src/hotspot/share/runtime/sharedRuntime.cpp
changeset 47216 71c04702a3d5
parent 46998 efb404beeefb
child 47765 b7c7428eaab9
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "aot/aotLoader.hpp"
       
    27 #include "classfile/stringTable.hpp"
       
    28 #include "classfile/systemDictionary.hpp"
       
    29 #include "classfile/vmSymbols.hpp"
       
    30 #include "code/codeCache.hpp"
       
    31 #include "code/compiledIC.hpp"
       
    32 #include "code/scopeDesc.hpp"
       
    33 #include "code/vtableStubs.hpp"
       
    34 #include "compiler/abstractCompiler.hpp"
       
    35 #include "compiler/compileBroker.hpp"
       
    36 #include "compiler/disassembler.hpp"
       
    37 #include "gc/shared/gcLocker.inline.hpp"
       
    38 #include "interpreter/interpreter.hpp"
       
    39 #include "interpreter/interpreterRuntime.hpp"
       
    40 #include "logging/log.hpp"
       
    41 #include "memory/metaspaceShared.hpp"
       
    42 #include "memory/resourceArea.hpp"
       
    43 #include "memory/universe.inline.hpp"
       
    44 #include "oops/klass.hpp"
       
    45 #include "oops/objArrayKlass.hpp"
       
    46 #include "oops/oop.inline.hpp"
       
    47 #include "prims/forte.hpp"
       
    48 #include "prims/jvm.h"
       
    49 #include "prims/jvmtiExport.hpp"
       
    50 #include "prims/methodHandles.hpp"
       
    51 #include "prims/nativeLookup.hpp"
       
    52 #include "runtime/arguments.hpp"
       
    53 #include "runtime/atomic.hpp"
       
    54 #include "runtime/biasedLocking.hpp"
       
    55 #include "runtime/compilationPolicy.hpp"
       
    56 #include "runtime/handles.inline.hpp"
       
    57 #include "runtime/init.hpp"
       
    58 #include "runtime/interfaceSupport.hpp"
       
    59 #include "runtime/java.hpp"
       
    60 #include "runtime/javaCalls.hpp"
       
    61 #include "runtime/sharedRuntime.hpp"
       
    62 #include "runtime/stubRoutines.hpp"
       
    63 #include "runtime/vframe.hpp"
       
    64 #include "runtime/vframeArray.hpp"
       
    65 #include "trace/tracing.hpp"
       
    66 #include "utilities/copy.hpp"
       
    67 #include "utilities/dtrace.hpp"
       
    68 #include "utilities/events.hpp"
       
    69 #include "utilities/hashtable.inline.hpp"
       
    70 #include "utilities/macros.hpp"
       
    71 #include "utilities/xmlstream.hpp"
       
    72 #ifdef COMPILER1
       
    73 #include "c1/c1_Runtime1.hpp"
       
    74 #endif
       
    75 
       
    76 // Shared stub locations
       
    77 RuntimeStub*        SharedRuntime::_wrong_method_blob;
       
    78 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
       
    79 RuntimeStub*        SharedRuntime::_ic_miss_blob;
       
    80 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
       
    81 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
       
    82 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
       
    83 address             SharedRuntime::_resolve_static_call_entry;
       
    84 
       
    85 DeoptimizationBlob* SharedRuntime::_deopt_blob;
       
    86 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
       
    87 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
       
    88 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
       
    89 
       
    90 #ifdef COMPILER2
       
    91 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
       
    92 #endif // COMPILER2
       
    93 
       
    94 
       
    95 //----------------------------generate_stubs-----------------------------------
       
    96 void SharedRuntime::generate_stubs() {
       
    97   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
       
    98   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
       
    99   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
       
   100   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
       
   101   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
       
   102   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
       
   103   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
       
   104 
       
   105 #if defined(COMPILER2) || INCLUDE_JVMCI
       
   106   // Vectors are generated only by C2 and JVMCI.
       
   107   bool support_wide = is_wide_vector(MaxVectorSize);
       
   108   if (support_wide) {
       
   109     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
       
   110   }
       
   111 #endif // COMPILER2 || INCLUDE_JVMCI
       
   112   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
       
   113   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
       
   114 
       
   115   generate_deopt_blob();
       
   116 
       
   117 #ifdef COMPILER2
       
   118   generate_uncommon_trap_blob();
       
   119 #endif // COMPILER2
       
   120 }
       
   121 
       
   122 #include <math.h>
       
   123 
       
   124 // Implementation of SharedRuntime
       
   125 
       
   126 #ifndef PRODUCT
       
   127 // For statistics
       
   128 int SharedRuntime::_ic_miss_ctr = 0;
       
   129 int SharedRuntime::_wrong_method_ctr = 0;
       
   130 int SharedRuntime::_resolve_static_ctr = 0;
       
   131 int SharedRuntime::_resolve_virtual_ctr = 0;
       
   132 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
       
   133 int SharedRuntime::_implicit_null_throws = 0;
       
   134 int SharedRuntime::_implicit_div0_throws = 0;
       
   135 int SharedRuntime::_throw_null_ctr = 0;
       
   136 
       
   137 int SharedRuntime::_nof_normal_calls = 0;
       
   138 int SharedRuntime::_nof_optimized_calls = 0;
       
   139 int SharedRuntime::_nof_inlined_calls = 0;
       
   140 int SharedRuntime::_nof_megamorphic_calls = 0;
       
   141 int SharedRuntime::_nof_static_calls = 0;
       
   142 int SharedRuntime::_nof_inlined_static_calls = 0;
       
   143 int SharedRuntime::_nof_interface_calls = 0;
       
   144 int SharedRuntime::_nof_optimized_interface_calls = 0;
       
   145 int SharedRuntime::_nof_inlined_interface_calls = 0;
       
   146 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
       
   147 int SharedRuntime::_nof_removable_exceptions = 0;
       
   148 
       
   149 int SharedRuntime::_new_instance_ctr=0;
       
   150 int SharedRuntime::_new_array_ctr=0;
       
   151 int SharedRuntime::_multi1_ctr=0;
       
   152 int SharedRuntime::_multi2_ctr=0;
       
   153 int SharedRuntime::_multi3_ctr=0;
       
   154 int SharedRuntime::_multi4_ctr=0;
       
   155 int SharedRuntime::_multi5_ctr=0;
       
   156 int SharedRuntime::_mon_enter_stub_ctr=0;
       
   157 int SharedRuntime::_mon_exit_stub_ctr=0;
       
   158 int SharedRuntime::_mon_enter_ctr=0;
       
   159 int SharedRuntime::_mon_exit_ctr=0;
       
   160 int SharedRuntime::_partial_subtype_ctr=0;
       
   161 int SharedRuntime::_jbyte_array_copy_ctr=0;
       
   162 int SharedRuntime::_jshort_array_copy_ctr=0;
       
   163 int SharedRuntime::_jint_array_copy_ctr=0;
       
   164 int SharedRuntime::_jlong_array_copy_ctr=0;
       
   165 int SharedRuntime::_oop_array_copy_ctr=0;
       
   166 int SharedRuntime::_checkcast_array_copy_ctr=0;
       
   167 int SharedRuntime::_unsafe_array_copy_ctr=0;
       
   168 int SharedRuntime::_generic_array_copy_ctr=0;
       
   169 int SharedRuntime::_slow_array_copy_ctr=0;
       
   170 int SharedRuntime::_find_handler_ctr=0;
       
   171 int SharedRuntime::_rethrow_ctr=0;
       
   172 
       
   173 int     SharedRuntime::_ICmiss_index                    = 0;
       
   174 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
       
   175 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
       
   176 
       
   177 
       
   178 void SharedRuntime::trace_ic_miss(address at) {
       
   179   for (int i = 0; i < _ICmiss_index; i++) {
       
   180     if (_ICmiss_at[i] == at) {
       
   181       _ICmiss_count[i]++;
       
   182       return;
       
   183     }
       
   184   }
       
   185   int index = _ICmiss_index++;
       
   186   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
       
   187   _ICmiss_at[index] = at;
       
   188   _ICmiss_count[index] = 1;
       
   189 }
       
   190 
       
   191 void SharedRuntime::print_ic_miss_histogram() {
       
   192   if (ICMissHistogram) {
       
   193     tty->print_cr("IC Miss Histogram:");
       
   194     int tot_misses = 0;
       
   195     for (int i = 0; i < _ICmiss_index; i++) {
       
   196       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
       
   197       tot_misses += _ICmiss_count[i];
       
   198     }
       
   199     tty->print_cr("Total IC misses: %7d", tot_misses);
       
   200   }
       
   201 }
       
   202 #endif // PRODUCT
       
   203 
       
   204 #if INCLUDE_ALL_GCS
       
   205 
       
   206 // G1 write-barrier pre: executed before a pointer store.
       
   207 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
       
   208   if (orig == NULL) {
       
   209     assert(false, "should be optimized out");
       
   210     return;
       
   211   }
       
   212   assert(oopDesc::is_oop(orig, true /* ignore mark word */), "Error");
       
   213   // store the original value that was in the field reference
       
   214   thread->satb_mark_queue().enqueue(orig);
       
   215 JRT_END
       
   216 
       
   217 // G1 write-barrier post: executed after a pointer store.
       
   218 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
       
   219   thread->dirty_card_queue().enqueue(card_addr);
       
   220 JRT_END
       
   221 
       
   222 #endif // INCLUDE_ALL_GCS
       
   223 
       
   224 
       
   225 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
       
   226   return x * y;
       
   227 JRT_END
       
   228 
       
   229 
       
   230 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
       
   231   if (x == min_jlong && y == CONST64(-1)) {
       
   232     return x;
       
   233   } else {
       
   234     return x / y;
       
   235   }
       
   236 JRT_END
       
   237 
       
   238 
       
   239 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
       
   240   if (x == min_jlong && y == CONST64(-1)) {
       
   241     return 0;
       
   242   } else {
       
   243     return x % y;
       
   244   }
       
   245 JRT_END
       
   246 
       
   247 
       
   248 const juint  float_sign_mask  = 0x7FFFFFFF;
       
   249 const juint  float_infinity   = 0x7F800000;
       
   250 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
       
   251 const julong double_infinity  = CONST64(0x7FF0000000000000);
       
   252 
       
   253 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
       
   254 #ifdef _WIN64
       
   255   // 64-bit Windows on amd64 returns the wrong values for
       
   256   // infinity operands.
       
   257   union { jfloat f; juint i; } xbits, ybits;
       
   258   xbits.f = x;
       
   259   ybits.f = y;
       
   260   // x Mod Infinity == x unless x is infinity
       
   261   if (((xbits.i & float_sign_mask) != float_infinity) &&
       
   262        ((ybits.i & float_sign_mask) == float_infinity) ) {
       
   263     return x;
       
   264   }
       
   265   return ((jfloat)fmod_winx64((double)x, (double)y));
       
   266 #else
       
   267   return ((jfloat)fmod((double)x,(double)y));
       
   268 #endif
       
   269 JRT_END
       
   270 
       
   271 
       
   272 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
       
   273 #ifdef _WIN64
       
   274   union { jdouble d; julong l; } xbits, ybits;
       
   275   xbits.d = x;
       
   276   ybits.d = y;
       
   277   // x Mod Infinity == x unless x is infinity
       
   278   if (((xbits.l & double_sign_mask) != double_infinity) &&
       
   279        ((ybits.l & double_sign_mask) == double_infinity) ) {
       
   280     return x;
       
   281   }
       
   282   return ((jdouble)fmod_winx64((double)x, (double)y));
       
   283 #else
       
   284   return ((jdouble)fmod((double)x,(double)y));
       
   285 #endif
       
   286 JRT_END
       
   287 
       
   288 #ifdef __SOFTFP__
       
   289 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
       
   290   return x + y;
       
   291 JRT_END
       
   292 
       
   293 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
       
   294   return x - y;
       
   295 JRT_END
       
   296 
       
   297 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
       
   298   return x * y;
       
   299 JRT_END
       
   300 
       
   301 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
       
   302   return x / y;
       
   303 JRT_END
       
   304 
       
   305 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
       
   306   return x + y;
       
   307 JRT_END
       
   308 
       
   309 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
       
   310   return x - y;
       
   311 JRT_END
       
   312 
       
   313 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
       
   314   return x * y;
       
   315 JRT_END
       
   316 
       
   317 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
       
   318   return x / y;
       
   319 JRT_END
       
   320 
       
   321 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
       
   322   return (jfloat)x;
       
   323 JRT_END
       
   324 
       
   325 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
       
   326   return (jdouble)x;
       
   327 JRT_END
       
   328 
       
   329 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
       
   330   return (jdouble)x;
       
   331 JRT_END
       
   332 
       
   333 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
       
   334   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
       
   335 JRT_END
       
   336 
       
   337 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
       
   338   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
       
   339 JRT_END
       
   340 
       
   341 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
       
   342   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
       
   343 JRT_END
       
   344 
       
   345 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
       
   346   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
       
   347 JRT_END
       
   348 
       
   349 // Functions to return the opposite of the aeabi functions for nan.
       
   350 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
       
   351   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
       
   352 JRT_END
       
   353 
       
   354 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
       
   355   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
       
   356 JRT_END
       
   357 
       
   358 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
       
   359   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
       
   360 JRT_END
       
   361 
       
   362 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
       
   363   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
       
   364 JRT_END
       
   365 
       
   366 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
       
   367   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
       
   368 JRT_END
       
   369 
       
   370 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
       
   371   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
       
   372 JRT_END
       
   373 
       
   374 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
       
   375   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
       
   376 JRT_END
       
   377 
       
   378 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
       
   379   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
       
   380 JRT_END
       
   381 
       
   382 // Intrinsics make gcc generate code for these.
       
   383 float  SharedRuntime::fneg(float f)   {
       
   384   return -f;
       
   385 }
       
   386 
       
   387 double SharedRuntime::dneg(double f)  {
       
   388   return -f;
       
   389 }
       
   390 
       
   391 #endif // __SOFTFP__
       
   392 
       
   393 #if defined(__SOFTFP__) || defined(E500V2)
       
   394 // Intrinsics make gcc generate code for these.
       
   395 double SharedRuntime::dabs(double f)  {
       
   396   return (f <= (double)0.0) ? (double)0.0 - f : f;
       
   397 }
       
   398 
       
   399 #endif
       
   400 
       
   401 #if defined(__SOFTFP__) || defined(PPC)
       
   402 double SharedRuntime::dsqrt(double f) {
       
   403   return sqrt(f);
       
   404 }
       
   405 #endif
       
   406 
       
   407 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
       
   408   if (g_isnan(x))
       
   409     return 0;
       
   410   if (x >= (jfloat) max_jint)
       
   411     return max_jint;
       
   412   if (x <= (jfloat) min_jint)
       
   413     return min_jint;
       
   414   return (jint) x;
       
   415 JRT_END
       
   416 
       
   417 
       
   418 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
       
   419   if (g_isnan(x))
       
   420     return 0;
       
   421   if (x >= (jfloat) max_jlong)
       
   422     return max_jlong;
       
   423   if (x <= (jfloat) min_jlong)
       
   424     return min_jlong;
       
   425   return (jlong) x;
       
   426 JRT_END
       
   427 
       
   428 
       
   429 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
       
   430   if (g_isnan(x))
       
   431     return 0;
       
   432   if (x >= (jdouble) max_jint)
       
   433     return max_jint;
       
   434   if (x <= (jdouble) min_jint)
       
   435     return min_jint;
       
   436   return (jint) x;
       
   437 JRT_END
       
   438 
       
   439 
       
   440 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
       
   441   if (g_isnan(x))
       
   442     return 0;
       
   443   if (x >= (jdouble) max_jlong)
       
   444     return max_jlong;
       
   445   if (x <= (jdouble) min_jlong)
       
   446     return min_jlong;
       
   447   return (jlong) x;
       
   448 JRT_END
       
   449 
       
   450 
       
   451 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
       
   452   return (jfloat)x;
       
   453 JRT_END
       
   454 
       
   455 
       
   456 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
       
   457   return (jfloat)x;
       
   458 JRT_END
       
   459 
       
   460 
       
   461 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
       
   462   return (jdouble)x;
       
   463 JRT_END
       
   464 
       
   465 // Exception handling across interpreter/compiler boundaries
       
   466 //
       
   467 // exception_handler_for_return_address(...) returns the continuation address.
       
