src/hotspot/share/gc/cms/parNewGeneration.cpp
branchunixdomainchannels
changeset 59079 7893d1012580
parent 59078 4e648a2d8480
parent 59075 355f4f42dda5
child 59082 5e250ee9259e
equal deleted inserted replaced
59078:4e648a2d8480 59079:7893d1012580
     1 /*
       
     2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "classfile/stringTable.hpp"
       
    27 #include "gc/cms/cmsHeap.inline.hpp"
       
    28 #include "gc/cms/compactibleFreeListSpace.hpp"
       
    29 #include "gc/cms/concurrentMarkSweepGeneration.hpp"
       
    30 #include "gc/cms/parNewGeneration.inline.hpp"
       
    31 #include "gc/cms/parOopClosures.inline.hpp"
       
    32 #include "gc/serial/defNewGeneration.inline.hpp"
       
    33 #include "gc/shared/adaptiveSizePolicy.hpp"
       
    34 #include "gc/shared/ageTable.inline.hpp"
       
    35 #include "gc/shared/copyFailedInfo.hpp"
       
    36 #include "gc/shared/gcHeapSummary.hpp"
       
    37 #include "gc/shared/gcTimer.hpp"
       
    38 #include "gc/shared/gcTrace.hpp"
       
    39 #include "gc/shared/gcTraceTime.inline.hpp"
       
    40 #include "gc/shared/genOopClosures.inline.hpp"
       
    41 #include "gc/shared/generation.hpp"
       
    42 #include "gc/shared/plab.inline.hpp"
       
    43 #include "gc/shared/preservedMarks.inline.hpp"
       
    44 #include "gc/shared/referencePolicy.hpp"
       
    45 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
       
    46 #include "gc/shared/space.hpp"
       
    47 #include "gc/shared/spaceDecorator.inline.hpp"
       
    48 #include "gc/shared/strongRootsScope.hpp"
       
    49 #include "gc/shared/taskqueue.inline.hpp"
       
    50 #include "gc/shared/weakProcessor.hpp"
       
    51 #include "gc/shared/workgroup.hpp"
       
    52 #include "gc/shared/workerPolicy.hpp"
       
    53 #include "logging/log.hpp"
       
    54 #include "logging/logStream.hpp"
       
    55 #include "memory/iterator.inline.hpp"
       
    56 #include "memory/resourceArea.hpp"
       
    57 #include "oops/access.inline.hpp"
       
    58 #include "oops/compressedOops.inline.hpp"
       
    59 #include "oops/objArrayOop.hpp"
       
    60 #include "oops/oop.inline.hpp"
       
    61 #include "runtime/atomic.hpp"
       
    62 #include "runtime/handles.inline.hpp"
       
    63 #include "runtime/java.hpp"
       
    64 #include "runtime/thread.inline.hpp"
       
    65 #include "utilities/copy.hpp"
       
    66 #include "utilities/globalDefinitions.hpp"
       
    67 #include "utilities/stack.inline.hpp"
       
    68 
       
    69 ParScanThreadState::ParScanThreadState(Space* to_space_,
       
    70                                        ParNewGeneration* young_gen_,
       
    71                                        Generation* old_gen_,
       
    72                                        int thread_num_,
       
    73                                        ObjToScanQueueSet* work_queue_set_,
       
    74                                        Stack<oop, mtGC>* overflow_stacks_,
       
    75                                        PreservedMarks* preserved_marks_,
       
    76                                        size_t desired_plab_sz_,
       
    77                                        TaskTerminator& term_) :
       
    78   _work_queue(work_queue_set_->queue(thread_num_)),
       
    79   _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
       
    80   _preserved_marks(preserved_marks_),
       
    81   _to_space_alloc_buffer(desired_plab_sz_),
       
    82   _to_space_closure(young_gen_, this),
       
    83   _old_gen_closure(young_gen_, this),
       
    84   _to_space_root_closure(young_gen_, this),
       
    85   _older_gen_closure(young_gen_, this),
       
    86   _old_gen_root_closure(young_gen_, this),
       
    87   _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
       
    88                       &_to_space_root_closure, young_gen_, &_old_gen_root_closure,
       
    89                       work_queue_set_, term_.terminator()),
       
    90   _is_alive_closure(young_gen_),
       
    91   _scan_weak_ref_closure(young_gen_, this),
       
    92   _keep_alive_closure(&_scan_weak_ref_closure),
       
    93   _to_space(to_space_),
       
    94   _young_gen(young_gen_),
       
    95   _old_gen(old_gen_),
       
    96   _young_old_boundary(NULL),
       
    97   _thread_num(thread_num_),
       
    98   _ageTable(false), // false ==> not the global age table, no perf data.
       
    99   _to_space_full(false),
       
   100   _strong_roots_time(0.0),
       
   101   _term_time(0.0)
       
   102 {
       
   103   #if TASKQUEUE_STATS
       
   104   _term_attempts = 0;
       
   105   _overflow_refills = 0;
       
   106   _overflow_refill_objs = 0;
       
   107   #endif // TASKQUEUE_STATS
       
   108 
       
   109   _survivor_chunk_array = (ChunkArray*) old_gen()->get_data_recorder(thread_num());
       
   110   _start = os::elapsedTime();
       
   111   _old_gen_closure.set_generation(old_gen_);
       
   112   _old_gen_root_closure.set_generation(old_gen_);
       
   113 }
       
   114 
       
   115 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
       
   116                                               size_t plab_word_size) {
       
   117   ChunkArray* sca = survivor_chunk_array();
       
   118   if (sca != NULL) {
       
   119     // A non-null SCA implies that we want the PLAB data recorded.
       
   120     sca->record_sample(plab_start, plab_word_size);
       
   121   }
       
   122 }
       
   123 
       
   124 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
       
   125   return new_obj->is_objArray() &&
       
   126          arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
       
   127          new_obj != old_obj;
       
   128 }
       
   129 
       
   130 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
       
   131   assert(old->is_objArray(), "must be obj array");
       
   132   assert(old->is_forwarded(), "must be forwarded");
       
   133   assert(CMSHeap::heap()->is_in_reserved(old), "must be in heap.");
       
   134   assert(!old_gen()->is_in(old), "must be in young generation.");
       
   135 
       
   136   objArrayOop obj = objArrayOop(old->forwardee());
       
   137   // Process ParGCArrayScanChunk elements now
       
   138   // and push the remainder back onto queue
       
   139   int start     = arrayOop(old)->length();
       
   140   int end       = obj->length();
       
   141   int remainder = end - start;
       
   142   assert(start <= end, "just checking");
       
   143   if (remainder > 2 * ParGCArrayScanChunk) {
       
   144     // Test above combines last partial chunk with a full chunk
       
   145     end = start + ParGCArrayScanChunk;
       
   146     arrayOop(old)->set_length(end);
       
   147     // Push remainder.
       
   148     bool ok = work_queue()->push(old);
       
   149     assert(ok, "just popped, push must be okay");
       
   150   } else {
       
   151     // Restore length so that it can be used if there
       
   152     // is a promotion failure and forwarding pointers
       
   153     // must be removed.
       
   154     arrayOop(old)->set_length(end);
       
   155   }
       
   156 
       
   157   // process our set of indices (include header in first chunk)
       
   158   // should make sure end is even (aligned to HeapWord in case of compressed oops)
       
   159   if ((HeapWord *)obj < young_old_boundary()) {
       
   160     // object is in to_space
       
   161     obj->oop_iterate_range(&_to_space_closure, start, end);
       
   162   } else {
       
   163     // object is in old generation
       
   164     obj->oop_iterate_range(&_old_gen_closure, start, end);
       
   165   }
       
   166 }
       
   167 
       
   168 void ParScanThreadState::trim_queues(int max_size) {
       
   169   ObjToScanQueue* queue = work_queue();
       
   170   do {
       
   171     while (queue->size() > (juint)max_size) {
       
   172       oop obj_to_scan;
       
   173       if (queue->pop_local(obj_to_scan)) {
       
   174         if ((HeapWord *)obj_to_scan < young_old_boundary()) {
       
   175           if (obj_to_scan->is_objArray() &&
       
   176               obj_to_scan->is_forwarded() &&
       
   177               obj_to_scan->forwardee() != obj_to_scan) {
       
   178             scan_partial_array_and_push_remainder(obj_to_scan);
       
   179           } else {
       
   180             // object is in to_space
       
   181             obj_to_scan->oop_iterate(&_to_space_closure);
       
   182           }
       
   183         } else {
       
   184           // object is in old generation
       
   185           obj_to_scan->oop_iterate(&_old_gen_closure);
       
   186         }
       
   187       }
       
   188     }
       
   189     // For the  case of compressed oops, we have a private, non-shared
       
   190     // overflow stack, so we eagerly drain it so as to more evenly
       
   191     // distribute load early. Note: this may be good to do in
       
   192     // general rather than delay for the final stealing phase.
       
