);
       
   236           assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
       
   237           if (ending_card_of_last_object > current_card) {
       
   238             // This means the object spans the next complete card.
       
   239             // We need to bump the current_card to ending_card_of_last_object
       
   240             current_card = ending_card_of_last_object;
       
   241           }
       
   242         }
       
   243       }
       
   244       jbyte* following_clean_card = current_card;
       
   245 
       
   246       if (first_unclean_card < worker_end_card) {
       
   247         oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
       
   248         assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
       
   249         // "p" should always be >= "last_scanned" because newly GC dirtied
       
   250         // cards are no longer scanned again (see comment at end
       
   251         // of loop on the increment of "current_card").  Test that
       
   252         // hypothesis before removing this code.
       
   253         // If this code is removed, deal with the first time through
       
   254         // the loop when the last_scanned is the object starting in
       
   255         // the previous slice.
       
   256         assert((p >= last_scanned) ||
       
   257                (last_scanned == first_object_within_slice),
       
   258                "Should no longer be possible");
       
   259         if (p < last_scanned) {
       
   260           // Avoid scanning more than once; this can happen because
       
   261           // newgen cards set by GC may a different set than the
       
   262           // originally dirty set
       
   263           p = last_scanned;
       
   264         }
       
   265         oop* to = (oop*)addr_for(following_clean_card);
       
   266 
       
   267         // Test slice_end first!
       
   268         if ((HeapWord*)to > slice_end) {
       
   269           to = (oop*)slice_end;
       
   270         } else if (to > sp_top) {
       
   271           to = sp_top;
       
   272         }
       
   273 
       
   274         // we know which cards to scan, now clear them
       
   275         if (first_unclean_card <= worker_start_card+1)
       
   276           first_unclean_card = worker_start_card+1;
       
   277         if (following_clean_card >= worker_end_card-1)
       
   278           following_clean_card = worker_end_card-1;
       
   279 
       
   280         while (first_unclean_card < following_clean_card) {
       
   281           *first_unclean_card++ = clean_card;
       
   282         }
       
   283 
       
   284         const int interval = PrefetchScanIntervalInBytes;
       
   285         // scan all objects in the range
       
   286         if (interval != 0) {
       
   287           while (p < to) {
       
   288             Prefetch::write(p, interval);
       
   289             oop m = oop(p);
       
   290             assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m));
       
   291             pm->push_contents(m);
       
   292             p += m->size();
       
   293           }
       
   294           pm->drain_stacks_cond_depth();
       
   295         } else {
       
   296           while (p < to) {
       
   297             oop m = oop(p);
       
   298             assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m));
       
   299             pm->push_contents(m);
       
   300             p += m->size();
       
   301           }
       
   302           pm->drain_stacks_cond_depth();
       
   303         }
       
   304         last_scanned = p;
       
   305       }
       
   306       // "current_card" is still the "following_clean_card" or
       
   307       // the current_card is >= the worker_end_card so the
       
   308       // loop will not execute again.
       
   309       assert((current_card == following_clean_card) ||
       
   310              (current_card >= worker_end_card),
       
   311         "current_card should only be incremented if it still equals "
       
   312         "following_clean_card");
       
   313       // Increment current_card so that it is not processed again.
       
   314       // It may now be dirty because a old-to-young pointer was
       
   315       // found on it an updated.  If it is now dirty, it cannot be
       
   316       // be safely cleaned in the next iteration.
       
   317       current_card++;
       
   318     }
       
   319   }
       
   320 }
       
   321 
       
   322 // This should be called before a scavenge.
       
   323 void CardTableExtension::verify_all_young_refs_imprecise() {
       
   324   CheckForUnmarkedObjects check;
       
   325 
       
   326   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
       
   327   PSOldGen* old_gen = heap->old_gen();
       
   328 
       
   329   old_gen->object_iterate(&check);
       
   330 }
       
   331 
       
   332 // This should be called immediately after a scavenge, before mutators resume.
       
