src/hotspot/share/utilities/bitMap.cpp
changeset 47216 71c04702a3d5
parent 46958 a13bd8c6b7a2
child 47616 4f26db3c02af
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "memory/allocation.inline.hpp"
       
    27 #include "memory/resourceArea.hpp"
       
    28 #include "runtime/atomic.hpp"
       
    29 #include "utilities/bitMap.inline.hpp"
       
    30 #include "utilities/copy.hpp"
       
    31 #include "utilities/debug.hpp"
       
    32 
       
    33 STATIC_ASSERT(sizeof(BitMap::bm_word_t) == BytesPerWord); // "Implementation assumption."
       
    34 
       
    35 typedef BitMap::bm_word_t bm_word_t;
       
    36 typedef BitMap::idx_t     idx_t;
       
    37 
       
    38 class ResourceBitMapAllocator : StackObj {
       
    39  public:
       
    40   bm_word_t* allocate(idx_t size_in_words) const {
       
    41     return NEW_RESOURCE_ARRAY(bm_word_t, size_in_words);
       
    42   }
       
    43   void free(bm_word_t* map, idx_t size_in_words) const {
       
    44     // Don't free resource allocated arrays.
       
    45   }
       
    46 };
       
    47 
       
    48 class CHeapBitMapAllocator : StackObj {
       
    49   MEMFLAGS _flags;
       
    50 
       
    51  public:
       
    52   CHeapBitMapAllocator(MEMFLAGS flags) : _flags(flags) {}
       
    53   bm_word_t* allocate(size_t size_in_words) const {
       
    54     return ArrayAllocator<bm_word_t>::allocate(size_in_words, _flags);
       
    55   }
       
    56   void free(bm_word_t* map, idx_t size_in_words) const {
       
    57     ArrayAllocator<bm_word_t>::free(map, size_in_words);
       
    58   }
       
    59 };
       
    60 
       
    61 class ArenaBitMapAllocator : StackObj {
       
    62   Arena* _arena;
       
    63 
       
    64  public:
       
    65   ArenaBitMapAllocator(Arena* arena) : _arena(arena) {}
       
    66   bm_word_t* allocate(idx_t size_in_words) const {
       
    67     return (bm_word_t*)_arena->Amalloc(size_in_words * BytesPerWord);
       
    68   }
       
    69   void free(bm_word_t* map, idx_t size_in_words) const {
       
    70     // ArenaBitMaps currently don't free memory.
       
    71   }
       
    72 };
       
    73 
       
    74 template <class Allocator>
       
    75 BitMap::bm_word_t* BitMap::reallocate(const Allocator& allocator, bm_word_t* old_map, idx_t old_size_in_bits, idx_t new_size_in_bits) {
       
    76   size_t old_size_in_words = calc_size_in_words(old_size_in_bits);
       
    77   size_t new_size_in_words = calc_size_in_words(new_size_in_bits);
       
    78 
       
    79   bm_word_t* map = NULL;
       
    80 
       
    81   if (new_size_in_words > 0) {
       
    82     map = allocator.allocate(new_size_in_words);
       
    83 
       
    84     Copy::disjoint_words((HeapWord*)old_map, (HeapWord*) map,
       
    85                          MIN2(old_size_in_words, new_size_in_words));
       
    86 
       
    87     if (new_size_in_words > old_size_in_words) {
       
    88       clear_range_of_words(map, old_size_in_words, new_size_in_words);
       
    89     }
       
    90   }
       
    91 
       
    92   if (old_map != NULL) {
       
    93     allocator.free(old_map, old_size_in_words);
       
    94   }
       
    95 
       
    96   return map;
       
    97 }
       
    98 
       
    99 template <class Allocator>
       
   100 bm_word_t* BitMap::allocate(const Allocator& allocator, idx_t size_in_bits) {
       
   101   // Reuse reallocate to ensure that the new memory is cleared.
       
