src/hotspot/share/runtime/deoptimization.cpp
changeset 47216 71c04702a3d5
parent 46998 efb404beeefb
child 47687 fb290fd1f9d4
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "classfile/systemDictionary.hpp"
       
    27 #include "code/codeCache.hpp"
       
    28 #include "code/debugInfoRec.hpp"
       
    29 #include "code/nmethod.hpp"
       
    30 #include "code/pcDesc.hpp"
       
    31 #include "code/scopeDesc.hpp"
       
    32 #include "interpreter/bytecode.hpp"
       
    33 #include "interpreter/interpreter.hpp"
       
    34 #include "interpreter/oopMapCache.hpp"
       
    35 #include "memory/allocation.inline.hpp"
       
    36 #include "memory/oopFactory.hpp"
       
    37 #include "memory/resourceArea.hpp"
       
    38 #include "oops/method.hpp"
       
    39 #include "oops/objArrayOop.inline.hpp"
       
    40 #include "oops/oop.inline.hpp"
       
    41 #include "oops/fieldStreams.hpp"
       
    42 #include "oops/verifyOopClosure.hpp"
       
    43 #include "prims/jvm.h"
       
    44 #include "prims/jvmtiThreadState.hpp"
       
    45 #include "runtime/biasedLocking.hpp"
       
    46 #include "runtime/compilationPolicy.hpp"
       
    47 #include "runtime/deoptimization.hpp"
       
    48 #include "runtime/interfaceSupport.hpp"
       
    49 #include "runtime/sharedRuntime.hpp"
       
    50 #include "runtime/signature.hpp"
       
    51 #include "runtime/stubRoutines.hpp"
       
    52 #include "runtime/thread.hpp"
       
    53 #include "runtime/vframe.hpp"
       
    54 #include "runtime/vframeArray.hpp"
       
    55 #include "runtime/vframe_hp.hpp"
       
    56 #include "utilities/events.hpp"
       
    57 #include "utilities/xmlstream.hpp"
       
    58 
       
    59 #if INCLUDE_JVMCI
       
    60 #include "jvmci/jvmciRuntime.hpp"
       
    61 #include "jvmci/jvmciJavaClasses.hpp"
       
    62 #endif
       
    63 
       
    64 
       
    65 bool DeoptimizationMarker::_is_active = false;
       
    66 
       
    67 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
       
    68                                          int  caller_adjustment,
       
    69                                          int  caller_actual_parameters,
       
    70                                          int  number_of_frames,
       
    71                                          intptr_t* frame_sizes,
       
    72                                          address* frame_pcs,
       
    73                                          BasicType return_type,
       
    74                                          int exec_mode) {
       
    75   _size_of_deoptimized_frame = size_of_deoptimized_frame;
       
    76   _caller_adjustment         = caller_adjustment;
       
    77   _caller_actual_parameters  = caller_actual_parameters;
       
    78   _number_of_frames          = number_of_frames;
       
    79   _frame_sizes               = frame_sizes;
       
    80   _frame_pcs                 = frame_pcs;
       
    81   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
       
    82   _return_type               = return_type;
       
    83   _initial_info              = 0;
       
    84   // PD (x86 only)
       
    85   _counter_temp              = 0;
       
    86   _unpack_kind               = exec_mode;
       
    87   _sender_sp_temp            = 0;
       
    88 
       
    89   _total_frame_sizes         = size_of_frames();
       
    90   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
       
    91 }
       
    92 
       
    93 
       
    94 Deoptimization::UnrollBlock::~UnrollBlock() {
       
    95   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
       
    96   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
       
    97   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
       
    98 }
       
    99 
       
   100 
       
   101 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
       
   102   assert(register_number < RegisterMap::reg_count, "checking register number");
       
   103   return &_register_block[register_number * 2];
       
   104 }
       
   105 
       
   106 
       
   107 
       
   108 int Deoptimization::UnrollBlock::size_of_frames() const {
       
   109   // Acount first for the adjustment of the initial frame
       
   110   int result = _caller_adjustment;
       
   111   for (int index = 0; index < number_of_frames(); index++) {
       
   112     result += frame_sizes()[index];
       
   113   }
       
   114   return result;
       
   115 }
       
   116 
       
   117 
       
   118 void Deoptimization::UnrollBlock::print() {
       
   119   ttyLocker ttyl;
       
   120   tty->print_cr("UnrollBlock");
       
   121   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
       
   122   tty->print(   "  frame_sizes: ");
       
   123   for (int index = 0; index < number_of_frames(); index++) {
       
   124     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
       
   125   }
       
   126   tty->cr();
       
   127 }
       
   128 
       
   129 
       
   130 // In order to make fetch_unroll_info work properly with escape
       
   131 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
       
   132 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
       
   133 // of previously eliminated objects occurs in realloc_objects, which is
       
   134 // called from the method fetch_unroll_info_helper below.
       
   135 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
       
   136   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
       
   137   // but makes the entry a little slower. There is however a little dance we have to
       
   138   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
       
   139 
       
   140   // fetch_unroll_info() is called at the beginning of the deoptimization
       
   141   // handler. Note this fact before we start generating temporary frames
       
   142   // that can confuse an asynchronous stack walker. This counter is
       
   143   // decremented at the end of unpack_frames().
       
   144   if (TraceDeoptimization) {
       
   145     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
       
   146   }
       
   147   thread->inc_in_deopt_handler();
       
   148 
       
   149   return fetch_unroll_info_helper(thread, exec_mode);
       
   150 JRT_END
       
   151 
       
   152 
       
   153 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
       
   154 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
       
   155 
       
   156   // Note: there is a safepoint safety issue here. No matter whether we enter
       
   157   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
       
   158   // the vframeArray is created.
       
   159   //
       
   160 
       
   161   // Allocate our special deoptimization ResourceMark
       
   162   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
       
   163   assert(thread->deopt_mark() == NULL, "Pending deopt!");
       
   164   thread->set_deopt_mark(dmark);
       
   165 
       
   166   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
       
   167   RegisterMap map(thread, true);
       
   168   RegisterMap dummy_map(thread, false);
       
   169   // Now get the deoptee with a valid map
       
   170   frame deoptee = stub_frame.sender(&map);
       
   171   // Set the deoptee nmethod
       
   172   assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
       
   173   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
       
   174   thread->set_deopt_compiled_method(cm);
       
   175 
       
   176   if (VerifyStack) {
       
   177     thread->validate_frame_layout();
       
   178   }
       
   179 
       
   180   // Create a growable array of VFrames where each VFrame represents an inlined
       
   181   // Java frame.  This storage is allocated with the usual system arena.
       
   182   assert(deoptee.is_compiled_frame(), "Wrong frame type");
       
   183   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
       
   184   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
       
   185   while (!vf->is_top()) {
       
   186     assert(vf->is_compiled_frame(), "Wrong frame type");
       
   187     chunk->push(compiledVFrame::cast(vf));
       
   188     vf = vf->sender();
       
   189   }
       
   190   assert(vf->is_compiled_frame(), "Wrong frame type");
       
   191   chunk->push(compiledVFrame::cast(vf));
       
   192 
       
   193   bool realloc_failures = false;
       
   194 
       
   195 #if defined(COMPILER2) || INCLUDE_JVMCI
       
   196   // Reallocate the non-escaping objects and restore their fields. Then
       
   197   // relock objects if synchronization on them was eliminated.
       
   198 #ifndef INCLUDE_JVMCI
       
   199   if (DoEscapeAnalysis || EliminateNestedLocks) {
       
   200     if (EliminateAllocations) {
       
   201 #endif // INCLUDE_JVMCI
       
   202       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
       
   203       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
       
   204 
       
   205       // The flag return_oop() indicates call sites which return oop
       
   206       // in compiled code. Such sites include java method calls,
       
   207       // runtime calls (for example, used to allocate new objects/arrays
       
   208       // on slow code path) and any other calls generated in compiled code.
       
   209       // It is not guaranteed that we can get such information here only
       
   210       // by analyzing bytecode in deoptimized frames. This is why this flag
       
   211       // is set during method compilation (see Compile::Process_OopMap_Node()).
       
   212       // If the previous frame was popped or if we are dispatching an exception,
       
   213       // we don't have an oop result.
       
   214       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Unpack_deopt);
       
   215       Handle return_value;
       
   216       if (save_oop_result) {
       
   217         // Reallocation may trigger GC. If deoptimization happened on return from
       
   218         // call which returns oop we need to save it since it is not in oopmap.
       
   219         oop result = deoptee.saved_oop_result(&map);
       
   220         assert(oopDesc::is_oop_or_null(result), "must be oop");
       
   221         return_value = Handle(thread, result);
       
   222         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
       
   223         if (TraceDeoptimization) {
       
   224           ttyLocker ttyl;
       
   225           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
       
   226         }
       
   227       }
       
   228       if (objects != NULL) {
       
   229         JRT_BLOCK
       
   230           realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
       
   231         JRT_END
       
   232         bool skip_internal = (cm != NULL) && !cm->is_compiled_by_jvmci();
       
   233         reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
       
   234 #ifndef PRODUCT
       
   235         if (TraceDeoptimization) {
       
   236           ttyLocker ttyl;
       
   237           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
       
   238           print_objects(objects, realloc_failures);
       
   239         }
       
   240 #endif
       
   241       }
       
   242       if (save_oop_result) {
       
   243         // Restore result.
       
   244         deoptee.set_saved_oop_result(&map, return_value());
       
   245       }
       
   246 #ifndef INCLUDE_JVMCI
       
   247     }
       
   248     if (EliminateLocks) {
       
   249 #endif // INCLUDE_JVMCI
       
   250 #ifndef PRODUCT
       
   251       bool first = true;
       
   252 #endif
       
   253       for (int i = 0; i < chunk->length(); i++) {
       
   254         compiledVFrame* cvf = chunk->at(i);
       
   255         assert (cvf->scope() != NULL,"expect only compiled java frames");
       
   256         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
       
   257         if (monitors->is_nonempty()) {
       
   258           relock_objects(monitors, thread, realloc_failures);
       
   259 #ifndef PRODUCT
       
   260           if (PrintDeoptimizationDetails) {
       
   261             ttyLocker ttyl;
       
   262             for (int j = 0; j < monitors->length(); j++) {
       
   263               MonitorInfo* mi = monitors->at(j);
       
   264               if (mi->eliminated()) {
       
   265                 if (first) {
       
   266                   first = false;
       
   267                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
       
   268                 }
       
   269                 if (mi->owner_is_scalar_replaced()) {
       
   270                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
       
   271                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
       
   272                 } else {
       
   273                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
       
   274                 }
       
   275               }
       
   276             }
       
   277           }
       
   278 #endif // !PRODUCT
       
   279         }
       
   280       }
       
   281 #ifndef INCLUDE_JVMCI
       
   282     }
       
   283   }
       
   284 #endif // INCLUDE_JVMCI
       
   285 #endif // COMPILER2 || INCLUDE_JVMCI
       
   286 
       
   287   ScopeDesc* trap_scope = chunk->at(0)->scope();
       
   288   Handle exceptionObject;
       
   289   if (trap_scope->rethrow_exception()) {
       
   290     if (PrintDeoptimizationDetails) {
       
   291       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
       
   292     }
       
   293     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
       
   294     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
       
   295     ScopeValue* topOfStack = expressions->top();
       
   296     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
       
   297     guarantee(exceptionObject() != NULL, "exception oop can not be null");
       
   298   }
       
   299 
       
   300   // Ensure that no safepoint is taken after pointers have been stored
       
   301   // in fields of rematerialized objects.  If a safepoint occurs from here on
       
   302   // out the java state residing in the vframeArray will be missed.
       
