src/jdk.unsupported/share/classes/sun/misc/Unsafe.java
changeset 47216 71c04702a3d5
parent 45635 56b0672b0070
child 49267 6889f13694c6
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.  Oracle designates this
       
     8  * particular file as subject to the "Classpath" exception as provided
       
     9  * by Oracle in the LICENSE file that accompanied this code.
       
    10  *
       
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    14  * version 2 for more details (a copy is included in the LICENSE file that
       
    15  * accompanied this code).
       
    16  *
       
    17  * You should have received a copy of the GNU General Public License version
       
    18  * 2 along with this work; if not, write to the Free Software Foundation,
       
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    20  *
       
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    22  * or visit www.oracle.com if you need additional information or have any
       
    23  * questions.
       
    24  */
       
    25 
       
    26 package sun.misc;
       
    27 
       
    28 import jdk.internal.vm.annotation.ForceInline;
       
    29 import jdk.internal.misc.VM;
       
    30 import jdk.internal.ref.Cleaner;
       
    31 import jdk.internal.reflect.CallerSensitive;
       
    32 import jdk.internal.reflect.Reflection;
       
    33 import sun.nio.ch.DirectBuffer;
       
    34 
       
    35 import java.lang.reflect.Field;
       
    36 import java.security.ProtectionDomain;
       
    37 
       
    38 
       
    39 /**
       
    40  * A collection of methods for performing low-level, unsafe operations.
       
    41  * Although the class and all methods are public, use of this class is
       
    42  * limited because only trusted code can obtain instances of it.
       
    43  *
       
    44  * <em>Note:</em> It is the resposibility of the caller to make sure
       
    45  * arguments are checked before methods of this class are
       
    46  * called. While some rudimentary checks are performed on the input,
       
    47  * the checks are best effort and when performance is an overriding
       
    48  * priority, as when methods of this class are optimized by the
       
    49  * runtime compiler, some or all checks (if any) may be elided. Hence,
       
    50  * the caller must not rely on the checks and corresponding
       
    51  * exceptions!
       
    52  *
       
    53  * @author John R. Rose
       
    54  * @see #getUnsafe
       
    55  */
       
    56 
       
    57 public final class Unsafe {
       
    58 
       
    59     static {
       
    60         Reflection.registerMethodsToFilter(Unsafe.class, "getUnsafe");
       
    61     }
       
    62 
       
    63     private Unsafe() {}
       
    64 
       
    65     private static final Unsafe theUnsafe = new Unsafe();
       
    66     private static final jdk.internal.misc.Unsafe theInternalUnsafe = jdk.internal.misc.Unsafe.getUnsafe();
       
    67 
       
    68     /**
       
    69      * Provides the caller with the capability of performing unsafe
       
    70      * operations.
       
    71      *
       
    72      * <p>The returned {@code Unsafe} object should be carefully guarded
       
    73      * by the caller, since it can be used to read and write data at arbitrary
       
    74      * memory addresses.  It must never be passed to untrusted code.
       
    75      *
       
    76      * <p>Most methods in this class are very low-level, and correspond to a
       
    77      * small number of hardware instructions (on typical machines).  Compilers
       
    78      * are encouraged to optimize these methods accordingly.
       
    79      *
       
    80      * <p>Here is a suggested idiom for using unsafe operations:
       
    81      *
       
    82      * <pre> {@code
       
    83      * class MyTrustedClass {
       
    84      *   private static final Unsafe unsafe = Unsafe.getUnsafe();
       
    85      *   ...
       
    86      *   private long myCountAddress = ...;
       
    87      *   public int getCount() { return unsafe.getByte(myCountAddress); }
       
    88      * }}</pre>
       
    89      *
       
    90      * (It may assist compilers to make the local variable {@code final}.)
       
    91      *
       
    92      * @throws  SecurityException if the class loader of the caller
       
    93      *          class is not in the system domain in which all permissions
       
    94      *          are granted.
       
    95      */
       
    96     @CallerSensitive
       
    97     public static Unsafe getUnsafe() {
       
    98         Class<?> caller = Reflection.getCallerClass();
       
    99         if (!VM.isSystemDomainLoader(caller.getClassLoader()))
       
   100             throw new SecurityException("Unsafe");
       
   101         return theUnsafe;
       
   102     }
       
   103 
       
   104     /// peek and poke operations
       
   105     /// (compilers should optimize these to memory ops)
       
   106 
       
   107     // These work on object fields in the Java heap.
       
   108     // They will not work on elements of packed arrays.
       
   109 
       
   110     /**
       
   111      * Fetches a value from a given Java variable.
       
   112      * More specifically, fetches a field or array element within the given
       
   113      * object {@code o} at the given offset, or (if {@code o} is null)
       
   114      * from the memory address whose numerical value is the given offset.
       
   115      * <p>
       
   116      * The results are undefined unless one of the following cases is true:
       
   117      * <ul>
       
   118      * <li>The offset was obtained from {@link #objectFieldOffset} on
       
   119      * the {@link java.lang.reflect.Field} of some Java field and the object
       
   120      * referred to by {@code o} is of a class compatible with that
       
   121      * field's class.
       
   122      *
       
   123      * <li>The offset and object reference {@code o} (either null or
       
   124      * non-null) were both obtained via {@link #staticFieldOffset}
       
   125      * and {@link #staticFieldBase} (respectively) from the
       
   126      * reflective {@link Field} representation of some Java field.
       
   127      *
       
   128      * <li>The object referred to by {@code o} is an array, and the offset
       
   129      * is an integer of the form {@code B+N*S}, where {@code N} is
       
   130      * a valid index into the array, and {@code B} and {@code S} are
       
   131      * the values obtained by {@link #arrayBaseOffset} and {@link
       
   132      * #arrayIndexScale} (respectively) from the array's class.  The value
       
   133      * referred to is the {@code N}<em>th</em> element of the array.
       
   134      *
       
   135      * </ul>
       
   136      * <p>
       
   137      * If one of the above cases is true, the call references a specific Java
       
   138      * variable (field or array element).  However, the results are undefined
       
   139      * if that variable is not in fact of the type returned by this method.
       
   140      * <p>
       
   141      * This method refers to a variable by means of two parameters, and so
       
   142      * it provides (in effect) a <em>double-register</em> addressing mode
       
   143      * for Java variables.  When the object reference is null, this method
       
   144      * uses its offset as an absolute address.  This is similar in operation
       
   145      * to methods such as {@link #getInt(long)}, which provide (in effect) a
       
   146      * <em>single-register</em> addressing mode for non-Java variables.
       
   147      * However, because Java variables may have a different layout in memory
       
   148      * from non-Java variables, programmers should not assume that these
       
   149      * two addressing modes are ever equivalent.  Also, programmers should
       
   150      * remember that offsets from the double-register addressing mode cannot
       
   151      * be portably confused with longs used in the single-register addressing
       
   152      * mode.
       