   193     // If applicable, we'll transfer a set of objects over to our
       
   194     // work queue, allowing them to be stolen and draining our
       
   195     // private overflow stack.
       
   196   } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
       
   197 }
       
   198 
       
   199 bool ParScanThreadState::take_from_overflow_stack() {
       
   200   assert(ParGCUseLocalOverflow, "Else should not call");
       
   201   assert(young_gen()->overflow_list() == NULL, "Error");
       
   202   ObjToScanQueue* queue = work_queue();
       
   203   Stack<oop, mtGC>* const of_stack = overflow_stack();
       
   204   const size_t num_overflow_elems = of_stack->size();
       
   205   const size_t space_available = queue->max_elems() - queue->size();
       
   206   const size_t num_take_elems = MIN3(space_available / 4,
       
   207                                      (size_t)ParGCDesiredObjsFromOverflowList,
       
   208                                      num_overflow_elems);
       
   209   // Transfer the most recent num_take_elems from the overflow
       
   210   // stack to our work queue.
       
   211   for (size_t i = 0; i != num_take_elems; i++) {
       
   212     oop cur = of_stack->pop();
       
   213     oop obj_to_push = cur->forwardee();
       
   214     assert(CMSHeap::heap()->is_in_reserved(cur), "Should be in heap");
       
   215     assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
       
   216     assert(CMSHeap::heap()->is_in_reserved(obj_to_push), "Should be in heap");
       
   217     if (should_be_partially_scanned(obj_to_push, cur)) {
       
   218       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
       
   219       obj_to_push = cur;
       
   220     }
       
   221     bool ok = queue->push(obj_to_push);
       
   222     assert(ok, "Should have succeeded");
       
   223   }
       
   224   assert(young_gen()->overflow_list() == NULL, "Error");
       
   225   return num_take_elems > 0;  // was something transferred?
       
   226 }
       
   227 
       
   228 void ParScanThreadState::push_on_overflow_stack(oop p) {
       
   229   assert(ParGCUseLocalOverflow, "Else should not call");
       
   230   overflow_stack()->push(p);
       
   231   assert(young_gen()->overflow_list() == NULL, "Error");
       
   232 }
       
   233 
       
   234 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
       
   235   // If the object is small enough, try to reallocate the buffer.
       
   236   HeapWord* obj = NULL;
       
   237   if (!_to_space_full) {
       
   238     PLAB* const plab = to_space_alloc_buffer();
       
   239     Space* const sp  = to_space();
       
   240     if (word_sz * 100 < ParallelGCBufferWastePct * plab->word_sz()) {
       
   241       // Is small enough; abandon this buffer and start a new one.
       
   242       plab->retire();
       
   243       // The minimum size has to be twice SurvivorAlignmentInBytes to
       
   244       // allow for padding used in the alignment of 1 word.  A padding
       
   245       // of 1 is too small for a filler word so the padding size will
       
   246       // be increased by SurvivorAlignmentInBytes.
       
   247       size_t min_usable_size = 2 * static_cast<size_t>(SurvivorAlignmentInBytes >> LogHeapWordSize);
       
   248       size_t buf_size = MAX2(plab->word_sz(), min_usable_size);
       
   249       HeapWord* buf_space = sp->par_allocate(buf_size);
       
   250       if (buf_space == NULL) {
       
   251         const size_t min_bytes = MAX2(PLAB::min_size(), min_usable_size) << LogHeapWordSize;
       
   252         size_t free_bytes = sp->free();
       
   253         while(buf_space == NULL && free_bytes >= min_bytes) {
       
   254           buf_size = free_bytes >> LogHeapWordSize;
       
   255           assert(buf_size == (size_t)align_object_size(buf_size), "Invariant");
       
   256           buf_space  = sp->par_allocate(buf_size);
       
   257           free_bytes = sp->free();
       
   258         }
       
   259       }
       
   260       if (buf_space != NULL) {
       
   261         plab->set_buf(buf_space, buf_size);
       
   262         record_survivor_plab(buf_space, buf_size);
       
   263         obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
       
   264         // Note that we cannot compare buf_size < word_sz below
       
   265         // because of AlignmentReserve (see PLAB::allocate()).
       
   266         assert(obj != NULL || plab->words_remaining() < word_sz,
       
   267                "Else should have been able to allocate requested object size "
       
   268                SIZE_FORMAT ", PLAB size " SIZE_FORMAT ", SurvivorAlignmentInBytes "
       
   269                SIZE_FORMAT ", words_remaining " SIZE_FORMAT,
       
   270                word_sz, buf_size, SurvivorAlignmentInBytes, plab->words_remaining());
       
   271         // It's conceivable that we may be able to use the
       
   272         // buffer we just grabbed for subsequent small requests
       
   273         // even if not for this one.
       
   274       } else {
       
   275         // We're used up.
       
   276         _to_space_full = true;
       
   277       }
       
   278     } else {
       
   279       // Too large; allocate the object individually.
       
   280       obj = sp->par_allocate(word_sz);
       
   281     }
       
   282   }
       
   283   return obj;
       
   284 }
       
   285 
       
   286 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj, size_t word_sz) {
       
   287   to_space_alloc_buffer()->undo_allocation(obj, word_sz);
       
   288 }
       
   289 
       
   290 void ParScanThreadState::print_promotion_failure_size() {
       
   291   if (_promotion_failed_info.has_failed()) {
       
   292     log_trace(gc, promotion)(" (%d: promotion failure size = " SIZE_FORMAT ") ",
       
   293                              _thread_num, _promotion_failed_info.first_size());
       
   294   }
       
   295 }
       
   296 
       
   297 class ParScanThreadStateSet: StackObj {
       
   298 public:
       
   299   // Initializes states for the specified number of threads;
       
   300   ParScanThreadStateSet(int                     num_threads,
       
   301                         Space&                  to_space,
       
   302                         ParNewGeneration&       young_gen,
       
   303                         Generation&             old_gen,
       
   304                         ObjToScanQueueSet&      queue_set,
       
   305                         Stack<oop, mtGC>*       overflow_stacks_,
       
   306                         PreservedMarksSet&      preserved_marks_set,
       
   307                         size_t                  desired_plab_sz,
       
   308                         TaskTerminator& term);
       
   309 
       
   310   ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
       
   311 
       
   312   inline ParScanThreadState& thread_state(int i);
       
   313 
       
   314   void trace_promotion_failed(const YoungGCTracer* gc_tracer);
       
   315   void reset(uint active_workers, bool promotion_failed);
       
   316   void flush();
       
   317 
       
   318   #if TASKQUEUE_STATS
       
   319   static void
       
   320     print_termination_stats_hdr(outputStream* const st);
       
   321   void print_termination_stats();
       
   322   static void
       
   323     print_taskqueue_stats_hdr(outputStream* const st);
       
   324   void print_taskqueue_stats();
       
   325   void reset_stats();
       
   326   #endif // TASKQUEUE_STATS
       
   327 
       
   328 private:
       
   329   TaskTerminator&         _term;
       
   330   ParNewGeneration&       _young_gen;
       
   331   Generation&             _old_gen;
       
   332   ParScanThreadState*     _per_thread_states;
       
   333   const int               _num_threads;
       
   334  public:
       
   335   bool is_valid(int id) const { return id < _num_threads; }
       
   336   ParallelTaskTerminator* terminator() { return _term.terminator(); }
       
   337 };
       
   338 
       
   339 ParScanThreadStateSet::ParScanThreadStateSet(int num_threads,
       
   340                                              Space& to_space,
       
   341                                              ParNewGeneration& young_gen,
       
   342                                              Generation& old_gen,
       
   343                                              ObjToScanQueueSet& queue_set,
       
   344                                              Stack<oop, mtGC>* overflow_stacks,
       
   345                                              PreservedMarksSet& preserved_marks_set,
       
   346                                              size_t desired_plab_sz,
       
   347                                              TaskTerminator& term)
       
   348   : _term(term),
       
   349     _young_gen(young_gen),
       
   350     _old_gen(old_gen),
       
   351     _per_thread_states(NEW_RESOURCE_ARRAY(ParScanThreadState, num_threads)),
       
   352     _num_threads(num_threads)
       
   353 {
       
   354   assert(num_threads > 0, "sanity check!");
       
   355   assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
       
   356          "overflow_stack allocation mismatch");
       
   357   // Initialize states.
       