   303   NoSafepointVerifier no_safepoint;
       
   304 
       
   305   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
       
   306 #if defined(COMPILER2) || INCLUDE_JVMCI
       
   307   if (realloc_failures) {
       
   308     pop_frames_failed_reallocs(thread, array);
       
   309   }
       
   310 #endif
       
   311 
       
   312   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
       
   313   thread->set_vframe_array_head(array);
       
   314 
       
   315   // Now that the vframeArray has been created if we have any deferred local writes
       
   316   // added by jvmti then we can free up that structure as the data is now in the
       
   317   // vframeArray
       
   318 
       
   319   if (thread->deferred_locals() != NULL) {
       
   320     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
       
   321     int i = 0;
       
   322     do {
       
   323       // Because of inlining we could have multiple vframes for a single frame
       
   324       // and several of the vframes could have deferred writes. Find them all.
       
   325       if (list->at(i)->id() == array->original().id()) {
       
   326         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
       
   327         list->remove_at(i);
       
   328         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
       
   329         delete dlv;
       
   330       } else {
       
   331         i++;
       
   332       }
       
   333     } while ( i < list->length() );
       
   334     if (list->length() == 0) {
       
   335       thread->set_deferred_locals(NULL);
       
   336       // free the list and elements back to C heap.
       
   337       delete list;
       
   338     }
       
   339 
       
   340   }
       
   341 
       
   342 #ifndef SHARK
       
   343   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
       
   344   CodeBlob* cb = stub_frame.cb();
       
   345   // Verify we have the right vframeArray
       
   346   assert(cb->frame_size() >= 0, "Unexpected frame size");
       
   347   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
       
   348 
       
   349   // If the deopt call site is a MethodHandle invoke call site we have
       
   350   // to adjust the unpack_sp.
       
   351   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
       
   352   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
       
   353     unpack_sp = deoptee.unextended_sp();
       
   354 
       
   355 #ifdef ASSERT
       
   356   assert(cb->is_deoptimization_stub() ||
       
   357          cb->is_uncommon_trap_stub() ||
       
   358          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
       
   359          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
       
   360          "unexpected code blob: %s", cb->name());
       
   361 #endif
       
   362 #else
       
   363   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
       
   364 #endif // !SHARK
       
   365 
       
   366   // This is a guarantee instead of an assert because if vframe doesn't match
       
   367   // we will unpack the wrong deoptimized frame and wind up in strange places
       
   368   // where it will be very difficult to figure out what went wrong. Better
       
   369   // to die an early death here than some very obscure death later when the
       
   370   // trail is cold.
       
   371   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
       
   372   // in that it will fail to detect a problem when there is one. This needs
       
   373   // more work in tiger timeframe.
       
   374   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
       
   375 
       
   376   int number_of_frames = array->frames();
       
   377 
       
   378   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
       
   379   // virtual activation, which is the reverse of the elements in the vframes array.
       
   380   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
       
   381   // +1 because we always have an interpreter return address for the final slot.
       
   382   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
       
   383   int popframe_extra_args = 0;
       
   384   // Create an interpreter return address for the stub to use as its return
       
   385   // address so the skeletal frames are perfectly walkable
       
   386   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
       
   387 
       
   388   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
       
   389   // activation be put back on the expression stack of the caller for reexecution
       
   390   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
       
   391     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
       
   392   }
       
   393 
       
   394   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
       
   395   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
       
   396   // than simply use array->sender.pc(). This requires us to walk the current set of frames
       
   397   //
       
   398   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
       
   399   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
       
   400 
       
   401   // It's possible that the number of parameters at the call site is
       
   402   // different than number of arguments in the callee when method
       
   403   // handles are used.  If the caller is interpreted get the real
       
   404   // value so that the proper amount of space can be added to it's
       
   405   // frame.
       
   406   bool caller_was_method_handle = false;
       
   407   if (deopt_sender.is_interpreted_frame()) {
       
   408     methodHandle method = deopt_sender.interpreter_frame_method();
       
   409     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
       
   410     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
       
   411       // Method handle invokes may involve fairly arbitrary chains of
       
   412       // calls so it's impossible to know how much actual space the
       
   413       // caller has for locals.
       
   414       caller_was_method_handle = true;
       
   415     }
       
   416   }
       
   417 
       
   418   //
       
   419   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
       
   420   // frame_sizes/frame_pcs[1] next oldest frame (int)
       
   421   // frame_sizes/frame_pcs[n] youngest frame (int)
       
   422   //
       
   423   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
       
   424   // owns the space for the return address to it's caller).  Confusing ain't it.
       
   425   //
       
   426   // The vframe array can address vframes with indices running from
       
   427   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
       
   428   // When we create the skeletal frames we need the oldest frame to be in the zero slot
       
   429   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
       
   430   // so things look a little strange in this loop.
       
   431   //
       
   432   int callee_parameters = 0;
       
   433   int callee_locals = 0;
       
   434   for (int index = 0; index < array->frames(); index++ ) {
       
   435     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
       
   436     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
       
   437     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
       
   438     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
       
   439                                                                                                     callee_locals,
       
   440                                                                                                     index == 0,
       
   441                                                                                                     popframe_extra_args);
       
   442     // This pc doesn't have to be perfect just good enough to identify the frame
       
   443     // as interpreted so the skeleton frame will be walkable
       
   444     // The correct pc will be set when the skeleton frame is completely filled out
       
   445     // The final pc we store in the loop is wrong and will be overwritten below
       
   446     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
       
   447 
       
   448     callee_parameters = array->element(index)->method()->size_of_parameters();
       
   449     callee_locals = array->element(index)->method()->max_locals();
       
   450     popframe_extra_args = 0;
       
   451   }
       
   452 
       
   453   // Compute whether the root vframe returns a float or double value.
       
   454   BasicType return_type;
       
   455   {
       
   456     methodHandle method(thread, array->element(0)->method());
       
   457     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
       
   458     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
       
   459   }
       
   460 
       
   461   // Compute information for handling adapters and adjusting the frame size of the caller.
       
   462   int caller_adjustment = 0;
       
   463 
       
   464   // Compute the amount the oldest interpreter frame will have to adjust
       
   465   // its caller's stack by. If the caller is a compiled frame then
       
   466   // we pretend that the callee has no parameters so that the
       
   467   // extension counts for the full amount of locals and not just
       
   468   // locals-parms. This is because without a c2i adapter the parm
       
   469   // area as created by the compiled frame will not be usable by
       
   470   // the interpreter. (Depending on the calling convention there
       
   471   // may not even be enough space).
       
   472 
       
   473   // QQQ I'd rather see this pushed down into last_frame_adjust
       
   474   // and have it take the sender (aka caller).
       
   475 
       
   476   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
       
   477     caller_adjustment = last_frame_adjust(0, callee_locals);
       
   478   } else if (callee_locals > callee_parameters) {
       
   479     // The caller frame may need extending to accommodate
       
   480     // non-parameter locals of the first unpacked interpreted frame.
       
   481     // Compute that adjustment.
       
   482     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
       
   483   }
       
   484 
       
   485   // If the sender is deoptimized the we must retrieve the address of the handler
       
   486   // since the frame will "magically" show the original pc before the deopt
       
   487   // and we'd undo the deopt.
       
   488 
       
   489   frame_pcs[0] = deopt_sender.raw_pc();
       
   490 
       
   491 #ifndef SHARK
       
   492   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
       
   493 #endif // SHARK
       
   494 
       
   495 #ifdef INCLUDE_JVMCI
       
   496   if (exceptionObject() != NULL) {
       
   497     thread->set_exception_oop(exceptionObject());
       
   498     exec_mode = Unpack_exception;
       
   499   }
       
   500 #endif
       
   501 
       
   502   if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
       
   503     assert(thread->has_pending_exception(), "should have thrown OOME");
       
   504     thread->set_exception_oop(thread->pending_exception());
       
   505     thread->clear_pending_exception();
       
   506     exec_mode = Unpack_exception;
       
   507   }
       
   508 
       
   509 #if INCLUDE_JVMCI
       
   510   if (thread->frames_to_pop_failed_realloc() > 0) {
       
   511     thread->set_pending_monitorenter(false);
       
   512   }
       
   513 #endif
       
   514 
       
   515   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
       
   516                                       caller_adjustment * BytesPerWord,
       
   517                                       caller_was_method_handle ? 0 : callee_parameters,
       
   518                                       number_of_frames,
       
   519                                       frame_sizes,
       
   520                                       frame_pcs,
       
   521                                       return_type,
       
   522                                       exec_mode);
       
   523   // On some platforms, we need a way to pass some platform dependent
       
   524   // information to the unpacking code so the skeletal frames come out
       
   525   // correct (initial fp value, unextended sp, ...)
       
   526   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
       
   527 
       
   528   if (array->frames() > 1) {
       
   529     if (VerifyStack && TraceDeoptimization) {
       
   530       ttyLocker ttyl;
       
   531       tty->print_cr("Deoptimizing method containing inlining");
       
   532     }
       
   533   }
       
   534 
       
   535   array->set_unroll_block(info);
       
   536   return info;
       
   537 }
       
   538 
       
   539 // Called to cleanup deoptimization data structures in normal case
       
   540 // after unpacking to stack and when stack overflow error occurs
       
   541 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
       
   542                                         vframeArray *array) {
       
   543 
       
   544   // Get array if coming from exception
       
   545   if (array == NULL) {
       
   546     array = thread->vframe_array_head();
       
   547   }
       
   548   thread->set_vframe_array_head(NULL);
       
   549 
       
   550   // Free the previous UnrollBlock
       
   551   vframeArray* old_array = thread->vframe_array_last();
       
   552   thread->set_vframe_array_last(array);
       
   553 
       
   554   if (old_array != NULL) {
       
   555     UnrollBlock* old_info = old_array->unroll_block();
       
   556     old_array->set_unroll_block(NULL);
       
   557     delete old_info;
       
   558     delete old_array;
       
   559   }
       
   560 
       
   561   // Deallocate any resource creating in this routine and any ResourceObjs allocated
       
   562   // inside the vframeArray (StackValueCollections)
       
   563 
       
   564   delete thread->deopt_mark();
       
   565   thread->set_deopt_mark(NULL);
       
   566   thread->set_deopt_compiled_method(NULL);
       
   567 
       
   568 
       
   569   if (JvmtiExport::can_pop_frame()) {
       
   570 #ifndef CC_INTERP
       
   571     // Regardless of whether we entered this routine with the pending
       
   572     // popframe condition bit set, we should always clear it now
       
   573     thread->clear_popframe_condition();
       
   574 #else
       
   575     // C++ interpreter will clear has_pending_popframe when it enters
       
   576     // with method_resume. For deopt_resume2 we clear it now.
       
   577     if (thread->popframe_forcing_deopt_reexecution())
       
   578         thread->clear_popframe_condition();
       
   579 #endif /* CC_INTERP */
       
   580   }
       
   581 
       
   582   // unpack_frames() is called at the end of the deoptimization handler
       
   583   // and (in C2) at the end of the uncommon trap handler. Note this fact
       
   584   // so that an asynchronous stack walker can work again. This counter is
       
   585   // incremented at the beginning of fetch_unroll_info() and (in C2) at
       
   586   // the beginning of uncommon_trap().
       
   587   thread->dec_in_deopt_handler();
       
   588 }
       
   589 
       
   590 // Moved from cpu directories because none of the cpus has callee save values.
       
   591 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
       
   592 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
       
   593 
       
   594   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
       
   595   // the days we had adapter frames. When we deoptimize a situation where a
       
   596   // compiled caller calls a compiled caller will have registers it expects
       
   597   // to survive the call to the callee. If we deoptimize the callee the only
       
   598   // way we can restore these registers is to have the oldest interpreter
       
   599   // frame that we create restore these values. That is what this routine
       
   600   // will accomplish.
       