   153      *
       
   154      * @param o Java heap object in which the variable resides, if any, else
       
   155      *        null
       
   156      * @param offset indication of where the variable resides in a Java heap
       
   157      *        object, if any, else a memory address locating the variable
       
   158      *        statically
       
   159      * @return the value fetched from the indicated Java variable
       
   160      * @throws RuntimeException No defined exceptions are thrown, not even
       
   161      *         {@link NullPointerException}
       
   162      */
       
   163     @ForceInline
       
   164     public int getInt(Object o, long offset) {
       
   165         return theInternalUnsafe.getInt(o, offset);
       
   166     }
       
   167 
       
   168     /**
       
   169      * Stores a value into a given Java variable.
       
   170      * <p>
       
   171      * The first two parameters are interpreted exactly as with
       
   172      * {@link #getInt(Object, long)} to refer to a specific
       
   173      * Java variable (field or array element).  The given value
       
   174      * is stored into that variable.
       
   175      * <p>
       
   176      * The variable must be of the same type as the method
       
   177      * parameter {@code x}.
       
   178      *
       
   179      * @param o Java heap object in which the variable resides, if any, else
       
   180      *        null
       
   181      * @param offset indication of where the variable resides in a Java heap
       
   182      *        object, if any, else a memory address locating the variable
       
   183      *        statically
       
   184      * @param x the value to store into the indicated Java variable
       
   185      * @throws RuntimeException No defined exceptions are thrown, not even
       
   186      *         {@link NullPointerException}
       
   187      */
       
   188     @ForceInline
       
   189     public void putInt(Object o, long offset, int x) {
       
   190         theInternalUnsafe.putInt(o, offset, x);
       
   191     }
       
   192 
       
   193     /**
       
   194      * Fetches a reference value from a given Java variable.
       
   195      * @see #getInt(Object, long)
       
   196      */
       
   197     @ForceInline
       
   198     public Object getObject(Object o, long offset) {
       
   199         return theInternalUnsafe.getObject(o, offset);
       
   200     }
       
   201 
       
   202     /**
       
   203      * Stores a reference value into a given Java variable.
       
   204      * <p>
       
   205      * Unless the reference {@code x} being stored is either null
       
   206      * or matches the field type, the results are undefined.
       
   207      * If the reference {@code o} is non-null, card marks or
       
   208      * other store barriers for that object (if the VM requires them)
       
   209      * are updated.
       
   210      * @see #putInt(Object, long, int)
       
   211      */
       
   212     @ForceInline
       
   213     public void putObject(Object o, long offset, Object x) {
       
   214         theInternalUnsafe.putObject(o, offset, x);
       
   215     }
       
   216 
       
   217     /** @see #getInt(Object, long) */
       
   218     @ForceInline
       
   219     public boolean getBoolean(Object o, long offset) {
       
   220         return theInternalUnsafe.getBoolean(o, offset);
       
   221     }
       
   222 
       
   223     /** @see #putInt(Object, long, int) */
       
   224     @ForceInline
       
   225     public void putBoolean(Object o, long offset, boolean x) {
       
   226         theInternalUnsafe.putBoolean(o, offset, x);
       
   227     }
       
   228 
       
   229     /** @see #getInt(Object, long) */
       
   230     @ForceInline
       
   231     public byte getByte(Object o, long offset) {
       
   232         return theInternalUnsafe.getByte(o, offset);
       
   233     }
       
   234 
       
   235     /** @see #putInt(Object, long, int) */
       
   236     @ForceInline
       
   237     public void putByte(Object o, long offset, byte x) {
       
   238         theInternalUnsafe.putByte(o, offset, x);
       
   239     }
       
   240 
       
   241     /** @see #getInt(Object, long) */
       
   242     @ForceInline
       
   243     public short getShort(Object o, long offset) {
       
   244         return theInternalUnsafe.getShort(o, offset);
       
   245     }
       
   246 
       
   247     /** @see #putInt(Object, long, int) */
       
   248     @ForceInline
       
   249     public void putShort(Object o, long offset, short x) {
       
   250         theInternalUnsafe.putShort(o, offset, x);
       
   251     }
       
   252 
       
   253     /** @see #getInt(Object, long) */
       
   254     @ForceInline
       
   255     public char getChar(Object o, long offset) {
       
   256         return theInternalUnsafe.getChar(o, offset);
       
   257     }
       
   258 
       
   259     /** @see #putInt(Object, long, int) */
       
   260     @ForceInline
       
   261     public void putChar(Object o, long offset, char x) {
       
   262         theInternalUnsafe.putChar(o, offset, x);
       
   263     }
       
   264 
       
   265     /** @see #getInt(Object, long) */
       
   266     @ForceInline
       
   267     public long getLong(Object o, long offset) {
       
   268         return theInternalUnsafe.getLong(o, offset);
       
   269     }
       
   270 
       
   271     /** @see #putInt(Object, long, int) */
       
   272     @ForceInline
       
   273     public void putLong(Object o, long offset, long x) {
       
   274         theInternalUnsafe.putLong(o, offset, x);
       
   275     }
       
   276 
       
   277     /** @see #getInt(Object, long) */
       
   278     @ForceInline
       
   279     public float getFloat(Object o, long offset) {
       
   280         return theInternalUnsafe.getFloat(o, offset);
       
   281     }
       
   282 
       
   283     /** @see #putInt(Object, long, int) */
       
   284     @ForceInline
       
   285     public void putFloat(Object o, long offset, float x) {
       
   286         theInternalUnsafe.putFloat(o, offset, x);
       
   287     }
       
   288 
       
   289     /** @see #getInt(Object, long) */
       
   290     @ForceInline
       
   291     public double getDouble(Object o, long offset) {
       
   292         return theInternalUnsafe.getDouble(o, offset);
       
   293     }
       
   294 
       
   295     /** @see #putInt(Object, long, int) */
       
   296     @ForceInline
       
   297     public void putDouble(Object o, long offset, double x) {
       
   298         theInternalUnsafe.putDouble(o, offset, x);
       
   299     }
       
   300 
       
   301     // These work on values in the C heap.
       
   302 
       
   303     /**
       
   304      * Fetches a value from a given memory address.  If the address is zero, or
       
   305      * does not point into a block obtained from {@link #allocateMemory}, the
       
   306      * results are undefined.
       
   307      *
       
   308      * @see #allocateMemory
       
   309      */
       
   310     @ForceInline
       
   311     public byte getByte(long address) {
       
   312         return theInternalUnsafe.getByte(address);
       
   313     }
       
   314 
       
   315     /**
       
   316      * Stores a value into a given memory address.  If the address is zero, or
       
   317      * does not point into a block obtained from {@link #allocateMemory}, the
       
   318      * results are undefined.
       