   358   for (int i = 0; i < num_threads; ++i) {
       
   359     new(_per_thread_states + i)
       
   360       ParScanThreadState(&to_space, &young_gen, &old_gen, i, &queue_set,
       
   361                          overflow_stacks, preserved_marks_set.get(i),
       
   362                          desired_plab_sz, term);
       
   363   }
       
   364 }
       
   365 
       
   366 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i) {
       
   367   assert(i >= 0 && i < _num_threads, "sanity check!");
       
   368   return _per_thread_states[i];
       
   369 }
       
   370 
       
   371 void ParScanThreadStateSet::trace_promotion_failed(const YoungGCTracer* gc_tracer) {
       
   372   for (int i = 0; i < _num_threads; ++i) {
       
   373     if (thread_state(i).promotion_failed()) {
       
   374       gc_tracer->report_promotion_failed(thread_state(i).promotion_failed_info());
       
   375       thread_state(i).promotion_failed_info().reset();
       
   376     }
       
   377   }
       
   378 }
       
   379 
       
   380 void ParScanThreadStateSet::reset(uint active_threads, bool promotion_failed) {
       
   381   _term.terminator()->reset_for_reuse(active_threads);
       
   382   if (promotion_failed) {
       
   383     for (int i = 0; i < _num_threads; ++i) {
       
   384       thread_state(i).print_promotion_failure_size();
       
   385     }
       
   386   }
       
   387 }
       
   388 
       
   389 #if TASKQUEUE_STATS
       
   390 void ParScanThreadState::reset_stats() {
       
   391   taskqueue_stats().reset();
       
   392   _term_attempts = 0;
       
   393   _overflow_refills = 0;
       
   394   _overflow_refill_objs = 0;
       
   395 }
       
   396 
       
   397 void ParScanThreadStateSet::reset_stats() {
       
   398   for (int i = 0; i < _num_threads; ++i) {
       
   399     thread_state(i).reset_stats();
       
   400   }
       
   401 }
       
   402 
       
   403 void ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st) {
       
   404   st->print_raw_cr("GC Termination Stats");
       
   405   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------");
       
   406   st->print_raw_cr("thr     ms        ms       %       ms       %   attempts");
       
   407   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------");
       
   408 }
       
   409 
       
   410 void ParScanThreadStateSet::print_termination_stats() {
       
   411   Log(gc, task, stats) log;
       
   412   if (!log.is_debug()) {
       
   413     return;
       
   414   }
       
   415 
       
   416   ResourceMark rm;
       
   417   LogStream ls(log.debug());
       
   418   outputStream* st = &ls;
       
   419 
       
   420   print_termination_stats_hdr(st);
       
   421 
       
   422   for (int i = 0; i < _num_threads; ++i) {
       
   423     const ParScanThreadState & pss = thread_state(i);
       
   424     const double elapsed_ms = pss.elapsed_time() * 1000.0;
       
   425     const double s_roots_ms = pss.strong_roots_time() * 1000.0;
       
   426     const double term_ms = pss.term_time() * 1000.0;
       
   427     st->print_cr("%3d %9.2f %9.2f %6.2f %9.2f %6.2f " SIZE_FORMAT_W(8),
       
   428                  i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
       
   429                  term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
       
   430   }
       
   431 }
       
   432 
       
   433 // Print stats related to work queue activity.
       
   434 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st) {
       
   435   st->print_raw_cr("GC Task Stats");
       
   436   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
       
   437   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
       
   438 }
       
   439 
       
   440 void ParScanThreadStateSet::print_taskqueue_stats() {
       
   441   if (!log_is_enabled(Trace, gc, task, stats)) {
       
   442     return;
       
   443   }
       
   444   Log(gc, task, stats) log;
       
   445   ResourceMark rm;
       
   446   LogStream ls(log.trace());
       
   447   outputStream* st = &ls;
       
   448   print_taskqueue_stats_hdr(st);
       
   449 
       
   450   TaskQueueStats totals;
       
   451   for (int i = 0; i < _num_threads; ++i) {
       
   452     const ParScanThreadState & pss = thread_state(i);
       
   453     const TaskQueueStats & stats = pss.taskqueue_stats();
       
   454     st->print("%3d ", i); stats.print(st); st->cr();
       
   455     totals += stats;
       
   456 
       
   457     if (pss.overflow_refills() > 0) {
       
   458       st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
       
   459                    SIZE_FORMAT_W(10) " overflow objects",
       
   460                    pss.overflow_refills(), pss.overflow_refill_objs());
       
   461     }
       
   462   }
       
   463   st->print("tot "); totals.print(st); st->cr();
       
   464 
       
   465   DEBUG_ONLY(totals.verify());
       
   466 }
       
   467 #endif // TASKQUEUE_STATS
       
   468 
       
   469 void ParScanThreadStateSet::flush() {
       
   470   // Work in this loop should be kept as lightweight as
       
   471   // possible since this might otherwise become a bottleneck
       
   472   // to scaling. Should we add heavy-weight work into this
       
   473   // loop, consider parallelizing the loop into the worker threads.
       
   474   for (int i = 0; i < _num_threads; ++i) {
       
   475     ParScanThreadState& par_scan_state = thread_state(i);
       
   476 
       
   477     // Flush stats related to To-space PLAB activity and
       
   478     // retire the last buffer.
       
   479     par_scan_state.to_space_alloc_buffer()->flush_and_retire_stats(_young_gen.plab_stats());
       
   480 
       
   481     // Every thread has its own age table.  We need to merge
       
   482     // them all into one.
       
   483     AgeTable *local_table = par_scan_state.age_table();
       
   484     _young_gen.age_table()->merge(local_table);
       
   485 
       
   486     // Inform old gen that we're done.
       
   487     _old_gen.par_promote_alloc_done(i);
       
   488   }
       
   489 
       
   490   if (UseConcMarkSweepGC) {
       
   491     // We need to call this even when ResizeOldPLAB is disabled
       
   492     // so as to avoid breaking some asserts. While we may be able
       
   493     // to avoid this by reorganizing the code a bit, I am loathe
       
   494     // to do that unless we find cases where ergo leads to bad
       
   495     // performance.
       
   496     CompactibleFreeListSpaceLAB::compute_desired_plab_size();
       
   497   }
       
   498 }
       
   499 
       
   500 ParScanClosure::ParScanClosure(ParNewGeneration* g,
       
   501                                ParScanThreadState* par_scan_state) :
       
   502   OopsInClassLoaderDataOrGenClosure(g), _par_scan_state(par_scan_state), _g(g) {
       
   503   _boundary = _g->reserved().end();
       
   504 }
       
   505 
       
   506 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
       
   507 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
       
   508 
       
   509 void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
       
   510 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
       
   511 
       
   512 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
       
   513                                              ParScanThreadState* par_scan_state)
       
   514   : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
       
   515 {}
       
   516 
       
   517 #ifdef WIN32
       
   518 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
       
   519 #endif
       
   520 
       
   521 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
       
   522     ParScanThreadState* par_scan_state_,
       
   523     ParScanWithoutBarrierClosure* to_space_closure_,
       
   524     ParScanWithBarrierClosure* old_gen_closure_,
       
   525     ParRootScanWithoutBarrierClosure* to_space_root_closure_,
       
   526     ParNewGeneration* par_gen_,
       
   527     ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
       
   528     ObjToScanQueueSet* task_queues_,
       
   529     ParallelTaskTerminator* terminator_) :
       
   530 
       
   531     _par_scan_state(par_scan_state_),
       
   532     _to_space_closure(to_space_closure_),
       
   533     _to_space_root_closure(to_space_root_closure_),
       
   534     _old_gen_closure(old_gen_closure_),
       
   535     _old_gen_root_closure(old_gen_root_closure_),
       
   536     _par_gen(par_gen_),
       
   537     _task_queues(task_queues_),
       
   538     _terminator(terminator_)
       
   539 {}
       
   540 
       
   541 void ParEvacuateFollowersClosure::do_void() {
       
   542   ObjToScanQueue* work_q = par_scan_state()->work_queue();
       
   543 
       
   544   while (true) {
       
   545     // Scan to-space and old-gen objs until we run out of both.
       