   601 
       
   602   // At the moment we have modified c2 to not have any callee save registers
       
   603   // so this problem does not exist and this routine is just a place holder.
       
   604 
       
   605   assert(f->is_interpreted_frame(), "must be interpreted");
       
   606 }
       
   607 
       
   608 // Return BasicType of value being returned
       
   609 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
       
   610 
       
   611   // We are already active int he special DeoptResourceMark any ResourceObj's we
       
   612   // allocate will be freed at the end of the routine.
       
   613 
       
   614   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
       
   615   // but makes the entry a little slower. There is however a little dance we have to
       
   616   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
       
   617   ResetNoHandleMark rnhm; // No-op in release/product versions
       
   618   HandleMark hm;
       
   619 
       
   620   frame stub_frame = thread->last_frame();
       
   621 
       
   622   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
       
   623   // must point to the vframeArray for the unpack frame.
       
   624   vframeArray* array = thread->vframe_array_head();
       
   625 
       
   626 #ifndef PRODUCT
       
   627   if (TraceDeoptimization) {
       
   628     ttyLocker ttyl;
       
   629     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
       
   630                   p2i(thread), p2i(array), exec_mode);
       
   631   }
       
   632 #endif
       
   633   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
       
   634               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
       
   635 
       
   636   UnrollBlock* info = array->unroll_block();
       
   637 
       
   638   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
       
   639   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
       
   640 
       
   641   BasicType bt = info->return_type();
       
   642 
       
   643   // If we have an exception pending, claim that the return type is an oop
       
   644   // so the deopt_blob does not overwrite the exception_oop.
       
   645 
       
   646   if (exec_mode == Unpack_exception)
       
   647     bt = T_OBJECT;
       
   648 
       
   649   // Cleanup thread deopt data
       
   650   cleanup_deopt_info(thread, array);
       
   651 
       
   652 #ifndef PRODUCT
       
   653   if (VerifyStack) {
       
   654     ResourceMark res_mark;
       
   655 
       
   656     thread->validate_frame_layout();
       
   657 
       
   658     // Verify that the just-unpacked frames match the interpreter's
       
   659     // notions of expression stack and locals
       
   660     vframeArray* cur_array = thread->vframe_array_last();
       
   661     RegisterMap rm(thread, false);
       
   662     rm.set_include_argument_oops(false);
       
   663     bool is_top_frame = true;
       
   664     int callee_size_of_parameters = 0;
       
   665     int callee_max_locals = 0;
       
   666     for (int i = 0; i < cur_array->frames(); i++) {
       
   667       vframeArrayElement* el = cur_array->element(i);
       
   668       frame* iframe = el->iframe();
       
   669       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
       
   670 
       
   671       // Get the oop map for this bci
       
   672       InterpreterOopMap mask;
       
   673       int cur_invoke_parameter_size = 0;
       
   674       bool try_next_mask = false;
       
   675       int next_mask_expression_stack_size = -1;
       
   676       int top_frame_expression_stack_adjustment = 0;
       
   677       methodHandle mh(thread, iframe->interpreter_frame_method());
       
   678       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
       
   679       BytecodeStream str(mh);
       
   680       str.set_start(iframe->interpreter_frame_bci());
       
   681       int max_bci = mh->code_size();
       
   682       // Get to the next bytecode if possible
       
   683       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
       
   684       // Check to see if we can grab the number of outgoing arguments
       
   685       // at an uncommon trap for an invoke (where the compiler
       
   686       // generates debug info before the invoke has executed)
       
   687       Bytecodes::Code cur_code = str.next();
       
   688       if (cur_code == Bytecodes::_invokevirtual   ||
       
   689           cur_code == Bytecodes::_invokespecial   ||
       
   690           cur_code == Bytecodes::_invokestatic    ||
       
   691           cur_code == Bytecodes::_invokeinterface ||
       
   692           cur_code == Bytecodes::_invokedynamic) {
       
   693         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
       
   694         Symbol* signature = invoke.signature();
       
   695         ArgumentSizeComputer asc(signature);
       
   696         cur_invoke_parameter_size = asc.size();
       
   697         if (invoke.has_receiver()) {
       
   698           // Add in receiver
       
   699           ++cur_invoke_parameter_size;
       
   700         }
       
   701         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
       
   702           callee_size_of_parameters++;
       
   703         }
       
   704       }
       
   705       if (str.bci() < max_bci) {
       
   706         Bytecodes::Code bc = str.next();
       
   707         if (bc >= 0) {
       
   708           // The interpreter oop map generator reports results before
       
   709           // the current bytecode has executed except in the case of
       
   710           // calls. It seems to be hard to tell whether the compiler
       
   711           // has emitted debug information matching the "state before"
       
   712           // a given bytecode or the state after, so we try both
       
   713           switch (cur_code) {
       
   714             case Bytecodes::_invokevirtual:
       
   715             case Bytecodes::_invokespecial:
       
   716             case Bytecodes::_invokestatic:
       
   717             case Bytecodes::_invokeinterface:
       
   718             case Bytecodes::_invokedynamic:
       
   719             case Bytecodes::_athrow:
       
   720               break;
       
   721             default: {
       
   722               InterpreterOopMap next_mask;
       
   723               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
       
   724               next_mask_expression_stack_size = next_mask.expression_stack_size();
       
   725               // Need to subtract off the size of the result type of
       
   726               // the bytecode because this is not described in the
       
   727               // debug info but returned to the interpreter in the TOS
       
   728               // caching register
       
   729               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
       
   730               if (bytecode_result_type != T_ILLEGAL) {
       
   731                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
       
   732               }
       
   733               assert(top_frame_expression_stack_adjustment >= 0, "");
       
   734               try_next_mask = true;
       
   735               break;
       
   736             }
       
   737           }
       
   738         }
       
   739       }
       
   740 
       
   741       // Verify stack depth and oops in frame
       
   742       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
       
   743       if (!(
       
   744             /* SPARC */
       
   745             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
       
   746             /* x86 */
       
   747             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
       
   748             (try_next_mask &&
       
   749              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
       
   750                                                                     top_frame_expression_stack_adjustment))) ||
       
   751             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
       
   752             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
       
   753              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
       
   754             )) {
       
   755         ttyLocker ttyl;
       
   756 
       
   757         // Print out some information that will help us debug the problem
       
   758         tty->print_cr("Wrong number of expression stack elements during deoptimization");
       
   759         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
       
   760         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
       
   761                       iframe->interpreter_frame_expression_stack_size());
       
   762         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
       
   763         tty->print_cr("  try_next_mask = %d", try_next_mask);
       
   764         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
       
   765         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
       
   766         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
       
   767         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
       
   768         tty->print_cr("  exec_mode = %d", exec_mode);
       
   769         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
       
   770         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
       
   771         tty->print_cr("  Interpreted frames:");
       
   772         for (int k = 0; k < cur_array->frames(); k++) {
       
   773           vframeArrayElement* el = cur_array->element(k);
       
   774           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
       
   775         }
       
   776         cur_array->print_on_2(tty);
       
   777         guarantee(false, "wrong number of expression stack elements during deopt");
       
   778       }
       
   779       VerifyOopClosure verify;
       
   780       iframe->oops_interpreted_do(&verify, &rm, false);
       
   781       callee_size_of_parameters = mh->size_of_parameters();
       
   782       callee_max_locals = mh->max_locals();
       
   783       is_top_frame = false;
       
   784     }
       
   785   }
       
   786 #endif /* !PRODUCT */
       
   787 
       
   788 
       
   789   return bt;
       
   790 JRT_END
       
   791 
       
   792 
       
   793 int Deoptimization::deoptimize_dependents() {
       
   794   Threads::deoptimized_wrt_marked_nmethods();
       
   795   return 0;
       
   796 }
       
   797 
       
   798 Deoptimization::DeoptAction Deoptimization::_unloaded_action
       
   799   = Deoptimization::Action_reinterpret;
       
   800 
       
   801 #if defined(COMPILER2) || INCLUDE_JVMCI
       
   802 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
       
   803   Handle pending_exception(THREAD, thread->pending_exception());
       
   804   const char* exception_file = thread->exception_file();
       
   805   int exception_line = thread->exception_line();
       
   806   thread->clear_pending_exception();
       
   807 
       
   808   bool failures = false;
       
   809 
       
   810   for (int i = 0; i < objects->length(); i++) {
       
   811     assert(objects->at(i)->is_object(), "invalid debug information");
       
   812     ObjectValue* sv = (ObjectValue*) objects->at(i);
       
   813 
       
   814     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
       
   815     oop obj = NULL;
       
   816 
       
   817     if (k->is_instance_klass()) {
       
   818       InstanceKlass* ik = InstanceKlass::cast(k);
       
   819       obj = ik->allocate_instance(THREAD);
       
   820     } else if (k->is_typeArray_klass()) {
       
   821       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
       
   822       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
       
   823       int len = sv->field_size() / type2size[ak->element_type()];
       
   824       obj = ak->allocate(len, THREAD);
       
   825     } else if (k->is_objArray_klass()) {
       
   826       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
       
   827       obj = ak->allocate(sv->field_size(), THREAD);
       
   828     }
       
   829 
       
   830     if (obj == NULL) {
       
   831       failures = true;
       
   832     }
       
   833 
       
   834     assert(sv->value().is_null(), "redundant reallocation");
       
   835     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
       
   836     CLEAR_PENDING_EXCEPTION;
       
   837     sv->set_value(obj);
       
   838   }
       
   839 
       
   840   if (failures) {
       
   841     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
       
   842   } else if (pending_exception.not_null()) {
       
   843     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
       
   844   }
       
   845 
       
   846   return failures;
       
   847 }
       
   848 
       
   849 // restore elements of an eliminated type array
       
   850 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
       
   851   int index = 0;
       
   852   intptr_t val;
       
   853 
       
   854   for (int i = 0; i < sv->field_size(); i++) {
       
   855     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
       
   856     switch(type) {
       
   857     case T_LONG: case T_DOUBLE: {
       
   858       assert(value->type() == T_INT, "Agreement.");
       
   859       StackValue* low =
       
   860         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
       
   861 #ifdef _LP64
       
   862       jlong res = (jlong)low->get_int();
       
   863 #else
       
   864 #ifdef SPARC
       
   865       // For SPARC we have to swap high and low words.
       
   866       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
       
   867 #else
       
   868       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
       
   869 #endif //SPARC
       
   870 #endif
       
   871       obj->long_at_put(index, res);
       
   872       break;
       
   873     }
       
   874 
       
   875     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
       
   876     case T_INT: case T_FLOAT: { // 4 bytes.
       
   877       assert(value->type() == T_INT, "Agreement.");
       
   878       bool big_value = false;
       
   879       if (i + 1 < sv->field_size() && type == T_INT) {
       
   880         if (sv->field_at(i)->is_location()) {
       
   881           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
       
   882           if (type == Location::dbl || type == Location::lng) {
       
   883             big_value = true;
       
   884           }
       
   885         } else if (sv->field_at(i)->is_constant_int()) {
       
   886           ScopeValue* next_scope_field = sv->field_at(i + 1);
       
   887           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
       
   888             big_value = true;
       
   889           }
       
   890         }
       
   891       }
       
   892 
       
   893       if (big_value) {
       
   894         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
       
   895   #ifdef _LP64
       
   896         jlong res = (jlong)low->get_int();
       
   897   #else
       
   898   #ifdef SPARC
       
   899         // For SPARC we have to swap high and low words.
       