   102   return reallocate(allocator, NULL, 0, size_in_bits);
       
   103 }
       
   104 
       
   105 template <class Allocator>
       
   106 void BitMap::free(const Allocator& allocator, bm_word_t* map, idx_t  size_in_bits) {
       
   107   bm_word_t* ret = reallocate(allocator, map, size_in_bits, 0);
       
   108   assert(ret == NULL, "Reallocate shouldn't have allocated");
       
   109 }
       
   110 
       
   111 template <class Allocator>
       
   112 void BitMap::resize(const Allocator& allocator, idx_t new_size_in_bits) {
       
   113   bm_word_t* new_map = reallocate(allocator, map(), size(), new_size_in_bits);
       
   114 
       
   115   update(new_map, new_size_in_bits);
       
   116 }
       
   117 
       
   118 template <class Allocator>
       
   119 void BitMap::initialize(const Allocator& allocator, idx_t size_in_bits) {
       
   120   assert(map() == NULL, "precondition");
       
   121   assert(size() == 0,   "precondition");
       
   122 
       
   123   resize(allocator, size_in_bits);
       
   124 }
       
   125 
       
   126 template <class Allocator>
       
   127 void BitMap::reinitialize(const Allocator& allocator, idx_t new_size_in_bits) {
       
   128   // Remove previous bits.
       
   129   resize(allocator, 0);
       
   130 
       
   131   initialize(allocator, new_size_in_bits);
       
   132 }
       
   133 
       
   134 ResourceBitMap::ResourceBitMap(idx_t size_in_bits)
       
   135     : BitMap(allocate(ResourceBitMapAllocator(), size_in_bits), size_in_bits) {
       
   136 }
       
   137 
       
   138 void ResourceBitMap::resize(idx_t new_size_in_bits) {
       
   139   BitMap::resize(ResourceBitMapAllocator(), new_size_in_bits);
       
   140 }
       
   141 
       
   142 void ResourceBitMap::initialize(idx_t size_in_bits) {
       
   143   BitMap::initialize(ResourceBitMapAllocator(), size_in_bits);
       
   144 }
       
   145 
       
   146 void ResourceBitMap::reinitialize(idx_t size_in_bits) {
       
   147   BitMap::reinitialize(ResourceBitMapAllocator(), size_in_bits);
       
   148 }
       
   149 
       
   150 ArenaBitMap::ArenaBitMap(Arena* arena, idx_t size_in_bits)
       
   151     : BitMap(allocate(ArenaBitMapAllocator(arena), size_in_bits), size_in_bits) {
       
   152 }
       
   153 
       
   154 CHeapBitMap::CHeapBitMap(idx_t size_in_bits, MEMFLAGS flags)
       
   155     : BitMap(allocate(CHeapBitMapAllocator(flags), size_in_bits), size_in_bits), _flags(flags) {
       
   156 }
       
   157 
       
   158 CHeapBitMap::~CHeapBitMap() {
       
   159   free(CHeapBitMapAllocator(_flags), map(), size());
       
   160 }
       
   161 
       
   162 void CHeapBitMap::resize(idx_t new_size_in_bits) {
       
   163   BitMap::resize(CHeapBitMapAllocator(_flags), new_size_in_bits);
       
   164 }
       
   165 
       
   166 void CHeapBitMap::initialize(idx_t size_in_bits) {
       
   167   BitMap::initialize(CHeapBitMapAllocator(_flags), size_in_bits);
       
   168 }
       
   169 
       
   170 void CHeapBitMap::reinitialize(idx_t size_in_bits) {
       
   171   BitMap::reinitialize(CHeapBitMapAllocator(_flags), size_in_bits);
       
   172 }
       
   173 
       
   174 #ifdef ASSERT
       
   175 void BitMap::verify_index(idx_t index) const {
       
   176   assert(index < _size, "BitMap index out of bounds");
       
   177 }
       
   178 
       
   179 void BitMap::verify_range(idx_t beg_index, idx_t end_index) const {
       
   180   assert(beg_index <= end_index, "BitMap range error");
       
   181   // Note that [0,0) and [size,size) are both valid ranges.
       