   546     oop obj_to_scan;
       
   547     par_scan_state()->trim_queues(0);
       
   548 
       
   549     // We have no local work, attempt to steal from other threads.
       
   550 
       
   551     // Attempt to steal work from promoted.
       
   552     if (task_queues()->steal(par_scan_state()->thread_num(),
       
   553                              obj_to_scan)) {
       
   554       bool res = work_q->push(obj_to_scan);
       
   555       assert(res, "Empty queue should have room for a push.");
       
   556 
       
   557       // If successful, goto Start.
       
   558       continue;
       
   559 
       
   560       // Try global overflow list.
       
   561     } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
       
   562       continue;
       
   563     }
       
   564 
       
   565     // Otherwise, offer termination.
       
   566     par_scan_state()->start_term_time();
       
   567     if (terminator()->offer_termination()) break;
       
   568     par_scan_state()->end_term_time();
       
   569   }
       
   570   assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
       
   571          "Broken overflow list?");
       
   572   // Finish the last termination pause.
       
   573   par_scan_state()->end_term_time();
       
   574 }
       
   575 
       
   576 ParNewGenTask::ParNewGenTask(ParNewGeneration* young_gen,
       
   577                              Generation* old_gen,
       
   578                              HeapWord* young_old_boundary,
       
   579                              ParScanThreadStateSet* state_set,
       
   580                              StrongRootsScope* strong_roots_scope) :
       
   581     AbstractGangTask("ParNewGeneration collection"),
       
   582     _young_gen(young_gen), _old_gen(old_gen),
       
   583     _young_old_boundary(young_old_boundary),
       
   584     _state_set(state_set),
       
   585     _strong_roots_scope(strong_roots_scope)
       
   586 {}
       
   587 
       
   588 void ParNewGenTask::work(uint worker_id) {
       
   589   CMSHeap* heap = CMSHeap::heap();
       
   590   // Since this is being done in a separate thread, need new resource
       
   591   // and handle marks.
       
   592   ResourceMark rm;
       
   593   HandleMark hm;
       
   594 
       
   595   ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
       
   596   assert(_state_set->is_valid(worker_id), "Should not have been called");
       
   597 
       
   598   par_scan_state.set_young_old_boundary(_young_old_boundary);
       
   599 
       
   600   CLDScanClosure cld_scan_closure(&par_scan_state.to_space_root_closure(),
       
   601                                   heap->rem_set()->cld_rem_set()->accumulate_modified_oops());
       
   602 
       
   603   par_scan_state.start_strong_roots();
       
   604   heap->young_process_roots(_strong_roots_scope,
       
   605                            &par_scan_state.to_space_root_closure(),
       
   606                            &par_scan_state.older_gen_closure(),
       
   607                            &cld_scan_closure);
       
   608 
       
   609   par_scan_state.end_strong_roots();
       
   610 
       
   611   // "evacuate followers".
       
   612   par_scan_state.evacuate_followers_closure().do_void();
       
   613 
       
   614   // This will collapse this worker's promoted object list that's
       
   615   // created during the main ParNew parallel phase of ParNew. This has
       
   616   // to be called after all workers have finished promoting objects
       
   617   // and scanning promoted objects. It should be safe calling it from
       
   618   // here, given that we can only reach here after all thread have
       
   619   // offered termination, i.e., after there is no more work to be
       
   620   // done. It will also disable promotion tracking for the rest of
       
   621   // this GC as it's not necessary to be on during reference processing.
       
   622   _old_gen->par_oop_since_save_marks_iterate_done((int) worker_id);
       
   623 }
       
   624 
       
   625 ParNewGeneration::ParNewGeneration(ReservedSpace rs,
       
   626                                    size_t initial_byte_size,
       
   627                                    size_t min_byte_size,
       
   628                                    size_t max_byte_size)
       
   629   : DefNewGeneration(rs, initial_byte_size, min_byte_size, max_byte_size, "CMS young collection pauses"),
       
   630   _plab_stats("Young", YoungPLABSize, PLABWeight),
       
   631   _overflow_list(NULL),
       
   632   _is_alive_closure(this)
       
   633 {
       
   634   NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
       
   635   NOT_PRODUCT(_num_par_pushes = 0;)
       
   636   _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
       
   637   guarantee(_task_queues != NULL, "task_queues allocation failure.");
       
   638 
       
   639   for (uint i = 0; i < ParallelGCThreads; i++) {
       
   640     ObjToScanQueue *q = new ObjToScanQueue();
       
   641     guarantee(q != NULL, "work_queue Allocation failure.");
       
   642     _task_queues->register_queue(i, q);
       
   643   }
       
   644 
       
   645   for (uint i = 0; i < ParallelGCThreads; i++) {
       
   646     _task_queues->queue(i)->initialize();
       
   647   }
       
   648 
       
   649   _overflow_stacks = NULL;
       
   650   if (ParGCUseLocalOverflow) {
       
   651     // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal with ','
       
   652     typedef Stack<oop, mtGC> GCOopStack;
       
   653 
       
   654     _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
       
   655     for (size_t i = 0; i < ParallelGCThreads; ++i) {
       
   656       new (_overflow_stacks + i) Stack<oop, mtGC>();
       
   657     }
       
   658   }
       
   659 
       
   660   if (UsePerfData) {
       
   661     EXCEPTION_MARK;
       
   662     ResourceMark rm;
       
   663 
       
   664     const char* cname =
       
   665          PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
       
   666     PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
       
   667                                      ParallelGCThreads, CHECK);
       
   668   }
       
   669 }
       
   670 
       
   671 // ParNewGeneration::
       
   672 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
       
   673   DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
       
   674 
       
   675 template <class T>
       
   676 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
       
   677 #ifdef ASSERT
       
   678   {
       
   679     oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
       
   680     // We never expect to see a null reference being processed
       
   681     // as a weak reference.
       
   682     assert(oopDesc::is_oop(obj), "expected an oop while scanning weak refs");
       
   683   }
       
   684 #endif // ASSERT
       
   685 
       
   686   Devirtualizer::do_oop_no_verify(_par_cl, p);
       
   687 
       
   688   if (CMSHeap::heap()->is_in_reserved(p)) {
       
   689     oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);;
       
   690     _rs->write_ref_field_gc_par(p, obj);
       
   691   }
       
   692 }
       
   693 
       
   694 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
       
   695 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
       
   696 
       
   697 // ParNewGeneration::
       
   698 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
       
   699   DefNewGeneration::KeepAliveClosure(cl) {}
       
   700 
       
   701 template <class T>
       
   702 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
       
   703 #ifdef ASSERT
       
   704   {
       
   705     oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
       
   706     // We never expect to see a null reference being processed
       
   707     // as a weak reference.
       
   708     assert(oopDesc::is_oop(obj), "expected an oop while scanning weak refs");
       
   709   }
       
   710 #endif // ASSERT
       
   711 
       
   712   Devirtualizer::do_oop_no_verify(_cl, p);
       
   713 
       
   714   if (CMSHeap::heap()->is_in_reserved(p)) {
       
   715     oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
       
   716     _rs->write_ref_field_gc_par(p, obj);
       
   717   }
       
   718 }
       
   719 
       
   720 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
       
   721 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
       
   722 
       
   723 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
       
   724   T heap_oop = RawAccess<>::oop_load(p);
       
   725   if (!CompressedOops::is_null(heap_oop)) {
       
   726     oop obj = CompressedOops::decode_not_null(heap_oop);
       
   727     if ((HeapWord*)obj < _boundary) {
       
   728       assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
       
   729       oop new_obj = obj->is_forwarded()
       
   730                       ? obj->forwardee()
       
   731                       : _g->DefNewGeneration::copy_to_survivor_space(obj);
       
   732       RawAccess<IS_NOT_NULL>::oop_store(p, new_obj);
       
   733     }
       
   734     if (_gc_barrier) {
       
   735       // If p points to a younger generation, mark the card.
       
