src/java.desktop/share/native/libjavajpeg/jdhuff.c
changeset 47216 71c04702a3d5
parent 46874 13b399635568
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * reserved comment block
       
     3  * DO NOT REMOVE OR ALTER!
       
     4  */
       
     5 /*
       
     6  * jdhuff.c
       
     7  *
       
     8  * Copyright (C) 1991-1997, Thomas G. Lane.
       
     9  * This file is part of the Independent JPEG Group's software.
       
    10  * For conditions of distribution and use, see the accompanying README file.
       
    11  *
       
    12  * This file contains Huffman entropy decoding routines.
       
    13  *
       
    14  * Much of the complexity here has to do with supporting input suspension.
       
    15  * If the data source module demands suspension, we want to be able to back
       
    16  * up to the start of the current MCU.  To do this, we copy state variables
       
    17  * into local working storage, and update them back to the permanent
       
    18  * storage only upon successful completion of an MCU.
       
    19  */
       
    20 
       
    21 #define JPEG_INTERNALS
       
    22 #include "jinclude.h"
       
    23 #include "jpeglib.h"
       
    24 #include "jdhuff.h"             /* Declarations shared with jdphuff.c */
       
    25 
       
    26 
       
    27 /*
       
    28  * Expanded entropy decoder object for Huffman decoding.
       
    29  *
       
    30  * The savable_state subrecord contains fields that change within an MCU,
       
    31  * but must not be updated permanently until we complete the MCU.
       
    32  */
       
    33 
       
    34 typedef struct {
       
    35   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
       
    36 } savable_state;
       
    37 
       
    38 /* This macro is to work around compilers with missing or broken
       
    39  * structure assignment.  You'll need to fix this code if you have
       
    40  * such a compiler and you change MAX_COMPS_IN_SCAN.
       
    41  */
       
    42 
       
    43 #ifndef NO_STRUCT_ASSIGN
       
    44 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
       
    45 #else
       
    46 #if MAX_COMPS_IN_SCAN == 4
       
    47 #define ASSIGN_STATE(dest,src)  \
       
    48         ((dest).last_dc_val[0] = (src).last_dc_val[0], \
       
    49          (dest).last_dc_val[1] = (src).last_dc_val[1], \
       
    50          (dest).last_dc_val[2] = (src).last_dc_val[2], \
       
    51          (dest).last_dc_val[3] = (src).last_dc_val[3])
       
    52 #endif
       
    53 #endif
       
    54 
       
    55 
       
    56 typedef struct {
       
    57   struct jpeg_entropy_decoder pub; /* public fields */
       
    58 
       
    59   /* These fields are loaded into local variables at start of each MCU.
       
    60    * In case of suspension, we exit WITHOUT updating them.
       
    61    */
       
    62   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
       
    63   savable_state saved;          /* Other state at start of MCU */
       
    64 
       
    65   /* These fields are NOT loaded into local working state. */
       
    66   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
       
    67 
       
    68   /* Pointers to derived tables (these workspaces have image lifespan) */
       
    69   d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
       
    70   d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
       
    71 
       
    72   /* Precalculated info set up by start_pass for use in decode_mcu: */
       
    73 
       
    74   /* Pointers to derived tables to be used for each block within an MCU */
       
    75   d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
       
    76   d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
       
    77   /* Whether we care about the DC and AC coefficient values for each block */
       
    78   boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
       
    79   boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
       
    80 } huff_entropy_decoder;
       
    81 
       
    82 typedef huff_entropy_decoder * huff_entropy_ptr;
       
    83 
       
    84 
       
    85 /*
       
    86  * Initialize for a Huffman-compressed scan.
       
    87  */
       
    88 
       
    89 METHODDEF(void)
       
    90 start_pass_huff_decoder (j_decompress_ptr cinfo)
       
    91 {
       
    92   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
       
    93   int ci, blkn, dctbl, actbl;
       
    94   jpeg_component_info * compptr;
       
    95 
       
    96   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
       
    97    * This ought to be an error condition, but we make it a warning because
       
    98    * there are some baseline files out there with all zeroes in these bytes.
       