   182   if (end_index != _size) verify_index(end_index);
       
   183 }
       
   184 #endif // #ifdef ASSERT
       
   185 
       
   186 void BitMap::pretouch() {
       
   187   os::pretouch_memory(word_addr(0), word_addr(size()));
       
   188 }
       
   189 
       
   190 void BitMap::set_range_within_word(idx_t beg, idx_t end) {
       
   191   // With a valid range (beg <= end), this test ensures that end != 0, as
       
   192   // required by inverted_bit_mask_for_range.  Also avoids an unnecessary write.
       
   193   if (beg != end) {
       
   194     bm_word_t mask = inverted_bit_mask_for_range(beg, end);
       
   195     *word_addr(beg) |= ~mask;
       
   196   }
       
   197 }
       
   198 
       
   199 void BitMap::clear_range_within_word(idx_t beg, idx_t end) {
       
   200   // With a valid range (beg <= end), this test ensures that end != 0, as
       
   201   // required by inverted_bit_mask_for_range.  Also avoids an unnecessary write.
       
   202   if (beg != end) {
       
   203     bm_word_t mask = inverted_bit_mask_for_range(beg, end);
       
   204     *word_addr(beg) &= mask;
       
   205   }
       
   206 }
       
   207 
       
   208 void BitMap::par_put_range_within_word(idx_t beg, idx_t end, bool value) {
       
   209   assert(value == 0 || value == 1, "0 for clear, 1 for set");
       
   210   // With a valid range (beg <= end), this test ensures that end != 0, as
       
   211   // required by inverted_bit_mask_for_range.  Also avoids an unnecessary write.
       
   212   if (beg != end) {
       
   213     bm_word_t* pw = word_addr(beg);
       
   214     bm_word_t  w  = *pw;
       
   215     bm_word_t  mr = inverted_bit_mask_for_range(beg, end);
       
   216     bm_word_t  nw = value ? (w | ~mr) : (w & mr);
       
   217     while (true) {
       
   218       bm_word_t res = Atomic::cmpxchg(nw, pw, w);
       
   219       if (res == w) break;
       
   220       w  = res;
       
   221       nw = value ? (w | ~mr) : (w & mr);
       
   222     }
       
   223   }
       
   224 }
       
   225 
       
   226 void BitMap::set_range(idx_t beg, idx_t end) {
       
   227   verify_range(beg, end);
       
   228 
       
   229   idx_t beg_full_word = word_index_round_up(beg);
       
   230   idx_t end_full_word = word_index(end);
       
   231 
       
   232   if (beg_full_word < end_full_word) {
       
   233     // The range includes at least one full word.
       
   234     set_range_within_word(beg, bit_index(beg_full_word));
       
   235     set_range_of_words(beg_full_word, end_full_word);
       
   236     set_range_within_word(bit_index(end_full_word), end);
       
   237   } else {
       
   238     // The range spans at most 2 partial words.
       
   239     idx_t boundary = MIN2(bit_index(beg_full_word), end);
       
   240     set_range_within_word(beg, boundary);
       
   241     set_range_within_word(boundary, end);
       
   242   }
       
   243 }
       
   244 
       
   245 void BitMap::clear_range(idx_t beg, idx_t end) {
       
   246   verify_range(beg, end);
       
   247 
       
   248   idx_t beg_full_word = word_index_round_up(beg);
       
   249   idx_t end_full_word = word_index(end);
       
   250 
       
   251   if (beg_full_word < end_full_word) {
       
   252     // The range includes at least one full word.
       
   253     clear_range_within_word(beg, bit_index(beg_full_word));
       
   254     clear_range_of_words(beg_full_word, end_full_word);
       
   255     clear_range_within_word(bit_index(end_full_word), end);
       
   256   } else {
       
   257     // The range spans at most 2 partial words.
       