   736       if ((HeapWord*)obj < _gen_boundary) {
       
   737         _rs->write_ref_field_gc_par(p, obj);
       
   738       }
       
   739     }
       
   740   }
       
   741 }
       
   742 
       
   743 void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
       
   744 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
       
   745 
       
   746 class ParNewRefProcTaskProxy: public AbstractGangTask {
       
   747   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
       
   748 public:
       
   749   ParNewRefProcTaskProxy(ProcessTask& task,
       
   750                          ParNewGeneration& young_gen,
       
   751                          Generation& old_gen,
       
   752                          HeapWord* young_old_boundary,
       
   753                          ParScanThreadStateSet& state_set);
       
   754 
       
   755 private:
       
   756   virtual void work(uint worker_id);
       
   757 private:
       
   758   ParNewGeneration&      _young_gen;
       
   759   ProcessTask&           _task;
       
   760   Generation&            _old_gen;
       
   761   HeapWord*              _young_old_boundary;
       
   762   ParScanThreadStateSet& _state_set;
       
   763 };
       
   764 
       
   765 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(ProcessTask& task,
       
   766                                                ParNewGeneration& young_gen,
       
   767                                                Generation& old_gen,
       
   768                                                HeapWord* young_old_boundary,
       
   769                                                ParScanThreadStateSet& state_set)
       
   770   : AbstractGangTask("ParNewGeneration parallel reference processing"),
       
   771     _young_gen(young_gen),
       
   772     _task(task),
       
   773     _old_gen(old_gen),
       
   774     _young_old_boundary(young_old_boundary),
       
   775     _state_set(state_set)
       
   776 { }
       
   777 
       
   778 void ParNewRefProcTaskProxy::work(uint worker_id) {
       
   779   ResourceMark rm;
       
   780   HandleMark hm;
       
   781   ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
       
   782   par_scan_state.set_young_old_boundary(_young_old_boundary);
       
   783   _task.work(worker_id, par_scan_state.is_alive_closure(),
       
   784              par_scan_state.keep_alive_closure(),
       
   785              par_scan_state.evacuate_followers_closure());
       
   786 }
       
   787 
       
   788 void ParNewRefProcTaskExecutor::execute(ProcessTask& task, uint ergo_workers) {
       
   789   CMSHeap* gch = CMSHeap::heap();
       
   790   WorkGang* workers = gch->workers();
       
   791   assert(workers != NULL, "Need parallel worker threads.");
       
   792   assert(workers->active_workers() == ergo_workers,
       
   793          "Ergonomically chosen workers (%u) must be equal to active workers (%u)",
       
   794          ergo_workers, workers->active_workers());
       
   795   _state_set.reset(workers->active_workers(), _young_gen.promotion_failed());
       
   796   ParNewRefProcTaskProxy rp_task(task, _young_gen, _old_gen,
       
   797                                  _young_gen.reserved().end(), _state_set);
       
   798   workers->run_task(&rp_task, workers->active_workers());
       
   799   _state_set.reset(0 /* bad value in debug if not reset */,
       
   800                    _young_gen.promotion_failed());
       
   801 }
       
   802 
       
   803 void ParNewRefProcTaskExecutor::set_single_threaded_mode() {
       
   804   _state_set.flush();
       
   805   CMSHeap* heap = CMSHeap::heap();
       
   806   heap->save_marks();
       
   807 }
       
   808 
       
   809 ScanClosureWithParBarrier::
       
   810 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
       
   811   OopsInClassLoaderDataOrGenClosure(g), _g(g), _boundary(g->reserved().end()), _gc_barrier(gc_barrier)
       
   812 { }
       
   813 
       
   814 template <typename OopClosureType1, typename OopClosureType2>
       
   815 EvacuateFollowersClosureGeneral<OopClosureType1, OopClosureType2>::
       
   816 EvacuateFollowersClosureGeneral(CMSHeap* heap,
       
   817                                 OopClosureType1* cur,
       
   818                                 OopClosureType2* older) :
       
   819   _heap(heap),
       
   820   _scan_cur_or_nonheap(cur), _scan_older(older)
       
   821 { }
       
   822 
       
   823 template <typename OopClosureType1, typename OopClosureType2>
       
   824 void EvacuateFollowersClosureGeneral<OopClosureType1, OopClosureType2>::do_void() {
       
   825   do {
       
   826     _heap->oop_since_save_marks_iterate(_scan_cur_or_nonheap,
       
   827                                         _scan_older);
       
   828   } while (!_heap->no_allocs_since_save_marks());
       
   829 }
       
   830 
       
   831 // A Generation that does parallel young-gen collection.
       
   832 
       
   833 void ParNewGeneration::handle_promotion_failed(CMSHeap* gch, ParScanThreadStateSet& thread_state_set) {
       
   834   assert(_promo_failure_scan_stack.is_empty(), "post condition");
       
   835   _promo_failure_scan_stack.clear(true); // Clear cached segments.
       
   836 
       
   837   remove_forwarding_pointers();
       
   838   log_info(gc, promotion)("Promotion failed");
       
   839   // All the spaces are in play for mark-sweep.
       
   840   swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
       
   841   from()->set_next_compaction_space(to());
       
   842   gch->set_incremental_collection_failed();
       
   843   // Inform the next generation that a promotion failure occurred.
       
   844   _old_gen->promotion_failure_occurred();
       
   845 
       
   846   // Trace promotion failure in the parallel GC threads
       
   847   thread_state_set.trace_promotion_failed(gc_tracer());
       
   848   // Single threaded code may have reported promotion failure to the global state
       
   849   if (_promotion_failed_info.has_failed()) {
       
   850     _gc_tracer.report_promotion_failed(_promotion_failed_info);
       
   851   }
       
   852   // Reset the PromotionFailureALot counters.
       
   853   NOT_PRODUCT(gch->reset_promotion_should_fail();)
       
   854 }
       
   855 
       
   856 void ParNewGeneration::collect(bool   full,
       
   857                                bool   clear_all_soft_refs,
       
   858                                size_t size,
       
   859                                bool   is_tlab) {
       
   860   assert(full || size > 0, "otherwise we don't want to collect");
       
   861 
       
   862   CMSHeap* gch = CMSHeap::heap();
       
   863 
       
   864   _gc_timer->register_gc_start();
       
   865 
       
   866   AdaptiveSizePolicy* size_policy = gch->size_policy();
       
   867   WorkGang* workers = gch->workers();
       
   868   assert(workers != NULL, "Need workgang for parallel work");
       
   869   uint active_workers =
       
   870       WorkerPolicy::calc_active_workers(workers->total_workers(),
       
   871                                         workers->active_workers(),
       
   872                                         Threads::number_of_non_daemon_threads());
       
   873   active_workers = workers->update_active_workers(active_workers);
       
   874   log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers->total_workers());
       
   875 
       
   876   _old_gen = gch->old_gen();
       
   877 
       
   878   // If the next generation is too full to accommodate worst-case promotion
       
   879   // from this generation, pass on collection; let the next generation
       
   880   // do it.
       
   881   if (!collection_attempt_is_safe()) {
       
   882     gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
       
   883     return;
       
   884   }
       
   885   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
       
   886 
       
   887   _gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
       
   888   gch->trace_heap_before_gc(gc_tracer());
       
   889 
       
   890   init_assuming_no_promotion_failure();
       
   891 
       
   892   GCTraceTime(Trace, gc, phases) t1("ParNew", NULL, gch->gc_cause());
       
   893 
       
   894   age_table()->clear();
       
   895   to()->clear(SpaceDecorator::Mangle);
       
   896 
       
   897   gch->save_marks();
       
   898 
       
   899   // Set the correct parallelism (number of queues) in the reference processor
       
   900   ref_processor()->set_active_mt_degree(active_workers);
       
   901 
       
   902   // Need to initialize the preserved marks before the ThreadStateSet c'tor.
       
   903   _preserved_marks_set.init(active_workers);
       
   904 
       
   905   // Always set the terminator for the active number of workers
       
   906   // because only those workers go through the termination protocol.
       
   907   TaskTerminator _term(active_workers, task_queues());
       
   908   ParScanThreadStateSet thread_state_set(active_workers,
       
   909                                          *to(), *this, *_old_gen, *task_queues(),
       
   910                                          _overflow_stacks, _preserved_marks_set,
       
   911                                          desired_plab_sz(), _term);
       
   912 
       
   913   thread_state_set.reset(active_workers, promotion_failed());
       
   914 
       
   915   {
       
   916     StrongRootsScope srs(active_workers);
       
   917 
       
   918     ParNewGenTask tsk(this, _old_gen, reserved().end(), &thread_state_set, &srs);
       
   919     gch->rem_set()->prepare_for_younger_refs_iterate(true);
       
   920     // It turns out that even when we're using 1 thread, doing the work in a
       
   921     // separate thread causes wide variance in run times.  We can't help this
       
   922     // in the multi-threaded case, but we special-case n=1 here to get
       
   923     // repeatable measurements of the 1-thread overhead of the parallel code.
       