   900         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
       
   901   #else
       
   902         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
       
   903   #endif //SPARC
       
   904   #endif
       
   905         obj->int_at_put(index, (jint)*((jint*)&res));
       
   906         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
       
   907       } else {
       
   908         val = value->get_int();
       
   909         obj->int_at_put(index, (jint)*((jint*)&val));
       
   910       }
       
   911       break;
       
   912     }
       
   913 
       
   914     case T_SHORT:
       
   915       assert(value->type() == T_INT, "Agreement.");
       
   916       val = value->get_int();
       
   917       obj->short_at_put(index, (jshort)*((jint*)&val));
       
   918       break;
       
   919 
       
   920     case T_CHAR:
       
   921       assert(value->type() == T_INT, "Agreement.");
       
   922       val = value->get_int();
       
   923       obj->char_at_put(index, (jchar)*((jint*)&val));
       
   924       break;
       
   925 
       
   926     case T_BYTE:
       
   927       assert(value->type() == T_INT, "Agreement.");
       
   928       val = value->get_int();
       
   929       obj->byte_at_put(index, (jbyte)*((jint*)&val));
       
   930       break;
       
   931 
       
   932     case T_BOOLEAN:
       
   933       assert(value->type() == T_INT, "Agreement.");
       
   934       val = value->get_int();
       
   935       obj->bool_at_put(index, (jboolean)*((jint*)&val));
       
   936       break;
       
   937 
       
   938       default:
       
   939         ShouldNotReachHere();
       
   940     }
       
   941     index++;
       
   942   }
       
   943 }
       
   944 
       
   945 
       
   946 // restore fields of an eliminated object array
       
   947 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
       
   948   for (int i = 0; i < sv->field_size(); i++) {
       
   949     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
       
   950     assert(value->type() == T_OBJECT, "object element expected");
       
   951     obj->obj_at_put(i, value->get_obj()());
       
   952   }
       
   953 }
       
   954 
       
   955 class ReassignedField {
       
   956 public:
       
   957   int _offset;
       
   958   BasicType _type;
       
   959 public:
       
   960   ReassignedField() {
       
   961     _offset = 0;
       
   962     _type = T_ILLEGAL;
       
   963   }
       
   964 };
       
   965 
       
   966 int compare(ReassignedField* left, ReassignedField* right) {
       
   967   return left->_offset - right->_offset;
       
   968 }
       
   969 
       
   970 // Restore fields of an eliminated instance object using the same field order
       
   971 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
       
   972 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
       
   973   if (klass->superklass() != NULL) {
       
   974     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal);
       
   975   }
       
   976 
       
   977   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
       
   978   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
       
   979     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
       
   980       ReassignedField field;
       
   981       field._offset = fs.offset();
       
   982       field._type = FieldType::basic_type(fs.signature());
       
   983       fields->append(field);
       
   984     }
       
   985   }
       
   986   fields->sort(compare);
       
   987   for (int i = 0; i < fields->length(); i++) {
       
   988     intptr_t val;
       
   989     ScopeValue* scope_field = sv->field_at(svIndex);
       
   990     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
       
   991     int offset = fields->at(i)._offset;
       
   992     BasicType type = fields->at(i)._type;
       
   993     switch (type) {
       
   994       case T_OBJECT: case T_ARRAY:
       
   995         assert(value->type() == T_OBJECT, "Agreement.");
       
   996         obj->obj_field_put(offset, value->get_obj()());
       
   997         break;
       
   998 
       
   999       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
       
  1000       case T_INT: case T_FLOAT: { // 4 bytes.
       
  1001         assert(value->type() == T_INT, "Agreement.");
       
  1002         bool big_value = false;
       
  1003         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
       
  1004           if (scope_field->is_location()) {
       
  1005             Location::Type type = ((LocationValue*) scope_field)->location().type();
       
  1006             if (type == Location::dbl || type == Location::lng) {
       
  1007               big_value = true;
       
  1008             }
       
  1009           }
       
  1010           if (scope_field->is_constant_int()) {
       
  1011             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
       
  1012             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
       
  1013               big_value = true;
       
  1014             }
       
  1015           }
       
  1016         }
       
  1017 
       
  1018         if (big_value) {
       
  1019           i++;
       
  1020           assert(i < fields->length(), "second T_INT field needed");
       
  1021           assert(fields->at(i)._type == T_INT, "T_INT field needed");
       
  1022         } else {
       
  1023           val = value->get_int();
       
  1024           obj->int_field_put(offset, (jint)*((jint*)&val));
       
  1025           break;
       
  1026         }
       
  1027       }
       
  1028         /* no break */
       
  1029 
       
  1030       case T_LONG: case T_DOUBLE: {
       
  1031         assert(value->type() == T_INT, "Agreement.");
       
  1032         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
       
  1033 #ifdef _LP64
       
  1034         jlong res = (jlong)low->get_int();
       
  1035 #else
       
  1036 #ifdef SPARC
       
  1037         // For SPARC we have to swap high and low words.
       
  1038         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
       
  1039 #else
       
  1040         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
       
  1041 #endif //SPARC
       
  1042 #endif
       
  1043         obj->long_field_put(offset, res);
       
  1044         break;
       
  1045       }
       
  1046 
       
  1047       case T_SHORT:
       
  1048         assert(value->type() == T_INT, "Agreement.");
       
  1049         val = value->get_int();
       
  1050         obj->short_field_put(offset, (jshort)*((jint*)&val));
       
  1051         break;
       
  1052 
       
  1053       case T_CHAR:
       
  1054         assert(value->type() == T_INT, "Agreement.");
       
  1055         val = value->get_int();
       
  1056         obj->char_field_put(offset, (jchar)*((jint*)&val));
       
  1057         break;
       
  1058 
       
  1059       case T_BYTE:
       
  1060         assert(value->type() == T_INT, "Agreement.");
       
  1061         val = value->get_int();
       
  1062         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
       
  1063         break;
       
  1064 
       
  1065       case T_BOOLEAN:
       
  1066         assert(value->type() == T_INT, "Agreement.");
       
  1067         val = value->get_int();
       
  1068         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
       
  1069         break;
       
  1070 
       
  1071       default:
       
  1072         ShouldNotReachHere();
       
  1073     }
       
  1074     svIndex++;
       
  1075   }
       
  1076   return svIndex;
       
  1077 }
       
  1078 
       
  1079 // restore fields of all eliminated objects and arrays
       
  1080 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
       
  1081   for (int i = 0; i < objects->length(); i++) {
       
  1082     ObjectValue* sv = (ObjectValue*) objects->at(i);
       
  1083     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
       
  1084     Handle obj = sv->value();
       
  1085     assert(obj.not_null() || realloc_failures, "reallocation was missed");
       
  1086     if (PrintDeoptimizationDetails) {
       
  1087       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
       
  1088     }
       
  1089     if (obj.is_null()) {
       
  1090       continue;
       
  1091     }
       
  1092 
       
  1093     if (k->is_instance_klass()) {
       
  1094       InstanceKlass* ik = InstanceKlass::cast(k);
       
  1095       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
       
  1096     } else if (k->is_typeArray_klass()) {
       
  1097       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
       
  1098       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
       
  1099     } else if (k->is_objArray_klass()) {
       
  1100       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
       
  1101     }
       
  1102   }
       
  1103 }
       
  1104 
       
  1105 
       
  1106 // relock objects for which synchronization was eliminated
       
  1107 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
       
  1108   for (int i = 0; i < monitors->length(); i++) {
       
  1109     MonitorInfo* mon_info = monitors->at(i);
       
  1110     if (mon_info->eliminated()) {
       
  1111       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
       
  1112       if (!mon_info->owner_is_scalar_replaced()) {
       
  1113         Handle obj(thread, mon_info->owner());
       
  1114         markOop mark = obj->mark();
       
  1115         if (UseBiasedLocking && mark->has_bias_pattern()) {
       
  1116           // New allocated objects may have the mark set to anonymously biased.
       
  1117           // Also the deoptimized method may called methods with synchronization
       
  1118           // where the thread-local object is bias locked to the current thread.
       
  1119           assert(mark->is_biased_anonymously() ||
       
  1120                  mark->biased_locker() == thread, "should be locked to current thread");
       
  1121           // Reset mark word to unbiased prototype.
       
  1122           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
       
  1123           obj->set_mark(unbiased_prototype);
       
  1124         }
       
  1125         BasicLock* lock = mon_info->lock();
       
  1126         ObjectSynchronizer::slow_enter(obj, lock, thread);
       
  1127         assert(mon_info->owner()->is_locked(), "object must be locked now");
       
  1128       }
       
  1129     }
       
  1130   }
       
  1131 }
       
  1132 
       
  1133 
       
  1134 #ifndef PRODUCT
       
  1135 // print information about reallocated objects
       
  1136 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
       
  1137   fieldDescriptor fd;
       
  1138 
       
  1139   for (int i = 0; i < objects->length(); i++) {
       
  1140     ObjectValue* sv = (ObjectValue*) objects->at(i);
       
  1141     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
       
  1142     Handle obj = sv->value();
       
  1143 
       
  1144     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
       
  1145     k->print_value();
       
  1146     assert(obj.not_null() || realloc_failures, "reallocation was missed");
       
  1147     if (obj.is_null()) {
       
  1148       tty->print(" allocation failed");
       
  1149     } else {
       
  1150       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
       
  1151     }
       
  1152     tty->cr();
       
  1153 
       
  1154     if (Verbose && !obj.is_null()) {
       
  1155       k->oop_print_on(obj(), tty);
       
  1156     }
       
  1157   }
       
  1158 }
       
  1159 #endif
       
  1160 #endif // COMPILER2 || INCLUDE_JVMCI
       
  1161 
       
  1162 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
       
  1163   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
       
  1164 
       
  1165 #ifndef PRODUCT
       
  1166   if (PrintDeoptimizationDetails) {
       
  1167     ttyLocker ttyl;
       
  1168     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
       
  1169     fr.print_on(tty);
       
  1170     tty->print_cr("     Virtual frames (innermost first):");
       
  1171     for (int index = 0; index < chunk->length(); index++) {
       
  1172       compiledVFrame* vf = chunk->at(index);
       
  1173       tty->print("       %2d - ", index);
       
  1174       vf->print_value();
       
  1175       int bci = chunk->at(index)->raw_bci();
       
  1176       const char* code_name;
       
  1177       if (bci == SynchronizationEntryBCI) {
       
  1178         code_name = "sync entry";
       
  1179       } else {
       
  1180         Bytecodes::Code code = vf->method()->code_at(bci);
       
  1181         code_name = Bytecodes::name(code);
       
  1182       }
       
  1183       tty->print(" - %s", code_name);
       
  1184       tty->print_cr(" @ bci %d ", bci);
       
  1185       if (Verbose) {
       
  1186         vf->print();
       
  1187         tty->cr();
       
  1188       }
       
  1189     }
       
  1190   }
       
  1191 #endif
       
  1192 
       
  1193   // Register map for next frame (used for stack crawl).  We capture
       
  1194   // the state of the deopt'ing frame's caller.  Thus if we need to
       
  1195   // stuff a C2I adapter we can properly fill in the callee-save
       
  1196   // register locations.
       
  1197   frame caller = fr.sender(reg_map);
       
  1198   int frame_size = caller.sp() - fr.sp();
       
  1199 
       
  1200   frame sender = caller;
       
  1201 
       
  1202   // Since the Java thread being deoptimized will eventually adjust it's own stack,
       
  1203   // the vframeArray containing the unpacking information is allocated in the C heap.
       