   468 // The continuation address is the entry point of the exception handler of the
       
   469 // previous frame depending on the return address.
       
   470 
       
   471 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
       
   472   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
       
   473   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
       
   474 
       
   475   // Reset method handle flag.
       
   476   thread->set_is_method_handle_return(false);
       
   477 
       
   478 #if INCLUDE_JVMCI
       
   479   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
       
   480   // and other exception handler continuations do not read it
       
   481   thread->set_exception_pc(NULL);
       
   482 #endif // INCLUDE_JVMCI
       
   483 
       
   484   // The fastest case first
       
   485   CodeBlob* blob = CodeCache::find_blob(return_address);
       
   486   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
       
   487   if (nm != NULL) {
       
   488     // Set flag if return address is a method handle call site.
       
   489     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
       
   490     // native nmethods don't have exception handlers
       
   491     assert(!nm->is_native_method(), "no exception handler");
       
   492     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
       
   493     if (nm->is_deopt_pc(return_address)) {
       
   494       // If we come here because of a stack overflow, the stack may be
       
   495       // unguarded. Reguard the stack otherwise if we return to the
       
   496       // deopt blob and the stack bang causes a stack overflow we
       
   497       // crash.
       
   498       bool guard_pages_enabled = thread->stack_guards_enabled();
       
   499       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
       
   500       if (thread->reserved_stack_activation() != thread->stack_base()) {
       
   501         thread->set_reserved_stack_activation(thread->stack_base());
       
   502       }
       
   503       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
       
   504       return SharedRuntime::deopt_blob()->unpack_with_exception();
       
   505     } else {
       
   506       return nm->exception_begin();
       
   507     }
       
   508   }
       
   509 
       
   510   // Entry code
       
   511   if (StubRoutines::returns_to_call_stub(return_address)) {
       
   512     return StubRoutines::catch_exception_entry();
       
   513   }
       
   514   // Interpreted code
       
   515   if (Interpreter::contains(return_address)) {
       
   516     return Interpreter::rethrow_exception_entry();
       
   517   }
       
   518 
       
   519   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
       
   520   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
       
   521 
       
   522 #ifndef PRODUCT
       
   523   { ResourceMark rm;
       
   524     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
       
   525     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
       
   526     tty->print_cr("b) other problem");
       
   527   }
       
   528 #endif // PRODUCT
       
   529 
       
   530   ShouldNotReachHere();
       
   531   return NULL;
       
   532 }
       
   533 
       
   534 
       
   535 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
       
   536   return raw_exception_handler_for_return_address(thread, return_address);
       
   537 JRT_END
       
   538 
       
   539 
       
   540 address SharedRuntime::get_poll_stub(address pc) {
       
   541   address stub;
       
   542   // Look up the code blob
       
   543   CodeBlob *cb = CodeCache::find_blob(pc);
       
   544 
       
   545   // Should be an nmethod
       
   546   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
       
   547 
       
   548   // Look up the relocation information
       
   549   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
       
   550     "safepoint polling: type must be poll");
       
   551 
       
   552 #ifdef ASSERT
       
   553   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
       
   554     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
       
   555     Disassembler::decode(cb);
       
   556     fatal("Only polling locations are used for safepoint");
       
   557   }
       
   558 #endif
       
   559 
       
   560   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
       
   561   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
       
   562   if (at_poll_return) {
       
   563     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
       
   564            "polling page return stub not created yet");
       
   565     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
       
   566   } else if (has_wide_vectors) {
       
   567     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
       
   568            "polling page vectors safepoint stub not created yet");
       
   569     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
       
   570   } else {
       
   571     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
       
   572            "polling page safepoint stub not created yet");
       
   573     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
       
   574   }
       
   575   log_debug(safepoint)("... found polling page %s exception at pc = "
       
   576                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
       
   577                        at_poll_return ? "return" : "loop",
       
   578                        (intptr_t)pc, (intptr_t)stub);
       
   579   return stub;
       
   580 }
       
   581 
       
   582 
       
   583 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
       
   584   assert(caller.is_interpreted_frame(), "");
       
   585   int args_size = ArgumentSizeComputer(sig).size() + 1;
       
   586   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
       
   587   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
       
   588   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
       
   589   return result;
       
   590 }
       
   591 
       
   592 
       
   593 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
       
   594   if (JvmtiExport::can_post_on_exceptions()) {
       
   595     vframeStream vfst(thread, true);
       
   596     methodHandle method = methodHandle(thread, vfst.method());
       
   597     address bcp = method()->bcp_from(vfst.bci());
       
   598     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
       
   599   }
       
   600   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
       
   601 }
       
   602 
       
   603 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
       
   604   Handle h_exception = Exceptions::new_exception(thread, name, message);
       
   605   throw_and_post_jvmti_exception(thread, h_exception);
       
   606 }
       
   607 
       
   608 // The interpreter code to call this tracing function is only
       
   609 // called/generated when UL is on for redefine, class and has the right level
       
   610 // and tags. Since obsolete methods are never compiled, we don't have
       
   611 // to modify the compilers to generate calls to this function.
       
   612 //
       
   613 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
       
   614     JavaThread* thread, Method* method))
       
   615   if (method->is_obsolete()) {
       
   616     // We are calling an obsolete method, but this is not necessarily
       
   617     // an error. Our method could have been redefined just after we
       
   618     // fetched the Method* from the constant pool.
       
   619     ResourceMark rm;
       
   620     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
       
   621   }
       
   622   return 0;
       
   623 JRT_END
       
   624 
       
   625 // ret_pc points into caller; we are returning caller's exception handler
       
   626 // for given exception
       
   627 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
       
   628                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
       
   629   assert(cm != NULL, "must exist");
       
   630   ResourceMark rm;
       
   631 
       
   632 #if INCLUDE_JVMCI
       
   633   if (cm->is_compiled_by_jvmci()) {
       
   634     // lookup exception handler for this pc
       
   635     int catch_pco = ret_pc - cm->code_begin();
       
   636     ExceptionHandlerTable table(cm);
       
   637     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
       
   638     if (t != NULL) {
       
   639       return cm->code_begin() + t->pco();
       
   640     } else {
       
   641       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
       
   642     }
       
   643   }
       
   644 #endif // INCLUDE_JVMCI
       
   645 
       
   646   nmethod* nm = cm->as_nmethod();
       
   647   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
       
   648   // determine handler bci, if any
       
   649   EXCEPTION_MARK;
       
   650 
       
   651   int handler_bci = -1;
       
   652   int scope_depth = 0;
       
   653   if (!force_unwind) {
       
   654     int bci = sd->bci();
       
   655     bool recursive_exception = false;
       
   656     do {
       
   657       bool skip_scope_increment = false;
       
   658       // exception handler lookup
       
   659       Klass* ek = exception->klass();
       
   660       methodHandle mh(THREAD, sd->method());
       
   661       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
       
   662       if (HAS_PENDING_EXCEPTION) {
       
   663         recursive_exception = true;
       
   664         // We threw an exception while trying to find the exception handler.
       
   665         // Transfer the new exception to the exception handle which will
       
   666         // be set into thread local storage, and do another lookup for an
       
   667         // exception handler for this exception, this time starting at the
       
   668         // BCI of the exception handler which caused the exception to be
       
   669         // thrown (bugs 4307310 and 4546590). Set "exception" reference
       
   670         // argument to ensure that the correct exception is thrown (4870175).
       
   671         recursive_exception_occurred = true;
       
   672         exception = Handle(THREAD, PENDING_EXCEPTION);
       
   673         CLEAR_PENDING_EXCEPTION;
       
   674         if (handler_bci >= 0) {
       
   675           bci = handler_bci;
       
   676           handler_bci = -1;
       
   677           skip_scope_increment = true;
       
   678         }
       
   679       }
       
   680       else {
       
   681         recursive_exception = false;
       
   682       }
       
   683       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
       
   684         sd = sd->sender();
       
   685         if (sd != NULL) {
       
   686           bci = sd->bci();
       
   687         }
       
   688         ++scope_depth;
       
   689       }
       
   690     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
       
   691   }
       
   692 
       
   693   // found handling method => lookup exception handler
       
   694   int catch_pco = ret_pc - nm->code_begin();
       
   695 
       
   696   ExceptionHandlerTable table(nm);
       
   697   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
       
   698   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
       
   699     // Allow abbreviated catch tables.  The idea is to allow a method
       
   700     // to materialize its exceptions without committing to the exact
       
   701     // routing of exceptions.  In particular this is needed for adding
       
   702     // a synthetic handler to unlock monitors when inlining
       
   703     // synchronized methods since the unlock path isn't represented in
       
   704     // the bytecodes.
       
   705     t = table.entry_for(catch_pco, -1, 0);
       
   706   }
       
   707 
       
   708 #ifdef COMPILER1
       
   709   if (t == NULL && nm->is_compiled_by_c1()) {
       
   710     assert(nm->unwind_handler_begin() != NULL, "");
       
   711     return nm->unwind_handler_begin();
       
   712   }
       
   713 #endif
       
   714 
       
   715   if (t == NULL) {
       
   716     ttyLocker ttyl;
       
   717     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
       
   718     tty->print_cr("   Exception:");
       
   719     exception->print();
       
   720     tty->cr();
       
   721     tty->print_cr(" Compiled exception table :");
       
   722     table.print();
       
   723     nm->print_code();
       
   724     guarantee(false, "missing exception handler");
       
   725     return NULL;
       
   726   }
       
   727 
       
   728   return nm->code_begin() + t->pco();
       
   729 }
       
   730 
       
   731 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
       
   732   // These errors occur only at call sites
       
   733   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
       
   734 JRT_END
       
   735 
       
   736 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
       
   737   // These errors occur only at call sites
       
   738   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
       
   739 JRT_END
       
   740 
       
   741 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
       
   742   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
       
   743 JRT_END
       
   744 
       
   745 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
       
   746   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
       
   747 JRT_END
       
   748 
       
   749 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
       
   750   // This entry point is effectively only used for NullPointerExceptions which occur at inline
       
   751   // cache sites (when the callee activation is not yet set up) so we are at a call site
       
   752   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
       
   753 JRT_END
       
   754 
       
   755 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
       
   756   throw_StackOverflowError_common(thread, false);
       
   757 JRT_END
       
   758 
       
   759 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
       
   760   throw_StackOverflowError_common(thread, true);
       
   761 JRT_END
       
   762 
       
   763 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
       
   764   // We avoid using the normal exception construction in this case because
       
   765   // it performs an upcall to Java, and we're already out of stack space.
       
   766   Thread* THREAD = thread;
       
   767   Klass* k = SystemDictionary::StackOverflowError_klass();
       
   768   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
       
   769   if (delayed) {
       
   770     java_lang_Throwable::set_message(exception_oop,
       
   771                                      Universe::delayed_stack_overflow_error_message());
       
   772   }
       
   773   Handle exception (thread, exception_oop);
       
   774   if (StackTraceInThrowable) {
       
   775     java_lang_Throwable::fill_in_stack_trace(exception);
       
   776   }
       
   777   // Increment counter for hs_err file reporting
       
   778   Atomic::inc(&Exceptions::_stack_overflow_errors);
       
   779   throw_and_post_jvmti_exception(thread, exception);
       
   780 }
       
   781 
       
   782 #if INCLUDE_JVMCI
       
   783 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
       
   784   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
       
   785   thread->set_jvmci_implicit_exception_pc(pc);
       
   786   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
       
   787   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
       
   788 }
       
   789 #endif // INCLUDE_JVMCI
       
   790 
       
   791 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
       
   792                                                            address pc,
       
   793                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
       
   794 {
       
   795   address target_pc = NULL;
       
   796 
       
   797   if (Interpreter::contains(pc)) {
       
   798 #ifdef CC_INTERP
       
   799     // C++ interpreter doesn't throw implicit exceptions
       
   800     ShouldNotReachHere();
       
   801 #else
       
   802     switch (exception_kind) {
       
   803       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
       
   804       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
       
   805       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
       
   806       default:                      ShouldNotReachHere();
       
   807     }
       
   808 #endif // !CC_INTERP
       
   809   } else {
       
   810     switch (exception_kind) {
       
   811       case STACK_OVERFLOW: {
       
   812         // Stack overflow only occurs upon frame setup; the callee is
       
   813         // going to be unwound. Dispatch to a shared runtime stub
       
   814         // which will cause the StackOverflowError to be fabricated
       
   815         // and processed.
       
   816         // Stack overflow should never occur during deoptimization:
       
   817         // the compiled method bangs the stack by as much as the
       
   818         // interpreter would need in case of a deoptimization. The
       
   819         // deoptimization blob and uncommon trap blob bang the stack
       
   820         // in a debug VM to verify the correctness of the compiled
       
   821         // method stack banging.
       
   822         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
       
   823         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
       
   824         return StubRoutines::throw_StackOverflowError_entry();
       
   825       }
       
   826 
       
   827       case IMPLICIT_NULL: {
       
   828         if (VtableStubs::contains(pc)) {
       
   829           // We haven't yet entered the callee frame. Fabricate an
       
   830           // exception and begin dispatching it in the caller. Since
       
   831           // the caller was at a call site, it's safe to destroy all
       
   832           // caller-saved registers, as these entry points do.
       
   833           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
       
   834 
       
   835           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
       
   836           if (vt_stub == NULL) return NULL;
       
   837 
       
   838           if (vt_stub->is_abstract_method_error(pc)) {
       
   839             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
       
   840             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
       
   841             return StubRoutines::throw_AbstractMethodError_entry();
       
   842           } else {
       
   843             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
       
   844             return StubRoutines::throw_NullPointerException_at_call_entry();
       
   845           }
       
   846         } else {
       
   847           CodeBlob* cb = CodeCache::find_blob(pc);
       
   848 
       
   849           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
       
   850           if (cb == NULL) return NULL;
       
   851 
       
   852           // Exception happened in CodeCache. Must be either:
       
   853           // 1. Inline-cache check in C2I handler blob,
       
   854           // 2. Inline-cache check in nmethod, or
       
   855           // 3. Implicit null exception in nmethod
       
   856 
       
   857           if (!cb->is_compiled()) {
       
   858             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
       
   859             if (!is_in_blob) {
       
   860               // Allow normal crash reporting to handle this
       
   861               return NULL;
       
   862             }
       
   863             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
       
   864             // There is no handler here, so we will simply unwind.
       