   924     // Might multiple workers ever be used?  If yes, initialization
       
   925     // has been done such that the single threaded path should not be used.
       
   926     if (workers->total_workers() > 1) {
       
   927       workers->run_task(&tsk);
       
   928     } else {
       
   929       tsk.work(0);
       
   930     }
       
   931   }
       
   932 
       
   933   thread_state_set.reset(0 /* Bad value in debug if not reset */,
       
   934                          promotion_failed());
       
   935 
       
   936   // Trace and reset failed promotion info.
       
   937   if (promotion_failed()) {
       
   938     thread_state_set.trace_promotion_failed(gc_tracer());
       
   939   }
       
   940 
       
   941   // Process (weak) reference objects found during scavenge.
       
   942   ReferenceProcessor* rp = ref_processor();
       
   943   IsAliveClosure is_alive(this);
       
   944   ScanWeakRefClosure scan_weak_ref(this);
       
   945   KeepAliveClosure keep_alive(&scan_weak_ref);
       
   946   ScanClosure               scan_without_gc_barrier(this, false);
       
   947   ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
       
   948   set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
       
   949   EvacuateFollowersClosureGeneral<ScanClosure, ScanClosureWithParBarrier> evacuate_followers(
       
   950       gch, &scan_without_gc_barrier, &scan_with_gc_barrier);
       
   951   rp->setup_policy(clear_all_soft_refs);
       
   952   // Can  the mt_degree be set later (at run_task() time would be best)?
       
   953   rp->set_active_mt_degree(active_workers);
       
   954   ReferenceProcessorStats stats;
       
   955   ReferenceProcessorPhaseTimes pt(_gc_timer, rp->max_num_queues());
       
   956   if (rp->processing_is_mt()) {
       
   957     ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set);
       
   958     stats = rp->process_discovered_references(&is_alive, &keep_alive,
       
   959                                               &evacuate_followers, &task_executor,
       
   960                                               &pt);
       
   961   } else {
       
   962     thread_state_set.flush();
       
   963     gch->save_marks();
       
   964     stats = rp->process_discovered_references(&is_alive, &keep_alive,
       
   965                                               &evacuate_followers, NULL,
       
   966                                               &pt);
       
   967   }
       
   968   _gc_tracer.report_gc_reference_stats(stats);
       
   969   _gc_tracer.report_tenuring_threshold(tenuring_threshold());
       
   970   pt.print_all_references();
       
   971 
       
   972   assert(gch->no_allocs_since_save_marks(), "evacuation should be done at this point");
       
   973 
       
   974   WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
       
   975 
       
   976   // Verify that the usage of keep_alive only forwarded
       
   977   // the oops and did not find anything new to copy.
       
   978   assert(gch->no_allocs_since_save_marks(), "unexpectedly copied objects");
       
   979 
       
   980   if (!promotion_failed()) {
       
   981     // Swap the survivor spaces.
       
   982     eden()->clear(SpaceDecorator::Mangle);
       
   983     from()->clear(SpaceDecorator::Mangle);
       
   984     if (ZapUnusedHeapArea) {
       
   985       // This is now done here because of the piece-meal mangling which
       
   986       // can check for valid mangling at intermediate points in the
       
   987       // collection(s).  When a young collection fails to collect
       
   988       // sufficient space resizing of the young generation can occur
       
   989       // and redistribute the spaces in the young generation.  Mangle
       
   990       // here so that unzapped regions don't get distributed to
       
   991       // other spaces.
       
   992       to()->mangle_unused_area();
       
   993     }
       
   994     swap_spaces();
       
   995 
       
   996     // A successful scavenge should restart the GC time limit count which is
       
   997     // for full GC's.
       
   998     size_policy->reset_gc_overhead_limit_count();
       
   999 
       
  1000     assert(to()->is_empty(), "to space should be empty now");
       
  1001 
       
  1002     adjust_desired_tenuring_threshold();
       
  1003   } else {
       
  1004     handle_promotion_failed(gch, thread_state_set);
       
  1005   }
       
  1006   _preserved_marks_set.reclaim();
       
  1007   // set new iteration safe limit for the survivor spaces
       
  1008   from()->set_concurrent_iteration_safe_limit(from()->top());
       
  1009   to()->set_concurrent_iteration_safe_limit(to()->top());
       
  1010 
       
  1011   plab_stats()->adjust_desired_plab_sz();
       
  1012 
       
  1013   TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
       
  1014   TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
       
  1015 
       
  1016   // We need to use a monotonically non-decreasing time in ms
       
  1017   // or we will see time-warp warnings and os::javaTimeMillis()
       
  1018   // does not guarantee monotonicity.
       
  1019   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
       
  1020   update_time_of_last_gc(now);
       
  1021 
       
  1022   rp->set_enqueuing_is_done(true);
       
  1023   rp->verify_no_references_recorded();
       
  1024 
       
  1025   gch->trace_heap_after_gc(gc_tracer());
       
  1026 
       
  1027   _gc_timer->register_gc_end();
       
  1028 
       
  1029   _gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
       
  1030 }
       
  1031 
       
  1032 size_t ParNewGeneration::desired_plab_sz() {
       
  1033   return _plab_stats.desired_plab_sz(CMSHeap::heap()->workers()->active_workers());
       
  1034 }
       
  1035 
       
  1036 static int sum;
       
  1037 void ParNewGeneration::waste_some_time() {
       
  1038   for (int i = 0; i < 100; i++) {
       
  1039     sum += i;
       
  1040   }
       
  1041 }
       
  1042 
       
  1043 static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
       
  1044 
       
  1045 // Because of concurrency, there are times where an object for which
       
  1046 // "is_forwarded()" is true contains an "interim" forwarding pointer
       
  1047 // value.  Such a value will soon be overwritten with a real value.
       
  1048 // This method requires "obj" to have a forwarding pointer, and waits, if
       
  1049 // necessary for a real one to be inserted, and returns it.
       
  1050 
       
  1051 oop ParNewGeneration::real_forwardee(oop obj) {
       
  1052   oop forward_ptr = obj->forwardee();
       
  1053   if (forward_ptr != ClaimedForwardPtr) {
       
  1054     return forward_ptr;
       
  1055   } else {
       
  1056     return real_forwardee_slow(obj);
       
  1057   }
       
  1058 }
       
  1059 
       
  1060 oop ParNewGeneration::real_forwardee_slow(oop obj) {
       
  1061   // Spin-read if it is claimed but not yet written by another thread.
       
  1062   oop forward_ptr = obj->forwardee();
       
  1063   while (forward_ptr == ClaimedForwardPtr) {
       
  1064     waste_some_time();
       
  1065     assert(obj->is_forwarded(), "precondition");
       
  1066     forward_ptr = obj->forwardee();
       
  1067   }
       
  1068   return forward_ptr;
       
  1069 }
       
  1070 
       
  1071 // Multiple GC threads may try to promote an object.  If the object
       
  1072 // is successfully promoted, a forwarding pointer will be installed in
       
  1073 // the object in the young generation.  This method claims the right
       
  1074 // to install the forwarding pointer before it copies the object,
       
  1075 // thus avoiding the need to undo the copy as in
       
  1076 // copy_to_survivor_space_avoiding_with_undo.
       
  1077 
       
  1078 oop ParNewGeneration::copy_to_survivor_space(ParScanThreadState* par_scan_state,
       
  1079                                              oop old,
       
  1080                                              size_t sz,
       
  1081                                              markWord m) {
       
  1082   // In the sequential version, this assert also says that the object is
       
  1083   // not forwarded.  That might not be the case here.  It is the case that
       
  1084   // the caller observed it to be not forwarded at some time in the past.
       
  1085   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
       
  1086 
       
  1087   // The sequential code read "old->age()" below.  That doesn't work here,
       
  1088   // since the age is in the mark word, and that might be overwritten with
       
  1089   // a forwarding pointer by a parallel thread.  So we must save the mark
       
  1090   // word in a local and then analyze it.
       