   333 void CardTableExtension::verify_all_young_refs_precise() {
       
   334   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
       
   335   PSOldGen* old_gen = heap->old_gen();
       
   336 
       
   337   CheckForPreciseMarks check(
       
   338     heap->young_gen(),
       
   339     barrier_set_cast<CardTableExtension>(heap->barrier_set()));
       
   340 
       
   341   old_gen->oop_iterate_no_header(&check);
       
   342 
       
   343   verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
       
   344 }
       
   345 
       
   346 void CardTableExtension::verify_all_young_refs_precise_helper(MemRegion mr) {
       
   347   CardTableExtension* card_table =
       
   348     barrier_set_cast<CardTableExtension>(ParallelScavengeHeap::heap()->barrier_set());
       
   349 
       
   350   jbyte* bot = card_table->byte_for(mr.start());
       
   351   jbyte* top = card_table->byte_for(mr.end());
       
   352   while(bot <= top) {
       
   353     assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
       
   354     if (*bot == verify_card)
       
   355       *bot = youngergen_card;
       
   356     bot++;
       
   357   }
       
   358 }
       
   359 
       
   360 bool CardTableExtension::addr_is_marked_imprecise(void *addr) {
       
   361   jbyte* p = byte_for(addr);
       
   362   jbyte val = *p;
       
   363 
       
   364   if (card_is_dirty(val))
       
   365     return true;
       
   366 
       
   367   if (card_is_newgen(val))
       
   368     return true;
       
   369 
       
   370   if (card_is_clean(val))
       
   371     return false;
       
   372 
       
   373   assert(false, "Found unhandled card mark type");
       
   374 
       
   375   return false;
       
   376 }
       
   377 
       
   378 // Also includes verify_card
       
   379 bool CardTableExtension::addr_is_marked_precise(void *addr) {
       
   380   jbyte* p = byte_for(addr);
       
   381   jbyte val = *p;
       
   382 
       
   383   if (card_is_newgen(val))
       
   384     return true;
       
   385 
       
   386   if (card_is_verify(val))
       
   387     return true;
       
   388 
       
   389   if (card_is_clean(val))
       
   390     return false;
       
   391 
       
   392   if (card_is_dirty(val))
       
   393     return false;
       
   394 
       
   395   assert(false, "Found unhandled card mark type");
       
   396 
       
   397   return false;
       
   398 }
       
   399 
       
   400 // Assumes that only the base or the end changes.  This allows indentification
       
   401 // of the region that is being resized.  The
       
   402 // CardTableModRefBS::resize_covered_region() is used for the normal case
       
   403 // where the covered regions are growing or shrinking at the high end.
       
   404 // The method resize_covered_region_by_end() is analogous to
       
   405 // CardTableModRefBS::resize_covered_region() but
       
   406 // for regions that grow or shrink at the low end.
       
   407 void CardTableExtension::resize_covered_region(MemRegion new_region) {
       
   408 
       
   409   for (int i = 0; i < _cur_covered_regions; i++) {
       
   410     if (_covered[i].start() == new_region.start()) {
       
   411       // Found a covered region with the same start as the
       
   412       // new region.  The region is growing or shrinking
       
   413       // from the start of the region.
       
   414       resize_covered_region_by_start(new_region);
       
   415       return;
       
   416     }
       
   417     if (_covered[i].start() > new_region.start()) {
       
   418       break;
       
   419     }
       
   420   }
       
   421 
       
   422   int changed_region = -1;
       
   423   for (int j = 0; j < _cur_covered_regions; j++) {
       
   424     if (_covered[j].end() == new_region.end()) {
       
   425       changed_region = j;
       
   426       // This is a case where the covered region is growing or shrinking
       
   427       // at the start of the region.
       
   428       assert(changed_region != -1, "Don't expect to add a covered region");
       
   429       assert(_covered[changed_region].byte_size() != new_region.byte_size(),
       
   430         "The sizes should be different here");
       
   431       resize_covered_region_by_end(changed_region, new_region);
       
   432       return;
       
   433     }
       
   434   }
       
   435   // This should only be a new covered region (where no existing
       
   436   // covered region matches at the start or the end).
       