    99    */
       
   100   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
       
   101       cinfo->Ah != 0 || cinfo->Al != 0)
       
   102     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
       
   103 
       
   104   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
       
   105     compptr = cinfo->cur_comp_info[ci];
       
   106     dctbl = compptr->dc_tbl_no;
       
   107     actbl = compptr->ac_tbl_no;
       
   108     /* Compute derived values for Huffman tables */
       
   109     /* We may do this more than once for a table, but it's not expensive */
       
   110     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
       
   111                             & entropy->dc_derived_tbls[dctbl]);
       
   112     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
       
   113                             & entropy->ac_derived_tbls[actbl]);
       
   114     /* Initialize DC predictions to 0 */
       
   115     entropy->saved.last_dc_val[ci] = 0;
       
   116   }
       
   117 
       
   118   /* Precalculate decoding info for each block in an MCU of this scan */
       
   119   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
       
   120     ci = cinfo->MCU_membership[blkn];
       
   121     compptr = cinfo->cur_comp_info[ci];
       
   122     /* Precalculate which table to use for each block */
       
   123     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
       
   124     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
       
   125     /* Decide whether we really care about the coefficient values */
       
   126     if (compptr->component_needed) {
       
   127       entropy->dc_needed[blkn] = TRUE;
       
   128       /* we don't need the ACs if producing a 1/8th-size image */
       
   129       entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
       
   130     } else {
       
   131       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
       
   132     }
       
   133   }
       
   134 
       
   135   /* Initialize bitread state variables */
       
   136   entropy->bitstate.bits_left = 0;
       
   137   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
       
   138   entropy->pub.insufficient_data = FALSE;
       
   139 
       
   140   /* Initialize restart counter */
       
   141   entropy->restarts_to_go = cinfo->restart_interval;
       
   142 }
       
   143 
       
   144 
       
   145 /*
       
   146  * Compute the derived values for a Huffman table.
       
   147  * This routine also performs some validation checks on the table.
       
   148  *
       
   149  * Note this is also used by jdphuff.c.
       
   150  */
       
   151 
       
   152 GLOBAL(void)
       
   153 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
       
   154                          d_derived_tbl ** pdtbl)
       
   155 {
       
   156   JHUFF_TBL *htbl;
       
   157   d_derived_tbl *dtbl;
       
   158   int p, i, l, si, numsymbols;
       
   159   int lookbits, ctr;
       
   160   char huffsize[257];
       
   161   unsigned int huffcode[257];
       
   162   unsigned int code;
       
   163 
       
   164   /* Note that huffsize[] and huffcode[] are filled in code-length order,
       
   165    * paralleling the order of the symbols themselves in htbl->huffval[].
       
   166    */
       
   167 
       
   168   /* Find the input Huffman table */
       
   169   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
       
   170     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
       
   171   htbl =
       
   172     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
       
   173   if (htbl == NULL)
       
   174     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
       
   175 
       
   176   /* Allocate a workspace if we haven't already done so. */
       
   177   if (*pdtbl == NULL)
       
   178     *pdtbl = (d_derived_tbl *)
       
   179       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
   180                                   SIZEOF(d_derived_tbl));
       
   181   dtbl = *pdtbl;
       
   182   dtbl->pub = htbl;             /* fill in back link */
       
   183 
       
   184   /* Figure C.1: make table of Huffman code length for each symbol */
       
   185 
       
   186   p = 0;
       
   187   for (l = 1; l <= 16; l++) {
       
   188     i = (int) htbl->bits[l];
       
   189     if (i < 0 || p + i > 256)   /* protect against table overrun */
       
   190       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
       
   191     while (i--)
       
   192       huffsize[p++] = (char) l;
       
   193   }
       
   194   huffsize[p] = 0;
       
   195   numsymbols = p;
       
   196 
       
   197   /* Figure C.2: generate the codes themselves */
       
   198   /* We also validate that the counts represent a legal Huffman code tree. */
       
   199 
       
   200   code = 0;
       
   201   si = huffsize[0];
       
   202   p = 0;
       
   203   while (huffsize[p]) {
       
   204     while (((int) huffsize[p]) == si) {
       
   205       huffcode[p++] = code;
       
   206       code++;
       
   207     }
       
   208     /* code is now 1 more than the last code used for codelength si; but
       
   209      * it must still fit in si bits, since no code is allowed to be all ones.
       
   210      */
       
   211     if (((INT32) code) >= (((INT32) 1) << si))
       
   212       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
       
   213     code <<= 1;
       
   214     si++;
       
   215   }
       
   216 
       
   217   /* Figure F.15: generate decoding tables for bit-sequential decoding */
       
   218 
       
   219   p = 0;
       
   220   for (l = 1; l <= 16; l++) {
       
   221     if (htbl->bits[l]) {
       
   222       /* valoffset[l] = huffval[] index of 1st symbol of code length l,
       
   223        * minus the minimum code of length l
       
   224        */
       
   225       dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
       
   226       p += htbl->bits[l];
       
   227       dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
       
   228     } else {
       
   229       dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
       
   230     }
       
   231   }
       
   232   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
       
   233 
       
   234   /* Compute lookahead tables to speed up decoding.
       