  1091   oopDesc dummyOld;
       
  1092   dummyOld.set_mark_raw(m);
       
  1093   assert(!dummyOld.is_forwarded(),
       
  1094          "should not be called with forwarding pointer mark word.");
       
  1095 
       
  1096   oop new_obj = NULL;
       
  1097   oop forward_ptr;
       
  1098 
       
  1099   // Try allocating obj in to-space (unless too old)
       
  1100   if (dummyOld.age() < tenuring_threshold()) {
       
  1101     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
       
  1102   }
       
  1103 
       
  1104   if (new_obj == NULL) {
       
  1105     // Either to-space is full or we decided to promote try allocating obj tenured
       
  1106 
       
  1107     // Attempt to install a null forwarding pointer (atomically),
       
  1108     // to claim the right to install the real forwarding pointer.
       
  1109     forward_ptr = old->forward_to_atomic(ClaimedForwardPtr, m);
       
  1110     if (forward_ptr != NULL) {
       
  1111       // someone else beat us to it.
       
  1112         return real_forwardee(old);
       
  1113     }
       
  1114 
       
  1115     if (!_promotion_failed) {
       
  1116       new_obj = _old_gen->par_promote(par_scan_state->thread_num(),
       
  1117                                       old, m, sz);
       
  1118     }
       
  1119 
       
  1120     if (new_obj == NULL) {
       
  1121       // promotion failed, forward to self
       
  1122       _promotion_failed = true;
       
  1123       new_obj = old;
       
  1124 
       
  1125       par_scan_state->preserved_marks()->push_if_necessary(old, m);
       
  1126       par_scan_state->register_promotion_failure(sz);
       
  1127     }
       
  1128 
       
  1129     old->forward_to(new_obj);
       
  1130     forward_ptr = NULL;
       
  1131   } else {
       
  1132     // Is in to-space; do copying ourselves.
       
  1133     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
       
  1134     assert(CMSHeap::heap()->is_in_reserved(new_obj), "illegal forwarding pointer value.");
       
  1135     forward_ptr = old->forward_to_atomic(new_obj, m);
       
  1136     // Restore the mark word copied above.
       
  1137     new_obj->set_mark_raw(m);
       
  1138     // Increment age if obj still in new generation
       
  1139     new_obj->incr_age();
       
  1140     par_scan_state->age_table()->add(new_obj, sz);
       
  1141   }
       
  1142   assert(new_obj != NULL, "just checking");
       
  1143 
       
  1144   // This code must come after the CAS test, or it will print incorrect
       
  1145   // information.
       
  1146   log_develop_trace(gc, scavenge)("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
       
  1147                                   is_in_reserved(new_obj) ? "copying" : "tenuring",
       
  1148                                   new_obj->klass()->internal_name(), p2i(old), p2i(new_obj), new_obj->size());
       
  1149 
       
  1150   if (forward_ptr == NULL) {
       
  1151     oop obj_to_push = new_obj;
       
  1152     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
       
  1153       // Length field used as index of next element to be scanned.
       
  1154       // Real length can be obtained from real_forwardee()
       
  1155       arrayOop(old)->set_length(0);
       
  1156       obj_to_push = old;
       
  1157       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
       
  1158              "push forwarded object");
       
  1159     }
       
  1160     // Push it on one of the queues of to-be-scanned objects.
       
  1161     bool simulate_overflow = false;
       
  1162     NOT_PRODUCT(
       
  1163       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
       
  1164         // simulate a stack overflow
       
  1165         simulate_overflow = true;
       
  1166       }
       
  1167     )
       
  1168     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
       
  1169       // Add stats for overflow pushes.
       
  1170       log_develop_trace(gc)("Queue Overflow");
       
  1171       push_on_overflow_list(old, par_scan_state);
       
  1172       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
       
  1173     }
       
  1174 
       
  1175     return new_obj;
       
  1176   }
       
  1177 
       
  1178   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
       
  1179   // allocate it?
       
  1180   if (is_in_reserved(new_obj)) {
       
  1181     // Must be in to_space.
       
  1182     assert(to()->is_in_reserved(new_obj), "Checking");
       
  1183     if (forward_ptr == ClaimedForwardPtr) {
       
  1184       // Wait to get the real forwarding pointer value.
       
  1185       forward_ptr = real_forwardee(old);
       
  1186     }
       
  1187     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
       
  1188   }
       
  1189 
       
  1190   return forward_ptr;
       
  1191 }
       
  1192 
       
  1193 #ifndef PRODUCT
       
  1194 // It's OK to call this multi-threaded;  the worst thing
       
  1195 // that can happen is that we'll get a bunch of closely
       
  1196 // spaced simulated overflows, but that's OK, in fact
       
  1197 // probably good as it would exercise the overflow code
       
  1198 // under contention.
       
  1199 bool ParNewGeneration::should_simulate_overflow() {
       
  1200   if (_overflow_counter-- <= 0) { // just being defensive
       
  1201     _overflow_counter = ParGCWorkQueueOverflowInterval;
       
  1202     return true;
       
  1203   } else {
       
  1204     return false;
       
  1205   }
       
  1206 }
       
  1207 #endif
       
  1208 
       
  1209 // In case we are using compressed oops, we need to be careful.
       
  1210 // If the object being pushed is an object array, then its length
       
  1211 // field keeps track of the "grey boundary" at which the next
       
  1212 // incremental scan will be done (see ParGCArrayScanChunk).
       
  1213 // When using compressed oops, this length field is kept in the
       
  1214 // lower 32 bits of the erstwhile klass word and cannot be used
       
  1215 // for the overflow chaining pointer (OCP below). As such the OCP
       
  1216 // would itself need to be compressed into the top 32-bits in this
       
  1217 // case. Unfortunately, see below, in the event that we have a
       
  1218 // promotion failure, the node to be pushed on the list can be
       
  1219 // outside of the Java heap, so the heap-based pointer compression
       
  1220 // would not work (we would have potential aliasing between C-heap
       
  1221 // and Java-heap pointers). For this reason, when using compressed
       
  1222 // oops, we simply use a worker-thread-local, non-shared overflow
       
  1223 // list in the form of a growable array, with a slightly different
       
  1224 // overflow stack draining strategy. If/when we start using fat
       
  1225 // stacks here, we can go back to using (fat) pointer chains
       
  1226 // (although some performance comparisons would be useful since
       
  1227 // single global lists have their own performance disadvantages
       
  1228 // as we were made painfully aware not long ago, see 6786503).
       
  1229 #define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
       
  1230 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
       
  1231   assert(is_in_reserved(from_space_obj), "Should be from this generation");
       
  1232   if (ParGCUseLocalOverflow) {
       
  1233     // In the case of compressed oops, we use a private, not-shared
       
  1234     // overflow stack.
       
  1235     par_scan_state->push_on_overflow_stack(from_space_obj);
       
  1236   } else {
       
  1237     assert(!UseCompressedOops, "Error");
       
  1238     // if the object has been forwarded to itself, then we cannot
       
  1239     // use the klass pointer for the linked list.  Instead we have
       
  1240     // to allocate an oopDesc in the C-Heap and use that for the linked list.
       
  1241     // XXX This is horribly inefficient when a promotion failure occurs
       
  1242     // and should be fixed. XXX FIX ME !!!
       
  1243 #ifndef PRODUCT
       
  1244     Atomic::inc(&_num_par_pushes);
       
  1245     assert(_num_par_pushes > 0, "Tautology");
       
  1246 #endif
       
  1247     if (from_space_obj->forwardee() == from_space_obj) {
       
  1248       oopDesc* listhead = NEW_C_HEAP_OBJ(oopDesc, mtGC);
       
  1249       listhead->forward_to(from_space_obj);
       
  1250       from_space_obj = listhead;
       
  1251     }
       
  1252     oop observed_overflow_list = _overflow_list;
       
  1253     oop cur_overflow_list;
       
  1254     do {
       
  1255       cur_overflow_list = observed_overflow_list;
       
  1256       if (cur_overflow_list != BUSY) {
       
  1257         from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
       
  1258       } else {
       
  1259         from_space_obj->set_klass_to_list_ptr(NULL);
       
  1260       }
       
  1261       observed_overflow_list =
       
  1262         Atomic::cmpxchg((oopDesc*)from_space_obj, &_overflow_list, (oopDesc*)cur_overflow_list);
       
  1263     } while (cur_overflow_list != observed_overflow_list);
       
  1264   }
       
  1265 }
       
  1266 
       
  1267 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
       
  1268   bool res;
       
  1269 
       
  1270   if (ParGCUseLocalOverflow) {
       
  1271     res = par_scan_state->take_from_overflow_stack();
       
  1272   } else {
       
  1273     assert(!UseCompressedOops, "Error");
       
  1274     res = take_from_overflow_list_work(par_scan_state);
       
  1275   }
       
  1276   return res;
       
  1277 }
       
  1278 
       
  1279 
       
  1280 // *NOTE*: The overflow list manipulation code here and
       
  1281 // in CMSCollector:: are very similar in shape,
       
  1282 // except that in the CMS case we thread the objects
       
  1283 // directly into the list via their mark word, and do
       
  1284 // not need to deal with special cases below related
       
  1285 // to chunking of object arrays and promotion failure
       
  1286 // handling.
       