  1204   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
       
  1205   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
       
  1206 
       
  1207   // Compare the vframeArray to the collected vframes
       
  1208   assert(array->structural_compare(thread, chunk), "just checking");
       
  1209 
       
  1210 #ifndef PRODUCT
       
  1211   if (PrintDeoptimizationDetails) {
       
  1212     ttyLocker ttyl;
       
  1213     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
       
  1214   }
       
  1215 #endif // PRODUCT
       
  1216 
       
  1217   return array;
       
  1218 }
       
  1219 
       
  1220 #if defined(COMPILER2) || INCLUDE_JVMCI
       
  1221 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
       
  1222   // Reallocation of some scalar replaced objects failed. Record
       
  1223   // that we need to pop all the interpreter frames for the
       
  1224   // deoptimized compiled frame.
       
  1225   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
       
  1226   thread->set_frames_to_pop_failed_realloc(array->frames());
       
  1227   // Unlock all monitors here otherwise the interpreter will see a
       
  1228   // mix of locked and unlocked monitors (because of failed
       
  1229   // reallocations of synchronized objects) and be confused.
       
  1230   for (int i = 0; i < array->frames(); i++) {
       
  1231     MonitorChunk* monitors = array->element(i)->monitors();
       
  1232     if (monitors != NULL) {
       
  1233       for (int j = 0; j < monitors->number_of_monitors(); j++) {
       
  1234         BasicObjectLock* src = monitors->at(j);
       
  1235         if (src->obj() != NULL) {
       
  1236           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
       
  1237         }
       
  1238       }
       
  1239       array->element(i)->free_monitors(thread);
       
  1240 #ifdef ASSERT
       
  1241       array->element(i)->set_removed_monitors();
       
  1242 #endif
       
  1243     }
       
  1244   }
       
  1245 }
       
  1246 #endif
       
  1247 
       
  1248 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
       
  1249   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
       
  1250   Thread* thread = Thread::current();
       
  1251   for (int i = 0; i < monitors->length(); i++) {
       
  1252     MonitorInfo* mon_info = monitors->at(i);
       
  1253     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
       
  1254       objects_to_revoke->append(Handle(thread, mon_info->owner()));
       
  1255     }
       
  1256   }
       
  1257 }
       
  1258 
       
  1259 
       
  1260 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
       
  1261   if (!UseBiasedLocking) {
       
  1262     return;
       
  1263   }
       
  1264 
       
  1265   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
       
  1266 
       
  1267   // Unfortunately we don't have a RegisterMap available in most of
       
  1268   // the places we want to call this routine so we need to walk the
       
  1269   // stack again to update the register map.
       
  1270   if (map == NULL || !map->update_map()) {
       
  1271     StackFrameStream sfs(thread, true);
       
  1272     bool found = false;
       
  1273     while (!found && !sfs.is_done()) {
       
  1274       frame* cur = sfs.current();
       
  1275       sfs.next();
       
  1276       found = cur->id() == fr.id();
       
  1277     }
       
  1278     assert(found, "frame to be deoptimized not found on target thread's stack");
       
  1279     map = sfs.register_map();
       
  1280   }
       
  1281 
       
  1282   vframe* vf = vframe::new_vframe(&fr, map, thread);
       
  1283   compiledVFrame* cvf = compiledVFrame::cast(vf);
       
  1284   // Revoke monitors' biases in all scopes
       
  1285   while (!cvf->is_top()) {
       
  1286     collect_monitors(cvf, objects_to_revoke);
       
  1287     cvf = compiledVFrame::cast(cvf->sender());
       
  1288   }
       
  1289   collect_monitors(cvf, objects_to_revoke);
       
  1290 
       
  1291   if (SafepointSynchronize::is_at_safepoint()) {
       
  1292     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
       
  1293   } else {
       
  1294     BiasedLocking::revoke(objects_to_revoke);
       
  1295   }
       
  1296 }
       
  1297 
       
  1298 
       
  1299 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
       
  1300   if (!UseBiasedLocking) {
       
  1301     return;
       
  1302   }
       
  1303 
       
  1304   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
       
  1305   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
       
  1306   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
       
  1307     if (jt->has_last_Java_frame()) {
       
  1308       StackFrameStream sfs(jt, true);
       
  1309       while (!sfs.is_done()) {
       
  1310         frame* cur = sfs.current();
       
  1311         if (cb->contains(cur->pc())) {
       
  1312           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
       
  1313           compiledVFrame* cvf = compiledVFrame::cast(vf);
       
  1314           // Revoke monitors' biases in all scopes
       
  1315           while (!cvf->is_top()) {
       
  1316             collect_monitors(cvf, objects_to_revoke);
       
  1317             cvf = compiledVFrame::cast(cvf->sender());
       
  1318           }
       
  1319           collect_monitors(cvf, objects_to_revoke);
       
  1320         }
       
  1321         sfs.next();
       
  1322       }
       
  1323     }
       
  1324   }
       
  1325   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
       
  1326 }
       
  1327 
       
  1328 
       
  1329 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
       
  1330   assert(fr.can_be_deoptimized(), "checking frame type");
       
  1331 
       
  1332   gather_statistics(reason, Action_none, Bytecodes::_illegal);
       
  1333 
       
  1334   if (LogCompilation && xtty != NULL) {
       
  1335     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
       
  1336     assert(cm != NULL, "only compiled methods can deopt");
       
  1337 
       
  1338     ttyLocker ttyl;
       
  1339     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
       
  1340     cm->log_identity(xtty);
       
  1341     xtty->end_head();
       
  1342     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
       
  1343       xtty->begin_elem("jvms bci='%d'", sd->bci());
       
  1344       xtty->method(sd->method());
       
  1345       xtty->end_elem();
       
  1346       if (sd->is_top())  break;
       
  1347     }
       
  1348     xtty->tail("deoptimized");
       
  1349   }
       
  1350 
       
  1351   // Patch the compiled method so that when execution returns to it we will
       
  1352   // deopt the execution state and return to the interpreter.
       
  1353   fr.deoptimize(thread);
       
  1354 }
       
  1355 
       
  1356 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
       
  1357   deoptimize(thread, fr, map, Reason_constraint);
       
  1358 }
       
  1359 
       
  1360 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
       
  1361   // Deoptimize only if the frame comes from compile code.
       
  1362   // Do not deoptimize the frame which is already patched
       
  1363   // during the execution of the loops below.
       
  1364   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
       
  1365     return;
       
  1366   }
       
  1367   ResourceMark rm;
       
  1368   DeoptimizationMarker dm;
       
  1369   if (UseBiasedLocking) {
       
  1370     revoke_biases_of_monitors(thread, fr, map);
       
  1371   }
       
  1372   deoptimize_single_frame(thread, fr, reason);
       
  1373 
       
  1374 }
       
  1375 
       
  1376 #if INCLUDE_JVMCI
       
  1377 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) {
       
  1378   // there is no exception handler for this pc => deoptimize
       
  1379   cm->make_not_entrant();
       
  1380 
       
  1381   // Use Deoptimization::deoptimize for all of its side-effects:
       
  1382   // revoking biases of monitors, gathering traps statistics, logging...
       
  1383   // it also patches the return pc but we do not care about that
       
  1384   // since we return a continuation to the deopt_blob below.
       
  1385   JavaThread* thread = JavaThread::current();
       
  1386   RegisterMap reg_map(thread, UseBiasedLocking);
       
  1387   frame runtime_frame = thread->last_frame();
       
  1388   frame caller_frame = runtime_frame.sender(&reg_map);
       
  1389   assert(caller_frame.cb()->as_nmethod_or_null() == cm, "expect top frame nmethod");
       
  1390   Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
       
  1391 
       
  1392   MethodData* trap_mdo = get_method_data(thread, cm->method(), true);
       
  1393   if (trap_mdo != NULL) {
       
  1394     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
       
  1395   }
       
  1396 
       
  1397   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
       
  1398 }
       
  1399 #endif
       
  1400 
       
  1401 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
       
  1402   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
       
  1403          "can only deoptimize other thread at a safepoint");
       
  1404   // Compute frame and register map based on thread and sp.
       
  1405   RegisterMap reg_map(thread, UseBiasedLocking);
       
  1406   frame fr = thread->last_frame();
       
  1407   while (fr.id() != id) {
       
  1408     fr = fr.sender(&reg_map);
       
  1409   }
       
  1410   deoptimize(thread, fr, &reg_map, reason);
       
  1411 }
       
  1412 
       
  1413 
       
  1414 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
       
  1415   if (thread == Thread::current()) {
       
  1416     Deoptimization::deoptimize_frame_internal(thread, id, reason);
       
  1417   } else {
       
  1418     VM_DeoptimizeFrame deopt(thread, id, reason);
       
  1419     VMThread::execute(&deopt);
       
  1420   }
       
  1421 }
       
  1422 
       
  1423 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
       
  1424   deoptimize_frame(thread, id, Reason_constraint);
       
  1425 }
       
  1426 
       
  1427 // JVMTI PopFrame support
       
  1428 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
       
  1429 {
       
  1430   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
       
  1431 }
       
  1432 JRT_END
       
  1433 
       
  1434 MethodData*
       
  1435 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
       
  1436                                 bool create_if_missing) {
       
  1437   Thread* THREAD = thread;
       
  1438   MethodData* mdo = m()->method_data();
       
  1439   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
       
  1440     // Build an MDO.  Ignore errors like OutOfMemory;
       
  1441     // that simply means we won't have an MDO to update.
       
  1442     Method::build_interpreter_method_data(m, THREAD);
       
  1443     if (HAS_PENDING_EXCEPTION) {
       
  1444       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
       
  1445       CLEAR_PENDING_EXCEPTION;
       
  1446     }
       
  1447     mdo = m()->method_data();
       
  1448   }
       
  1449   return mdo;
       
  1450 }
       
  1451 
       
  1452 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
       
  1453 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
       
  1454   // in case of an unresolved klass entry, load the class.
       
  1455   if (constant_pool->tag_at(index).is_unresolved_klass()) {
       
  1456     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
       
  1457     return;
       
  1458   }
       
  1459 
       
  1460   if (!constant_pool->tag_at(index).is_symbol()) return;
       
  1461 
       
  1462   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
       
  1463   Symbol*  symbol  = constant_pool->symbol_at(index);
       
  1464 
       
  1465   // class name?
       
  1466   if (symbol->byte_at(0) != '(') {
       
  1467     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
       
  1468     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
       
  1469     return;
       
  1470   }
       
  1471 
       
  1472   // then it must be a signature!
       
  1473   ResourceMark rm(THREAD);
       
  1474   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
       
  1475     if (ss.is_object()) {
       
  1476       Symbol* class_name = ss.as_symbol(CHECK);
       
  1477       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
       
  1478       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
       
  1479     }
       
  1480   }
       
  1481 }
       
  1482 
       
  1483 
       
  1484 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
       
  1485   EXCEPTION_MARK;
       
  1486   load_class_by_index(constant_pool, index, THREAD);
       
  1487   if (HAS_PENDING_EXCEPTION) {
       
  1488     // Exception happened during classloading. We ignore the exception here, since it
       
  1489     // is going to be rethrown since the current activation is going to be deoptimized and
       
  1490     // the interpreter will re-execute the bytecode.
       
  1491     CLEAR_PENDING_EXCEPTION;
       
  1492     // Class loading called java code which may have caused a stack
       
  1493     // overflow. If the exception was thrown right before the return
       
  1494     // to the runtime the stack is no longer guarded. Reguard the
       
  1495     // stack otherwise if we return to the uncommon trap blob and the
       
  1496     // stack bang causes a stack overflow we crash.
       