   235    * First we set all the table entries to 0, indicating "too long";
       
   236    * then we iterate through the Huffman codes that are short enough and
       
   237    * fill in all the entries that correspond to bit sequences starting
       
   238    * with that code.
       
   239    */
       
   240 
       
   241   MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
       
   242 
       
   243   p = 0;
       
   244   for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
       
   245     for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
       
   246       /* l = current code's length, p = its index in huffcode[] & huffval[]. */
       
   247       /* Generate left-justified code followed by all possible bit sequences */
       
   248       lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
       
   249       for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
       
   250         dtbl->look_nbits[lookbits] = l;
       
   251         dtbl->look_sym[lookbits] = htbl->huffval[p];
       
   252         lookbits++;
       
   253       }
       
   254     }
       
   255   }
       
   256 
       
   257   /* Validate symbols as being reasonable.
       
   258    * For AC tables, we make no check, but accept all byte values 0..255.
       
   259    * For DC tables, we require the symbols to be in range 0..15.
       
   260    * (Tighter bounds could be applied depending on the data depth and mode,
       
   261    * but this is sufficient to ensure safe decoding.)
       
   262    */
       
   263   if (isDC) {
       
   264     for (i = 0; i < numsymbols; i++) {
       
   265       int sym = htbl->huffval[i];
       
   266       if (sym < 0 || sym > 15)
       
   267         ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
       
   268     }
       
   269   }
       
   270 }
       
   271 
       
   272 
       
   273 /*
       
   274  * Out-of-line code for bit fetching (shared with jdphuff.c).
       
   275  * See jdhuff.h for info about usage.
       
   276  * Note: current values of get_buffer and bits_left are passed as parameters,
       
   277  * but are returned in the corresponding fields of the state struct.
       
   278  *
       
   279  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
       
   280  * of get_buffer to be used.  (On machines with wider words, an even larger
       
   281  * buffer could be used.)  However, on some machines 32-bit shifts are
       
   282  * quite slow and take time proportional to the number of places shifted.
       
   283  * (This is true with most PC compilers, for instance.)  In this case it may
       
   284  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
       
   285  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
       
   286  */
       
   287 
       
   288 #ifdef SLOW_SHIFT_32
       
   289 #define MIN_GET_BITS  15        /* minimum allowable value */
       
   290 #else
       
   291 #define MIN_GET_BITS  (BIT_BUF_SIZE-7)
       
   292 #endif
       
   293 
       
   294 
       
   295 GLOBAL(boolean)
       
   296 jpeg_fill_bit_buffer (bitread_working_state * state,
       
   297                       register bit_buf_type get_buffer, register int bits_left,
       
   298                       int nbits)
       
   299 /* Load up the bit buffer to a depth of at least nbits */
       
   300 {
       
   301   /* Copy heavily used state fields into locals (hopefully registers) */
       
   302   register const JOCTET * next_input_byte = state->next_input_byte;
       
   303   register size_t bytes_in_buffer = state->bytes_in_buffer;
       
   304   j_decompress_ptr cinfo = state->cinfo;
       
   305 
       
   306   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
       
   307   /* (It is assumed that no request will be for more than that many bits.) */
       
   308   /* We fail to do so only if we hit a marker or are forced to suspend. */
       
   309 
       
   310   if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
       
   311     while (bits_left < MIN_GET_BITS) {
       
   312       register int c;
       
   313 
       
   314       /* Attempt to read a byte */
       
   315       if (bytes_in_buffer == 0) {
       
   316         if (! (*cinfo->src->fill_input_buffer) (cinfo))
       
   317           return FALSE;
       
   318         next_input_byte = cinfo->src->next_input_byte;
       
   319         bytes_in_buffer = cinfo->src->bytes_in_buffer;
       
   320       }
       
   321       bytes_in_buffer--;
       
   322       c = GETJOCTET(*next_input_byte++);
       
   323 
       
   324       /* If it's 0xFF, check and discard stuffed zero byte */
       
   325       if (c == 0xFF) {
       
   326         /* Loop here to discard any padding FF's on terminating marker,
       
   327          * so that we can save a valid unread_marker value.  NOTE: we will
       
   328          * accept multiple FF's followed by a 0 as meaning a single FF data
       
   329          * byte.  This data pattern is not valid according to the standard.
       