  1287 // CR 6797058 has been filed to attempt consolidation of
       
  1288 // the common code.
       
  1289 // Because of the common code, if you make any changes in
       
  1290 // the code below, please check the CMS version to see if
       
  1291 // similar changes might be needed.
       
  1292 // See CMSCollector::par_take_from_overflow_list() for
       
  1293 // more extensive documentation comments.
       
  1294 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
       
  1295   ObjToScanQueue* work_q = par_scan_state->work_queue();
       
  1296   // How many to take?
       
  1297   size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
       
  1298                                  (size_t)ParGCDesiredObjsFromOverflowList);
       
  1299 
       
  1300   assert(!UseCompressedOops, "Error");
       
  1301   assert(par_scan_state->overflow_stack() == NULL, "Error");
       
  1302   if (_overflow_list == NULL) return false;
       
  1303 
       
  1304   // Otherwise, there was something there; try claiming the list.
       
  1305   oop prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
       
  1306   // Trim off a prefix of at most objsFromOverflow items
       
  1307   size_t spin_count = ParallelGCThreads;
       
  1308   size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
       
  1309   for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
       
  1310     // someone grabbed it before we did ...
       
  1311     // ... we spin/block for a short while...
       
  1312     os::naked_sleep(sleep_time_millis);
       
  1313     if (_overflow_list == NULL) {
       
  1314       // nothing left to take
       
  1315       return false;
       
  1316     } else if (_overflow_list != BUSY) {
       
  1317      // try and grab the prefix
       
  1318      prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
       
  1319     }
       
  1320   }
       
  1321   if (prefix == NULL || prefix == BUSY) {
       
  1322      // Nothing to take or waited long enough
       
  1323      if (prefix == NULL) {
       
  1324        // Write back the NULL in case we overwrote it with BUSY above
       
  1325        // and it is still the same value.
       
  1326        (void) Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
       
  1327      }
       
  1328      return false;
       
  1329   }
       
  1330   assert(prefix != NULL && prefix != BUSY, "Error");
       
  1331   oop cur = prefix;
       
  1332   for (size_t i = 1; i < objsFromOverflow; ++i) {
       
  1333     oop next = cur->list_ptr_from_klass();
       
  1334     if (next == NULL) break;
       
  1335     cur = next;
       
  1336   }
       
  1337   assert(cur != NULL, "Loop postcondition");
       
  1338 
       
  1339   // Reattach remaining (suffix) to overflow list
       
  1340   oop suffix = cur->list_ptr_from_klass();
       
  1341   if (suffix == NULL) {
       
  1342     // Write back the NULL in lieu of the BUSY we wrote
       
  1343     // above and it is still the same value.
       
  1344     if (_overflow_list == BUSY) {
       
  1345       (void) Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
       
  1346     }
       
  1347   } else {
       
  1348     assert(suffix != BUSY, "Error");
       
  1349     // suffix will be put back on global list
       
  1350     cur->set_klass_to_list_ptr(NULL);     // break off suffix
       
  1351     // It's possible that the list is still in the empty(busy) state
       
  1352     // we left it in a short while ago; in that case we may be
       
  1353     // able to place back the suffix.
       
  1354     oop observed_overflow_list = _overflow_list;
       
  1355     oop cur_overflow_list = observed_overflow_list;
       
  1356     bool attached = false;
       
  1357     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
       
  1358       observed_overflow_list =
       
  1359         Atomic::cmpxchg((oopDesc*)suffix, &_overflow_list, (oopDesc*)cur_overflow_list);
       
  1360       if (cur_overflow_list == observed_overflow_list) {
       
  1361         attached = true;
       
  1362         break;
       
  1363       } else cur_overflow_list = observed_overflow_list;
       
  1364     }
       
  1365     if (!attached) {
       
  1366       // Too bad, someone else got in in between; we'll need to do a splice.
       
  1367       // Find the last item of suffix list
       
  1368       oop last = suffix;
       
  1369       while (true) {
       
  1370         oop next = last->list_ptr_from_klass();
       
  1371         if (next == NULL) break;
       
  1372         last = next;
       
  1373       }
       
  1374       // Atomically prepend suffix to current overflow list
       
  1375       observed_overflow_list = _overflow_list;
       
  1376       do {
       
  1377         cur_overflow_list = observed_overflow_list;
       
  1378         if (cur_overflow_list != BUSY) {
       
  1379           // Do the splice ...
       
  1380           last->set_klass_to_list_ptr(cur_overflow_list);
       
  1381         } else { // cur_overflow_list == BUSY
       
  1382           last->set_klass_to_list_ptr(NULL);
       
  1383         }
       
  1384         observed_overflow_list =
       
  1385           Atomic::cmpxchg((oopDesc*)suffix, &_overflow_list, (oopDesc*)cur_overflow_list);
       
  1386       } while (cur_overflow_list != observed_overflow_list);
       
  1387     }
       
  1388   }
       
  1389 
       
  1390   // Push objects on prefix list onto this thread's work queue
       
  1391   assert(prefix != NULL && prefix != BUSY, "program logic");
       
  1392   cur = prefix;
       
  1393   ssize_t n = 0;
       
  1394   while (cur != NULL) {
       
  1395     oop obj_to_push = cur->forwardee();
       
  1396     oop next        = cur->list_ptr_from_klass();
       
  1397     cur->set_klass(obj_to_push->klass());
       
  1398     // This may be an array object that is self-forwarded. In that case, the list pointer
       
  1399     // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
       
  1400     if (!is_in_reserved(cur)) {
       
  1401       // This can become a scaling bottleneck when there is work queue overflow coincident
       
  1402       // with promotion failure.
       
  1403       oopDesc* f = cur;
       
  1404       FREE_C_HEAP_OBJ(f);
       
  1405     } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
       
  1406       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
       
  1407       obj_to_push = cur;
       
  1408     }
       
  1409     bool ok = work_q->push(obj_to_push);
       
  1410     assert(ok, "Should have succeeded");
       
  1411     cur = next;
       
  1412     n++;
       
  1413   }
       
  1414   TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
       
  1415 #ifndef PRODUCT
       
  1416   assert(_num_par_pushes >= n, "Too many pops?");
       
  1417   Atomic::sub(n, &_num_par_pushes);
       
  1418 #endif
       
  1419   return true;
       
  1420 }
       
  1421 #undef BUSY
       
  1422 
       
  1423 void ParNewGeneration::ref_processor_init() {
       
  1424   if (_ref_processor == NULL) {
       
  1425     // Allocate and initialize a reference processor
       
  1426     _span_based_discoverer.set_span(_reserved);
       
  1427     _ref_processor =
       
  1428       new ReferenceProcessor(&_span_based_discoverer,    // span
       
  1429                              ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
       
  1430                              ParallelGCThreads,          // mt processing degree
       
  1431                              refs_discovery_is_mt(),     // mt discovery
       
  1432                              ParallelGCThreads,          // mt discovery degree
       
  1433                              refs_discovery_is_atomic(), // atomic_discovery
       
  1434                              NULL,                       // is_alive_non_header
       
  1435                              false);                     // disable adjusting number of processing threads
       
  1436   }
       
  1437 }
       
  1438 
       
  1439 const char* ParNewGeneration::name() const {
       
  1440   return "par new generation";
       
  1441 }
       
  1442 
       
  1443 void ParNewGeneration::restore_preserved_marks() {
       
  1444   SharedRestorePreservedMarksTaskExecutor task_executor(CMSHeap::heap()->workers());
       
  1445   _preserved_marks_set.restore(&task_executor);
       
  1446 }