   865             return StubRoutines::throw_NullPointerException_at_call_entry();
       
   866           }
       
   867 
       
   868           // Otherwise, it's a compiled method.  Consult its exception handlers.
       
   869           CompiledMethod* cm = (CompiledMethod*)cb;
       
   870           if (cm->inlinecache_check_contains(pc)) {
       
   871             // exception happened inside inline-cache check code
       
   872             // => the nmethod is not yet active (i.e., the frame
       
   873             // is not set up yet) => use return address pushed by
       
   874             // caller => don't push another return address
       
   875             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
       
   876             return StubRoutines::throw_NullPointerException_at_call_entry();
       
   877           }
       
   878 
       
   879           if (cm->method()->is_method_handle_intrinsic()) {
       
   880             // exception happened inside MH dispatch code, similar to a vtable stub
       
   881             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
       
   882             return StubRoutines::throw_NullPointerException_at_call_entry();
       
   883           }
       
   884 
       
   885 #ifndef PRODUCT
       
   886           _implicit_null_throws++;
       
   887 #endif
       
   888 #if INCLUDE_JVMCI
       
   889           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
       
   890             // If there's no PcDesc then we'll die way down inside of
       
   891             // deopt instead of just getting normal error reporting,
       
   892             // so only go there if it will succeed.
       
   893             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
       
   894           } else {
       
   895 #endif // INCLUDE_JVMCI
       
   896           assert (cm->is_nmethod(), "Expect nmethod");
       
   897           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
       
   898 #if INCLUDE_JVMCI
       
   899           }
       
   900 #endif // INCLUDE_JVMCI
       
   901           // If there's an unexpected fault, target_pc might be NULL,
       
   902           // in which case we want to fall through into the normal
       
   903           // error handling code.
       
   904         }
       
   905 
       
   906         break; // fall through
       
   907       }
       
   908 
       
   909 
       
   910       case IMPLICIT_DIVIDE_BY_ZERO: {
       
   911         CompiledMethod* cm = CodeCache::find_compiled(pc);
       
   912         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
       
   913 #ifndef PRODUCT
       
   914         _implicit_div0_throws++;
       
   915 #endif
       
   916 #if INCLUDE_JVMCI
       
   917         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
       
   918           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
       
   919         } else {
       
   920 #endif // INCLUDE_JVMCI
       
   921         target_pc = cm->continuation_for_implicit_exception(pc);
       
   922 #if INCLUDE_JVMCI
       
   923         }
       
   924 #endif // INCLUDE_JVMCI
       
   925         // If there's an unexpected fault, target_pc might be NULL,
       
   926         // in which case we want to fall through into the normal
       
   927         // error handling code.
       
   928         break; // fall through
       
   929       }
       
   930 
       
   931       default: ShouldNotReachHere();
       
   932     }
       
   933 
       
   934     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
       
   935 
       
   936     if (exception_kind == IMPLICIT_NULL) {
       
   937 #ifndef PRODUCT
       
   938       // for AbortVMOnException flag
       
   939       Exceptions::debug_check_abort("java.lang.NullPointerException");
       
   940 #endif //PRODUCT
       
   941       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
       
   942     } else {
       
   943 #ifndef PRODUCT
       
   944       // for AbortVMOnException flag
       
   945       Exceptions::debug_check_abort("java.lang.ArithmeticException");
       
   946 #endif //PRODUCT
       
   947       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
       
   948     }
       
   949     return target_pc;
       
   950   }
       
   951 
       
   952   ShouldNotReachHere();
       
   953   return NULL;
       
   954 }
       
   955 
       
   956 
       
   957 /**
       
   958  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
       
   959  * installed in the native function entry of all native Java methods before
       
   960  * they get linked to their actual native methods.
       
   961  *
       
   962  * \note
       
   963  * This method actually never gets called!  The reason is because
       
   964  * the interpreter's native entries call NativeLookup::lookup() which
       
   965  * throws the exception when the lookup fails.  The exception is then
       
   966  * caught and forwarded on the return from NativeLookup::lookup() call
       
   967  * before the call to the native function.  This might change in the future.
       
   968  */
       
   969 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
       
   970 {
       
   971   // We return a bad value here to make sure that the exception is
       
   972   // forwarded before we look at the return value.
       
   973   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
       
   974 }
       
   975 JNI_END
       
   976 
       
   977 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
       
   978   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
       
   979 }
       
   980 
       
   981 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
       
   982 #if INCLUDE_JVMCI
       
   983   if (!obj->klass()->has_finalizer()) {
       
   984     return;
       
   985   }
       
   986 #endif // INCLUDE_JVMCI
       
   987   assert(oopDesc::is_oop(obj), "must be a valid oop");
       
   988   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
       
   989   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
       
   990 JRT_END
       
   991 
       
   992 
       
   993 jlong SharedRuntime::get_java_tid(Thread* thread) {
       
   994   if (thread != NULL) {
       
   995     if (thread->is_Java_thread()) {
       
   996       oop obj = ((JavaThread*)thread)->threadObj();
       
   997       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
       
   998     }
       
   999   }
       
  1000   return 0;
       
  1001 }
       
  1002 
       
  1003 /**
       
  1004  * This function ought to be a void function, but cannot be because
       
  1005  * it gets turned into a tail-call on sparc, which runs into dtrace bug
       
  1006  * 6254741.  Once that is fixed we can remove the dummy return value.
       
  1007  */
       
  1008 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
       
  1009   return dtrace_object_alloc_base(Thread::current(), o, size);
       
  1010 }
       
  1011 
       
  1012 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
       
  1013   assert(DTraceAllocProbes, "wrong call");
       
  1014   Klass* klass = o->klass();
       
  1015   Symbol* name = klass->name();
       
  1016   HOTSPOT_OBJECT_ALLOC(
       
  1017                    get_java_tid(thread),
       
  1018                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
       
  1019   return 0;
       
  1020 }
       
  1021 
       
  1022 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
       
  1023     JavaThread* thread, Method* method))
       
  1024   assert(DTraceMethodProbes, "wrong call");
       
  1025   Symbol* kname = method->klass_name();
       
  1026   Symbol* name = method->name();
       
  1027   Symbol* sig = method->signature();
       
  1028   HOTSPOT_METHOD_ENTRY(
       
  1029       get_java_tid(thread),
       
  1030       (char *) kname->bytes(), kname->utf8_length(),
       
  1031       (char *) name->bytes(), name->utf8_length(),
       
  1032       (char *) sig->bytes(), sig->utf8_length());
       
  1033   return 0;
       
  1034 JRT_END
       
  1035 
       
  1036 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
       
  1037     JavaThread* thread, Method* method))
       
  1038   assert(DTraceMethodProbes, "wrong call");
       
  1039   Symbol* kname = method->klass_name();
       
  1040   Symbol* name = method->name();
       
  1041   Symbol* sig = method->signature();
       
  1042   HOTSPOT_METHOD_RETURN(
       
  1043       get_java_tid(thread),
       
  1044       (char *) kname->bytes(), kname->utf8_length(),
       
  1045       (char *) name->bytes(), name->utf8_length(),
       
  1046       (char *) sig->bytes(), sig->utf8_length());
       
  1047   return 0;
       
  1048 JRT_END
       
  1049 
       
  1050 
       
  1051 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
       
  1052 // for a call current in progress, i.e., arguments has been pushed on stack
       
  1053 // put callee has not been invoked yet.  Used by: resolve virtual/static,
       
  1054 // vtable updates, etc.  Caller frame must be compiled.
       
  1055 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
       
  1056   ResourceMark rm(THREAD);
       
  1057 
       
  1058   // last java frame on stack (which includes native call frames)
       
  1059   vframeStream vfst(thread, true);  // Do not skip and javaCalls
       
  1060 
       
  1061   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
       
  1062 }
       
  1063 
       
  1064 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
       
  1065   CompiledMethod* caller = vfst.nm();
       
  1066 
       
  1067   nmethodLocker caller_lock(caller);
       
  1068 
       
  1069   address pc = vfst.frame_pc();
       
  1070   { // Get call instruction under lock because another thread may be busy patching it.
       
  1071     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
       
  1072     return caller->attached_method_before_pc(pc);
       
  1073   }
       
  1074   return NULL;
       
  1075 }
       
  1076 
       
  1077 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
       
  1078 // for a call current in progress, i.e., arguments has been pushed on stack
       
  1079 // but callee has not been invoked yet.  Caller frame must be compiled.
       
  1080 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
       
  1081                                               vframeStream& vfst,
       
  1082                                               Bytecodes::Code& bc,
       
  1083                                               CallInfo& callinfo, TRAPS) {
       
  1084   Handle receiver;
       
  1085   Handle nullHandle;  //create a handy null handle for exception returns
       
  1086 
       
  1087   assert(!vfst.at_end(), "Java frame must exist");
       
  1088 
       
  1089   // Find caller and bci from vframe
       
  1090   methodHandle caller(THREAD, vfst.method());
       
  1091   int          bci   = vfst.bci();
       
  1092 
       
  1093   Bytecode_invoke bytecode(caller, bci);
       
  1094   int bytecode_index = bytecode.index();
       
  1095 
       
  1096   methodHandle attached_method = extract_attached_method(vfst);
       
  1097   if (attached_method.not_null()) {
       
  1098     methodHandle callee = bytecode.static_target(CHECK_NH);
       
  1099     vmIntrinsics::ID id = callee->intrinsic_id();
       
  1100     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
       
  1101     // it attaches statically resolved method to the call site.
       
  1102     if (MethodHandles::is_signature_polymorphic(id) &&
       
  1103         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
       
  1104       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
       
  1105 
       
  1106       // Adjust invocation mode according to the attached method.
       
  1107       switch (bc) {
       
  1108         case Bytecodes::_invokeinterface:
       
  1109           if (!attached_method->method_holder()->is_interface()) {
       
  1110             bc = Bytecodes::_invokevirtual;
       
  1111           }
       
  1112           break;
       
  1113         case Bytecodes::_invokehandle:
       
  1114           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
       
  1115             bc = attached_method->is_static() ? Bytecodes::_invokestatic
       
  1116                                               : Bytecodes::_invokevirtual;
       
  1117           }
       
  1118           break;
       
  1119         default:
       
  1120           break;
       
  1121       }
       
  1122     }
       
  1123   } else {
       
  1124     bc = bytecode.invoke_code();
       
  1125   }
       
  1126 
       
  1127   bool has_receiver = bc != Bytecodes::_invokestatic &&
       
  1128                       bc != Bytecodes::_invokedynamic &&
       
  1129                       bc != Bytecodes::_invokehandle;
       
  1130 
       
  1131   // Find receiver for non-static call
       
  1132   if (has_receiver) {
       
  1133     // This register map must be update since we need to find the receiver for
       
  1134     // compiled frames. The receiver might be in a register.
       
  1135     RegisterMap reg_map2(thread);
       
  1136     frame stubFrame   = thread->last_frame();
       
  1137     // Caller-frame is a compiled frame
       
  1138     frame callerFrame = stubFrame.sender(&reg_map2);
       
  1139 
       
  1140     if (attached_method.is_null()) {
       
  1141       methodHandle callee = bytecode.static_target(CHECK_NH);
       
  1142       if (callee.is_null()) {
       
  1143         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
       
  1144       }
       
  1145     }
       
  1146 
       
  1147     // Retrieve from a compiled argument list
       
  1148     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
       
  1149 
       
  1150     if (receiver.is_null()) {
       
  1151       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
       
  1152     }
       
  1153   }
       
  1154 
       
  1155   // Resolve method
       
  1156   if (attached_method.not_null()) {
       
  1157     // Parameterized by attached method.
       
  1158     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
       
  1159   } else {
       
  1160     // Parameterized by bytecode.
       
  1161     constantPoolHandle constants(THREAD, caller->constants());
       
  1162     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
       
  1163   }
       
  1164 
       
  1165 #ifdef ASSERT
       
  1166   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
       
  1167   if (has_receiver) {
       
  1168     assert(receiver.not_null(), "should have thrown exception");
       
  1169     Klass* receiver_klass = receiver->klass();
       
  1170     Klass* rk = NULL;
       
  1171     if (attached_method.not_null()) {
       
  1172       // In case there's resolved method attached, use its holder during the check.
       
  1173       rk = attached_method->method_holder();
       
  1174     } else {
       
  1175       // Klass is already loaded.
       
  1176       constantPoolHandle constants(THREAD, caller->constants());
       
  1177       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
       
  1178     }
       
  1179     Klass* static_receiver_klass = rk;
       
  1180     methodHandle callee = callinfo.selected_method();
       
  1181     assert(receiver_klass->is_subtype_of(static_receiver_klass),
       
  1182            "actual receiver must be subclass of static receiver klass");
       
  1183     if (receiver_klass->is_instance_klass()) {
       
  1184       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
       
  1185         tty->print_cr("ERROR: Klass not yet initialized!!");
       
  1186         receiver_klass->print();
       
  1187       }
       
  1188       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
       
  1189     }
       
  1190   }
       
  1191 #endif
       
  1192 
       
  1193   return receiver;
       
  1194 }
       
  1195 
       
  1196 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
       
  1197   ResourceMark rm(THREAD);
       
  1198   // We need first to check if any Java activations (compiled, interpreted)
       
  1199   // exist on the stack since last JavaCall.  If not, we need
       
  1200   // to get the target method from the JavaCall wrapper.
       
  1201   vframeStream vfst(thread, true);  // Do not skip any javaCalls
       
  1202   methodHandle callee_method;
       
  1203   if (vfst.at_end()) {
       
  1204     // No Java frames were found on stack since we did the JavaCall.
       
  1205     // Hence the stack can only contain an entry_frame.  We need to
       
  1206     // find the target method from the stub frame.
       
  1207     RegisterMap reg_map(thread, false);
       
  1208     frame fr = thread->last_frame();
       
  1209     assert(fr.is_runtime_frame(), "must be a runtimeStub");
       
  1210     fr = fr.sender(&reg_map);
       
  1211     assert(fr.is_entry_frame(), "must be");
       
  1212     // fr is now pointing to the entry frame.
       
  1213     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
       
  1214   } else {
       
  1215     Bytecodes::Code bc;
       
  1216     CallInfo callinfo;
       
  1217     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
       
  1218     callee_method = callinfo.selected_method();
       
  1219   }
       
  1220   assert(callee_method()->is_method(), "must be");
       
  1221   return callee_method;
       
  1222 }
       
  1223 
       
  1224 // Resolves a call.
       
  1225 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
       
  1226                                            bool is_virtual,
       
  1227                                            bool is_optimized, TRAPS) {
       
  1228   methodHandle callee_method;
       
  1229   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
       
  1230   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
       
  1231     int retry_count = 0;
       
  1232     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
       
  1233            callee_method->method_holder() != SystemDictionary::Object_klass()) {
       
  1234       // If has a pending exception then there is no need to re-try to
       
  1235       // resolve this method.
       
  1236       // If the method has been redefined, we need to try again.
       
  1237       // Hack: we have no way to update the vtables of arrays, so don't
       
  1238       // require that java.lang.Object has been updated.
       
  1239 
       
  1240       // It is very unlikely that method is redefined more than 100 times
       
  1241       // in the middle of resolve. If it is looping here more than 100 times
       
  1242       // means then there could be a bug here.
       
  1243       guarantee((retry_count++ < 100),
       
  1244                 "Could not resolve to latest version of redefined method");
       
  1245       // method is redefined in the middle of resolve so re-try.
       