   319      *
       
   320      * @see #getByte(long)
       
   321      */
       
   322     @ForceInline
       
   323     public void putByte(long address, byte x) {
       
   324         theInternalUnsafe.putByte(address, x);
       
   325     }
       
   326 
       
   327     /** @see #getByte(long) */
       
   328     @ForceInline
       
   329     public short getShort(long address) {
       
   330         return theInternalUnsafe.getShort(address);
       
   331     }
       
   332 
       
   333     /** @see #putByte(long, byte) */
       
   334     @ForceInline
       
   335     public void putShort(long address, short x) {
       
   336         theInternalUnsafe.putShort(address, x);
       
   337     }
       
   338 
       
   339     /** @see #getByte(long) */
       
   340     @ForceInline
       
   341     public char getChar(long address) {
       
   342         return theInternalUnsafe.getChar(address);
       
   343     }
       
   344 
       
   345     /** @see #putByte(long, byte) */
       
   346     @ForceInline
       
   347     public void putChar(long address, char x) {
       
   348         theInternalUnsafe.putChar(address, x);
       
   349     }
       
   350 
       
   351     /** @see #getByte(long) */
       
   352     @ForceInline
       
   353     public int getInt(long address) {
       
   354         return theInternalUnsafe.getInt(address);
       
   355     }
       
   356 
       
   357     /** @see #putByte(long, byte) */
       
   358     @ForceInline
       
   359     public void putInt(long address, int x) {
       
   360         theInternalUnsafe.putInt(address, x);
       
   361     }
       
   362 
       
   363     /** @see #getByte(long) */
       
   364     @ForceInline
       
   365     public long getLong(long address) {
       
   366         return theInternalUnsafe.getLong(address);
       
   367     }
       
   368 
       
   369     /** @see #putByte(long, byte) */
       
   370     @ForceInline
       
   371     public void putLong(long address, long x) {
       
   372         theInternalUnsafe.putLong(address, x);
       
   373     }
       
   374 
       
   375     /** @see #getByte(long) */
       
   376     @ForceInline
       
   377     public float getFloat(long address) {
       
   378         return theInternalUnsafe.getFloat(address);
       
   379     }
       
   380 
       
   381     /** @see #putByte(long, byte) */
       
   382     @ForceInline
       
   383     public void putFloat(long address, float x) {
       
   384         theInternalUnsafe.putFloat(address, x);
       
   385     }
       
   386 
       
   387     /** @see #getByte(long) */
       
   388     @ForceInline
       
   389     public double getDouble(long address) {
       
   390         return theInternalUnsafe.getDouble(address);
       
   391     }
       
   392 
       
   393     /** @see #putByte(long, byte) */
       
   394     @ForceInline
       
   395     public void putDouble(long address, double x) {
       
   396         theInternalUnsafe.putDouble(address, x);
       
   397     }
       
   398 
       
   399 
       
   400     /**
       
   401      * Fetches a native pointer from a given memory address.  If the address is
       
   402      * zero, or does not point into a block obtained from {@link
       
   403      * #allocateMemory}, the results are undefined.
       
   404      *
       
   405      * <p>If the native pointer is less than 64 bits wide, it is extended as
       
   406      * an unsigned number to a Java long.  The pointer may be indexed by any
       
   407      * given byte offset, simply by adding that offset (as a simple integer) to
       
   408      * the long representing the pointer.  The number of bytes actually read
       
   409      * from the target address may be determined by consulting {@link
       
   410      * #addressSize}.
       
   411      *
       
   412      * @see #allocateMemory
       
   413      */
       
   414     @ForceInline
       
   415     public long getAddress(long address) {
       
   416         return theInternalUnsafe.getAddress(address);
       
   417     }
       
   418 
       
   419     /**
       
   420      * Stores a native pointer into a given memory address.  If the address is
       
   421      * zero, or does not point into a block obtained from {@link
       
   422      * #allocateMemory}, the results are undefined.
       
   423      *
       
   424      * <p>The number of bytes actually written at the target address may be
       
   425      * determined by consulting {@link #addressSize}.
       
   426      *
       
   427      * @see #getAddress(long)
       
   428      */
       
   429     @ForceInline
       
   430     public void putAddress(long address, long x) {
       
   431         theInternalUnsafe.putAddress(address, x);
       
   432     }
       
   433 
       
   434 
       
   435     /// wrappers for malloc, realloc, free:
       
   436 
       
   437     /**
       
   438      * Allocates a new block of native memory, of the given size in bytes.  The
       
   439      * contents of the memory are uninitialized; they will generally be
       
   440      * garbage.  The resulting native pointer will never be zero, and will be
       
   441      * aligned for all value types.  Dispose of this memory by calling {@link
       
   442      * #freeMemory}, or resize it with {@link #reallocateMemory}.
       
   443      *
       
   444      * <em>Note:</em> It is the resposibility of the caller to make
       
   445      * sure arguments are checked before the methods are called. While
       
   446      * some rudimentary checks are performed on the input, the checks
       
   447      * are best effort and when performance is an overriding priority,
       
   448      * as when methods of this class are optimized by the runtime
       
   449      * compiler, some or all checks (if any) may be elided. Hence, the
       
   450      * caller must not rely on the checks and corresponding
       
   451      * exceptions!
       
   452      *
       
   453      * @throws RuntimeException if the size is negative or too large
       
   454      *         for the native size_t type
       
   455      *
       
   456      * @throws OutOfMemoryError if the allocation is refused by the system
       
   457      *
       
   458      * @see #getByte(long)
       
   459      * @see #putByte(long, byte)
       
   460      */
       
   461     @ForceInline
       
   462     public long allocateMemory(long bytes) {
       
   463         return theInternalUnsafe.allocateMemory(bytes);
       
   464     }
       
   465 
       
   466     /**
       
   467      * Resizes a new block of native memory, to the given size in bytes.  The
       
   468      * contents of the new block past the size of the old block are
       
   469      * uninitialized; they will generally be garbage.  The resulting native
       
   470      * pointer will be zero if and only if the requested size is zero.  The
       
   471      * resulting native pointer will be aligned for all value types.  Dispose
       
   472      * of this memory by calling {@link #freeMemory}, or resize it with {@link
       
   473      * #reallocateMemory}.  The address passed to this method may be null, in
       
   474      * which case an allocation will be performed.
       
   475      *
       
   476      * <em>Note:</em> It is the resposibility of the caller to make
       
   477      * sure arguments are checked before the methods are called. While
       
   478      * some rudimentary checks are performed on the input, the checks
       
   479      * are best effort and when performance is an overriding priority,
       
   480      * as when methods of this class are optimized by the runtime
       
   481      * compiler, some or all checks (if any) may be elided. Hence, the
       
   482      * caller must not rely on the checks and corresponding
       
   483      * exceptions!
       
   484      *
       
   485      * @throws RuntimeException if the size is negative or too large
       
   486      *         for the native size_t type
       
   487      *
       
   488      * @throws OutOfMemoryError if the allocation is refused by the system
       
   489      *
       
   490      * @see #allocateMemory
       
   491      */
       
   492     @ForceInline
       
   493     public long reallocateMemory(long address, long bytes) {
       
   494         return theInternalUnsafe.reallocateMemory(address, bytes);
       
   495     }
       
   496 
       
   497     /**
       
   498      * Sets all bytes in a given block of memory to a fixed value
       
   499      * (usually zero).
       
   500      *
       
   501      * <p>This method determines a block's base address by means of two parameters,
       
   502      * and so it provides (in effect) a <em>double-register</em> addressing mode,
       
   503      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
       
   504      * the offset supplies an absolute base address.
       