   437   assert(_cur_covered_regions < _max_covered_regions,
       
   438     "An existing region should have been found");
       
   439   resize_covered_region_by_start(new_region);
       
   440 }
       
   441 
       
   442 void CardTableExtension::resize_covered_region_by_start(MemRegion new_region) {
       
   443   CardTableModRefBS::resize_covered_region(new_region);
       
   444   debug_only(verify_guard();)
       
   445 }
       
   446 
       
   447 void CardTableExtension::resize_covered_region_by_end(int changed_region,
       
   448                                                       MemRegion new_region) {
       
   449   assert(SafepointSynchronize::is_at_safepoint(),
       
   450     "Only expect an expansion at the low end at a GC");
       
   451   debug_only(verify_guard();)
       
   452 #ifdef ASSERT
       
   453   for (int k = 0; k < _cur_covered_regions; k++) {
       
   454     if (_covered[k].end() == new_region.end()) {
       
   455       assert(changed_region == k, "Changed region is incorrect");
       
   456       break;
       
   457     }
       
   458   }
       
   459 #endif
       
   460 
       
   461   // Commit new or uncommit old pages, if necessary.
       
   462   if (resize_commit_uncommit(changed_region, new_region)) {
       
   463     // Set the new start of the committed region
       
   464     resize_update_committed_table(changed_region, new_region);
       
   465   }
       
   466 
       
   467   // Update card table entries
       
   468   resize_update_card_table_entries(changed_region, new_region);
       
   469 
       
   470   // Update the covered region
       
   471   resize_update_covered_table(changed_region, new_region);
       
   472 
       
   473   int ind = changed_region;
       
   474   log_trace(gc, barrier)("CardTableModRefBS::resize_covered_region: ");
       
   475   log_trace(gc, barrier)("    _covered[%d].start(): " INTPTR_FORMAT "  _covered[%d].last(): " INTPTR_FORMAT,
       
   476                 ind, p2i(_covered[ind].start()), ind, p2i(_covered[ind].last()));
       
   477   log_trace(gc, barrier)("    _committed[%d].start(): " INTPTR_FORMAT "  _committed[%d].last(): " INTPTR_FORMAT,
       
   478                 ind, p2i(_committed[ind].start()), ind, p2i(_committed[ind].last()));
       
   479   log_trace(gc, barrier)("    byte_for(start): " INTPTR_FORMAT "  byte_for(last): " INTPTR_FORMAT,
       
   480                 p2i(byte_for(_covered[ind].start())),  p2i(byte_for(_covered[ind].last())));
       
   481   log_trace(gc, barrier)("    addr_for(start): " INTPTR_FORMAT "  addr_for(last): " INTPTR_FORMAT,
       
   482                 p2i(addr_for((jbyte*) _committed[ind].start())), p2i(addr_for((jbyte*) _committed[ind].last())));
       
   483 
       
   484   debug_only(verify_guard();)
       
   485 }
       
   486 
       
   487 bool CardTableExtension::resize_commit_uncommit(int changed_region,
       
   488                                                 MemRegion new_region) {
       
   489   bool result = false;
       
   490   // Commit new or uncommit old pages, if necessary.
       
   491   MemRegion cur_committed = _committed[changed_region];
       
   492   assert(_covered[changed_region].end() == new_region.end(),
       
   493     "The ends of the regions are expected to match");
       
   494   // Extend the start of this _committed region to
       
   495   // to cover the start of any previous _committed region.
       
   496   // This forms overlapping regions, but never interior regions.
       
   497   HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
       
   498   if (min_prev_start < cur_committed.start()) {
       
   499     // Only really need to set start of "cur_committed" to
       
   500     // the new start (min_prev_start) but assertion checking code
       
   501     // below use cur_committed.end() so make it correct.
       