  1246       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
       
  1247     }
       
  1248   }
       
  1249   return callee_method;
       
  1250 }
       
  1251 
       
  1252 // Resolves a call.  The compilers generate code for calls that go here
       
  1253 // and are patched with the real destination of the call.
       
  1254 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
       
  1255                                            bool is_virtual,
       
  1256                                            bool is_optimized, TRAPS) {
       
  1257 
       
  1258   ResourceMark rm(thread);
       
  1259   RegisterMap cbl_map(thread, false);
       
  1260   frame caller_frame = thread->last_frame().sender(&cbl_map);
       
  1261 
       
  1262   CodeBlob* caller_cb = caller_frame.cb();
       
  1263   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
       
  1264   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
       
  1265 
       
  1266   // make sure caller is not getting deoptimized
       
  1267   // and removed before we are done with it.
       
  1268   // CLEANUP - with lazy deopt shouldn't need this lock
       
  1269   nmethodLocker caller_lock(caller_nm);
       
  1270 
       
  1271   // determine call info & receiver
       
  1272   // note: a) receiver is NULL for static calls
       
  1273   //       b) an exception is thrown if receiver is NULL for non-static calls
       
  1274   CallInfo call_info;
       
  1275   Bytecodes::Code invoke_code = Bytecodes::_illegal;
       
  1276   Handle receiver = find_callee_info(thread, invoke_code,
       
  1277                                      call_info, CHECK_(methodHandle()));
       
  1278   methodHandle callee_method = call_info.selected_method();
       
  1279 
       
  1280   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
       
  1281          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
       
  1282          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
       
  1283          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
       
  1284          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
       
  1285 
       
  1286   assert(caller_nm->is_alive(), "It should be alive");
       
  1287 
       
  1288 #ifndef PRODUCT
       
  1289   // tracing/debugging/statistics
       
  1290   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
       
  1291                 (is_virtual) ? (&_resolve_virtual_ctr) :
       
  1292                                (&_resolve_static_ctr);
       
  1293   Atomic::inc(addr);
       
  1294 
       
  1295   if (TraceCallFixup) {
       
  1296     ResourceMark rm(thread);
       
  1297     tty->print("resolving %s%s (%s) call to",
       
  1298       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
       
  1299       Bytecodes::name(invoke_code));
       
  1300     callee_method->print_short_name(tty);
       
  1301     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
       
  1302                   p2i(caller_frame.pc()), p2i(callee_method->code()));
       
  1303   }
       
  1304 #endif
       
  1305 
       
  1306   // JSR 292 key invariant:
       
  1307   // If the resolved method is a MethodHandle invoke target, the call
       
  1308   // site must be a MethodHandle call site, because the lambda form might tail-call
       
  1309   // leaving the stack in a state unknown to either caller or callee
       
  1310   // TODO detune for now but we might need it again
       
  1311 //  assert(!callee_method->is_compiled_lambda_form() ||
       
  1312 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
       
  1313 
       
  1314   // Compute entry points. This might require generation of C2I converter
       
  1315   // frames, so we cannot be holding any locks here. Furthermore, the
       
  1316   // computation of the entry points is independent of patching the call.  We
       
  1317   // always return the entry-point, but we only patch the stub if the call has
       
  1318   // not been deoptimized.  Return values: For a virtual call this is an
       
  1319   // (cached_oop, destination address) pair. For a static call/optimized
       
  1320   // virtual this is just a destination address.
       
  1321 
       
  1322   StaticCallInfo static_call_info;
       
  1323   CompiledICInfo virtual_call_info;
       
  1324 
       
  1325   // Make sure the callee nmethod does not get deoptimized and removed before
       
  1326   // we are done patching the code.
       
  1327   CompiledMethod* callee = callee_method->code();
       
  1328 
       
  1329   if (callee != NULL) {
       
  1330     assert(callee->is_compiled(), "must be nmethod for patching");
       
  1331   }
       
  1332 
       
  1333   if (callee != NULL && !callee->is_in_use()) {
       
  1334     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
       
  1335     callee = NULL;
       
  1336   }
       
  1337   nmethodLocker nl_callee(callee);
       
  1338 #ifdef ASSERT
       
  1339   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
       
  1340 #endif
       
  1341 
       
  1342   bool is_nmethod = caller_nm->is_nmethod();
       
  1343 
       
  1344   if (is_virtual) {
       
  1345     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
       
  1346     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
       
  1347     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
       
  1348     CompiledIC::compute_monomorphic_entry(callee_method, klass,
       
  1349                      is_optimized, static_bound, is_nmethod, virtual_call_info,
       
  1350                      CHECK_(methodHandle()));
       
  1351   } else {
       
  1352     // static call
       
  1353     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
       
  1354   }
       
  1355 
       
  1356   // grab lock, check for deoptimization and potentially patch caller
       
  1357   {
       
  1358     MutexLocker ml_patch(CompiledIC_lock);
       
  1359 
       
  1360     // Lock blocks for safepoint during which both nmethods can change state.
       
  1361 
       
  1362     // Now that we are ready to patch if the Method* was redefined then
       
  1363     // don't update call site and let the caller retry.
       
  1364     // Don't update call site if callee nmethod was unloaded or deoptimized.
       
  1365     // Don't update call site if callee nmethod was replaced by an other nmethod
       
  1366     // which may happen when multiply alive nmethod (tiered compilation)
       
  1367     // will be supported.
       
  1368     if (!callee_method->is_old() &&
       
  1369         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
       
  1370 #ifdef ASSERT
       
  1371       // We must not try to patch to jump to an already unloaded method.
       
  1372       if (dest_entry_point != 0) {
       
  1373         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
       
  1374         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
       
  1375                "should not call unloaded nmethod");
       
  1376       }
       
  1377 #endif
       
  1378       if (is_virtual) {
       
  1379         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
       
  1380         if (inline_cache->is_clean()) {
       
  1381           inline_cache->set_to_monomorphic(virtual_call_info);
       
  1382         }
       
  1383       } else {
       
  1384         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
       
  1385         if (ssc->is_clean()) ssc->set(static_call_info);
       
  1386       }
       
  1387     }
       
  1388 
       
  1389   } // unlock CompiledIC_lock
       
  1390 
       
  1391   return callee_method;
       
  1392 }
       
  1393 
       
  1394 
       
  1395 // Inline caches exist only in compiled code
       
  1396 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
       
  1397 #ifdef ASSERT
       
  1398   RegisterMap reg_map(thread, false);
       
  1399   frame stub_frame = thread->last_frame();
       
  1400   assert(stub_frame.is_runtime_frame(), "sanity check");
       
  1401   frame caller_frame = stub_frame.sender(&reg_map);
       
  1402   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
       
  1403 #endif /* ASSERT */
       
  1404 
       
  1405   methodHandle callee_method;
       
  1406   JRT_BLOCK
       
  1407     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
       
  1408     // Return Method* through TLS
       
  1409     thread->set_vm_result_2(callee_method());
       
  1410   JRT_BLOCK_END
       
  1411   // return compiled code entry point after potential safepoints
       
  1412   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
       
  1413   return callee_method->verified_code_entry();
       
  1414 JRT_END
       
  1415 
       
  1416 
       
  1417 // Handle call site that has been made non-entrant
       
  1418 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
       
  1419   // 6243940 We might end up in here if the callee is deoptimized
       
  1420   // as we race to call it.  We don't want to take a safepoint if
       
  1421   // the caller was interpreted because the caller frame will look
       
  1422   // interpreted to the stack walkers and arguments are now
       
  1423   // "compiled" so it is much better to make this transition
       
  1424   // invisible to the stack walking code. The i2c path will
       
  1425   // place the callee method in the callee_target. It is stashed
       
  1426   // there because if we try and find the callee by normal means a
       
  1427   // safepoint is possible and have trouble gc'ing the compiled args.
       
  1428   RegisterMap reg_map(thread, false);
       
  1429   frame stub_frame = thread->last_frame();
       
  1430   assert(stub_frame.is_runtime_frame(), "sanity check");
       
  1431   frame caller_frame = stub_frame.sender(&reg_map);
       
  1432 
       
  1433   if (caller_frame.is_interpreted_frame() ||
       
  1434       caller_frame.is_entry_frame()) {
       
  1435     Method* callee = thread->callee_target();
       
  1436     guarantee(callee != NULL && callee->is_method(), "bad handshake");
       
  1437     thread->set_vm_result_2(callee);
       
  1438     thread->set_callee_target(NULL);
       
  1439     return callee->get_c2i_entry();
       
  1440   }
       
  1441 
       
  1442   // Must be compiled to compiled path which is safe to stackwalk
       
  1443   methodHandle callee_method;
       
  1444   JRT_BLOCK
       
  1445     // Force resolving of caller (if we called from compiled frame)
       
  1446     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
       
  1447     thread->set_vm_result_2(callee_method());
       
  1448   JRT_BLOCK_END
       
  1449   // return compiled code entry point after potential safepoints
       
  1450   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
       
  1451   return callee_method->verified_code_entry();
       
  1452 JRT_END
       
  1453 
       
  1454 // Handle abstract method call
       
  1455 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
       
  1456   return StubRoutines::throw_AbstractMethodError_entry();
       
  1457 JRT_END
       
  1458 
       
  1459 
       
  1460 // resolve a static call and patch code
       
  1461 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
       
  1462   methodHandle callee_method;
       
  1463   JRT_BLOCK
       
  1464     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
       
  1465     thread->set_vm_result_2(callee_method());
       
  1466   JRT_BLOCK_END
       
  1467   // return compiled code entry point after potential safepoints
       
  1468   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
       
  1469   return callee_method->verified_code_entry();
       
  1470 JRT_END
       
  1471 
       
  1472 
       
  1473 // resolve virtual call and update inline cache to monomorphic
       
  1474 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
       
  1475   methodHandle callee_method;
       
  1476   JRT_BLOCK
       
  1477     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
       
  1478     thread->set_vm_result_2(callee_method());
       
  1479   JRT_BLOCK_END
       
  1480   // return compiled code entry point after potential safepoints
       
  1481   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
       
  1482   return callee_method->verified_code_entry();
       
  1483 JRT_END
       
  1484 
       
  1485 
       
  1486 // Resolve a virtual call that can be statically bound (e.g., always
       
  1487 // monomorphic, so it has no inline cache).  Patch code to resolved target.
       
  1488 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
       
  1489   methodHandle callee_method;
       
  1490   JRT_BLOCK
       
  1491     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
       
  1492     thread->set_vm_result_2(callee_method());
       
  1493   JRT_BLOCK_END
       
  1494   // return compiled code entry point after potential safepoints
       
  1495   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
       
  1496   return callee_method->verified_code_entry();
       
  1497 JRT_END
       
  1498 
       
  1499 
       
  1500 
       
  1501 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
       
  1502   ResourceMark rm(thread);
       
  1503   CallInfo call_info;
       
  1504   Bytecodes::Code bc;
       
  1505 
       
  1506   // receiver is NULL for static calls. An exception is thrown for NULL
       
  1507   // receivers for non-static calls
       
  1508   Handle receiver = find_callee_info(thread, bc, call_info,
       
  1509                                      CHECK_(methodHandle()));
       
  1510   // Compiler1 can produce virtual call sites that can actually be statically bound
       
  1511   // If we fell thru to below we would think that the site was going megamorphic
       
  1512   // when in fact the site can never miss. Worse because we'd think it was megamorphic
       
  1513   // we'd try and do a vtable dispatch however methods that can be statically bound
       
  1514   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
       
  1515   // reresolution of the  call site (as if we did a handle_wrong_method and not an
       
  1516   // plain ic_miss) and the site will be converted to an optimized virtual call site
       
  1517   // never to miss again. I don't believe C2 will produce code like this but if it
       
  1518   // did this would still be the correct thing to do for it too, hence no ifdef.
       
  1519   //
       
  1520   if (call_info.resolved_method()->can_be_statically_bound()) {
       
  1521     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
       
  1522     if (TraceCallFixup) {
       
  1523       RegisterMap reg_map(thread, false);
       
  1524       frame caller_frame = thread->last_frame().sender(&reg_map);
       
  1525       ResourceMark rm(thread);
       
  1526       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
       
  1527       callee_method->print_short_name(tty);
       
  1528       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
       
  1529       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
       
  1530     }
       
  1531     return callee_method;
       
  1532   }
       
  1533 
       
  1534   methodHandle callee_method = call_info.selected_method();
       
  1535 
       
  1536   bool should_be_mono = false;
       
  1537 
       
  1538 #ifndef PRODUCT
       
  1539   Atomic::inc(&_ic_miss_ctr);
       
  1540 
       
  1541   // Statistics & Tracing
       
  1542   if (TraceCallFixup) {
       
  1543     ResourceMark rm(thread);
       
  1544     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
       
  1545     callee_method->print_short_name(tty);
       
  1546     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
       
  1547   }
       
  1548 
       
  1549   if (ICMissHistogram) {
       
  1550     MutexLocker m(VMStatistic_lock);
       
  1551     RegisterMap reg_map(thread, false);
       
  1552     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
       
  1553     // produce statistics under the lock
       
  1554     trace_ic_miss(f.pc());
       
  1555   }
       
  1556 #endif
       
  1557 
       
  1558   // install an event collector so that when a vtable stub is created the
       
  1559   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
       
  1560   // event can't be posted when the stub is created as locks are held
       
  1561   // - instead the event will be deferred until the event collector goes
       
  1562   // out of scope.
       
  1563   JvmtiDynamicCodeEventCollector event_collector;
       
  1564 
       
  1565   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
       
  1566   { MutexLocker ml_patch (CompiledIC_lock);
       
  1567     RegisterMap reg_map(thread, false);
       
  1568     frame caller_frame = thread->last_frame().sender(&reg_map);
       
  1569     CodeBlob* cb = caller_frame.cb();
       
  1570     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
       
  1571     if (cb->is_compiled()) {
       
  1572       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
       
  1573       bool should_be_mono = false;
       
  1574       if (inline_cache->is_optimized()) {
       
  1575         if (TraceCallFixup) {
       
  1576           ResourceMark rm(thread);
       
  1577           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
       
  1578           callee_method->print_short_name(tty);
       
  1579           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
       
  1580         }
       
  1581         should_be_mono = true;
       
  1582       } else if (inline_cache->is_icholder_call()) {
       
  1583         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
       
  1584         if (ic_oop != NULL) {
       
  1585 
       
  1586           if (receiver()->klass() == ic_oop->holder_klass()) {
       
  1587             // This isn't a real miss. We must have seen that compiled code
       
  1588             // is now available and we want the call site converted to a
       
  1589             // monomorphic compiled call site.
       
  1590             // We can't assert for callee_method->code() != NULL because it
       
  1591             // could have been deoptimized in the meantime
       
  1592             if (TraceCallFixup) {
       
  1593               ResourceMark rm(thread);
       
  1594               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
       
  1595               callee_method->print_short_name(tty);
       
  1596               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
       
  1597             }
       
  1598             should_be_mono = true;
       
  1599           }
       
  1600         }
       
  1601       }
       
  1602 
       
  1603       if (should_be_mono) {
       
  1604 
       
  1605         // We have a path that was monomorphic but was going interpreted
       
  1606         // and now we have (or had) a compiled entry. We correct the IC
       
  1607         // by using a new icBuffer.
       