   330          */
       
   331         do {
       
   332           if (bytes_in_buffer == 0) {
       
   333             if (! (*cinfo->src->fill_input_buffer) (cinfo))
       
   334               return FALSE;
       
   335             next_input_byte = cinfo->src->next_input_byte;
       
   336             bytes_in_buffer = cinfo->src->bytes_in_buffer;
       
   337           }
       
   338           bytes_in_buffer--;
       
   339           c = GETJOCTET(*next_input_byte++);
       
   340         } while (c == 0xFF);
       
   341 
       
   342         if (c == 0) {
       
   343           /* Found FF/00, which represents an FF data byte */
       
   344           c = 0xFF;
       
   345         } else {
       
   346           /* Oops, it's actually a marker indicating end of compressed data.
       
   347            * Save the marker code for later use.
       
   348            * Fine point: it might appear that we should save the marker into
       
   349            * bitread working state, not straight into permanent state.  But
       
   350            * once we have hit a marker, we cannot need to suspend within the
       
   351            * current MCU, because we will read no more bytes from the data
       
   352            * source.  So it is OK to update permanent state right away.
       
   353            */
       
   354           cinfo->unread_marker = c;
       
   355           /* See if we need to insert some fake zero bits. */
       
   356           goto no_more_bytes;
       
   357         }
       
   358       }
       
   359 
       
   360       /* OK, load c into get_buffer */
       
   361       get_buffer = (get_buffer << 8) | c;
       
   362       bits_left += 8;
       
   363     } /* end while */
       
   364   } else {
       
   365   no_more_bytes:
       
   366     /* We get here if we've read the marker that terminates the compressed
       
   367      * data segment.  There should be enough bits in the buffer register
       
   368      * to satisfy the request; if so, no problem.
       
   369      */
       
   370     if (nbits > bits_left) {
       
   371       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
       
   372        * the data stream, so that we can produce some kind of image.
       
   373        * We use a nonvolatile flag to ensure that only one warning message
       
   374        * appears per data segment.
       
   375        */
       
   376       if (! cinfo->entropy->insufficient_data) {
       
   377         WARNMS(cinfo, JWRN_HIT_MARKER);
       
   378         cinfo->entropy->insufficient_data = TRUE;
       
   379       }
       
   380       /* Fill the buffer with zero bits */
       
   381       get_buffer <<= MIN_GET_BITS - bits_left;
       
   382       bits_left = MIN_GET_BITS;
       
   383     }
       
   384   }
       
   385 
       
   386   /* Unload the local registers */
       
   387   state->next_input_byte = next_input_byte;
       
   388   state->bytes_in_buffer = bytes_in_buffer;
       
   389   state->get_buffer = get_buffer;
       
   390   state->bits_left = bits_left;
       
   391 
       
   392   return TRUE;
       
   393 }
       
   394 
       
   395 
       
   396 /*
       
   397  * Out-of-line code for Huffman code decoding.
       
   398  * See jdhuff.h for info about usage.
       
   399  */
       
   400 
       
   401 GLOBAL(int)
       
   402 jpeg_huff_decode (bitread_working_state * state,
       
   403                   register bit_buf_type get_buffer, register int bits_left,
       
   404                   d_derived_tbl * htbl, int min_bits)
       
   405 {
       
   406   register int l = min_bits;
       
   407   register INT32 code;
       
   408 
       
   409   /* HUFF_DECODE has determined that the code is at least min_bits */
       
   410   /* bits long, so fetch that many bits in one swoop. */
       
   411 
       
   412   CHECK_BIT_BUFFER(*state, l, return -1);
       
   413   code = GET_BITS(l);
       
   414 
       
   415   /* Collect the rest of the Huffman code one bit at a time. */
       
   416   /* This is per Figure F.16 in the JPEG spec. */
       
   417 
       
   418   while (code > htbl->maxcode[l]) {
       
   419     code <<= 1;
       
   420     CHECK_BIT_BUFFER(*state, 1, return -1);
       
   421     code |= GET_BITS(1);
       
   422     l++;
       
   423   }
       
   424 
       
   425   /* Unload the local registers */
       
   426   state->get_buffer = get_buffer;
       
   427   state->bits_left = bits_left;
       
   428 
       
   429   /* With garbage input we may reach the sentinel value l = 17. */
       
   430 
       
   431   if (l > 16) {
       
   432     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
       
   433     return 0;                   /* fake a zero as the safest result */
       
   434   }
       
   435 
       
   436   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
       
   437 }
       
   438 
       
   439 
       
   440 /*
       
   441  * Figure F.12: extend sign bit.
       