   505      *
       
   506      * <p>The stores are in coherent (atomic) units of a size determined
       
   507      * by the address and length parameters.  If the effective address and
       
   508      * length are all even modulo 8, the stores take place in 'long' units.
       
   509      * If the effective address and length are (resp.) even modulo 4 or 2,
       
   510      * the stores take place in units of 'int' or 'short'.
       
   511      *
       
   512      * <em>Note:</em> It is the resposibility of the caller to make
       
   513      * sure arguments are checked before the methods are called. While
       
   514      * some rudimentary checks are performed on the input, the checks
       
   515      * are best effort and when performance is an overriding priority,
       
   516      * as when methods of this class are optimized by the runtime
       
   517      * compiler, some or all checks (if any) may be elided. Hence, the
       
   518      * caller must not rely on the checks and corresponding
       
   519      * exceptions!
       
   520      *
       
   521      * @throws RuntimeException if any of the arguments is invalid
       
   522      *
       
   523      * @since 1.7
       
   524      */
       
   525     @ForceInline
       
   526     public void setMemory(Object o, long offset, long bytes, byte value) {
       
   527         theInternalUnsafe.setMemory(o, offset, bytes, value);
       
   528     }
       
   529 
       
   530     /**
       
   531      * Sets all bytes in a given block of memory to a fixed value
       
   532      * (usually zero).  This provides a <em>single-register</em> addressing mode,
       
   533      * as discussed in {@link #getInt(Object,long)}.
       
   534      *
       
   535      * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
       
   536      */
       
   537     @ForceInline
       
   538     public void setMemory(long address, long bytes, byte value) {
       
   539         theInternalUnsafe.setMemory(address, bytes, value);
       
   540     }
       
   541 
       
   542     /**
       
   543      * Sets all bytes in a given block of memory to a copy of another
       
   544      * block.
       
   545      *
       
   546      * <p>This method determines each block's base address by means of two parameters,
       
   547      * and so it provides (in effect) a <em>double-register</em> addressing mode,
       
   548      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
       
   549      * the offset supplies an absolute base address.
       
   550      *
       
   551      * <p>The transfers are in coherent (atomic) units of a size determined
       
   552      * by the address and length parameters.  If the effective addresses and
       
   553      * length are all even modulo 8, the transfer takes place in 'long' units.
       
   554      * If the effective addresses and length are (resp.) even modulo 4 or 2,
       
   555      * the transfer takes place in units of 'int' or 'short'.
       
   556      *
       
   557      * <em>Note:</em> It is the resposibility of the caller to make
       
   558      * sure arguments are checked before the methods are called. While
       
   559      * some rudimentary checks are performed on the input, the checks
       
   560      * are best effort and when performance is an overriding priority,
       
   561      * as when methods of this class are optimized by the runtime
       
   562      * compiler, some or all checks (if any) may be elided. Hence, the
       
   563      * caller must not rely on the checks and corresponding
       
   564      * exceptions!
       
   565      *
       
   566      * @throws RuntimeException if any of the arguments is invalid
       
   567      *
       
   568      * @since 1.7
       
   569      */
       
   570     @ForceInline
       
   571     public void copyMemory(Object srcBase, long srcOffset,
       
   572                            Object destBase, long destOffset,
       
   573                            long bytes) {
       
   574         theInternalUnsafe.copyMemory(srcBase, srcOffset, destBase, destOffset, bytes);
       
   575     }
       
   576 
       
   577     /**
       
   578      * Sets all bytes in a given block of memory to a copy of another
       
   579      * block.  This provides a <em>single-register</em> addressing mode,
       
   580      * as discussed in {@link #getInt(Object,long)}.
       
   581      *
       
   582      * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
       
   583      */
       
   584     @ForceInline
       
   585     public void copyMemory(long srcAddress, long destAddress, long bytes) {
       
   586         theInternalUnsafe.copyMemory(srcAddress, destAddress, bytes);
       
   587     }
       
   588 
       
   589     /**
       
   590      * Disposes of a block of native memory, as obtained from {@link
       
   591      * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
       
   592      * this method may be null, in which case no action is taken.
       
   593      *
       
   594      * <em>Note:</em> It is the resposibility of the caller to make
       
   595      * sure arguments are checked before the methods are called. While
       
   596      * some rudimentary checks are performed on the input, the checks
       
   597      * are best effort and when performance is an overriding priority,
       
   598      * as when methods of this class are optimized by the runtime
       
   599      * compiler, some or all checks (if any) may be elided. Hence, the
       
   600      * caller must not rely on the checks and corresponding
       
   601      * exceptions!
       
   602      *
       
   603      * @throws RuntimeException if any of the arguments is invalid
       
   604      *
       
   605      * @see #allocateMemory
       
   606      */
       
   607     @ForceInline
       
   608     public void freeMemory(long address) {
       
   609         theInternalUnsafe.freeMemory(address);
       
   610     }
       
   611 
       
   612     /// random queries
       
   613 
       
   614     /**
       
   615      * This constant differs from all results that will ever be returned from
       
   616      * {@link #staticFieldOffset}, {@link #objectFieldOffset},
       
   617      * or {@link #arrayBaseOffset}.
       
   618      */
       
   619     public static final int INVALID_FIELD_OFFSET = jdk.internal.misc.Unsafe.INVALID_FIELD_OFFSET;
       
   620 
       
   621     /**
       
   622      * Reports the location of a given field in the storage allocation of its
       
   623      * class.  Do not expect to perform any sort of arithmetic on this offset;
       
   624      * it is just a cookie which is passed to the unsafe heap memory accessors.
       
   625      *
       
   626      * <p>Any given field will always have the same offset and base, and no
       
   627      * two distinct fields of the same class will ever have the same offset
       
   628      * and base.
       
   629      *
       
   630      * <p>As of 1.4.1, offsets for fields are represented as long values,
       
   631      * although the Sun JVM does not use the most significant 32 bits.
       
   632      * However, JVM implementations which store static fields at absolute
       
   633      * addresses can use long offsets and null base pointers to express
       
   634      * the field locations in a form usable by {@link #getInt(Object,long)}.
       
   635      * Therefore, code which will be ported to such JVMs on 64-bit platforms
       
   636      * must preserve all bits of static field offsets.
       
   637      * @see #getInt(Object, long)
       
   638      */
       
   639     @ForceInline
       
   640     public long objectFieldOffset(Field f) {
       
   641         return theInternalUnsafe.objectFieldOffset(f);
       
   642     }
       
   643 
       
   644     /**
       
   645      * Reports the location of a given static field, in conjunction with {@link
       
   646      * #staticFieldBase}.
       
   647      * <p>Do not expect to perform any sort of arithmetic on this offset;
       
   648      * it is just a cookie which is passed to the unsafe heap memory accessors.
       
   649      *
       
   650      * <p>Any given field will always have the same offset, and no two distinct
       
   651      * fields of the same class will ever have the same offset.
       
   652      *
       
   653      * <p>As of 1.4.1, offsets for fields are represented as long values,
       
   654      * although the Sun JVM does not use the most significant 32 bits.
       