  1497     assert(THREAD->is_Java_thread(), "only a java thread can be here");
       
  1498     JavaThread* thread = (JavaThread*)THREAD;
       
  1499     bool guard_pages_enabled = thread->stack_guards_enabled();
       
  1500     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
       
  1501     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
       
  1502   }
       
  1503 }
       
  1504 
       
  1505 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
       
  1506   HandleMark hm;
       
  1507 
       
  1508   // uncommon_trap() is called at the beginning of the uncommon trap
       
  1509   // handler. Note this fact before we start generating temporary frames
       
  1510   // that can confuse an asynchronous stack walker. This counter is
       
  1511   // decremented at the end of unpack_frames().
       
  1512   thread->inc_in_deopt_handler();
       
  1513 
       
  1514   // We need to update the map if we have biased locking.
       
  1515 #if INCLUDE_JVMCI
       
  1516   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
       
  1517   RegisterMap reg_map(thread, true);
       
  1518 #else
       
  1519   RegisterMap reg_map(thread, UseBiasedLocking);
       
  1520 #endif
       
  1521   frame stub_frame = thread->last_frame();
       
  1522   frame fr = stub_frame.sender(&reg_map);
       
  1523   // Make sure the calling nmethod is not getting deoptimized and removed
       
  1524   // before we are done with it.
       
  1525   nmethodLocker nl(fr.pc());
       
  1526 
       
  1527   // Log a message
       
  1528   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
       
  1529               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
       
  1530 
       
  1531   {
       
  1532     ResourceMark rm;
       
  1533 
       
  1534     // Revoke biases of any monitors in the frame to ensure we can migrate them
       
  1535     revoke_biases_of_monitors(thread, fr, &reg_map);
       
  1536 
       
  1537     DeoptReason reason = trap_request_reason(trap_request);
       
  1538     DeoptAction action = trap_request_action(trap_request);
       
  1539 #if INCLUDE_JVMCI
       
  1540     int debug_id = trap_request_debug_id(trap_request);
       
  1541 #endif
       
  1542     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
       
  1543 
       
  1544     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
       
  1545     compiledVFrame* cvf = compiledVFrame::cast(vf);
       
  1546 
       
  1547     CompiledMethod* nm = cvf->code();
       
  1548 
       
  1549     ScopeDesc*      trap_scope  = cvf->scope();
       
  1550 
       
  1551     if (TraceDeoptimization) {
       
  1552       ttyLocker ttyl;
       
  1553       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
       
  1554 #if INCLUDE_JVMCI
       
  1555           , debug_id
       
  1556 #endif
       
  1557           );
       
  1558     }
       
  1559 
       
  1560     methodHandle    trap_method = trap_scope->method();
       
  1561     int             trap_bci    = trap_scope->bci();
       
  1562 #if INCLUDE_JVMCI
       
  1563     oop speculation = thread->pending_failed_speculation();
       
  1564     if (nm->is_compiled_by_jvmci()) {
       
  1565       if (speculation != NULL) {
       
  1566         oop speculation_log = nm->as_nmethod()->speculation_log();
       
  1567         if (speculation_log != NULL) {
       
  1568           if (TraceDeoptimization || TraceUncollectedSpeculations) {
       
  1569             if (HotSpotSpeculationLog::lastFailed(speculation_log) != NULL) {
       
  1570               tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
       
  1571             }
       
  1572           }
       
  1573           if (TraceDeoptimization) {
       
  1574             tty->print_cr("Saving speculation to speculation log");
       
  1575           }
       
  1576           HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
       
  1577         } else {
       
  1578           if (TraceDeoptimization) {
       
  1579             tty->print_cr("Speculation present but no speculation log");
       
  1580           }
       
  1581         }
       
  1582         thread->set_pending_failed_speculation(NULL);
       
  1583       } else {
       
  1584         if (TraceDeoptimization) {
       
  1585           tty->print_cr("No speculation");
       
  1586         }
       
  1587       }
       
  1588     } else {
       
  1589       assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
       
  1590     }
       
  1591 
       
  1592     if (trap_bci == SynchronizationEntryBCI) {
       
  1593       trap_bci = 0;
       
  1594       thread->set_pending_monitorenter(true);
       
  1595     }
       
  1596 
       
  1597     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
       
  1598       thread->set_pending_transfer_to_interpreter(true);
       
  1599     }
       
  1600 #endif
       
  1601 
       
  1602     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
       
  1603     // Record this event in the histogram.
       
  1604     gather_statistics(reason, action, trap_bc);
       
  1605 
       
  1606     // Ensure that we can record deopt. history:
       
  1607     // Need MDO to record RTM code generation state.
       
  1608     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
       
  1609 
       
  1610     methodHandle profiled_method;
       
  1611 #if INCLUDE_JVMCI
       
  1612     if (nm->is_compiled_by_jvmci()) {
       
  1613       profiled_method = nm->method();
       
  1614     } else {
       
  1615       profiled_method = trap_method;
       
  1616     }
       
  1617 #else
       
  1618     profiled_method = trap_method;
       
  1619 #endif
       
  1620 
       
  1621     MethodData* trap_mdo =
       
  1622       get_method_data(thread, profiled_method, create_if_missing);
       
  1623 
       
  1624     // Log a message
       
  1625     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
       
  1626                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
       
  1627                               trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
       
  1628 
       
  1629     // Print a bunch of diagnostics, if requested.
       
  1630     if (TraceDeoptimization || LogCompilation) {
       
  1631       ResourceMark rm;
       
  1632       ttyLocker ttyl;
       
  1633       char buf[100];
       
  1634       if (xtty != NULL) {
       
  1635         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
       
  1636                          os::current_thread_id(),
       
  1637                          format_trap_request(buf, sizeof(buf), trap_request));
       
  1638         nm->log_identity(xtty);
       
  1639       }
       
  1640       Symbol* class_name = NULL;
       
  1641       bool unresolved = false;
       
  1642       if (unloaded_class_index >= 0) {
       
  1643         constantPoolHandle constants (THREAD, trap_method->constants());
       
  1644         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
       
  1645           class_name = constants->klass_name_at(unloaded_class_index);
       
  1646           unresolved = true;
       
  1647           if (xtty != NULL)
       
  1648             xtty->print(" unresolved='1'");
       
  1649         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
       
  1650           class_name = constants->symbol_at(unloaded_class_index);
       
  1651         }
       
  1652         if (xtty != NULL)
       
  1653           xtty->name(class_name);
       
  1654       }
       
  1655       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
       
  1656         // Dump the relevant MDO state.
       
  1657         // This is the deopt count for the current reason, any previous
       
  1658         // reasons or recompiles seen at this point.
       
  1659         int dcnt = trap_mdo->trap_count(reason);
       
  1660         if (dcnt != 0)
       
  1661           xtty->print(" count='%d'", dcnt);
       
  1662         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
       
  1663         int dos = (pdata == NULL)? 0: pdata->trap_state();
       
  1664         if (dos != 0) {
       
  1665           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
       
  1666           if (trap_state_is_recompiled(dos)) {
       
  1667             int recnt2 = trap_mdo->overflow_recompile_count();
       
  1668             if (recnt2 != 0)
       
  1669               xtty->print(" recompiles2='%d'", recnt2);
       
  1670           }
       
  1671         }
       
  1672       }
       
  1673       if (xtty != NULL) {
       
  1674         xtty->stamp();
       
  1675         xtty->end_head();
       
  1676       }
       
  1677       if (TraceDeoptimization) {  // make noise on the tty
       
  1678         tty->print("Uncommon trap occurred in");
       
  1679         nm->method()->print_short_name(tty);
       
  1680         tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
       
  1681 #if INCLUDE_JVMCI
       
  1682         if (nm->is_nmethod()) {
       
  1683           oop installedCode = nm->as_nmethod()->jvmci_installed_code();
       
  1684           if (installedCode != NULL) {
       
  1685             oop installedCodeName = NULL;
       
  1686             if (installedCode->is_a(InstalledCode::klass())) {
       
  1687               installedCodeName = InstalledCode::name(installedCode);
       
  1688             }
       
  1689             if (installedCodeName != NULL) {
       
  1690               tty->print(" (JVMCI: installedCodeName=%s) ", java_lang_String::as_utf8_string(installedCodeName));
       
  1691             } else {
       
  1692               tty->print(" (JVMCI: installed code has no name) ");
       
  1693             }
       
  1694           } else if (nm->is_compiled_by_jvmci()) {
       
  1695             tty->print(" (JVMCI: no installed code) ");
       
  1696           }
       
  1697         }
       
  1698 #endif
       
  1699         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
       
  1700                    p2i(fr.pc()),
       
  1701                    os::current_thread_id(),
       
  1702                    trap_reason_name(reason),
       
  1703                    trap_action_name(action),
       
  1704                    unloaded_class_index
       
  1705 #if INCLUDE_JVMCI
       
  1706                    , debug_id
       
  1707 #endif
       
  1708                    );
       
  1709         if (class_name != NULL) {
       
  1710           tty->print(unresolved ? " unresolved class: " : " symbol: ");
       
  1711           class_name->print_symbol_on(tty);
       
  1712         }
       
  1713         tty->cr();
       
  1714       }
       
  1715       if (xtty != NULL) {
       
  1716         // Log the precise location of the trap.
       
  1717         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
       
  1718           xtty->begin_elem("jvms bci='%d'", sd->bci());
       
  1719           xtty->method(sd->method());
       
  1720           xtty->end_elem();
       
  1721           if (sd->is_top())  break;
       
  1722         }
       
  1723         xtty->tail("uncommon_trap");
       
  1724       }
       
  1725     }
       
  1726     // (End diagnostic printout.)
       
  1727 
       
  1728     // Load class if necessary
       
  1729     if (unloaded_class_index >= 0) {
       
  1730       constantPoolHandle constants(THREAD, trap_method->constants());
       
  1731       load_class_by_index(constants, unloaded_class_index);
       
  1732     }
       
  1733 
       
  1734     // Flush the nmethod if necessary and desirable.
       
  1735     //
       
  1736     // We need to avoid situations where we are re-flushing the nmethod
       
  1737     // because of a hot deoptimization site.  Repeated flushes at the same
       
  1738     // point need to be detected by the compiler and avoided.  If the compiler
       
  1739     // cannot avoid them (or has a bug and "refuses" to avoid them), this
       
  1740     // module must take measures to avoid an infinite cycle of recompilation
       
  1741     // and deoptimization.  There are several such measures:
       
  1742     //
       
  1743     //   1. If a recompilation is ordered a second time at some site X
       
  1744     //   and for the same reason R, the action is adjusted to 'reinterpret',
       
  1745     //   to give the interpreter time to exercise the method more thoroughly.
       
  1746     //   If this happens, the method's overflow_recompile_count is incremented.
       
  1747     //
       
  1748     //   2. If the compiler fails to reduce the deoptimization rate, then
       
  1749     //   the method's overflow_recompile_count will begin to exceed the set
       
  1750     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
       
  1751     //   is adjusted to 'make_not_compilable', and the method is abandoned
       
  1752     //   to the interpreter.  This is a performance hit for hot methods,
       
  1753     //   but is better than a disastrous infinite cycle of recompilations.
       
  1754     //   (Actually, only the method containing the site X is abandoned.)
       
  1755     //
       
  1756     //   3. In parallel with the previous measures, if the total number of
       
  1757     //   recompilations of a method exceeds the much larger set limit
       
  1758     //   PerMethodRecompilationCutoff, the method is abandoned.
       
  1759     //   This should only happen if the method is very large and has
       
  1760     //   many "lukewarm" deoptimizations.  The code which enforces this
       
  1761     //   limit is elsewhere (class nmethod, class Method).
       
  1762     //
       
  1763     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
       
  1764     // to recompile at each bytecode independently of the per-BCI cutoff.
       