   502     MemRegion new_committed =
       
   503         MemRegion(min_prev_start, cur_committed.end());
       
   504     cur_committed = new_committed;
       
   505   }
       
   506 #ifdef ASSERT
       
   507   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
       
   508   assert(cur_committed.start() == align_up(cur_committed.start(), os::vm_page_size()),
       
   509     "Starts should have proper alignment");
       
   510 #endif
       
   511 
       
   512   jbyte* new_start = byte_for(new_region.start());
       
   513   // Round down because this is for the start address
       
   514   HeapWord* new_start_aligned =
       
   515     (HeapWord*)align_down((uintptr_t)new_start, os::vm_page_size());
       
   516   // The guard page is always committed and should not be committed over.
       
   517   // This method is used in cases where the generation is growing toward
       
   518   // lower addresses but the guard region is still at the end of the
       
   519   // card table.  That still makes sense when looking for writes
       
   520   // off the end of the card table.
       
   521   if (new_start_aligned < cur_committed.start()) {
       
   522     // Expand the committed region
       
   523     //
       
   524     // Case A
       
   525     //                                          |+ guard +|
       
   526     //                          |+ cur committed +++++++++|
       
   527     //                  |+ new committed +++++++++++++++++|
       
   528     //
       
   529     // Case B
       
   530     //                                          |+ guard +|
       
   531     //                        |+ cur committed +|
       
   532     //                  |+ new committed +++++++|
       
   533     //
       
   534     // These are not expected because the calculation of the
       
   535     // cur committed region and the new committed region
       
   536     // share the same end for the covered region.
       
   537     // Case C
       
   538     //                                          |+ guard +|
       
   539     //                        |+ cur committed +|
       
   540     //                  |+ new committed +++++++++++++++++|
       
   541     // Case D
       
   542     //                                          |+ guard +|
       
   543     //                        |+ cur committed +++++++++++|
       
   544     //                  |+ new committed +++++++|
       
   545 
       
   546     HeapWord* new_end_for_commit =
       
   547       MIN2(cur_committed.end(), _guard_region.start());
       
   548     if(new_start_aligned < new_end_for_commit) {
       
   549       MemRegion new_committed =
       
   550         MemRegion(new_start_aligned, new_end_for_commit);
       
   551       os::commit_memory_or_exit((char*)new_committed.start(),
       
   552                                 new_committed.byte_size(), !ExecMem,
       
   553                                 "card table expansion");
       
   554     }
       
   555     result = true;
       
   556   } else if (new_start_aligned > cur_committed.start()) {
       
   557     // Shrink the committed region
       
   558 #if 0 // uncommitting space is currently unsafe because of the interactions
       
   559       // of growing and shrinking regions.  One region A can uncommit space
       
   560       // that it owns but which is being used by another region B (maybe).
       
   561       // Region B has not committed the space because it was already
       
   562       // committed by region A.
       
   563     MemRegion uncommit_region = committed_unique_to_self(changed_region,
       
   564       MemRegion(cur_committed.start(), new_start_aligned));
       
   565     if (!uncommit_region.is_empty()) {
       
   566       if (!os::uncommit_memory((char*)uncommit_region.start(),
       
   567                                uncommit_region.byte_size())) {
       
   568         // If the uncommit fails, ignore it.  Let the
       
   569         // committed table resizing go even though the committed
       
   570         // table will over state the committed space.
       
   571       }
       
   572     }
       
   573 #else
       
   574     assert(!result, "Should be false with current workaround");
       
   575 #endif
       
   576   }
       
   577   assert(_committed[changed_region].end() == cur_committed.end(),
       
   578     "end should not change");
       
   579   return result;
       
   580 }
       
   581 
       
   582 void CardTableExtension::resize_update_committed_table(int changed_region,
       
   583                                                        MemRegion new_region) {
       
   584 
       
   585   jbyte* new_start = byte_for(new_region.start());
       
   586   // Set the new start of the committed region
       
   587   HeapWord* new_start_aligned =
       
   588     (HeapWord*)align_down(new_start, os::vm_page_size());
       
   589   MemRegion new_committed = MemRegion(new_start_aligned,
       
   590     _committed[changed_region].end());
       