   655      * It is hard to imagine a JVM technology which needs more than
       
   656      * a few bits to encode an offset within a non-array object,
       
   657      * However, for consistency with other methods in this class,
       
   658      * this method reports its result as a long value.
       
   659      * @see #getInt(Object, long)
       
   660      */
       
   661     @ForceInline
       
   662     public long staticFieldOffset(Field f) {
       
   663         return theInternalUnsafe.staticFieldOffset(f);
       
   664     }
       
   665 
       
   666     /**
       
   667      * Reports the location of a given static field, in conjunction with {@link
       
   668      * #staticFieldOffset}.
       
   669      * <p>Fetch the base "Object", if any, with which static fields of the
       
   670      * given class can be accessed via methods like {@link #getInt(Object,
       
   671      * long)}.  This value may be null.  This value may refer to an object
       
   672      * which is a "cookie", not guaranteed to be a real Object, and it should
       
   673      * not be used in any way except as argument to the get and put routines in
       
   674      * this class.
       
   675      */
       
   676     @ForceInline
       
   677     public Object staticFieldBase(Field f) {
       
   678         return theInternalUnsafe.staticFieldBase(f);
       
   679     }
       
   680 
       
   681     /**
       
   682      * Detects if the given class may need to be initialized. This is often
       
   683      * needed in conjunction with obtaining the static field base of a
       
   684      * class.
       
   685      * @return false only if a call to {@code ensureClassInitialized} would have no effect
       
   686      */
       
   687     @ForceInline
       
   688     public boolean shouldBeInitialized(Class<?> c) {
       
   689         return theInternalUnsafe.shouldBeInitialized(c);
       
   690     }
       
   691 
       
   692     /**
       
   693      * Ensures the given class has been initialized. This is often
       
   694      * needed in conjunction with obtaining the static field base of a
       
   695      * class.
       
   696      */
       
   697     @ForceInline
       
   698     public void ensureClassInitialized(Class<?> c) {
       
   699         theInternalUnsafe.ensureClassInitialized(c);
       
   700     }
       
   701 
       
   702     /**
       
   703      * Reports the offset of the first element in the storage allocation of a
       
   704      * given array class.  If {@link #arrayIndexScale} returns a non-zero value
       
   705      * for the same class, you may use that scale factor, together with this
       
   706      * base offset, to form new offsets to access elements of arrays of the
       
   707      * given class.
       
   708      *
       
   709      * @see #getInt(Object, long)
       
   710      * @see #putInt(Object, long, int)
       
   711      */
       
   712     @ForceInline
       
   713     public int arrayBaseOffset(Class<?> arrayClass) {
       
   714         return theInternalUnsafe.arrayBaseOffset(arrayClass);
       
   715     }
       
   716 
       
   717     /** The value of {@code arrayBaseOffset(boolean[].class)} */
       
   718     public static final int ARRAY_BOOLEAN_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_BOOLEAN_BASE_OFFSET;
       
   719 
       
   720     /** The value of {@code arrayBaseOffset(byte[].class)} */
       
   721     public static final int ARRAY_BYTE_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_BYTE_BASE_OFFSET;
       
   722 
       
   723     /** The value of {@code arrayBaseOffset(short[].class)} */
       
   724     public static final int ARRAY_SHORT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_SHORT_BASE_OFFSET;
       
   725 
       
   726     /** The value of {@code arrayBaseOffset(char[].class)} */
       
   727     public static final int ARRAY_CHAR_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_CHAR_BASE_OFFSET;
       
   728 
       
   729     /** The value of {@code arrayBaseOffset(int[].class)} */
       
   730     public static final int ARRAY_INT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_INT_BASE_OFFSET;
       
   731 
       
   732     /** The value of {@code arrayBaseOffset(long[].class)} */
       
   733     public static final int ARRAY_LONG_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_LONG_BASE_OFFSET;
       
   734 
       
   735     /** The value of {@code arrayBaseOffset(float[].class)} */
       
   736     public static final int ARRAY_FLOAT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_FLOAT_BASE_OFFSET;
       
   737 
       
   738     /** The value of {@code arrayBaseOffset(double[].class)} */
       
   739     public static final int ARRAY_DOUBLE_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_DOUBLE_BASE_OFFSET;
       
   740 
       
   741     /** The value of {@code arrayBaseOffset(Object[].class)} */
       
   742     public static final int ARRAY_OBJECT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_OBJECT_BASE_OFFSET;
       
   743 
       
   744     /**
       
   745      * Reports the scale factor for addressing elements in the storage
       
   746      * allocation of a given array class.  However, arrays of "narrow" types
       
   747      * will generally not work properly with accessors like {@link
       
   748      * #getByte(Object, long)}, so the scale factor for such classes is reported
       
   749      * as zero.
       
   750      *
       
   751      * @see #arrayBaseOffset
       
   752      * @see #getInt(Object, long)
       
   753      * @see #putInt(Object, long, int)
       
   754      */
       
   755     @ForceInline
       
   756     public int arrayIndexScale(Class<?> arrayClass) {
       
   757         return theInternalUnsafe.arrayIndexScale(arrayClass);
       
   758     }
       
   759 
       
   760     /** The value of {@code arrayIndexScale(boolean[].class)} */
       
   761     public static final int ARRAY_BOOLEAN_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_BOOLEAN_INDEX_SCALE;
       
   762 
       
   763     /** The value of {@code arrayIndexScale(byte[].class)} */
       
   764     public static final int ARRAY_BYTE_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_BYTE_INDEX_SCALE;
       
   765 
       
   766     /** The value of {@code arrayIndexScale(short[].class)} */
       
   767     public static final int ARRAY_SHORT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_SHORT_INDEX_SCALE;
       
   768 
       
   769     /** The value of {@code arrayIndexScale(char[].class)} */
       
   770     public static final int ARRAY_CHAR_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_CHAR_INDEX_SCALE;
       
   771 
       
   772     /** The value of {@code arrayIndexScale(int[].class)} */
       
   773     public static final int ARRAY_INT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_INT_INDEX_SCALE;
       
   774 
       
   775     /** The value of {@code arrayIndexScale(long[].class)} */
       
   776     public static final int ARRAY_LONG_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_LONG_INDEX_SCALE;
       
   777 
       
   778     /** The value of {@code arrayIndexScale(float[].class)} */
       
   779     public static final int ARRAY_FLOAT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_FLOAT_INDEX_SCALE;
       
   780 
       
   781     /** The value of {@code arrayIndexScale(double[].class)} */
       
   782     public static final int ARRAY_DOUBLE_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_DOUBLE_INDEX_SCALE;
       
   783 
       
   784     /** The value of {@code arrayIndexScale(Object[].class)} */
       
   785     public static final int ARRAY_OBJECT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_OBJECT_INDEX_SCALE;
       
   786 
       
   787     /**
       
   788      * Reports the size in bytes of a native pointer, as stored via {@link
       
   789      * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
       
   790      * other primitive types (as stored in native memory blocks) is determined
       
   791      * fully by their information content.
       