   258     idx_t boundary = MIN2(bit_index(beg_full_word), end);
       
   259     clear_range_within_word(beg, boundary);
       
   260     clear_range_within_word(boundary, end);
       
   261   }
       
   262 }
       
   263 
       
   264 void BitMap::set_large_range(idx_t beg, idx_t end) {
       
   265   verify_range(beg, end);
       
   266 
       
   267   idx_t beg_full_word = word_index_round_up(beg);
       
   268   idx_t end_full_word = word_index(end);
       
   269 
       
   270   assert(end_full_word - beg_full_word >= 32,
       
   271          "the range must include at least 32 bytes");
       
   272 
       
   273   // The range includes at least one full word.
       
   274   set_range_within_word(beg, bit_index(beg_full_word));
       
   275   set_large_range_of_words(beg_full_word, end_full_word);
       
   276   set_range_within_word(bit_index(end_full_word), end);
       
   277 }
       
   278 
       
   279 void BitMap::clear_large_range(idx_t beg, idx_t end) {
       
   280   verify_range(beg, end);
       
   281 
       
   282   idx_t beg_full_word = word_index_round_up(beg);
       
   283   idx_t end_full_word = word_index(end);
       
   284 
       
   285   if (end_full_word - beg_full_word < 32) {
       
   286     clear_range(beg, end);
       
   287     return;
       
   288   }
       
   289 
       
   290   // The range includes at least one full word.
       
   291   clear_range_within_word(beg, bit_index(beg_full_word));
       
   292   clear_large_range_of_words(beg_full_word, end_full_word);
       
   293   clear_range_within_word(bit_index(end_full_word), end);
       
   294 }
       
   295 
       
   296 void BitMap::at_put(idx_t offset, bool value) {
       
   297   if (value) {
       
   298     set_bit(offset);
       
   299   } else {
       
   300     clear_bit(offset);
       
   301   }
       
   302 }
       
   303 
       
   304 // Return true to indicate that this thread changed
       
   305 // the bit, false to indicate that someone else did.
       
   306 // In either case, the requested bit is in the
       
   307 // requested state some time during the period that
       
   308 // this thread is executing this call. More importantly,
       
   309 // if no other thread is executing an action to
       
   310 // change the requested bit to a state other than
       
   311 // the one that this thread is trying to set it to,
       
   312 // then the the bit is in the expected state
       
   313 // at exit from this method. However, rather than
       
   314 // make such a strong assertion here, based on
       
   315 // assuming such constrained use (which though true
       
   316 // today, could change in the future to service some
       
   317 // funky parallel algorithm), we encourage callers
       
   318 // to do such verification, as and when appropriate.
       
   319 bool BitMap::par_at_put(idx_t bit, bool value) {
       
   320   return value ? par_set_bit(bit) : par_clear_bit(bit);
       
   321 }
       
   322 
       
   323 void BitMap::at_put_range(idx_t start_offset, idx_t end_offset, bool value) {
       
   324   if (value) {
       
   325     set_range(start_offset, end_offset);
       
   326   } else {
       
   327     clear_range(start_offset, end_offset);
       
   328   }
       
   329 }
       
   330 
       
   331 void BitMap::par_at_put_range(idx_t beg, idx_t end, bool value) {
       
   332   verify_range(beg, end);
       
   333 
       
   334   idx_t beg_full_word = word_index_round_up(beg);
       
   335   idx_t end_full_word = word_index(end);
       
   336 
       
   337   if (beg_full_word < end_full_word) {
       
   338     // The range includes at least one full word.
       
   339     par_put_range_within_word(beg, bit_index(beg_full_word), value);
       
   340     if (value) {
       
   341       set_range_of_words(beg_full_word, end_full_word);
       
   342     } else {
       
   343       clear_range_of_words(beg_full_word, end_full_word);
       
   344     }
       
   345     par_put_range_within_word(bit_index(end_full_word), end, value);
       
   346   } else {
       
   347     // The range spans at most 2 partial words.
       