  1765     //
       
  1766     // The decision to update code is up to the compiler, and is encoded
       
  1767     // in the Action_xxx code.  If the compiler requests Action_none
       
  1768     // no trap state is changed, no compiled code is changed, and the
       
  1769     // computation suffers along in the interpreter.
       
  1770     //
       
  1771     // The other action codes specify various tactics for decompilation
       
  1772     // and recompilation.  Action_maybe_recompile is the loosest, and
       
  1773     // allows the compiled code to stay around until enough traps are seen,
       
  1774     // and until the compiler gets around to recompiling the trapping method.
       
  1775     //
       
  1776     // The other actions cause immediate removal of the present code.
       
  1777 
       
  1778     // Traps caused by injected profile shouldn't pollute trap counts.
       
  1779     bool injected_profile_trap = trap_method->has_injected_profile() &&
       
  1780                                  (reason == Reason_intrinsic || reason == Reason_unreached);
       
  1781 
       
  1782     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
       
  1783     bool make_not_entrant = false;
       
  1784     bool make_not_compilable = false;
       
  1785     bool reprofile = false;
       
  1786     switch (action) {
       
  1787     case Action_none:
       
  1788       // Keep the old code.
       
  1789       update_trap_state = false;
       
  1790       break;
       
  1791     case Action_maybe_recompile:
       
  1792       // Do not need to invalidate the present code, but we can
       
  1793       // initiate another
       
  1794       // Start compiler without (necessarily) invalidating the nmethod.
       
  1795       // The system will tolerate the old code, but new code should be
       
  1796       // generated when possible.
       
  1797       break;
       
  1798     case Action_reinterpret:
       
  1799       // Go back into the interpreter for a while, and then consider
       
  1800       // recompiling form scratch.
       
  1801       make_not_entrant = true;
       
  1802       // Reset invocation counter for outer most method.
       
  1803       // This will allow the interpreter to exercise the bytecodes
       
  1804       // for a while before recompiling.
       
  1805       // By contrast, Action_make_not_entrant is immediate.
       
  1806       //
       
  1807       // Note that the compiler will track null_check, null_assert,
       
  1808       // range_check, and class_check events and log them as if they
       
  1809       // had been traps taken from compiled code.  This will update
       
  1810       // the MDO trap history so that the next compilation will
       
  1811       // properly detect hot trap sites.
       
  1812       reprofile = true;
       
  1813       break;
       
  1814     case Action_make_not_entrant:
       
  1815       // Request immediate recompilation, and get rid of the old code.
       
  1816       // Make them not entrant, so next time they are called they get
       
  1817       // recompiled.  Unloaded classes are loaded now so recompile before next
       
  1818       // time they are called.  Same for uninitialized.  The interpreter will
       
  1819       // link the missing class, if any.
       
  1820       make_not_entrant = true;
       
  1821       break;
       
  1822     case Action_make_not_compilable:
       
  1823       // Give up on compiling this method at all.
       
  1824       make_not_entrant = true;
       
  1825       make_not_compilable = true;
       
  1826       break;
       
  1827     default:
       
  1828       ShouldNotReachHere();
       
  1829     }
       
  1830 
       
  1831     // Setting +ProfileTraps fixes the following, on all platforms:
       
  1832     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
       
  1833     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
       
  1834     // recompile relies on a MethodData* to record heroic opt failures.
       
  1835 
       
  1836     // Whether the interpreter is producing MDO data or not, we also need
       
  1837     // to use the MDO to detect hot deoptimization points and control
       
  1838     // aggressive optimization.
       
  1839     bool inc_recompile_count = false;
       
  1840     ProfileData* pdata = NULL;
       
  1841     if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) {
       
  1842       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
       
  1843       uint this_trap_count = 0;
       
  1844       bool maybe_prior_trap = false;
       
  1845       bool maybe_prior_recompile = false;
       
  1846       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
       
  1847 #if INCLUDE_JVMCI
       
  1848                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
       
  1849 #endif
       
  1850                                    nm->method(),
       
  1851                                    //outputs:
       
  1852                                    this_trap_count,
       
  1853                                    maybe_prior_trap,
       
  1854                                    maybe_prior_recompile);
       
  1855       // Because the interpreter also counts null, div0, range, and class
       
  1856       // checks, these traps from compiled code are double-counted.
       
  1857       // This is harmless; it just means that the PerXTrapLimit values
       
  1858       // are in effect a little smaller than they look.
       
  1859 
       
  1860       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
       
  1861       if (per_bc_reason != Reason_none) {
       
  1862         // Now take action based on the partially known per-BCI history.
       
  1863         if (maybe_prior_trap
       
  1864             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
       
  1865           // If there are too many traps at this BCI, force a recompile.
       
  1866           // This will allow the compiler to see the limit overflow, and
       
  1867           // take corrective action, if possible.  The compiler generally
       
  1868           // does not use the exact PerBytecodeTrapLimit value, but instead
       
  1869           // changes its tactics if it sees any traps at all.  This provides
       
  1870           // a little hysteresis, delaying a recompile until a trap happens
       
  1871           // several times.
       
  1872           //
       
  1873           // Actually, since there is only one bit of counter per BCI,
       
  1874           // the possible per-BCI counts are {0,1,(per-method count)}.
       
  1875           // This produces accurate results if in fact there is only
       
  1876           // one hot trap site, but begins to get fuzzy if there are
       
  1877           // many sites.  For example, if there are ten sites each
       
  1878           // trapping two or more times, they each get the blame for
       
  1879           // all of their traps.
       
  1880           make_not_entrant = true;
       
  1881         }
       
  1882 
       
  1883         // Detect repeated recompilation at the same BCI, and enforce a limit.
       
  1884         if (make_not_entrant && maybe_prior_recompile) {
       
  1885           // More than one recompile at this point.
       
  1886           inc_recompile_count = maybe_prior_trap;
       
  1887         }
       
  1888       } else {
       
  1889         // For reasons which are not recorded per-bytecode, we simply
       
  1890         // force recompiles unconditionally.
       
  1891         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
       
  1892         make_not_entrant = true;
       
  1893       }
       
  1894 
       
  1895       // Go back to the compiler if there are too many traps in this method.
       
  1896       if (this_trap_count >= per_method_trap_limit(reason)) {
       
  1897         // If there are too many traps in this method, force a recompile.
       
  1898         // This will allow the compiler to see the limit overflow, and
       
  1899         // take corrective action, if possible.
       
  1900         // (This condition is an unlikely backstop only, because the
       
  1901         // PerBytecodeTrapLimit is more likely to take effect first,
       
  1902         // if it is applicable.)
       
  1903         make_not_entrant = true;
       
  1904       }
       
  1905 
       
  1906       // Here's more hysteresis:  If there has been a recompile at
       
  1907       // this trap point already, run the method in the interpreter
       
  1908       // for a while to exercise it more thoroughly.
       
  1909       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
       
  1910         reprofile = true;
       
  1911       }
       
  1912     }
       
  1913 
       
  1914     // Take requested actions on the method:
       
  1915 
       
  1916     // Recompile
       
  1917     if (make_not_entrant) {
       
  1918       if (!nm->make_not_entrant()) {
       
  1919         return; // the call did not change nmethod's state
       
  1920       }
       
  1921 
       
  1922       if (pdata != NULL) {
       
  1923         // Record the recompilation event, if any.
       
  1924         int tstate0 = pdata->trap_state();
       
  1925         int tstate1 = trap_state_set_recompiled(tstate0, true);
       
  1926         if (tstate1 != tstate0)
       
  1927           pdata->set_trap_state(tstate1);
       
  1928       }
       
  1929 
       
  1930 #if INCLUDE_RTM_OPT
       
  1931       // Restart collecting RTM locking abort statistic if the method
       
  1932       // is recompiled for a reason other than RTM state change.
       
  1933       // Assume that in new recompiled code the statistic could be different,
       
  1934       // for example, due to different inlining.
       
  1935       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
       
  1936           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
       
  1937         trap_mdo->atomic_set_rtm_state(ProfileRTM);
       
  1938       }
       
  1939 #endif
       
  1940       // For code aging we count traps separately here, using make_not_entrant()
       
  1941       // as a guard against simultaneous deopts in multiple threads.
       
  1942       if (reason == Reason_tenured && trap_mdo != NULL) {
       
  1943         trap_mdo->inc_tenure_traps();
       
  1944       }
       
  1945     }
       
  1946 
       
  1947     if (inc_recompile_count) {
       
  1948       trap_mdo->inc_overflow_recompile_count();
       
  1949       if ((uint)trap_mdo->overflow_recompile_count() >
       
  1950           (uint)PerBytecodeRecompilationCutoff) {
       
  1951         // Give up on the method containing the bad BCI.
       
  1952         if (trap_method() == nm->method()) {
       
  1953           make_not_compilable = true;
       
  1954         } else {
       
  1955           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
       
  1956           // But give grace to the enclosing nm->method().
       
  1957         }
       
  1958       }
       
  1959     }
       
  1960 
       
  1961     // Reprofile
       
  1962     if (reprofile) {
       
  1963       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
       
  1964     }
       
  1965 
       
  1966     // Give up compiling
       
  1967     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
       
  1968       assert(make_not_entrant, "consistent");
       
  1969       nm->method()->set_not_compilable(CompLevel_full_optimization);
       
  1970     }
       
  1971 
       
  1972   } // Free marked resources
       
  1973 
       
  1974 }
       
  1975 JRT_END
       
  1976 
       
  1977 ProfileData*
       
  1978 Deoptimization::query_update_method_data(MethodData* trap_mdo,
       
  1979                                          int trap_bci,
       
  1980                                          Deoptimization::DeoptReason reason,
       
  1981                                          bool update_total_trap_count,
       
  1982 #if INCLUDE_JVMCI
       
  1983                                          bool is_osr,
       
  1984 #endif
       
  1985                                          Method* compiled_method,
       
  1986                                          //outputs:
       
  1987                                          uint& ret_this_trap_count,
       
  1988                                          bool& ret_maybe_prior_trap,
       
  1989                                          bool& ret_maybe_prior_recompile) {
       
  1990   bool maybe_prior_trap = false;
       
  1991   bool maybe_prior_recompile = false;
       
  1992   uint this_trap_count = 0;
       
  1993   if (update_total_trap_count) {
       
  1994     uint idx = reason;
       
  1995 #if INCLUDE_JVMCI
       
  1996     if (is_osr) {
       
  1997       idx += Reason_LIMIT;
       
  1998     }
       
  1999 #endif
       
  2000     uint prior_trap_count = trap_mdo->trap_count(idx);
       
  2001     this_trap_count  = trap_mdo->inc_trap_count(idx);
       
  2002 
       
  2003     // If the runtime cannot find a place to store trap history,
       
  2004     // it is estimated based on the general condition of the method.
       
  2005     // If the method has ever been recompiled, or has ever incurred
       
  2006     // a trap with the present reason , then this BCI is assumed
       
  2007     // (pessimistically) to be the culprit.
       
  2008     maybe_prior_trap      = (prior_trap_count != 0);
       
  2009     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
       
  2010   }
       
  2011   ProfileData* pdata = NULL;
       
  2012 
       
  2013 
       
  2014   // For reasons which are recorded per bytecode, we check per-BCI data.
       
  2015   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
       
  2016   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
       
  2017   if (per_bc_reason != Reason_none) {
       
  2018     // Find the profile data for this BCI.  If there isn't one,
       
  2019     // try to allocate one from the MDO's set of spares.
       
  2020     // This will let us detect a repeated trap at this point.
       