   792      */
       
   793     @ForceInline
       
   794     public int addressSize() {
       
   795         return theInternalUnsafe.addressSize();
       
   796     }
       
   797 
       
   798     /** The value of {@code addressSize()} */
       
   799     public static final int ADDRESS_SIZE = theInternalUnsafe.addressSize();
       
   800 
       
   801     /**
       
   802      * Reports the size in bytes of a native memory page (whatever that is).
       
   803      * This value will always be a power of two.
       
   804      */
       
   805     @ForceInline
       
   806     public int pageSize() {
       
   807         return theInternalUnsafe.pageSize();
       
   808     }
       
   809 
       
   810 
       
   811     /// random trusted operations from JNI:
       
   812 
       
   813     /**
       
   814      * Tells the VM to define a class, without security checks.  By default, the
       
   815      * class loader and protection domain come from the caller's class.
       
   816      *
       
   817      * @deprecated Use {@link java.lang.invoke.MethodHandles.Lookup#defineClass MethodHandles.Lookup#defineClass}
       
   818      * to define a class to the same class loader and in the same runtime package
       
   819      * and {@linkplain java.security.ProtectionDomain protection domain} of a
       
   820      * given {@code Lookup}'s {@linkplain java.lang.invoke.MethodHandles.Lookup#lookupClass() lookup class}.
       
   821      *
       
   822      * @see java.lang.invoke.MethodHandles.Lookup#defineClass(byte[])
       
   823      */
       
   824     @Deprecated(since="9", forRemoval=true)
       
   825     @ForceInline
       
   826     public Class<?> defineClass(String name, byte[] b, int off, int len,
       
   827                                 ClassLoader loader,
       
   828                                 ProtectionDomain protectionDomain) {
       
   829         return theInternalUnsafe.defineClass(name, b, off, len, loader, protectionDomain);
       
   830     }
       
   831 
       
   832     /**
       
   833      * Defines a class but does not make it known to the class loader or system dictionary.
       
   834      * <p>
       
   835      * For each CP entry, the corresponding CP patch must either be null or have
       
   836      * the a format that matches its tag:
       
   837      * <ul>
       
   838      * <li>Integer, Long, Float, Double: the corresponding wrapper object type from java.lang
       
   839      * <li>Utf8: a string (must have suitable syntax if used as signature or name)
       
   840      * <li>Class: any java.lang.Class object
       
   841      * <li>String: any object (not just a java.lang.String)
       
   842      * <li>InterfaceMethodRef: (NYI) a method handle to invoke on that call site's arguments
       
   843      * </ul>
       
   844      * @param hostClass context for linkage, access control, protection domain, and class loader
       
   845      * @param data      bytes of a class file
       
   846      * @param cpPatches where non-null entries exist, they replace corresponding CP entries in data
       
   847      */
       
   848     @ForceInline
       
   849     public Class<?> defineAnonymousClass(Class<?> hostClass, byte[] data, Object[] cpPatches) {
       
   850         return theInternalUnsafe.defineAnonymousClass(hostClass, data, cpPatches);
       
   851     }
       
   852 
       
   853     /**
       
   854      * Allocates an instance but does not run any constructor.
       
   855      * Initializes the class if it has not yet been.
       
   856      */
       
   857     @ForceInline
       
   858     public Object allocateInstance(Class<?> cls)
       
   859         throws InstantiationException {
       
   860         return theInternalUnsafe.allocateInstance(cls);
       
   861     }
       
   862 
       
   863     /** Throws the exception without telling the verifier. */
       
   864     @ForceInline
       
   865     public void throwException(Throwable ee) {
       
   866         theInternalUnsafe.throwException(ee);
       
   867     }
       
   868 
       
   869     /**
       
   870      * Atomically updates Java variable to {@code x} if it is currently
       
   871      * holding {@code expected}.
       
   872      *
       
   873      * <p>This operation has memory semantics of a {@code volatile} read
       
   874      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
       
   875      *
       
   876      * @return {@code true} if successful
       
   877      */
       
   878     @ForceInline
       
   879     public final boolean compareAndSwapObject(Object o, long offset,
       
   880                                               Object expected,
       
   881                                               Object x) {
       
   882         return theInternalUnsafe.compareAndSetObject(o, offset, expected, x);
       
   883     }
       
   884 
       
   885     /**
       
   886      * Atomically updates Java variable to {@code x} if it is currently
       
   887      * holding {@code expected}.
       
   888      *
       
   889      * <p>This operation has memory semantics of a {@code volatile} read
       
   890      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
       
   891      *
       
   892      * @return {@code true} if successful
       
   893      */
       
   894     @ForceInline
       
   895     public final boolean compareAndSwapInt(Object o, long offset,
       
   896                                            int expected,
       
   897                                            int x) {
       
   898         return theInternalUnsafe.compareAndSetInt(o, offset, expected, x);
       
   899     }
       
   900 
       
   901     /**
       
   902      * Atomically updates Java variable to {@code x} if it is currently
       
   903      * holding {@code expected}.
       
   904      *
       
   905      * <p>This operation has memory semantics of a {@code volatile} read
       
   906      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
       
   907      *
       
   908      * @return {@code true} if successful
       
   909      */
       
   910     @ForceInline
       
   911     public final boolean compareAndSwapLong(Object o, long offset,
       
   912                                             long expected,
       
   913                                             long x) {
       
   914         return theInternalUnsafe.compareAndSetLong(o, offset, expected, x);
       
   915     }
       
   916 
       
   917     /**
       
   918      * Fetches a reference value from a given Java variable, with volatile
       
   919      * load semantics. Otherwise identical to {@link #getObject(Object, long)}
       
   920      */
       
   921     @ForceInline
       
   922     public Object getObjectVolatile(Object o, long offset) {
       
   923         return theInternalUnsafe.getObjectVolatile(o, offset);
       
   924     }
       
   925 
       
   926     /**
       
   927      * Stores a reference value into a given Java variable, with
       
   928      * volatile store semantics. Otherwise identical to {@link #putObject(Object, long, Object)}
       
   929      */
       
   930     @ForceInline
       
   931     public void putObjectVolatile(Object o, long offset, Object x) {
       
   932         theInternalUnsafe.putObjectVolatile(o, offset, x);
       
   933     }
       
   934 
       
   935     /** Volatile version of {@link #getInt(Object, long)}  */
       
   936     @ForceInline
       
   937     public int getIntVolatile(Object o, long offset) {
       
   938         return theInternalUnsafe.getIntVolatile(o, offset);
       
   939     }
       
   940 
       
   941     /** Volatile version of {@link #putInt(Object, long, int)}  */
       
   942     @ForceInline
       
   943     public void putIntVolatile(Object o, long offset, int x) {
       
   944         theInternalUnsafe.putIntVolatile(o, offset, x);
       
   945     }
       
   946 
       
   947     /** Volatile version of {@link #getBoolean(Object, long)}  */
       
   948     @ForceInline
       
   949     public boolean getBooleanVolatile(Object o, long offset) {
       
   950         return theInternalUnsafe.getBooleanVolatile(o, offset);
       
   951     }
       
   952 
       
   953     /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
       
   954     @ForceInline
       
   955     public void putBooleanVolatile(Object o, long offset, boolean x) {
       
   956         theInternalUnsafe.putBooleanVolatile(o, offset, x);
       