   348     idx_t boundary = MIN2(bit_index(beg_full_word), end);
       
   349     par_put_range_within_word(beg, boundary, value);
       
   350     par_put_range_within_word(boundary, end, value);
       
   351   }
       
   352 
       
   353 }
       
   354 
       
   355 void BitMap::at_put_large_range(idx_t beg, idx_t end, bool value) {
       
   356   if (value) {
       
   357     set_large_range(beg, end);
       
   358   } else {
       
   359     clear_large_range(beg, end);
       
   360   }
       
   361 }
       
   362 
       
   363 void BitMap::par_at_put_large_range(idx_t beg, idx_t end, bool value) {
       
   364   verify_range(beg, end);
       
   365 
       
   366   idx_t beg_full_word = word_index_round_up(beg);
       
   367   idx_t end_full_word = word_index(end);
       
   368 
       
   369   assert(end_full_word - beg_full_word >= 32,
       
   370          "the range must include at least 32 bytes");
       
   371 
       
   372   // The range includes at least one full word.
       
   373   par_put_range_within_word(beg, bit_index(beg_full_word), value);
       
   374   if (value) {
       
   375     set_large_range_of_words(beg_full_word, end_full_word);
       
   376   } else {
       
   377     clear_large_range_of_words(beg_full_word, end_full_word);
       
   378   }
       
   379   par_put_range_within_word(bit_index(end_full_word), end, value);
       
   380 }
       
   381 
       
   382 inline bm_word_t tail_mask(idx_t tail_bits) {
       
   383   assert(tail_bits != 0, "precondition"); // Works, but shouldn't be called.
       
   384   assert(tail_bits < (idx_t)BitsPerWord, "precondition");
       
   385   return (bm_word_t(1) << tail_bits) - 1;
       
   386 }
       
   387 
       
   388 // Get the low tail_bits of value, which is the last partial word of a map.
       
   389 inline bm_word_t tail_of_map(bm_word_t value, idx_t tail_bits) {
       
   390   return value & tail_mask(tail_bits);
       
   391 }
       
   392 
       
   393 // Compute the new last word of a map with a non-aligned length.
       
   394 // new_value has the new trailing bits of the map in the low tail_bits.
       
   395 // old_value is the last word of the map, including bits beyond the end.
       
   396 // Returns old_value with the low tail_bits replaced by the corresponding
       
   397 // bits in new_value.
       
   398 inline bm_word_t merge_tail_of_map(bm_word_t new_value,
       
   399                                    bm_word_t old_value,
       
   400                                    idx_t tail_bits) {
       
   401   bm_word_t mask = tail_mask(tail_bits);
       
   402   return (new_value & mask) | (old_value & ~mask);
       
   403 }
       
   404 
       
   405 bool BitMap::contains(const BitMap& other) const {
       
   406   assert(size() == other.size(), "must have same size");
       
   407   const bm_word_t* dest_map = map();
       
   408   const bm_word_t* other_map = other.map();
       
   409   idx_t limit = word_index(size());
       
   410   for (idx_t index = 0; index < limit; ++index) {
       
   411     // false if other bitmap has bits set which are clear in this bitmap.
       
   412     if ((~dest_map[index] & other_map[index]) != 0) return false;
       
   413   }
       
   414   idx_t rest = bit_in_word(size());
       
   415   // true unless there is a partial-word tail in which the other
       
   416   // bitmap has bits set which are clear in this bitmap.
       
   417   return (rest == 0) || tail_of_map(~dest_map[limit] & other_map[limit], rest) == 0;
       
   418 }
       
   419 
       
   420 bool BitMap::intersects(const BitMap& other) const {
       
   421   assert(size() == other.size(), "must have same size");
       
   422   const bm_word_t* dest_map = map();
       
   423   const bm_word_t* other_map = other.map();
       
   424   idx_t limit = word_index(size());
       
   425   for (idx_t index = 0; index < limit; ++index) {
       
   426     if ((dest_map[index] & other_map[index]) != 0) return true;
       
   427   }
       
   428   idx_t rest = bit_in_word(size());
       
   429   // false unless there is a partial-word tail with non-empty intersection.
       