   442  * On some machines, a shift and add will be faster than a table lookup.
       
   443  */
       
   444 
       
   445 #ifdef AVOID_TABLES
       
   446 
       
   447 #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
       
   448 
       
   449 #else
       
   450 
       
   451 #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
       
   452 
       
   453 static const int extend_test[16] =   /* entry n is 2**(n-1) */
       
   454   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
       
   455     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
       
   456 
       
   457 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
       
   458   { 0,
       
   459     (int)(((unsigned)(~0)<<1)  + 1), (int)(((unsigned)(~0)<<2)  + 1),
       
   460     (int)(((unsigned)(~0)<<3)  + 1), (int)(((unsigned)(~0)<<4)  + 1),
       
   461     (int)(((unsigned)(~0)<<5)  + 1), (int)(((unsigned)(~0)<<6)  + 1),
       
   462     (int)(((unsigned)(~0)<<7)  + 1), (int)(((unsigned)(~0)<<8)  + 1),
       
   463     (int)(((unsigned)(~0)<<9)  + 1), (int)(((unsigned)(~0)<<10) + 1),
       
   464     (int)(((unsigned)(~0)<<11) + 1), (int)(((unsigned)(~0)<<12) + 1),
       
   465     (int)(((unsigned)(~0)<<13) + 1), (int)(((unsigned)(~0)<<14) + 1),
       
   466     (int)(((unsigned)(~0)<<15) + 1) };
       
   467 
       
   468 #endif /* AVOID_TABLES */
       
   469 
       
   470 
       
   471 /*
       
   472  * Check for a restart marker & resynchronize decoder.
       
   473  * Returns FALSE if must suspend.
       
   474  */
       
   475 
       
   476 LOCAL(boolean)
       
   477 process_restart (j_decompress_ptr cinfo)
       
   478 {
       
   479   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
       
   480   int ci;
       
   481 
       
   482   /* Throw away any unused bits remaining in bit buffer; */
       
   483   /* include any full bytes in next_marker's count of discarded bytes */
       
   484   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
       
   485   entropy->bitstate.bits_left = 0;
       
   486 
       
   487   /* Advance past the RSTn marker */
       
   488   if (! (*cinfo->marker->read_restart_marker) (cinfo))
       
   489     return FALSE;
       
   490 
       
   491   /* Re-initialize DC predictions to 0 */
       
   492   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
       
   493     entropy->saved.last_dc_val[ci] = 0;
       
   494 
       
   495   /* Reset restart counter */
       
   496   entropy->restarts_to_go = cinfo->restart_interval;
       
   497 
       
   498   /* Reset out-of-data flag, unless read_restart_marker left us smack up
       
   499    * against a marker.  In that case we will end up treating the next data
       
   500    * segment as empty, and we can avoid producing bogus output pixels by
       
   501    * leaving the flag set.
       
   502    */
       
   503   if (cinfo->unread_marker == 0)
       
   504     entropy->pub.insufficient_data = FALSE;
       
   505 
       
   506   return TRUE;
       
   507 }
       
   508 
       
   509 
       
   510 /*
       
   511  * Decode and return one MCU's worth of Huffman-compressed coefficients.
       
   512  * The coefficients are reordered from zigzag order into natural array order,
       
   513  * but are not dequantized.
       
   514  *
       
   515  * The i'th block of the MCU is stored into the block pointed to by
       
   516  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
       
   517  * (Wholesale zeroing is usually a little faster than retail...)
       
   518  *
       
   519  * Returns FALSE if data source requested suspension.  In that case no
       
   520  * changes have been made to permanent state.  (Exception: some output
       
   521  * coefficients may already have been assigned.  This is harmless for
       
   522  * this module, since we'll just re-assign them on the next call.)
       
   523  */
       
   524 
       
   525 METHODDEF(boolean)
       
   526 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
       
   527 {
       
   528   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
       
   529   int blkn;
       
   530   BITREAD_STATE_VARS;
       
   531   savable_state state;
       
   532 
       
   533   /* Process restart marker if needed; may have to suspend */
       
   534   if (cinfo->restart_interval) {
       
   535     if (entropy->restarts_to_go == 0)
       
   536       if (! process_restart(cinfo))
       
   537         return FALSE;
       
   538   }
       
   539 
       
   540   /* If we've run out of data, just leave the MCU set to zeroes.
       