   591   _committed[changed_region] = new_committed;
       
   592   _committed[changed_region].set_start(new_start_aligned);
       
   593 }
       
   594 
       
   595 void CardTableExtension::resize_update_card_table_entries(int changed_region,
       
   596                                                           MemRegion new_region) {
       
   597   debug_only(verify_guard();)
       
   598   MemRegion original_covered = _covered[changed_region];
       
   599   // Initialize the card entries.  Only consider the
       
   600   // region covered by the card table (_whole_heap)
       
   601   jbyte* entry;
       
   602   if (new_region.start() < _whole_heap.start()) {
       
   603     entry = byte_for(_whole_heap.start());
       
   604   } else {
       
   605     entry = byte_for(new_region.start());
       
   606   }
       
   607   jbyte* end = byte_for(original_covered.start());
       
   608   // If _whole_heap starts at the original covered regions start,
       
   609   // this loop will not execute.
       
   610   while (entry < end) { *entry++ = clean_card; }
       
   611 }
       
   612 
       
   613 void CardTableExtension::resize_update_covered_table(int changed_region,
       
   614                                                      MemRegion new_region) {
       
   615   // Update the covered region
       
   616   _covered[changed_region].set_start(new_region.start());
       
   617   _covered[changed_region].set_word_size(new_region.word_size());
       
   618 
       
   619   // reorder regions.  There should only be at most 1 out
       
   620   // of order.
       
   621   for (int i = _cur_covered_regions-1 ; i > 0; i--) {
       
   622     if (_covered[i].start() < _covered[i-1].start()) {
       
   623         MemRegion covered_mr = _covered[i-1];
       
   624         _covered[i-1] = _covered[i];
       
   625         _covered[i] = covered_mr;
       
   626         MemRegion committed_mr = _committed[i-1];
       
   627       _committed[i-1] = _committed[i];
       
   628       _committed[i] = committed_mr;
       
   629       break;
       
   630     }
       
   631   }
       
   632 #ifdef ASSERT
       
   633   for (int m = 0; m < _cur_covered_regions-1; m++) {
       
   634     assert(_covered[m].start() <= _covered[m+1].start(),
       
   635       "Covered regions out of order");
       
   636     assert(_committed[m].start() <= _committed[m+1].start(),
       
   637       "Committed regions out of order");
       
   638   }
       
   639 #endif
       
   640 }
       
   641 
       
   642 // Returns the start of any committed region that is lower than
       
   643 // the target committed region (index ind) and that intersects the
       
   644 // target region.  If none, return start of target region.
       
   645 //
       
   646 //      -------------
       
   647 //      |           |
       
   648 //      -------------
       
   649 //              ------------
       
   650 //              | target   |
       
   651 //              ------------
       
   652 //                               -------------
       
   653 //                               |           |
       
   654 //                               -------------
       
   655 //      ^ returns this
       
   656 //
       
   657 //      -------------
       
   658 //      |           |
       
   659 //      -------------
       
   660 //                      ------------
       
   661 //                      | target   |
       
   662 //                      ------------
       
   663 //                               -------------
       
   664 //                               |           |
       
   665 //                               -------------
       
   666 //                      ^ returns this
       
   667 
       
   668 HeapWord* CardTableExtension::lowest_prev_committed_start(int ind) const {
       
   669   assert(_cur_covered_regions >= 0, "Expecting at least on region");
       
   670   HeapWord* min_start = _committed[ind].start();
       
   671   for (int j = 0; j < ind; j++) {
       
   672     HeapWord* this_start = _committed[j].start();
       
   673     if ((this_start < min_start) &&
       
   674         !(_committed[j].intersection(_committed[ind])).is_empty()) {
       
   675        min_start = this_start;
       
   676     }
       
   677   }
       
   678   return min_start;
       
   679 }
       
   680 
       
   681 bool CardTableExtension::is_in_young(oop obj) const {
       
   682   return ParallelScavengeHeap::heap()->is_in_young(obj);
       
   683 }