  1608         CompiledICInfo info;
       
  1609         Klass* receiver_klass = receiver()->klass();
       
  1610         inline_cache->compute_monomorphic_entry(callee_method,
       
  1611                                                 receiver_klass,
       
  1612                                                 inline_cache->is_optimized(),
       
  1613                                                 false, caller_nm->is_nmethod(),
       
  1614                                                 info, CHECK_(methodHandle()));
       
  1615         inline_cache->set_to_monomorphic(info);
       
  1616       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
       
  1617         // Potential change to megamorphic
       
  1618         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
       
  1619         if (!successful) {
       
  1620           inline_cache->set_to_clean();
       
  1621         }
       
  1622       } else {
       
  1623         // Either clean or megamorphic
       
  1624       }
       
  1625     } else {
       
  1626       fatal("Unimplemented");
       
  1627     }
       
  1628   } // Release CompiledIC_lock
       
  1629 
       
  1630   return callee_method;
       
  1631 }
       
  1632 
       
  1633 //
       
  1634 // Resets a call-site in compiled code so it will get resolved again.
       
  1635 // This routines handles both virtual call sites, optimized virtual call
       
  1636 // sites, and static call sites. Typically used to change a call sites
       
  1637 // destination from compiled to interpreted.
       
  1638 //
       
  1639 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
       
  1640   ResourceMark rm(thread);
       
  1641   RegisterMap reg_map(thread, false);
       
  1642   frame stub_frame = thread->last_frame();
       
  1643   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
       
  1644   frame caller = stub_frame.sender(&reg_map);
       
  1645 
       
  1646   // Do nothing if the frame isn't a live compiled frame.
       
  1647   // nmethod could be deoptimized by the time we get here
       
  1648   // so no update to the caller is needed.
       
  1649 
       
  1650   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
       
  1651 
       
  1652     address pc = caller.pc();
       
  1653 
       
  1654     // Check for static or virtual call
       
  1655     bool is_static_call = false;
       
  1656     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
       
  1657 
       
  1658     // Default call_addr is the location of the "basic" call.
       
  1659     // Determine the address of the call we a reresolving. With
       
  1660     // Inline Caches we will always find a recognizable call.
       
  1661     // With Inline Caches disabled we may or may not find a
       
  1662     // recognizable call. We will always find a call for static
       
  1663     // calls and for optimized virtual calls. For vanilla virtual
       
  1664     // calls it depends on the state of the UseInlineCaches switch.
       
  1665     //
       
  1666     // With Inline Caches disabled we can get here for a virtual call
       
  1667     // for two reasons:
       
  1668     //   1 - calling an abstract method. The vtable for abstract methods
       
  1669     //       will run us thru handle_wrong_method and we will eventually
       
  1670     //       end up in the interpreter to throw the ame.
       
  1671     //   2 - a racing deoptimization. We could be doing a vanilla vtable
       
  1672     //       call and between the time we fetch the entry address and
       
  1673     //       we jump to it the target gets deoptimized. Similar to 1
       
  1674     //       we will wind up in the interprter (thru a c2i with c2).
       
  1675     //
       
  1676     address call_addr = NULL;
       
  1677     {
       
  1678       // Get call instruction under lock because another thread may be
       
  1679       // busy patching it.
       
  1680       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
       
  1681       // Location of call instruction
       
  1682       call_addr = caller_nm->call_instruction_address(pc);
       
  1683     }
       
  1684     // Make sure nmethod doesn't get deoptimized and removed until
       
  1685     // this is done with it.
       
  1686     // CLEANUP - with lazy deopt shouldn't need this lock
       
  1687     nmethodLocker nmlock(caller_nm);
       
  1688 
       
  1689     if (call_addr != NULL) {
       
  1690       RelocIterator iter(caller_nm, call_addr, call_addr+1);
       
  1691       int ret = iter.next(); // Get item
       
  1692       if (ret) {
       
  1693         assert(iter.addr() == call_addr, "must find call");
       
  1694         if (iter.type() == relocInfo::static_call_type) {
       
  1695           is_static_call = true;
       
  1696         } else {
       
  1697           assert(iter.type() == relocInfo::virtual_call_type ||
       
  1698                  iter.type() == relocInfo::opt_virtual_call_type
       
  1699                 , "unexpected relocInfo. type");
       
  1700         }
       
  1701       } else {
       
  1702         assert(!UseInlineCaches, "relocation info. must exist for this address");
       
  1703       }
       
  1704 
       
  1705       // Cleaning the inline cache will force a new resolve. This is more robust
       
  1706       // than directly setting it to the new destination, since resolving of calls
       
  1707       // is always done through the same code path. (experience shows that it
       
  1708       // leads to very hard to track down bugs, if an inline cache gets updated
       
  1709       // to a wrong method). It should not be performance critical, since the
       
  1710       // resolve is only done once.
       
  1711 
       
  1712       bool is_nmethod = caller_nm->is_nmethod();
       
  1713       MutexLocker ml(CompiledIC_lock);
       
  1714       if (is_static_call) {
       
  1715         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
       
  1716         ssc->set_to_clean();
       
  1717       } else {
       
  1718         // compiled, dispatched call (which used to call an interpreted method)
       
  1719         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
       
  1720         inline_cache->set_to_clean();
       
  1721       }
       
  1722     }
       
  1723   }
       
  1724 
       
  1725   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
       
  1726 
       
  1727 
       
  1728 #ifndef PRODUCT
       
  1729   Atomic::inc(&_wrong_method_ctr);
       
  1730 
       
  1731   if (TraceCallFixup) {
       
  1732     ResourceMark rm(thread);
       
  1733     tty->print("handle_wrong_method reresolving call to");
       
  1734     callee_method->print_short_name(tty);
       
  1735     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
       
  1736   }
       
  1737 #endif
       
  1738 
       
  1739   return callee_method;
       
  1740 }
       
  1741 
       
  1742 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
       
  1743   // The faulting unsafe accesses should be changed to throw the error
       
  1744   // synchronously instead. Meanwhile the faulting instruction will be
       
  1745   // skipped over (effectively turning it into a no-op) and an
       
  1746   // asynchronous exception will be raised which the thread will
       
  1747   // handle at a later point. If the instruction is a load it will
       
  1748   // return garbage.
       
  1749 
       
  1750   // Request an async exception.
       
  1751   thread->set_pending_unsafe_access_error();
       
  1752 
       
  1753   // Return address of next instruction to execute.
       
  1754   return next_pc;
       
  1755 }
       
  1756 
       
  1757 #ifdef ASSERT
       
  1758 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
       
  1759                                                                 const BasicType* sig_bt,
       
  1760                                                                 const VMRegPair* regs) {
       
  1761   ResourceMark rm;
       
  1762   const int total_args_passed = method->size_of_parameters();
       
  1763   const VMRegPair*    regs_with_member_name = regs;
       
  1764         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
       
  1765 
       
  1766   const int member_arg_pos = total_args_passed - 1;
       
  1767   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
       
  1768   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
       
  1769 
       
  1770   const bool is_outgoing = method->is_method_handle_intrinsic();
       
  1771   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
       
  1772 
       
  1773   for (int i = 0; i < member_arg_pos; i++) {
       
  1774     VMReg a =    regs_with_member_name[i].first();
       
  1775     VMReg b = regs_without_member_name[i].first();
       
  1776     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
       
  1777   }
       
  1778   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
       
  1779 }
       
  1780 #endif
       
  1781 
       
  1782 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
       
  1783   if (destination != entry_point) {
       
  1784     CodeBlob* callee = CodeCache::find_blob(destination);
       
  1785     // callee == cb seems weird. It means calling interpreter thru stub.
       
  1786     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
       
  1787       // static call or optimized virtual
       
  1788       if (TraceCallFixup) {
       
  1789         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
       
  1790         moop->print_short_name(tty);
       
  1791         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
       
  1792       }
       
  1793       return true;
       
  1794     } else {
       
  1795       if (TraceCallFixup) {
       
  1796         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
       
  1797         moop->print_short_name(tty);
       
  1798         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
       
  1799       }
       
  1800       // assert is too strong could also be resolve destinations.
       
  1801       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
       
  1802     }
       
  1803   } else {
       
  1804     if (TraceCallFixup) {
       
  1805       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
       
  1806       moop->print_short_name(tty);
       
  1807       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
       
  1808     }
       
  1809   }
       
  1810   return false;
       
  1811 }
       
  1812 
       
  1813 // ---------------------------------------------------------------------------
       
  1814 // We are calling the interpreter via a c2i. Normally this would mean that
       
  1815 // we were called by a compiled method. However we could have lost a race
       
  1816 // where we went int -> i2c -> c2i and so the caller could in fact be
       
  1817 // interpreted. If the caller is compiled we attempt to patch the caller
       
  1818 // so he no longer calls into the interpreter.
       
  1819 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
       
  1820   Method* moop(method);
       
  1821 
       
  1822   address entry_point = moop->from_compiled_entry_no_trampoline();
       
  1823 
       
  1824   // It's possible that deoptimization can occur at a call site which hasn't
       
  1825   // been resolved yet, in which case this function will be called from
       
  1826   // an nmethod that has been patched for deopt and we can ignore the
       
  1827   // request for a fixup.
       
  1828   // Also it is possible that we lost a race in that from_compiled_entry
       
  1829   // is now back to the i2c in that case we don't need to patch and if
       
  1830   // we did we'd leap into space because the callsite needs to use
       
  1831   // "to interpreter" stub in order to load up the Method*. Don't
       
  1832   // ask me how I know this...
       
  1833 
       
  1834   CodeBlob* cb = CodeCache::find_blob(caller_pc);
       
  1835   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
       
  1836     return;
       
  1837   }
       
  1838 
       
  1839   // The check above makes sure this is a nmethod.
       
  1840   CompiledMethod* nm = cb->as_compiled_method_or_null();
       
  1841   assert(nm, "must be");
       
  1842 
       
  1843   // Get the return PC for the passed caller PC.
       
  1844   address return_pc = caller_pc + frame::pc_return_offset;
       
  1845 
       
  1846   // There is a benign race here. We could be attempting to patch to a compiled
       
  1847   // entry point at the same time the callee is being deoptimized. If that is
       
  1848   // the case then entry_point may in fact point to a c2i and we'd patch the
       
  1849   // call site with the same old data. clear_code will set code() to NULL
       
  1850   // at the end of it. If we happen to see that NULL then we can skip trying
       
  1851   // to patch. If we hit the window where the callee has a c2i in the
       
  1852   // from_compiled_entry and the NULL isn't present yet then we lose the race
       
  1853   // and patch the code with the same old data. Asi es la vida.
       
  1854 
       
  1855   if (moop->code() == NULL) return;
       
  1856 
       
  1857   if (nm->is_in_use()) {
       
  1858 
       
  1859     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
       
  1860     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
       
  1861     if (NativeCall::is_call_before(return_pc)) {
       
  1862       ResourceMark mark;
       
  1863       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
       
  1864       //
       
  1865       // bug 6281185. We might get here after resolving a call site to a vanilla
       
  1866       // virtual call. Because the resolvee uses the verified entry it may then
       
  1867       // see compiled code and attempt to patch the site by calling us. This would
       
  1868       // then incorrectly convert the call site to optimized and its downhill from
       
  1869       // there. If you're lucky you'll get the assert in the bugid, if not you've
       
  1870       // just made a call site that could be megamorphic into a monomorphic site
       
  1871       // for the rest of its life! Just another racing bug in the life of
       
  1872       // fixup_callers_callsite ...
       
  1873       //
       
  1874       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
       
  1875       iter.next();
       
  1876       assert(iter.has_current(), "must have a reloc at java call site");
       
  1877       relocInfo::relocType typ = iter.reloc()->type();
       
  1878       if (typ != relocInfo::static_call_type &&
       
  1879            typ != relocInfo::opt_virtual_call_type &&
       
  1880            typ != relocInfo::static_stub_type) {
       
  1881         return;
       
  1882       }
       
  1883       address destination = call->destination();
       
  1884       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
       
  1885         call->set_destination_mt_safe(entry_point);
       
  1886       }
       
  1887     }
       
  1888   }
       
  1889 IRT_END
       
  1890 
       
  1891 
       
  1892 // same as JVM_Arraycopy, but called directly from compiled code
       
  1893 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
       
  1894                                                 oopDesc* dest, jint dest_pos,
       
  1895                                                 jint length,
       
  1896                                                 JavaThread* thread)) {
       
  1897 #ifndef PRODUCT
       
  1898   _slow_array_copy_ctr++;
       
  1899 #endif
       
  1900   // Check if we have null pointers
       
  1901   if (src == NULL || dest == NULL) {
       
  1902     THROW(vmSymbols::java_lang_NullPointerException());
       
  1903   }
       
  1904   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
       
  1905   // even though the copy_array API also performs dynamic checks to ensure
       
  1906   // that src and dest are truly arrays (and are conformable).
       
  1907   // The copy_array mechanism is awkward and could be removed, but
       
  1908   // the compilers don't call this function except as a last resort,
       
  1909   // so it probably doesn't matter.
       
  1910   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
       
  1911                                         (arrayOopDesc*)dest, dest_pos,
       
  1912                                         length, thread);
       
  1913 }
       
  1914 JRT_END
       
  1915 
       
  1916 // The caller of generate_class_cast_message() (or one of its callers)
       
  1917 // must use a ResourceMark in order to correctly free the result.
       
  1918 char* SharedRuntime::generate_class_cast_message(
       
  1919     JavaThread* thread, Klass* caster_klass) {
       
  1920 
       
  1921   // Get target class name from the checkcast instruction
       
  1922   vframeStream vfst(thread, true);
       
  1923   assert(!vfst.at_end(), "Java frame must exist");
       
  1924   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
       
  1925   Klass* target_klass = vfst.method()->constants()->klass_at(
       
  1926     cc.index(), thread);
       
  1927   return generate_class_cast_message(caster_klass, target_klass);
       
  1928 }
       
  1929 
       
  1930 // The caller of class_loader_and_module_name() (or one of its callers)
       
  1931 // must use a ResourceMark in order to correctly free the result.
       