   430   return (rest > 0) && tail_of_map(dest_map[limit] & other_map[limit], rest) != 0;
       
   431 }
       
   432 
       
   433 void BitMap::set_union(const BitMap& other) {
       
   434   assert(size() == other.size(), "must have same size");
       
   435   bm_word_t* dest_map = map();
       
   436   const bm_word_t* other_map = other.map();
       
   437   idx_t limit = word_index(size());
       
   438   for (idx_t index = 0; index < limit; ++index) {
       
   439     dest_map[index] |= other_map[index];
       
   440   }
       
   441   idx_t rest = bit_in_word(size());
       
   442   if (rest > 0) {
       
   443     bm_word_t orig = dest_map[limit];
       
   444     dest_map[limit] = merge_tail_of_map(orig | other_map[limit], orig, rest);
       
   445   }
       
   446 }
       
   447 
       
   448 void BitMap::set_difference(const BitMap& other) {
       
   449   assert(size() == other.size(), "must have same size");
       
   450   bm_word_t* dest_map = map();
       
   451   const bm_word_t* other_map = other.map();
       
   452   idx_t limit = word_index(size());
       
   453   for (idx_t index = 0; index < limit; ++index) {
       
   454     dest_map[index] &= ~other_map[index];
       
   455   }
       
   456   idx_t rest = bit_in_word(size());
       
   457   if (rest > 0) {
       
   458     bm_word_t orig = dest_map[limit];
       
   459     dest_map[limit] = merge_tail_of_map(orig & ~other_map[limit], orig, rest);
       
   460   }
       
   461 }
       
   462 
       
   463 void BitMap::set_intersection(const BitMap& other) {
       
   464   assert(size() == other.size(), "must have same size");
       
   465   bm_word_t* dest_map = map();
       
   466   const bm_word_t* other_map = other.map();
       
   467   idx_t limit = word_index(size());
       
   468   for (idx_t index = 0; index < limit; ++index) {
       
   469     dest_map[index] &= other_map[index];
       
   470   }
       
   471   idx_t rest = bit_in_word(size());
       
   472   if (rest > 0) {
       
   473     bm_word_t orig = dest_map[limit];
       
   474     dest_map[limit] = merge_tail_of_map(orig & other_map[limit], orig, rest);
       
   475   }
       
   476 }
       
   477 
       
   478 bool BitMap::set_union_with_result(const BitMap& other) {
       
   479   assert(size() == other.size(), "must have same size");
       
   480   bool changed = false;
       
   481   bm_word_t* dest_map = map();
       
   482   const bm_word_t* other_map = other.map();
       
   483   idx_t limit = word_index(size());
       
   484   for (idx_t index = 0; index < limit; ++index) {
       
   485     bm_word_t orig = dest_map[index];
       
   486     bm_word_t temp = orig | other_map[index];
       
   487     changed = changed || (temp != orig);
       
   488     dest_map[index] = temp;
       
   489   }
       
   490   idx_t rest = bit_in_word(size());
       
   491   if (rest > 0) {
       
   492     bm_word_t orig = dest_map[limit];
       
   493     bm_word_t temp = merge_tail_of_map(orig | other_map[limit], orig, rest);
       
   494     changed = changed || (temp != orig);
       
   495     dest_map[limit] = temp;
       
   496   }
       
   497   return changed;
       
   498 }
       
   499 
       
   500 bool BitMap::set_difference_with_result(const BitMap& other) {
       
   501   assert(size() == other.size(), "must have same size");
       
   502   bool changed = false;
       
   503   bm_word_t* dest_map = map();
       
   504   const bm_word_t* other_map = other.map();
       
   505   idx_t limit = word_index(size());
       
   506   for (idx_t index = 0; index < limit; ++index) {
       
   507     bm_word_t orig = dest_map[index];
       
   508     bm_word_t temp = orig & ~other_map[index];
       
   509     changed = changed || (temp != orig);
       
   510     dest_map[index] = temp;
       
   511   }
       
   512   idx_t rest = bit_in_word(size());
       