   957     }
       
   958 
       
   959     /** Volatile version of {@link #getByte(Object, long)}  */
       
   960     @ForceInline
       
   961     public byte getByteVolatile(Object o, long offset) {
       
   962         return theInternalUnsafe.getByteVolatile(o, offset);
       
   963     }
       
   964 
       
   965     /** Volatile version of {@link #putByte(Object, long, byte)}  */
       
   966     @ForceInline
       
   967     public void putByteVolatile(Object o, long offset, byte x) {
       
   968         theInternalUnsafe.putByteVolatile(o, offset, x);
       
   969     }
       
   970 
       
   971     /** Volatile version of {@link #getShort(Object, long)}  */
       
   972     @ForceInline
       
   973     public short getShortVolatile(Object o, long offset) {
       
   974         return theInternalUnsafe.getShortVolatile(o, offset);
       
   975     }
       
   976 
       
   977     /** Volatile version of {@link #putShort(Object, long, short)}  */
       
   978     @ForceInline
       
   979     public void putShortVolatile(Object o, long offset, short x) {
       
   980         theInternalUnsafe.putShortVolatile(o, offset, x);
       
   981     }
       
   982 
       
   983     /** Volatile version of {@link #getChar(Object, long)}  */
       
   984     @ForceInline
       
   985     public char getCharVolatile(Object o, long offset) {
       
   986         return theInternalUnsafe.getCharVolatile(o, offset);
       
   987     }
       
   988 
       
   989     /** Volatile version of {@link #putChar(Object, long, char)}  */
       
   990     @ForceInline
       
   991     public void putCharVolatile(Object o, long offset, char x) {
       
   992         theInternalUnsafe.putCharVolatile(o, offset, x);
       
   993     }
       
   994 
       
   995     /** Volatile version of {@link #getLong(Object, long)}  */
       
   996     @ForceInline
       
   997     public long getLongVolatile(Object o, long offset) {
       
   998         return theInternalUnsafe.getLongVolatile(o, offset);
       
   999     }
       
  1000 
       
  1001     /** Volatile version of {@link #putLong(Object, long, long)}  */
       
  1002     @ForceInline
       
  1003     public void putLongVolatile(Object o, long offset, long x) {
       
  1004         theInternalUnsafe.putLongVolatile(o, offset, x);
       
  1005     }
       
  1006 
       
  1007     /** Volatile version of {@link #getFloat(Object, long)}  */
       
  1008     @ForceInline
       
  1009     public float getFloatVolatile(Object o, long offset) {
       
  1010         return theInternalUnsafe.getFloatVolatile(o, offset);
       
  1011     }
       
  1012 
       
  1013     /** Volatile version of {@link #putFloat(Object, long, float)}  */
       
  1014     @ForceInline
       
  1015     public void putFloatVolatile(Object o, long offset, float x) {
       
  1016         theInternalUnsafe.putFloatVolatile(o, offset, x);
       
  1017     }
       
  1018 
       
  1019     /** Volatile version of {@link #getDouble(Object, long)}  */
       
  1020     @ForceInline
       
  1021     public double getDoubleVolatile(Object o, long offset) {
       
  1022         return theInternalUnsafe.getDoubleVolatile(o, offset);
       
  1023     }
       
  1024 
       
  1025     /** Volatile version of {@link #putDouble(Object, long, double)}  */
       
  1026     @ForceInline
       
  1027     public void putDoubleVolatile(Object o, long offset, double x) {
       
  1028         theInternalUnsafe.putDoubleVolatile(o, offset, x);
       
  1029     }
       
  1030 
       
  1031     /**
       
  1032      * Version of {@link #putObjectVolatile(Object, long, Object)}
       
  1033      * that does not guarantee immediate visibility of the store to
       
  1034      * other threads. This method is generally only useful if the
       
  1035      * underlying field is a Java volatile (or if an array cell, one
       
  1036      * that is otherwise only accessed using volatile accesses).
       
  1037      *
       
  1038      * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
       
  1039      */
       
  1040     @ForceInline
       
  1041     public void putOrderedObject(Object o, long offset, Object x) {
       
  1042         theInternalUnsafe.putObjectRelease(o, offset, x);
       
  1043     }
       
  1044 
       
  1045     /** Ordered/Lazy version of {@link #putIntVolatile(Object, long, int)}  */
       
  1046     @ForceInline
       
  1047     public void putOrderedInt(Object o, long offset, int x) {
       
  1048         theInternalUnsafe.putIntRelease(o, offset, x);
       
  1049     }
       
  1050 
       
  1051     /** Ordered/Lazy version of {@link #putLongVolatile(Object, long, long)} */
       
  1052     @ForceInline
       
  1053     public void putOrderedLong(Object o, long offset, long x) {
       
  1054         theInternalUnsafe.putLongRelease(o, offset, x);
       
  1055     }
       
  1056 
       
  1057     /**
       
  1058      * Unblocks the given thread blocked on {@code park}, or, if it is
       
  1059      * not blocked, causes the subsequent call to {@code park} not to
       
  1060      * block.  Note: this operation is "unsafe" solely because the
       
  1061      * caller must somehow ensure that the thread has not been
       
  1062      * destroyed. Nothing special is usually required to ensure this
       
  1063      * when called from Java (in which there will ordinarily be a live
       
  1064      * reference to the thread) but this is not nearly-automatically
       
  1065      * so when calling from native code.
       
  1066      *
       
  1067      * @param thread the thread to unpark.
       
  1068      */
       
  1069     @ForceInline
       
  1070     public void unpark(Object thread) {
       
  1071         theInternalUnsafe.unpark(thread);
       
  1072     }
       
  1073 
       
  1074     /**
       
  1075      * Blocks current thread, returning when a balancing
       
  1076      * {@code unpark} occurs, or a balancing {@code unpark} has
       
  1077      * already occurred, or the thread is interrupted, or, if not
       
  1078      * absolute and time is not zero, the given time nanoseconds have
       
  1079      * elapsed, or if absolute, the given deadline in milliseconds
       
  1080      * since Epoch has passed, or spuriously (i.e., returning for no
       
  1081      * "reason"). Note: This operation is in the Unsafe class only
       
  1082      * because {@code unpark} is, so it would be strange to place it
       
  1083      * elsewhere.
       
  1084      */
       
  1085     @ForceInline
       
  1086     public void park(boolean isAbsolute, long time) {
       
  1087         theInternalUnsafe.park(isAbsolute, time);
       
  1088     }
       
  1089 
       
  1090     /**
       
  1091      * Gets the load average in the system run queue assigned
       
  1092      * to the available processors averaged over various periods of time.
       
  1093      * This method retrieves the given {@code nelem} samples and
       
  1094      * assigns to the elements of the given {@code loadavg} array.
       
  1095      * The system imposes a maximum of 3 samples, representing
       
  1096      * averages over the last 1,  5,  and  15 minutes, respectively.
       