  1932 const char* class_loader_and_module_name(Klass* klass) {
       
  1933   const char* delim = "/";
       
  1934   size_t delim_len = strlen(delim);
       
  1935 
       
  1936   const char* fqn = klass->external_name();
       
  1937   // Length of message to return; always include FQN
       
  1938   size_t msglen = strlen(fqn) + 1;
       
  1939 
       
  1940   bool has_cl_name = false;
       
  1941   bool has_mod_name = false;
       
  1942   bool has_version = false;
       
  1943 
       
  1944   // Use class loader name, if exists and not builtin
       
  1945   const char* class_loader_name = "";
       
  1946   ClassLoaderData* cld = klass->class_loader_data();
       
  1947   assert(cld != NULL, "class_loader_data should not be NULL");
       
  1948   if (!cld->is_builtin_class_loader_data()) {
       
  1949     // If not builtin, look for name
       
  1950     oop loader = klass->class_loader();
       
  1951     if (loader != NULL) {
       
  1952       oop class_loader_name_oop = java_lang_ClassLoader::name(loader);
       
  1953       if (class_loader_name_oop != NULL) {
       
  1954         class_loader_name = java_lang_String::as_utf8_string(class_loader_name_oop);
       
  1955         if (class_loader_name != NULL && class_loader_name[0] != '\0') {
       
  1956           has_cl_name = true;
       
  1957           msglen += strlen(class_loader_name) + delim_len;
       
  1958         }
       
  1959       }
       
  1960     }
       
  1961   }
       
  1962 
       
  1963   const char* module_name = "";
       
  1964   const char* version = "";
       
  1965   Klass* bottom_klass = klass->is_objArray_klass() ?
       
  1966     ObjArrayKlass::cast(klass)->bottom_klass() : klass;
       
  1967   if (bottom_klass->is_instance_klass()) {
       
  1968     ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
       
  1969     // Use module name, if exists
       
  1970     if (module->is_named()) {
       
  1971       has_mod_name = true;
       
  1972       module_name = module->name()->as_C_string();
       
  1973       msglen += strlen(module_name);
       
  1974       // Use version if exists and is not a jdk module
       
  1975       if (module->is_non_jdk_module() && module->version() != NULL) {
       
  1976         has_version = true;
       
  1977         version = module->version()->as_C_string();
       
  1978         msglen += strlen("@") + strlen(version);
       
  1979       }
       
  1980     }
       
  1981   } else {
       
  1982     // klass is an array of primitives, so its module is java.base
       
  1983     module_name = JAVA_BASE_NAME;
       
  1984   }
       
  1985 
       
  1986   if (has_cl_name || has_mod_name) {
       
  1987     msglen += delim_len;
       
  1988   }
       
  1989 
       
  1990   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
       
  1991 
       
  1992   // Just return the FQN if error in allocating string
       
  1993   if (message == NULL) {
       
  1994     return fqn;
       
  1995   }
       
  1996 
       
  1997   jio_snprintf(message, msglen, "%s%s%s%s%s%s%s",
       
  1998                class_loader_name,
       
  1999                (has_cl_name) ? delim : "",
       
  2000                (has_mod_name) ? module_name : "",
       
  2001                (has_version) ? "@" : "",
       
  2002                (has_version) ? version : "",
       
  2003                (has_cl_name || has_mod_name) ? delim : "",
       
  2004                fqn);
       
  2005   return message;
       
  2006 }
       
  2007 
       
  2008 char* SharedRuntime::generate_class_cast_message(
       
  2009     Klass* caster_klass, Klass* target_klass) {
       
  2010 
       
  2011   const char* caster_name = class_loader_and_module_name(caster_klass);
       
  2012 
       
  2013   const char* target_name = class_loader_and_module_name(target_klass);
       
  2014 
       
  2015   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
       
  2016 
       
  2017   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
       
  2018   if (message == NULL) {
       
  2019     // Shouldn't happen, but don't cause even more problems if it does
       
  2020     message = const_cast<char*>(caster_klass->external_name());
       
  2021   } else {
       
  2022     jio_snprintf(message,
       
  2023                  msglen,
       
  2024                  "%s cannot be cast to %s",
       
  2025                  caster_name,
       
  2026                  target_name);
       
  2027   }
       
  2028   return message;
       
  2029 }
       
  2030 
       
  2031 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
       
  2032   (void) JavaThread::current()->reguard_stack();
       
  2033 JRT_END
       
  2034 
       
  2035 
       
  2036 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
       
  2037 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
       
  2038   // Disable ObjectSynchronizer::quick_enter() in default config
       
  2039   // on AARCH64 and ARM until JDK-8153107 is resolved.
       
  2040   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
       
  2041       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
       
  2042       !SafepointSynchronize::is_synchronizing()) {
       
  2043     // Only try quick_enter() if we're not trying to reach a safepoint
       
  2044     // so that the calling thread reaches the safepoint more quickly.
       
  2045     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
       
  2046   }
       
  2047   // NO_ASYNC required because an async exception on the state transition destructor
       
  2048   // would leave you with the lock held and it would never be released.
       
  2049   // The normal monitorenter NullPointerException is thrown without acquiring a lock
       
  2050   // and the model is that an exception implies the method failed.
       
  2051   JRT_BLOCK_NO_ASYNC
       
  2052   oop obj(_obj);
       
  2053   if (PrintBiasedLockingStatistics) {
       
  2054     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
       
  2055   }
       
  2056   Handle h_obj(THREAD, obj);
       
  2057   if (UseBiasedLocking) {
       
  2058     // Retry fast entry if bias is revoked to avoid unnecessary inflation
       
  2059     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
       
  2060   } else {
       
  2061     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
       
  2062   }
       
  2063   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
       
  2064   JRT_BLOCK_END
       
  2065 JRT_END
       
  2066 
       
  2067 // Handles the uncommon cases of monitor unlocking in compiled code
       
  2068 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
       
  2069    oop obj(_obj);
       
  2070   assert(JavaThread::current() == THREAD, "invariant");
       
  2071   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
       
  2072   // testing was unable to ever fire the assert that guarded it so I have removed it.
       
  2073   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
       
  2074 #undef MIGHT_HAVE_PENDING
       
  2075 #ifdef MIGHT_HAVE_PENDING
       
  2076   // Save and restore any pending_exception around the exception mark.
       
  2077   // While the slow_exit must not throw an exception, we could come into
       
  2078   // this routine with one set.
       
  2079   oop pending_excep = NULL;
       
  2080   const char* pending_file;
       
  2081   int pending_line;
       
  2082   if (HAS_PENDING_EXCEPTION) {
       
  2083     pending_excep = PENDING_EXCEPTION;
       
  2084     pending_file  = THREAD->exception_file();
       
  2085     pending_line  = THREAD->exception_line();
       
  2086     CLEAR_PENDING_EXCEPTION;
       
  2087   }
       
  2088 #endif /* MIGHT_HAVE_PENDING */
       
  2089 
       
  2090   {
       
  2091     // Exit must be non-blocking, and therefore no exceptions can be thrown.
       
  2092     EXCEPTION_MARK;
       
  2093     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
       
  2094   }
       
  2095 
       
  2096 #ifdef MIGHT_HAVE_PENDING
       
  2097   if (pending_excep != NULL) {
       
  2098     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
       
  2099   }
       
  2100 #endif /* MIGHT_HAVE_PENDING */
       
  2101 JRT_END
       
  2102 
       
  2103 #ifndef PRODUCT
       
  2104 
       
  2105 void SharedRuntime::print_statistics() {
       
  2106   ttyLocker ttyl;
       
  2107   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
       
  2108 
       
  2109   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
       
  2110 
       
  2111   SharedRuntime::print_ic_miss_histogram();
       
  2112 
       
  2113   if (CountRemovableExceptions) {
       
  2114     if (_nof_removable_exceptions > 0) {
       
  2115       Unimplemented(); // this counter is not yet incremented
       
  2116       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
       
  2117     }
       
  2118   }
       
  2119 
       
  2120   // Dump the JRT_ENTRY counters
       
  2121   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
       
  2122   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
       
  2123   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
       
  2124   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
       
  2125   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
       
  2126   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
       
  2127   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
       
  2128 
       
  2129   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
       
  2130   tty->print_cr("%5d wrong method", _wrong_method_ctr);
       
  2131   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
       
  2132   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
       
  2133   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
       
  2134 
       
  2135   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
       
  2136   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
       
  2137   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
       
  2138   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
       
  2139   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
       
  2140   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
       
  2141   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
       
  2142   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
       
  2143   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
       
  2144   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
       
  2145   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
       
  2146   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
       
  2147   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
       
  2148   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
       
  2149   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
       
  2150   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
       
  2151 
       
  2152   AdapterHandlerLibrary::print_statistics();
       
  2153 
       
  2154   if (xtty != NULL)  xtty->tail("statistics");
       
  2155 }
       
  2156 
       
  2157 inline double percent(int x, int y) {
       
  2158   return 100.0 * x / MAX2(y, 1);
       
  2159 }
       
  2160 
       
  2161 class MethodArityHistogram {
       
  2162  public:
       
  2163   enum { MAX_ARITY = 256 };
       
  2164  private:
       
  2165   static int _arity_histogram[MAX_ARITY];     // histogram of #args
       
  2166   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
       
  2167   static int _max_arity;                      // max. arity seen
       
  2168   static int _max_size;                       // max. arg size seen
       
  2169 
       
  2170   static void add_method_to_histogram(nmethod* nm) {
       
  2171     Method* m = nm->method();
       
  2172     ArgumentCount args(m->signature());
       
  2173     int arity   = args.size() + (m->is_static() ? 0 : 1);
       
  2174     int argsize = m->size_of_parameters();
       
  2175     arity   = MIN2(arity, MAX_ARITY-1);
       
  2176     argsize = MIN2(argsize, MAX_ARITY-1);
       
  2177     int count = nm->method()->compiled_invocation_count();
       
  2178     _arity_histogram[arity]  += count;
       
  2179     _size_histogram[argsize] += count;
       
  2180     _max_arity = MAX2(_max_arity, arity);
       
  2181     _max_size  = MAX2(_max_size, argsize);
       
  2182   }
       
  2183 
       
  2184   void print_histogram_helper(int n, int* histo, const char* name) {
       
  2185     const int N = MIN2(5, n);
       
  2186     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
       
  2187     double sum = 0;
       
  2188     double weighted_sum = 0;
       
  2189     int i;
       
  2190     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
       
  2191     double rest = sum;
       
  2192     double percent = sum / 100;
       
  2193     for (i = 0; i <= N; i++) {
       
  2194       rest -= histo[i];
       
  2195       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
       
  2196     }
       
  2197     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
       
  2198     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
       
  2199   }
       
  2200 
       
  2201   void print_histogram() {
       
  2202     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
       
  2203     print_histogram_helper(_max_arity, _arity_histogram, "arity");
       
  2204     tty->print_cr("\nSame for parameter size (in words):");
       
  2205     print_histogram_helper(_max_size, _size_histogram, "size");
       
  2206     tty->cr();
       
  2207   }
       
  2208 
       
  2209  public:
       
  2210   MethodArityHistogram() {
       
  2211     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
       
  2212     _max_arity = _max_size = 0;
       
  2213     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
       
  2214     CodeCache::nmethods_do(add_method_to_histogram);
       
  2215     print_histogram();
       
  2216   }
       
  2217 };
       
  2218 
       
  2219 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
       
  2220 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
       
  2221 int MethodArityHistogram::_max_arity;
       
  2222 int MethodArityHistogram::_max_size;
       
  2223 
       
  2224 void SharedRuntime::print_call_statistics(int comp_total) {
       
  2225   tty->print_cr("Calls from compiled code:");
       
  2226   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
       
  2227   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
       
  2228   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
       
  2229   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
       
  2230   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
       
  2231   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
       
  2232   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
       
  2233   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
       
  2234   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
       
  2235   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
       
  2236   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
       
  2237   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
       
  2238   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
       
  2239   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
       
  2240   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
       
  2241   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
       
  2242   tty->cr();
       
  2243   tty->print_cr("Note 1: counter updates are not MT-safe.");
       
  2244   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
       
  2245   tty->print_cr("        %% in nested categories are relative to their category");
       
  2246   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
       
  2247   tty->cr();
       
  2248 
       
  2249   MethodArityHistogram h;
       
  2250 }
       
  2251 #endif
       
  2252 
       
  2253 
       
  2254 // A simple wrapper class around the calling convention information
       
  2255 // that allows sharing of adapters for the same calling convention.
       
  2256 class AdapterFingerPrint : public CHeapObj<mtCode> {
       
  2257  private:
       
  2258   enum {
       
  2259     _basic_type_bits = 4,
       
  2260     _basic_type_mask = right_n_bits(_basic_type_bits),
       
  2261     _basic_types_per_int = BitsPerInt / _basic_type_bits,
       
  2262     _compact_int_count = 3
       
  2263   };
       
  2264   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
       
  2265   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
       
  2266 
       
  2267   union {
       
  2268     int  _compact[_compact_int_count];
       
  2269     int* _fingerprint;
       
  2270   } _value;
       
  2271   int _length; // A negative length indicates the fingerprint is in the compact form,
       
  2272                // Otherwise _value._fingerprint is the array.
       
  2273 
       
  2274   // Remap BasicTypes that are handled equivalently by the adapters.
       
  2275   // These are correct for the current system but someday it might be
       
  2276   // necessary to make this mapping platform dependent.
       
  2277   static int adapter_encoding(BasicType in) {
       
  2278     switch (in) {
       
  2279       case T_BOOLEAN:
       
  2280       case T_BYTE:
       
  2281       case T_SHORT:
       
  2282       case T_CHAR:
       
  2283         // There are all promoted to T_INT in the calling convention
       
  2284         return T_INT;
       
  2285 
       
  2286       case T_OBJECT:
       
  2287       case T_ARRAY:
       
  2288         // In other words, we assume that any register good enough for
       
  2289         // an int or long is good enough for a managed pointer.
       
  2290 #ifdef _LP64
       
  2291         return T_LONG;
       
  2292 #else
       
  2293         return T_INT;
       
  2294 #endif
       
  2295 
       
  2296       case T_INT:
       
  2297       case T_LONG:
       
  2298       case T_FLOAT:
       
  2299       case T_DOUBLE:
       
  2300       case T_VOID:
       
  2301         return in;
       
  2302 
       
  2303       default:
       
  2304         ShouldNotReachHere();
       
  2305         return T_CONFLICT;
       
  2306     }
       
  2307   }
       
  2308 
       
  2309  public:
       
  2310   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
       
  2311     // The fingerprint is based on the BasicType signature encoded
       
  2312     // into an array of ints with eight entries per int.
       
  2313     int* ptr;
       
  2314     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
       
  2315     if (len <= _compact_int_count) {
       
  2316       assert(_compact_int_count == 3, "else change next line");
       
  2317       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
       
  2318       // Storing the signature encoded as signed chars hits about 98%
       
  2319       // of the time.
       