   513   if (rest > 0) {
       
   514     bm_word_t orig = dest_map[limit];
       
   515     bm_word_t temp = merge_tail_of_map(orig & ~other_map[limit], orig, rest);
       
   516     changed = changed || (temp != orig);
       
   517     dest_map[limit] = temp;
       
   518   }
       
   519   return changed;
       
   520 }
       
   521 
       
   522 bool BitMap::set_intersection_with_result(const BitMap& other) {
       
   523   assert(size() == other.size(), "must have same size");
       
   524   bool changed = false;
       
   525   bm_word_t* dest_map = map();
       
   526   const bm_word_t* other_map = other.map();
       
   527   idx_t limit = word_index(size());
       
   528   for (idx_t index = 0; index < limit; ++index) {
       
   529     bm_word_t orig = dest_map[index];
       
   530     bm_word_t temp = orig & other_map[index];
       
   531     changed = changed || (temp != orig);
       
   532     dest_map[index] = temp;
       
   533   }
       
   534   idx_t rest = bit_in_word(size());
       
   535   if (rest > 0) {
       
   536     bm_word_t orig = dest_map[limit];
       
   537     bm_word_t temp = merge_tail_of_map(orig & other_map[limit], orig, rest);
       
   538     changed = changed || (temp != orig);
       
   539     dest_map[limit] = temp;
       
   540   }
       
   541   return changed;
       
   542 }
       
   543 
       
   544 void BitMap::set_from(const BitMap& other) {
       
   545   assert(size() == other.size(), "must have same size");
       
   546   bm_word_t* dest_map = map();
       
   547   const bm_word_t* other_map = other.map();
       
   548   idx_t copy_words = word_index(size());
       
   549   Copy::disjoint_words((HeapWord*)other_map, (HeapWord*)dest_map, copy_words);
       
   550   idx_t rest = bit_in_word(size());
       
   551   if (rest > 0) {
       
   552     dest_map[copy_words] = merge_tail_of_map(other_map[copy_words],
       
   553                                              dest_map[copy_words],
       
   554                                              rest);
       
   555   }
       
   556 }
       
   557 
       
   558 bool BitMap::is_same(const BitMap& other) const {
       
   559   assert(size() == other.size(), "must have same size");
       
   560   const bm_word_t* dest_map = map();
       
   561   const bm_word_t* other_map = other.map();
       
   562   idx_t limit = word_index(size());
       
   563   for (idx_t index = 0; index < limit; ++index) {
       
   564     if (dest_map[index] != other_map[index]) return false;
       
   565   }
       
   566   idx_t rest = bit_in_word(size());
       
   567   return (rest == 0) || (tail_of_map(dest_map[limit] ^ other_map[limit], rest) == 0);
       
   568 }
       
   569 
       
   570 bool BitMap::is_full() const {
       
   571   const bm_word_t* words = map();
       
   572   idx_t limit = word_index(size());
       
   573   for (idx_t index = 0; index < limit; ++index) {
       
   574     if (~words[index] != 0) return false;
       
   575   }
       
   576   idx_t rest = bit_in_word(size());
       
   577   return (rest == 0) || (tail_of_map(~words[limit], rest) == 0);
       
   578 }
       
   579 
       
   580 bool BitMap::is_empty() const {
       
   581   const bm_word_t* words = map();
       
   582   idx_t limit = word_index(size());
       
   583   for (idx_t index = 0; index < limit; ++index) {
       
   584     if (words[index] != 0) return false;
       
   585   }
       
   586   idx_t rest = bit_in_word(size());
       
   587   return (rest == 0) || (tail_of_map(words[limit], rest) == 0);
       
   588 }
       
   589 
       
   590 void BitMap::clear_large() {
       
   591   clear_large_range_of_words(0, size_in_words());
       
   592 }
       
   593 
       
   594 // Note that if the closure itself modifies the bitmap
       
   595 // then modifications in and to the left of the _bit_ being
       
   596 // currently sampled will not be seen. Note also that the
       
   597 // interval [leftOffset, rightOffset) is right open.
       