  1097      *
       
  1098      * @param loadavg an array of double of size nelems
       
  1099      * @param nelems the number of samples to be retrieved and
       
  1100      *        must be 1 to 3.
       
  1101      *
       
  1102      * @return the number of samples actually retrieved; or -1
       
  1103      *         if the load average is unobtainable.
       
  1104      */
       
  1105     @ForceInline
       
  1106     public int getLoadAverage(double[] loadavg, int nelems) {
       
  1107         return theInternalUnsafe.getLoadAverage(loadavg, nelems);
       
  1108     }
       
  1109 
       
  1110     // The following contain CAS-based Java implementations used on
       
  1111     // platforms not supporting native instructions
       
  1112 
       
  1113     /**
       
  1114      * Atomically adds the given value to the current value of a field
       
  1115      * or array element within the given object {@code o}
       
  1116      * at the given {@code offset}.
       
  1117      *
       
  1118      * @param o object/array to update the field/element in
       
  1119      * @param offset field/element offset
       
  1120      * @param delta the value to add
       
  1121      * @return the previous value
       
  1122      * @since 1.8
       
  1123      */
       
  1124     @ForceInline
       
  1125     public final int getAndAddInt(Object o, long offset, int delta) {
       
  1126         return theInternalUnsafe.getAndAddInt(o, offset, delta);
       
  1127     }
       
  1128 
       
  1129     /**
       
  1130      * Atomically adds the given value to the current value of a field
       
  1131      * or array element within the given object {@code o}
       
  1132      * at the given {@code offset}.
       
  1133      *
       
  1134      * @param o object/array to update the field/element in
       
  1135      * @param offset field/element offset
       
  1136      * @param delta the value to add
       
  1137      * @return the previous value
       
  1138      * @since 1.8
       
  1139      */
       
  1140     @ForceInline
       
  1141     public final long getAndAddLong(Object o, long offset, long delta) {
       
  1142         return theInternalUnsafe.getAndAddLong(o, offset, delta);
       
  1143     }
       
  1144 
       
  1145     /**
       
  1146      * Atomically exchanges the given value with the current value of
       
  1147      * a field or array element within the given object {@code o}
       
  1148      * at the given {@code offset}.
       
  1149      *
       
  1150      * @param o object/array to update the field/element in
       
  1151      * @param offset field/element offset
       
  1152      * @param newValue new value
       
  1153      * @return the previous value
       
  1154      * @since 1.8
       
  1155      */
       
  1156     @ForceInline
       
  1157     public final int getAndSetInt(Object o, long offset, int newValue) {
       
  1158         return theInternalUnsafe.getAndSetInt(o, offset, newValue);
       
  1159     }
       
  1160 
       
  1161     /**
       
  1162      * Atomically exchanges the given value with the current value of
       
  1163      * a field or array element within the given object {@code o}
       
  1164      * at the given {@code offset}.
       
  1165      *
       
  1166      * @param o object/array to update the field/element in
       
  1167      * @param offset field/element offset
       
  1168      * @param newValue new value
       
  1169      * @return the previous value
       
  1170      * @since 1.8
       
  1171      */
       
  1172     @ForceInline
       
  1173     public final long getAndSetLong(Object o, long offset, long newValue) {
       
  1174         return theInternalUnsafe.getAndSetLong(o, offset, newValue);
       
  1175     }
       
  1176 
       
  1177     /**
       
  1178      * Atomically exchanges the given reference value with the current
       
  1179      * reference value of a field or array element within the given
       
  1180      * object {@code o} at the given {@code offset}.
       
  1181      *
       
  1182      * @param o object/array to update the field/element in
       
  1183      * @param offset field/element offset
       
  1184      * @param newValue new value
       
  1185      * @return the previous value
       
  1186      * @since 1.8
       
  1187      */
       
  1188     @ForceInline
       
  1189     public final Object getAndSetObject(Object o, long offset, Object newValue) {
       
  1190         return theInternalUnsafe.getAndSetObject(o, offset, newValue);
       
  1191     }
       
  1192 
       
  1193 
       
  1194     /**
       
  1195      * Ensures that loads before the fence will not be reordered with loads and
       
  1196      * stores after the fence; a "LoadLoad plus LoadStore barrier".
       
  1197      *
       
  1198      * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
       
  1199      * (an "acquire fence").
       
  1200      *
       
  1201      * A pure LoadLoad fence is not provided, since the addition of LoadStore
       
  1202      * is almost always desired, and most current hardware instructions that
       
  1203      * provide a LoadLoad barrier also provide a LoadStore barrier for free.
       
  1204      * @since 1.8
       
  1205      */
       
  1206     @ForceInline
       
  1207     public void loadFence() {
       
  1208         theInternalUnsafe.loadFence();
       
  1209     }
       
  1210 
       
  1211     /**
       
  1212      * Ensures that loads and stores before the fence will not be reordered with
       
  1213      * stores after the fence; a "StoreStore plus LoadStore barrier".
       
  1214      *
       
  1215      * Corresponds to C11 atomic_thread_fence(memory_order_release)
       
  1216      * (a "release fence").
       
  1217      *
       
  1218      * A pure StoreStore fence is not provided, since the addition of LoadStore
       
  1219      * is almost always desired, and most current hardware instructions that
       
  1220      * provide a StoreStore barrier also provide a LoadStore barrier for free.
       
  1221      * @since 1.8
       
  1222      */
       
  1223     @ForceInline
       
  1224     public void storeFence() {
       
  1225         theInternalUnsafe.storeFence();
       
  1226     }
       
  1227 
       
  1228     /**
       
  1229      * Ensures that loads and stores before the fence will not be reordered
       
  1230      * with loads and stores after the fence.  Implies the effects of both
       
  1231      * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
       
  1232      * barrier.
       
  1233      *
       
  1234      * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
       
  1235      * @since 1.8
       
  1236      */
       
  1237     @ForceInline
       
  1238     public void fullFence() {
       
  1239         theInternalUnsafe.fullFence();
       
  1240     }
       
  1241 
       
  1242     /**
       
  1243      * Invokes the given direct byte buffer's cleaner, if any.
       
  1244      *
       
  1245      * @param directBuffer a direct byte buffer
       
  1246      * @throws NullPointerException if {@code directBuffer} is null
       
  1247      * @throws IllegalArgumentException if {@code directBuffer} is non-direct,
       
  1248      * or is a {@link java.nio.Buffer#slice slice}, or is a
       
  1249      * {@link java.nio.Buffer#duplicate duplicate}
       
  1250      * @since 9
       
  1251      */
       
  1252     public void invokeCleaner(java.nio.ByteBuffer directBuffer) {
       
  1253         if (!directBuffer.isDirect())
       
  1254             throw new IllegalArgumentException("buffer is non-direct");
       
  1255 
       
  1256         DirectBuffer db = (DirectBuffer)directBuffer;
       
  1257         if (db.attachment() != null)
       
  1258             throw new IllegalArgumentException("duplicate or slice");
       
  1259 
       
  1260         Cleaner cleaner = db.cleaner();
       
  1261         if (cleaner != null) {
       
  1262             cleaner.clean();
       
  1263         }
       
  1264     }
       
  1265 }