  2320       _length = -len;
       
  2321       ptr = _value._compact;
       
  2322     } else {
       
  2323       _length = len;
       
  2324       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
       
  2325       ptr = _value._fingerprint;
       
  2326     }
       
  2327 
       
  2328     // Now pack the BasicTypes with 8 per int
       
  2329     int sig_index = 0;
       
  2330     for (int index = 0; index < len; index++) {
       
  2331       int value = 0;
       
  2332       for (int byte = 0; byte < _basic_types_per_int; byte++) {
       
  2333         int bt = ((sig_index < total_args_passed)
       
  2334                   ? adapter_encoding(sig_bt[sig_index++])
       
  2335                   : 0);
       
  2336         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
       
  2337         value = (value << _basic_type_bits) | bt;
       
  2338       }
       
  2339       ptr[index] = value;
       
  2340     }
       
  2341   }
       
  2342 
       
  2343   ~AdapterFingerPrint() {
       
  2344     if (_length > 0) {
       
  2345       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
       
  2346     }
       
  2347   }
       
  2348 
       
  2349   int value(int index) {
       
  2350     if (_length < 0) {
       
  2351       return _value._compact[index];
       
  2352     }
       
  2353     return _value._fingerprint[index];
       
  2354   }
       
  2355   int length() {
       
  2356     if (_length < 0) return -_length;
       
  2357     return _length;
       
  2358   }
       
  2359 
       
  2360   bool is_compact() {
       
  2361     return _length <= 0;
       
  2362   }
       
  2363 
       
  2364   unsigned int compute_hash() {
       
  2365     int hash = 0;
       
  2366     for (int i = 0; i < length(); i++) {
       
  2367       int v = value(i);
       
  2368       hash = (hash << 8) ^ v ^ (hash >> 5);
       
  2369     }
       
  2370     return (unsigned int)hash;
       
  2371   }
       
  2372 
       
  2373   const char* as_string() {
       
  2374     stringStream st;
       
  2375     st.print("0x");
       
  2376     for (int i = 0; i < length(); i++) {
       
  2377       st.print("%08x", value(i));
       
  2378     }
       
  2379     return st.as_string();
       
  2380   }
       
  2381 
       
  2382   bool equals(AdapterFingerPrint* other) {
       
  2383     if (other->_length != _length) {
       
  2384       return false;
       
  2385     }
       
  2386     if (_length < 0) {
       
  2387       assert(_compact_int_count == 3, "else change next line");
       
  2388       return _value._compact[0] == other->_value._compact[0] &&
       
  2389              _value._compact[1] == other->_value._compact[1] &&
       
  2390              _value._compact[2] == other->_value._compact[2];
       
  2391     } else {
       
  2392       for (int i = 0; i < _length; i++) {
       
  2393         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
       
  2394           return false;
       
  2395         }
       
  2396       }
       
  2397     }
       
  2398     return true;
       
  2399   }
       
  2400 };
       
  2401 
       
  2402 
       
  2403 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
       
  2404 class AdapterHandlerTable : public BasicHashtable<mtCode> {
       
  2405   friend class AdapterHandlerTableIterator;
       
  2406 
       
  2407  private:
       
  2408 
       
  2409 #ifndef PRODUCT
       
  2410   static int _lookups; // number of calls to lookup
       
  2411   static int _buckets; // number of buckets checked
       
  2412   static int _equals;  // number of buckets checked with matching hash
       
  2413   static int _hits;    // number of successful lookups
       
  2414   static int _compact; // number of equals calls with compact signature
       
  2415 #endif
       
  2416 
       
  2417   AdapterHandlerEntry* bucket(int i) {
       
  2418     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
       
  2419   }
       
  2420 
       
  2421  public:
       
  2422   AdapterHandlerTable()
       
  2423     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
       
  2424 
       
  2425   // Create a new entry suitable for insertion in the table
       
  2426   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
       
  2427     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
       
  2428     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
       
  2429     if (DumpSharedSpaces) {
       
  2430       ((CDSAdapterHandlerEntry*)entry)->init();
       
  2431     }
       
  2432     return entry;
       
  2433   }
       
  2434 
       
  2435   // Insert an entry into the table
       
  2436   void add(AdapterHandlerEntry* entry) {
       
  2437     int index = hash_to_index(entry->hash());
       
  2438     add_entry(index, entry);
       
  2439   }
       
  2440 
       
  2441   void free_entry(AdapterHandlerEntry* entry) {
       
  2442     entry->deallocate();
       
  2443     BasicHashtable<mtCode>::free_entry(entry);
       
  2444   }
       
  2445 
       
  2446   // Find a entry with the same fingerprint if it exists
       
  2447   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
       
  2448     NOT_PRODUCT(_lookups++);
       
  2449     AdapterFingerPrint fp(total_args_passed, sig_bt);
       
  2450     unsigned int hash = fp.compute_hash();
       
  2451     int index = hash_to_index(hash);
       
  2452     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
       
  2453       NOT_PRODUCT(_buckets++);
       
  2454       if (e->hash() == hash) {
       
  2455         NOT_PRODUCT(_equals++);
       
  2456         if (fp.equals(e->fingerprint())) {
       
  2457 #ifndef PRODUCT
       
  2458           if (fp.is_compact()) _compact++;
       
  2459           _hits++;
       
  2460 #endif
       
  2461           return e;
       
  2462         }
       
  2463       }
       
  2464     }
       
  2465     return NULL;
       
  2466   }
       
  2467 
       
  2468 #ifndef PRODUCT
       
  2469   void print_statistics() {
       
  2470     ResourceMark rm;
       
  2471     int longest = 0;
       
  2472     int empty = 0;
       
  2473     int total = 0;
       
  2474     int nonempty = 0;
       
  2475     for (int index = 0; index < table_size(); index++) {
       
  2476       int count = 0;
       
  2477       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
       
  2478         count++;
       
  2479       }
       
  2480       if (count != 0) nonempty++;
       
  2481       if (count == 0) empty++;
       
  2482       if (count > longest) longest = count;
       
  2483       total += count;
       
  2484     }
       
  2485     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
       
  2486                   empty, longest, total, total / (double)nonempty);
       
  2487     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
       
  2488                   _lookups, _buckets, _equals, _hits, _compact);
       
  2489   }
       
  2490 #endif
       
  2491 };
       
  2492 
       
  2493 
       
  2494 #ifndef PRODUCT
       
  2495 
       
  2496 int AdapterHandlerTable::_lookups;
       
  2497 int AdapterHandlerTable::_buckets;
       
  2498 int AdapterHandlerTable::_equals;
       
  2499 int AdapterHandlerTable::_hits;
       
  2500 int AdapterHandlerTable::_compact;
       
  2501 
       
  2502 #endif
       
  2503 
       
  2504 class AdapterHandlerTableIterator : public StackObj {
       
  2505  private:
       
  2506   AdapterHandlerTable* _table;
       
  2507   int _index;
       
  2508   AdapterHandlerEntry* _current;
       
  2509 
       
  2510   void scan() {
       
  2511     while (_index < _table->table_size()) {
       
  2512       AdapterHandlerEntry* a = _table->bucket(_index);
       
  2513       _index++;
       
  2514       if (a != NULL) {
       
  2515         _current = a;
       
  2516         return;
       
  2517       }
       
  2518     }
       
  2519   }
       
  2520 
       
  2521  public:
       
  2522   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
       
  2523     scan();
       
  2524   }
       
  2525   bool has_next() {
       
  2526     return _current != NULL;
       
  2527   }
       
  2528   AdapterHandlerEntry* next() {
       
  2529     if (_current != NULL) {
       
  2530       AdapterHandlerEntry* result = _current;
       
  2531       _current = _current->next();
       
  2532       if (_current == NULL) scan();
       
  2533       return result;
       
  2534     } else {
       
  2535       return NULL;
       
  2536     }
       
  2537   }
       
  2538 };
       
  2539 
       
  2540 
       
  2541 // ---------------------------------------------------------------------------
       
  2542 // Implementation of AdapterHandlerLibrary
       
  2543 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
       
  2544 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
       
  2545 const int AdapterHandlerLibrary_size = 16*K;
       
  2546 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
       
  2547 
       
  2548 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
       
  2549   // Should be called only when AdapterHandlerLibrary_lock is active.
       
  2550   if (_buffer == NULL) // Initialize lazily
       
  2551       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
       
  2552   return _buffer;
       
  2553 }
       
  2554 
       
  2555 extern "C" void unexpected_adapter_call() {
       
  2556   ShouldNotCallThis();
       
  2557 }
       
  2558 
       
  2559 void AdapterHandlerLibrary::initialize() {
       
  2560   if (_adapters != NULL) return;
       
  2561   _adapters = new AdapterHandlerTable();
       
  2562 
       
  2563   // Create a special handler for abstract methods.  Abstract methods
       
  2564   // are never compiled so an i2c entry is somewhat meaningless, but
       
  2565   // throw AbstractMethodError just in case.
       
  2566   // Pass wrong_method_abstract for the c2i transitions to return
       
  2567   // AbstractMethodError for invalid invocations.
       
  2568   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
       
  2569   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
       
  2570                                                               StubRoutines::throw_AbstractMethodError_entry(),
       
  2571                                                               wrong_method_abstract, wrong_method_abstract);
       
  2572 }
       
  2573 
       
  2574 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
       
  2575                                                       address i2c_entry,
       
  2576                                                       address c2i_entry,
       
  2577                                                       address c2i_unverified_entry) {
       
  2578   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
       
  2579 }
       
  2580 
       
  2581 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
       
  2582   AdapterHandlerEntry* entry = get_adapter0(method);
       
  2583   if (method->is_shared()) {
       
  2584     // See comments around Method::link_method()
       
  2585     MutexLocker mu(AdapterHandlerLibrary_lock);
       
  2586     if (method->adapter() == NULL) {
       
  2587       method->update_adapter_trampoline(entry);
       
  2588     }
       
  2589     address trampoline = method->from_compiled_entry();
       
  2590     if (*(int*)trampoline == 0) {
       
  2591       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
       
  2592       MacroAssembler _masm(&buffer);
       
  2593       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
       
  2594       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
       
  2595 
       
  2596       if (PrintInterpreter) {
       
  2597         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
       
  2598       }
       
  2599     }
       
  2600   }
       
  2601 
       
  2602   return entry;
       
  2603 }
       
  2604 
       
  2605 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
       
  2606   // Use customized signature handler.  Need to lock around updates to
       
  2607   // the AdapterHandlerTable (it is not safe for concurrent readers
       
  2608   // and a single writer: this could be fixed if it becomes a
       
  2609   // problem).
       
  2610 
       
  2611   ResourceMark rm;
       
  2612 
       
  2613   NOT_PRODUCT(int insts_size);
       
  2614   AdapterBlob* new_adapter = NULL;
       
  2615   AdapterHandlerEntry* entry = NULL;
       
  2616   AdapterFingerPrint* fingerprint = NULL;
       
  2617   {
       
  2618     MutexLocker mu(AdapterHandlerLibrary_lock);
       
  2619     // make sure data structure is initialized
       
  2620     initialize();
       
  2621 
       
  2622     if (method->is_abstract()) {
       
  2623       return _abstract_method_handler;
       
  2624     }
       
  2625 
       
  2626     // Fill in the signature array, for the calling-convention call.
       
  2627     int total_args_passed = method->size_of_parameters(); // All args on stack
       
  2628 
       
  2629     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
       
  2630     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
       
  2631     int i = 0;
       
  2632     if (!method->is_static())  // Pass in receiver first
       
  2633       sig_bt[i++] = T_OBJECT;
       
  2634     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
       
  2635       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
       
  2636       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
       
  2637         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
       
  2638     }
       
  2639     assert(i == total_args_passed, "");
       
  2640 
       
  2641     // Lookup method signature's fingerprint
       
  2642     entry = _adapters->lookup(total_args_passed, sig_bt);
       
  2643 
       
  2644 #ifdef ASSERT
       
  2645     AdapterHandlerEntry* shared_entry = NULL;
       
  2646     // Start adapter sharing verification only after the VM is booted.
       
  2647     if (VerifyAdapterSharing && (entry != NULL)) {
       
  2648       shared_entry = entry;
       
  2649       entry = NULL;
       
  2650     }
       
  2651 #endif
       
  2652 
       
  2653     if (entry != NULL) {
       
  2654       return entry;
       
  2655     }
       
  2656 
       
  2657     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
       
  2658     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
       
  2659 
       
  2660     // Make a C heap allocated version of the fingerprint to store in the adapter
       
  2661     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
       
  2662 
       
  2663     // StubRoutines::code2() is initialized after this function can be called. As a result,
       
  2664     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
       
  2665     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
       
  2666     // stub that ensure that an I2C stub is called from an interpreter frame.
       
  2667     bool contains_all_checks = StubRoutines::code2() != NULL;
       
  2668 
       
  2669     // Create I2C & C2I handlers
       
  2670     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
       
  2671     if (buf != NULL) {
       
  2672       CodeBuffer buffer(buf);
       
  2673       short buffer_locs[20];
       
  2674       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
       
  2675                                              sizeof(buffer_locs)/sizeof(relocInfo));
       
  2676 
       
  2677       MacroAssembler _masm(&buffer);
       
  2678       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
       
  2679                                                      total_args_passed,
       
  2680                                                      comp_args_on_stack,
       
  2681                                                      sig_bt,
       
  2682                                                      regs,
       
  2683                                                      fingerprint);
       
  2684 #ifdef ASSERT
       
  2685       if (VerifyAdapterSharing) {
       
  2686         if (shared_entry != NULL) {
       
  2687           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
       
  2688           // Release the one just created and return the original
       
  2689           _adapters->free_entry(entry);
       
  2690           return shared_entry;
       
  2691         } else  {
       
  2692           entry->save_code(buf->code_begin(), buffer.insts_size());
       
  2693         }
       
  2694       }
       
  2695 #endif
       
  2696 
       
  2697       new_adapter = AdapterBlob::create(&buffer);
       
  2698       NOT_PRODUCT(insts_size = buffer.insts_size());
       
  2699     }
       
  2700     if (new_adapter == NULL) {
       
  2701       // CodeCache is full, disable compilation
       
  2702       // Ought to log this but compile log is only per compile thread
       
  2703       // and we're some non descript Java thread.
       
  2704       return NULL; // Out of CodeCache space
       
  2705     }
       
  2706     entry->relocate(new_adapter->content_begin());
       
  2707 #ifndef PRODUCT
       
  2708     // debugging suppport
       
  2709     if (PrintAdapterHandlers || PrintStubCode) {
       
  2710       ttyLocker ttyl;
       
  2711       entry->print_adapter_on(tty);
       
  2712       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
       
  2713                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
       
  2714                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
       
  2715       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
       
  2716       if (Verbose || PrintStubCode) {
       
  2717         address first_pc = entry->base_address();
       
  2718         if (first_pc != NULL) {
       
  2719           Disassembler::decode(first_pc, first_pc + insts_size);
       
  2720           tty->cr();
       
  2721         }
       
  2722       }
       
  2723     }
       
  2724 #endif
       
  2725     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
       
  2726     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
       
  2727     if (contains_all_checks || !VerifyAdapterCalls) {
       
  2728       _adapters->add(entry);
       
  2729     }
       
  2730   }
       
  2731   // Outside of the lock
       
  2732   if (new_adapter != NULL) {
       
  2733     char blob_id[256];
       
  2734     jio_snprintf(blob_id,
       
  2735                  sizeof(blob_id),
       
  2736                  "%s(%s)@" PTR_FORMAT,
       
  2737                  new_adapter->name(),
       
  2738                  fingerprint->as_string(),
       
  2739                  new_adapter->content_begin());
       
  2740     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
       
  2741 
       
  2742     if (JvmtiExport::should_post_dynamic_code_generated()) {
       
  2743       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
       
  2744     }
       
  2745   }
       
  2746   return entry;
       
  2747 }
       
  2748 
       
  2749 address AdapterHandlerEntry::base_address() {
       
  2750   address base = _i2c_entry;
       
  2751   if (base == NULL)  base = _c2i_entry;
       
  2752   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
       
  2753   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
       
  2754   return base;
       
  2755 }
       
  2756 
       
  2757 void AdapterHandlerEntry::relocate(address new_base) {
       
  2758   address old_base = base_address();
       
  2759   assert(old_base != NULL, "");
       
  2760   ptrdiff_t delta = new_base - old_base;
       
  2761   if (_i2c_entry != NULL)
       
  2762     _i2c_entry += delta;
       
  2763   if (_c2i_entry != NULL)
       
  2764     _c2i_entry += delta;
       
  2765   if (_c2i_unverified_entry != NULL)
       
  2766     _c2i_unverified_entry += delta;
       
  2767   assert(base_address() == new_base, "");
       
  2768 }
       
  2769 
       
  2770 
       
  2771 void AdapterHandlerEntry::deallocate() {
       
  2772   delete _fingerprint;
       
  2773 #ifdef ASSERT
       
  2774   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
       
  2775 #endif
       
  2776 }
       
  2777 
       
  2778 
       
  2779 #ifdef ASSERT
       
  2780 // Capture the code before relocation so that it can be compared
       
  2781 // against other versions.  If the code is captured after relocation
       
  2782 // then relative instructions won't be equivalent.
       