   598 bool BitMap::iterate(BitMapClosure* blk, idx_t leftOffset, idx_t rightOffset) {
       
   599   verify_range(leftOffset, rightOffset);
       
   600 
       
   601   idx_t startIndex = word_index(leftOffset);
       
   602   idx_t endIndex   = MIN2(word_index(rightOffset) + 1, size_in_words());
       
   603   for (idx_t index = startIndex, offset = leftOffset;
       
   604        offset < rightOffset && index < endIndex;
       
   605        offset = (++index) << LogBitsPerWord) {
       
   606     idx_t rest = map(index) >> (offset & (BitsPerWord - 1));
       
   607     for (; offset < rightOffset && rest != 0; offset++) {
       
   608       if (rest & 1) {
       
   609         if (!blk->do_bit(offset)) return false;
       
   610         //  resample at each closure application
       
   611         // (see, for instance, CMS bug 4525989)
       
   612         rest = map(index) >> (offset & (BitsPerWord -1));
       
   613       }
       
   614       rest = rest >> 1;
       
   615     }
       
   616   }
       
   617   return true;
       
   618 }
       
   619 
       
   620 const BitMap::idx_t* BitMap::_pop_count_table = NULL;
       
   621 
       
   622 void BitMap::init_pop_count_table() {
       
   623   if (_pop_count_table == NULL) {
       
   624     BitMap::idx_t *table = NEW_C_HEAP_ARRAY(idx_t, 256, mtInternal);
       
   625     for (uint i = 0; i < 256; i++) {
       
   626       table[i] = num_set_bits(i);
       
   627     }
       
   628 
       
   629     if (!Atomic::replace_if_null(table, &_pop_count_table)) {
       
   630       guarantee(_pop_count_table != NULL, "invariant");
       
   631       FREE_C_HEAP_ARRAY(idx_t, table);
       
   632     }
       
   633   }
       
   634 }
       
   635 
       
   636 BitMap::idx_t BitMap::num_set_bits(bm_word_t w) {
       
   637   idx_t bits = 0;
       
   638 
       
   639   while (w != 0) {
       
   640     while ((w & 1) == 0) {
       
   641       w >>= 1;
       
   642     }
       
   643     bits++;
       
   644     w >>= 1;
       
   645   }
       
   646   return bits;
       
   647 }
       
   648 
       
   649 BitMap::idx_t BitMap::num_set_bits_from_table(unsigned char c) {
       
   650   assert(_pop_count_table != NULL, "precondition");
       
   651   return _pop_count_table[c];
       
   652 }
       
   653 
       
   654 BitMap::idx_t BitMap::count_one_bits() const {
       
   655   init_pop_count_table(); // If necessary.
       
   656   idx_t sum = 0;
       
   657   typedef unsigned char uchar;
       
   658   for (idx_t i = 0; i < size_in_words(); i++) {
       
   659     bm_word_t w = map()[i];
       
   660     for (size_t j = 0; j < sizeof(bm_word_t); j++) {
       
   661       sum += num_set_bits_from_table(uchar(w & 255));
       
   662       w >>= 8;
       
   663     }
       
   664   }
       
   665   return sum;
       
   666 }
       
   667 
       
   668 void BitMap::print_on_error(outputStream* st, const char* prefix) const {
       
   669   st->print_cr("%s[" PTR_FORMAT ", " PTR_FORMAT ")",
       
   670       prefix, p2i(map()), p2i((char*)map() + (size() >> LogBitsPerByte)));
       
   671 }
       
   672 
       
   673 #ifndef PRODUCT
       
   674 
       
   675 void BitMap::print_on(outputStream* st) const {
       
   676   tty->print("Bitmap(" SIZE_FORMAT "):", size());
       
   677   for (idx_t index = 0; index < size(); index++) {
       
   678     tty->print("%c", at(index) ? '1' : '0');
       
   679   }
       
   680   tty->cr();
       
   681 }
       
   682 
       
   683 #endif