   541    * This way, we return uniform gray for the remainder of the segment.
       
   542    */
       
   543   if (! entropy->pub.insufficient_data) {
       
   544 
       
   545     /* Load up working state */
       
   546     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
       
   547     ASSIGN_STATE(state, entropy->saved);
       
   548 
       
   549     /* Outer loop handles each block in the MCU */
       
   550 
       
   551     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
       
   552       JBLOCKROW block = MCU_data[blkn];
       
   553       d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
       
   554       d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
       
   555       register int s, k, r;
       
   556 
       
   557       /* Decode a single block's worth of coefficients */
       
   558 
       
   559       /* Section F.2.2.1: decode the DC coefficient difference */
       
   560       HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
       
   561       if (s) {
       
   562         CHECK_BIT_BUFFER(br_state, s, return FALSE);
       
   563         r = GET_BITS(s);
       
   564         s = HUFF_EXTEND(r, s);
       
   565       }
       
   566 
       
   567       if (entropy->dc_needed[blkn]) {
       
   568         /* Convert DC difference to actual value, update last_dc_val */
       
   569         int ci = cinfo->MCU_membership[blkn];
       
   570         s += state.last_dc_val[ci];
       
   571         state.last_dc_val[ci] = s;
       
   572         /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
       
   573         (*block)[0] = (JCOEF) s;
       
   574       }
       
   575 
       
   576       if (entropy->ac_needed[blkn]) {
       
   577 
       
   578         /* Section F.2.2.2: decode the AC coefficients */
       
   579         /* Since zeroes are skipped, output area must be cleared beforehand */
       
   580         for (k = 1; k < DCTSIZE2; k++) {
       
   581           HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
       
   582 
       
   583           r = s >> 4;
       
   584           s &= 15;
       
   585 
       
   586           if (s) {
       
   587             k += r;
       
   588             CHECK_BIT_BUFFER(br_state, s, return FALSE);
       
   589             r = GET_BITS(s);
       
   590             s = HUFF_EXTEND(r, s);
       
   591             /* Output coefficient in natural (dezigzagged) order.
       
   592              * Note: the extra entries in jpeg_natural_order[] will save us
       
   593              * if k >= DCTSIZE2, which could happen if the data is corrupted.
       
   594              */
       
   595             (*block)[jpeg_natural_order[k]] = (JCOEF) s;
       
   596           } else {
       
   597             if (r != 15)
       
   598               break;
       
   599             k += 15;
       
   600           }
       
   601         }
       
   602 
       
   603       } else {
       
   604 
       
   605         /* Section F.2.2.2: decode the AC coefficients */
       
   606         /* In this path we just discard the values */
       
   607         for (k = 1; k < DCTSIZE2; k++) {
       
   608           HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
       
   609 
       
   610           r = s >> 4;
       
   611           s &= 15;
       
   612 
       
   613           if (s) {
       
   614             k += r;
       
   615             CHECK_BIT_BUFFER(br_state, s, return FALSE);
       
   616             DROP_BITS(s);
       
   617           } else {
       
   618             if (r != 15)
       
   619               break;
       
   620             k += 15;
       
   621           }
       
   622         }
       
   623 
       
   624       }
       
   625     }
       
   626 
       
   627     /* Completed MCU, so update state */
       
   628     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
       
   629     ASSIGN_STATE(entropy->saved, state);
       
   630   }
       
   631 
       
   632   /* Account for restart interval (no-op if not using restarts) */
       
   633   entropy->restarts_to_go--;
       
   634 
       
   635   return TRUE;
       
   636 }
       
   637 
       
   638 
       
   639 /*
       
   640  * Module initialization routine for Huffman entropy decoding.
       
   641  */
       
   642 
       
   643 GLOBAL(void)
       
   644 jinit_huff_decoder (j_decompress_ptr cinfo)
       
   645 {
       
   646   huff_entropy_ptr entropy;
       
   647   int i;
       
   648 
       
   649   entropy = (huff_entropy_ptr)
       
   650     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
       
   651                                 SIZEOF(huff_entropy_decoder));
       
   652   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
       
   653   entropy->pub.start_pass = start_pass_huff_decoder;
       
   654   entropy->pub.decode_mcu = decode_mcu;
       
   655 
       
   656   /* Mark tables unallocated */
       
   657   for (i = 0; i < NUM_HUFF_TBLS; i++) {
       
   658     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
       
   659   }
       
   660 }