  2783 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
       
  2784   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
       
  2785   _saved_code_length = length;
       
  2786   memcpy(_saved_code, buffer, length);
       
  2787 }
       
  2788 
       
  2789 
       
  2790 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
       
  2791   if (length != _saved_code_length) {
       
  2792     return false;
       
  2793   }
       
  2794 
       
  2795   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
       
  2796 }
       
  2797 #endif
       
  2798 
       
  2799 
       
  2800 /**
       
  2801  * Create a native wrapper for this native method.  The wrapper converts the
       
  2802  * Java-compiled calling convention to the native convention, handles
       
  2803  * arguments, and transitions to native.  On return from the native we transition
       
  2804  * back to java blocking if a safepoint is in progress.
       
  2805  */
       
  2806 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
       
  2807   ResourceMark rm;
       
  2808   nmethod* nm = NULL;
       
  2809 
       
  2810   assert(method->is_native(), "must be native");
       
  2811   assert(method->is_method_handle_intrinsic() ||
       
  2812          method->has_native_function(), "must have something valid to call!");
       
  2813 
       
  2814   {
       
  2815     // Perform the work while holding the lock, but perform any printing outside the lock
       
  2816     MutexLocker mu(AdapterHandlerLibrary_lock);
       
  2817     // See if somebody beat us to it
       
  2818     if (method->code() != NULL) {
       
  2819       return;
       
  2820     }
       
  2821 
       
  2822     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
       
  2823     assert(compile_id > 0, "Must generate native wrapper");
       
  2824 
       
  2825 
       
  2826     ResourceMark rm;
       
  2827     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
       
  2828     if (buf != NULL) {
       
  2829       CodeBuffer buffer(buf);
       
  2830       double locs_buf[20];
       
  2831       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
       
  2832       MacroAssembler _masm(&buffer);
       
  2833 
       
  2834       // Fill in the signature array, for the calling-convention call.
       
  2835       const int total_args_passed = method->size_of_parameters();
       
  2836 
       
  2837       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
       
  2838       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
       
  2839       int i=0;
       
  2840       if (!method->is_static())  // Pass in receiver first
       
  2841         sig_bt[i++] = T_OBJECT;
       
  2842       SignatureStream ss(method->signature());
       
  2843       for (; !ss.at_return_type(); ss.next()) {
       
  2844         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
       
  2845         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
       
  2846           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
       
  2847       }
       
  2848       assert(i == total_args_passed, "");
       
  2849       BasicType ret_type = ss.type();
       
  2850 
       
  2851       // Now get the compiled-Java layout as input (or output) arguments.
       
  2852       // NOTE: Stubs for compiled entry points of method handle intrinsics
       
  2853       // are just trampolines so the argument registers must be outgoing ones.
       
  2854       const bool is_outgoing = method->is_method_handle_intrinsic();
       
  2855       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
       
  2856 
       
  2857       // Generate the compiled-to-native wrapper code
       
  2858       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
       
  2859 
       
  2860       if (nm != NULL) {
       
  2861         method->set_code(method, nm);
       
  2862 
       
  2863         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
       
  2864         if (directive->PrintAssemblyOption) {
       
  2865           nm->print_code();
       
  2866         }
       
  2867         DirectivesStack::release(directive);
       
  2868       }
       
  2869     }
       
  2870   } // Unlock AdapterHandlerLibrary_lock
       
  2871 
       
  2872 
       
  2873   // Install the generated code.
       
  2874   if (nm != NULL) {
       
  2875     const char *msg = method->is_static() ? "(static)" : "";
       
  2876     CompileTask::print_ul(nm, msg);
       
  2877     if (PrintCompilation) {
       
  2878       ttyLocker ttyl;
       
  2879       CompileTask::print(tty, nm, msg);
       
  2880     }
       
  2881     nm->post_compiled_method_load_event();
       
  2882   }
       
  2883 }
       
  2884 
       
  2885 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
       
  2886   assert(thread == JavaThread::current(), "must be");
       
  2887   // The code is about to enter a JNI lazy critical native method and
       
  2888   // _needs_gc is true, so if this thread is already in a critical
       
  2889   // section then just return, otherwise this thread should block
       
  2890   // until needs_gc has been cleared.
       
  2891   if (thread->in_critical()) {
       
  2892     return;
       
  2893   }
       
  2894   // Lock and unlock a critical section to give the system a chance to block
       
  2895   GCLocker::lock_critical(thread);
       
  2896   GCLocker::unlock_critical(thread);
       
  2897 JRT_END
       
  2898 
       
  2899 // -------------------------------------------------------------------------
       
  2900 // Java-Java calling convention
       
  2901 // (what you use when Java calls Java)
       
  2902 
       
  2903 //------------------------------name_for_receiver----------------------------------
       
  2904 // For a given signature, return the VMReg for parameter 0.
       
  2905 VMReg SharedRuntime::name_for_receiver() {
       
  2906   VMRegPair regs;
       
  2907   BasicType sig_bt = T_OBJECT;
       
  2908   (void) java_calling_convention(&sig_bt, &regs, 1, true);
       
  2909   // Return argument 0 register.  In the LP64 build pointers
       
  2910   // take 2 registers, but the VM wants only the 'main' name.
       
  2911   return regs.first();
       
  2912 }
       
  2913 
       
  2914 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
       
  2915   // This method is returning a data structure allocating as a
       
  2916   // ResourceObject, so do not put any ResourceMarks in here.
       
  2917   char *s = sig->as_C_string();
       
  2918   int len = (int)strlen(s);
       
  2919   s++; len--;                   // Skip opening paren
       
  2920 
       
  2921   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
       
  2922   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
       
  2923   int cnt = 0;
       
  2924   if (has_receiver) {
       
  2925     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
       
  2926   }
       
  2927 
       
  2928   while (*s != ')') {          // Find closing right paren
       
  2929     switch (*s++) {            // Switch on signature character
       
  2930     case 'B': sig_bt[cnt++] = T_BYTE;    break;
       
  2931     case 'C': sig_bt[cnt++] = T_CHAR;    break;
       
  2932     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
       
  2933     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
       
  2934     case 'I': sig_bt[cnt++] = T_INT;     break;
       
  2935     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
       
  2936     case 'S': sig_bt[cnt++] = T_SHORT;   break;
       
  2937     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
       
  2938     case 'V': sig_bt[cnt++] = T_VOID;    break;
       
  2939     case 'L':                   // Oop
       
  2940       while (*s++ != ';');   // Skip signature
       
  2941       sig_bt[cnt++] = T_OBJECT;
       
  2942       break;
       
  2943     case '[': {                 // Array
       
  2944       do {                      // Skip optional size
       
  2945         while (*s >= '0' && *s <= '9') s++;
       
  2946       } while (*s++ == '[');   // Nested arrays?
       
  2947       // Skip element type
       
  2948       if (s[-1] == 'L')
       
  2949         while (*s++ != ';'); // Skip signature
       
  2950       sig_bt[cnt++] = T_ARRAY;
       
  2951       break;
       
  2952     }
       
  2953     default : ShouldNotReachHere();
       
  2954     }
       
  2955   }
       
  2956 
       
  2957   if (has_appendix) {
       
  2958     sig_bt[cnt++] = T_OBJECT;
       
  2959   }
       
  2960 
       
  2961   assert(cnt < 256, "grow table size");
       
  2962 
       
  2963   int comp_args_on_stack;
       
  2964   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
       
  2965 
       
  2966   // the calling convention doesn't count out_preserve_stack_slots so
       
  2967   // we must add that in to get "true" stack offsets.
       
  2968 
       
  2969   if (comp_args_on_stack) {
       
  2970     for (int i = 0; i < cnt; i++) {
       
  2971       VMReg reg1 = regs[i].first();
       
  2972       if (reg1->is_stack()) {
       
  2973         // Yuck
       
  2974         reg1 = reg1->bias(out_preserve_stack_slots());
       
  2975       }
       
  2976       VMReg reg2 = regs[i].second();
       
  2977       if (reg2->is_stack()) {
       
  2978         // Yuck
       
  2979         reg2 = reg2->bias(out_preserve_stack_slots());
       
  2980       }
       
  2981       regs[i].set_pair(reg2, reg1);
       
  2982     }
       
  2983   }
       
  2984 
       
  2985   // results
       
  2986   *arg_size = cnt;
       
  2987   return regs;
       
  2988 }
       
  2989 
       
  2990 // OSR Migration Code
       
  2991 //
       
  2992 // This code is used convert interpreter frames into compiled frames.  It is
       
  2993 // called from very start of a compiled OSR nmethod.  A temp array is
       
  2994 // allocated to hold the interesting bits of the interpreter frame.  All
       
  2995 // active locks are inflated to allow them to move.  The displaced headers and
       
  2996 // active interpreter locals are copied into the temp buffer.  Then we return
       
  2997 // back to the compiled code.  The compiled code then pops the current
       
  2998 // interpreter frame off the stack and pushes a new compiled frame.  Then it
       
  2999 // copies the interpreter locals and displaced headers where it wants.
       
  3000 // Finally it calls back to free the temp buffer.
       
  3001 //
       
  3002 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
       
  3003 
       
  3004 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
       
  3005 
       
  3006   //
       
  3007   // This code is dependent on the memory layout of the interpreter local
       
  3008   // array and the monitors. On all of our platforms the layout is identical
       
  3009   // so this code is shared. If some platform lays the their arrays out
       
  3010   // differently then this code could move to platform specific code or
       
  3011   // the code here could be modified to copy items one at a time using
       
  3012   // frame accessor methods and be platform independent.
       
  3013 
       
  3014   frame fr = thread->last_frame();
       
  3015   assert(fr.is_interpreted_frame(), "");
       
  3016   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
       
  3017 
       
  3018   // Figure out how many monitors are active.
       
  3019   int active_monitor_count = 0;
       
  3020   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
       
  3021        kptr < fr.interpreter_frame_monitor_begin();
       
  3022        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
       
  3023     if (kptr->obj() != NULL) active_monitor_count++;
       
  3024   }
       
  3025 
       
  3026   // QQQ we could place number of active monitors in the array so that compiled code
       
  3027   // could double check it.
       
  3028 
       
  3029   Method* moop = fr.interpreter_frame_method();
       
  3030   int max_locals = moop->max_locals();
       
  3031   // Allocate temp buffer, 1 word per local & 2 per active monitor
       
  3032   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
       
  3033   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
       
  3034 
       
  3035   // Copy the locals.  Order is preserved so that loading of longs works.
       
  3036   // Since there's no GC I can copy the oops blindly.
       
  3037   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
       
  3038   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
       
  3039                        (HeapWord*)&buf[0],
       
  3040                        max_locals);
       
  3041 
       
  3042   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
       
  3043   int i = max_locals;
       
  3044   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
       
  3045        kptr2 < fr.interpreter_frame_monitor_begin();
       
  3046        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
       
  3047     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
       
  3048       BasicLock *lock = kptr2->lock();
       
  3049       // Inflate so the displaced header becomes position-independent
       
  3050       if (lock->displaced_header()->is_unlocked())
       
  3051         ObjectSynchronizer::inflate_helper(kptr2->obj());
       
  3052       // Now the displaced header is free to move
       
  3053       buf[i++] = (intptr_t)lock->displaced_header();
       
  3054       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
       
  3055     }
       
  3056   }
       
  3057   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
       
  3058 
       
  3059   return buf;
       
  3060 JRT_END
       
  3061 
       
  3062 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
       
  3063   FREE_C_HEAP_ARRAY(intptr_t, buf);
       
  3064 JRT_END
       
  3065 
       
  3066 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
       
  3067   AdapterHandlerTableIterator iter(_adapters);
       
  3068   while (iter.has_next()) {
       
  3069     AdapterHandlerEntry* a = iter.next();
       
  3070     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
       
  3071   }
       
  3072   return false;
       
  3073 }
       
  3074 
       
  3075 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
       
  3076   AdapterHandlerTableIterator iter(_adapters);
       
  3077   while (iter.has_next()) {
       
  3078     AdapterHandlerEntry* a = iter.next();
       
  3079     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
       
  3080       st->print("Adapter for signature: ");
       
  3081       a->print_adapter_on(tty);
       
  3082       return;
       
  3083     }
       
  3084   }
       
  3085   assert(false, "Should have found handler");
       
  3086 }
       
  3087 
       
  3088 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
       
  3089   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
       
  3090                p2i(this), fingerprint()->as_string(),
       
  3091                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
       
  3092 
       
  3093 }
       
  3094 
       
  3095 #if INCLUDE_CDS
       
  3096 
       
  3097 void CDSAdapterHandlerEntry::init() {
       
  3098   assert(DumpSharedSpaces, "used during dump time only");
       
  3099   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
       
  3100   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
       
  3101 };
       
  3102 
       
  3103 #endif // INCLUDE_CDS
       
  3104 
       
  3105 
       
  3106 #ifndef PRODUCT
       
  3107 
       
  3108 void AdapterHandlerLibrary::print_statistics() {
       
  3109   _adapters->print_statistics();
       
  3110 }
       
  3111 
       
  3112 #endif /* PRODUCT */
       
  3113 
       
  3114 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
       
  3115   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
       
  3116   if (thread->stack_reserved_zone_disabled()) {
       
  3117   thread->enable_stack_reserved_zone();
       
  3118   }
       
  3119   thread->set_reserved_stack_activation(thread->stack_base());
       
  3120 JRT_END
       
  3121 
       
  3122 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
       
  3123   ResourceMark rm(thread);
       
  3124   frame activation;
       
  3125   CompiledMethod* nm = NULL;
       
  3126   int count = 1;
       
  3127 
       
  3128   assert(fr.is_java_frame(), "Must start on Java frame");
       
  3129 
       
  3130   while (true) {
       
  3131     Method* method = NULL;
       
  3132     bool found = false;
       
  3133     if (fr.is_interpreted_frame()) {
       
  3134       method = fr.interpreter_frame_method();
       
  3135       if (method != NULL && method->has_reserved_stack_access()) {
       
  3136         found = true;
       
  3137       }
       
  3138     } else {
       
  3139       CodeBlob* cb = fr.cb();
       
  3140       if (cb != NULL && cb->is_compiled()) {
       
  3141         nm = cb->as_compiled_method();
       
  3142         method = nm->method();
       
  3143         // scope_desc_near() must be used, instead of scope_desc_at() because on
       
  3144         // SPARC, the pcDesc can be on the delay slot after the call instruction.
       
  3145         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
       
  3146           method = sd->method();
       
  3147           if (method != NULL && method->has_reserved_stack_access()) {
       
  3148             found = true;
       
  3149       }
       
  3150     }
       
  3151       }
       
  3152     }
       
  3153     if (found) {
       
  3154       activation = fr;
       
  3155       warning("Potentially dangerous stack overflow in "
       
  3156               "ReservedStackAccess annotated method %s [%d]",
       
  3157               method->name_and_sig_as_C_string(), count++);
       
  3158       EventReservedStackActivation event;
       
  3159       if (event.should_commit()) {
       
  3160         event.set_method(method);
       
  3161         event.commit();
       
  3162       }
       
  3163     }
       
  3164     if (fr.is_first_java_frame()) {
       
  3165       break;
       
  3166     } else {
       
  3167       fr = fr.java_sender();
       
  3168     }
       
  3169   }
       
  3170   return activation;
       
  3171 }