  2021     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
       
  2022 
       
  2023     if (pdata != NULL) {
       
  2024       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
       
  2025         if (LogCompilation && xtty != NULL) {
       
  2026           ttyLocker ttyl;
       
  2027           // no more room for speculative traps in this MDO
       
  2028           xtty->elem("speculative_traps_oom");
       
  2029         }
       
  2030       }
       
  2031       // Query the trap state of this profile datum.
       
  2032       int tstate0 = pdata->trap_state();
       
  2033       if (!trap_state_has_reason(tstate0, per_bc_reason))
       
  2034         maybe_prior_trap = false;
       
  2035       if (!trap_state_is_recompiled(tstate0))
       
  2036         maybe_prior_recompile = false;
       
  2037 
       
  2038       // Update the trap state of this profile datum.
       
  2039       int tstate1 = tstate0;
       
  2040       // Record the reason.
       
  2041       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
       
  2042       // Store the updated state on the MDO, for next time.
       
  2043       if (tstate1 != tstate0)
       
  2044         pdata->set_trap_state(tstate1);
       
  2045     } else {
       
  2046       if (LogCompilation && xtty != NULL) {
       
  2047         ttyLocker ttyl;
       
  2048         // Missing MDP?  Leave a small complaint in the log.
       
  2049         xtty->elem("missing_mdp bci='%d'", trap_bci);
       
  2050       }
       
  2051     }
       
  2052   }
       
  2053 
       
  2054   // Return results:
       
  2055   ret_this_trap_count = this_trap_count;
       
  2056   ret_maybe_prior_trap = maybe_prior_trap;
       
  2057   ret_maybe_prior_recompile = maybe_prior_recompile;
       
  2058   return pdata;
       
  2059 }
       
  2060 
       
  2061 void
       
  2062 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
       
  2063   ResourceMark rm;
       
  2064   // Ignored outputs:
       
  2065   uint ignore_this_trap_count;
       
  2066   bool ignore_maybe_prior_trap;
       
  2067   bool ignore_maybe_prior_recompile;
       
  2068   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
       
  2069   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
       
  2070   bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
       
  2071   query_update_method_data(trap_mdo, trap_bci,
       
  2072                            (DeoptReason)reason,
       
  2073                            update_total_counts,
       
  2074 #if INCLUDE_JVMCI
       
  2075                            false,
       
  2076 #endif
       
  2077                            NULL,
       
  2078                            ignore_this_trap_count,
       
  2079                            ignore_maybe_prior_trap,
       
  2080                            ignore_maybe_prior_recompile);
       
  2081 }
       
  2082 
       
  2083 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
       
  2084   if (TraceDeoptimization) {
       
  2085     tty->print("Uncommon trap ");
       
  2086   }
       
  2087   // Still in Java no safepoints
       
  2088   {
       
  2089     // This enters VM and may safepoint
       
  2090     uncommon_trap_inner(thread, trap_request);
       
  2091   }
       
  2092   return fetch_unroll_info_helper(thread, exec_mode);
       
  2093 }
       
  2094 
       
  2095 // Local derived constants.
       
  2096 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
       
  2097 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
       
  2098 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
       
  2099 
       
  2100 //---------------------------trap_state_reason---------------------------------
       
  2101 Deoptimization::DeoptReason
       
  2102 Deoptimization::trap_state_reason(int trap_state) {
       
  2103   // This assert provides the link between the width of DataLayout::trap_bits
       
  2104   // and the encoding of "recorded" reasons.  It ensures there are enough
       
  2105   // bits to store all needed reasons in the per-BCI MDO profile.
       
  2106   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
       
  2107   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
       
  2108   trap_state -= recompile_bit;
       
  2109   if (trap_state == DS_REASON_MASK) {
       
  2110     return Reason_many;
       
  2111   } else {
       
  2112     assert((int)Reason_none == 0, "state=0 => Reason_none");
       
  2113     return (DeoptReason)trap_state;
       
  2114   }
       
  2115 }
       
  2116 //-------------------------trap_state_has_reason-------------------------------
       
  2117 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
       
  2118   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
       
  2119   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
       
  2120   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
       
  2121   trap_state -= recompile_bit;
       
  2122   if (trap_state == DS_REASON_MASK) {
       
  2123     return -1;  // true, unspecifically (bottom of state lattice)
       
  2124   } else if (trap_state == reason) {
       
  2125     return 1;   // true, definitely
       
  2126   } else if (trap_state == 0) {
       
  2127     return 0;   // false, definitely (top of state lattice)
       
  2128   } else {
       
  2129     return 0;   // false, definitely
       
  2130   }
       
  2131 }
       
  2132 //-------------------------trap_state_add_reason-------------------------------
       
  2133 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
       
  2134   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
       
  2135   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
       
  2136   trap_state -= recompile_bit;
       
  2137   if (trap_state == DS_REASON_MASK) {
       
  2138     return trap_state + recompile_bit;     // already at state lattice bottom
       
  2139   } else if (trap_state == reason) {
       
  2140     return trap_state + recompile_bit;     // the condition is already true
       
  2141   } else if (trap_state == 0) {
       
  2142     return reason + recompile_bit;          // no condition has yet been true
       
  2143   } else {
       
  2144     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
       
  2145   }
       
  2146 }
       
  2147 //-----------------------trap_state_is_recompiled------------------------------
       
  2148 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
       
  2149   return (trap_state & DS_RECOMPILE_BIT) != 0;
       
  2150 }
       
  2151 //-----------------------trap_state_set_recompiled-----------------------------
       
  2152 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
       
  2153   if (z)  return trap_state |  DS_RECOMPILE_BIT;
       
  2154   else    return trap_state & ~DS_RECOMPILE_BIT;
       
  2155 }
       
  2156 //---------------------------format_trap_state---------------------------------
       
  2157 // This is used for debugging and diagnostics, including LogFile output.
       
  2158 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
       
  2159                                               int trap_state) {
       
  2160   assert(buflen > 0, "sanity");
       
  2161   DeoptReason reason      = trap_state_reason(trap_state);
       
  2162   bool        recomp_flag = trap_state_is_recompiled(trap_state);
       
  2163   // Re-encode the state from its decoded components.
       
  2164   int decoded_state = 0;
       
  2165   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
       
  2166     decoded_state = trap_state_add_reason(decoded_state, reason);
       
  2167   if (recomp_flag)
       
  2168     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
       
  2169   // If the state re-encodes properly, format it symbolically.
       
  2170   // Because this routine is used for debugging and diagnostics,
       
  2171   // be robust even if the state is a strange value.
       
  2172   size_t len;
       
  2173   if (decoded_state != trap_state) {
       
  2174     // Random buggy state that doesn't decode??
       
  2175     len = jio_snprintf(buf, buflen, "#%d", trap_state);
       
  2176   } else {
       
  2177     len = jio_snprintf(buf, buflen, "%s%s",
       
  2178                        trap_reason_name(reason),
       
  2179                        recomp_flag ? " recompiled" : "");
       
  2180   }
       
  2181   return buf;
       
  2182 }
       
  2183 
       
  2184 
       
  2185 //--------------------------------statics--------------------------------------
       
  2186 const char* Deoptimization::_trap_reason_name[] = {
       
  2187   // Note:  Keep this in sync. with enum DeoptReason.
       
  2188   "none",
       
  2189   "null_check",
       
  2190   "null_assert" JVMCI_ONLY("_or_unreached0"),
       
  2191   "range_check",
       
  2192   "class_check",
       
  2193   "array_check",
       
  2194   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
       
  2195   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
       
  2196   "unloaded",
       
  2197   "uninitialized",
       
  2198   "unreached",
       
  2199   "unhandled",
       
  2200   "constraint",
       
  2201   "div0_check",
       
  2202   "age",
       
  2203   "predicate",
       
  2204   "loop_limit_check",
       
  2205   "speculate_class_check",
       
  2206   "speculate_null_check",
       
  2207   "speculate_null_assert",
       
  2208   "rtm_state_change",
       
  2209   "unstable_if",
       
  2210   "unstable_fused_if",
       
  2211 #if INCLUDE_JVMCI
       
  2212   "aliasing",
       
  2213   "transfer_to_interpreter",
       
  2214   "not_compiled_exception_handler",
       
  2215   "unresolved",
       
  2216   "jsr_mismatch",
       
  2217 #endif
       
  2218   "tenured"
       
  2219 };
       
  2220 const char* Deoptimization::_trap_action_name[] = {
       
  2221   // Note:  Keep this in sync. with enum DeoptAction.
       
  2222   "none",
       
  2223   "maybe_recompile",
       
  2224   "reinterpret",
       
  2225   "make_not_entrant",
       
  2226   "make_not_compilable"
       
  2227 };
       
  2228 
       
  2229 const char* Deoptimization::trap_reason_name(int reason) {
       
  2230   // Check that every reason has a name
       
  2231   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
       
  2232 
       
  2233   if (reason == Reason_many)  return "many";
       
  2234   if ((uint)reason < Reason_LIMIT)
       
  2235     return _trap_reason_name[reason];
       
  2236   static char buf[20];
       
  2237   sprintf(buf, "reason%d", reason);
       
  2238   return buf;
       
  2239 }
       
  2240 const char* Deoptimization::trap_action_name(int action) {
       
  2241   // Check that every action has a name
       
  2242   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
       
  2243 
       
  2244   if ((uint)action < Action_LIMIT)
       
  2245     return _trap_action_name[action];
       
  2246   static char buf[20];
       
  2247   sprintf(buf, "action%d", action);
       
  2248   return buf;
       
  2249 }
       
  2250 
       
  2251 // This is used for debugging and diagnostics, including LogFile output.
       
  2252 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
       
  2253                                                 int trap_request) {
       
  2254   jint unloaded_class_index = trap_request_index(trap_request);
       
  2255   const char* reason = trap_reason_name(trap_request_reason(trap_request));
       
  2256   const char* action = trap_action_name(trap_request_action(trap_request));
       
  2257 #if INCLUDE_JVMCI
       
  2258   int debug_id = trap_request_debug_id(trap_request);
       
  2259 #endif
       
  2260   size_t len;
       
  2261   if (unloaded_class_index < 0) {
       
  2262     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
       
  2263                        reason, action
       
  2264 #if INCLUDE_JVMCI
       
  2265                        ,debug_id
       
  2266 #endif
       
  2267                        );
       
  2268   } else {
       
  2269     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
       
  2270                        reason, action, unloaded_class_index
       
  2271 #if INCLUDE_JVMCI
       
  2272                        ,debug_id
       
  2273 #endif
       
  2274                        );
       
  2275   }
       
  2276   return buf;
       
  2277 }
       
  2278 
       
  2279 juint Deoptimization::_deoptimization_hist
       
  2280         [Deoptimization::Reason_LIMIT]
       
  2281     [1 + Deoptimization::Action_LIMIT]
       
  2282         [Deoptimization::BC_CASE_LIMIT]
       
  2283   = {0};
       
  2284 
       
  2285 enum {
       
  2286   LSB_BITS = 8,
       
  2287   LSB_MASK = right_n_bits(LSB_BITS)
       
  2288 };
       
  2289 
       
  2290 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
       
  2291                                        Bytecodes::Code bc) {
       
  2292   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
       
  2293   assert(action >= 0 && action < Action_LIMIT, "oob");
       
  2294   _deoptimization_hist[Reason_none][0][0] += 1;  // total
       
  2295   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
       
  2296   juint* cases = _deoptimization_hist[reason][1+action];
       
  2297   juint* bc_counter_addr = NULL;
       
  2298   juint  bc_counter      = 0;
       
  2299   // Look for an unused counter, or an exact match to this BC.
       
  2300   if (bc != Bytecodes::_illegal) {
       
  2301     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
       
  2302       juint* counter_addr = &cases[bc_case];
       
  2303       juint  counter = *counter_addr;
       
  2304       if ((counter == 0 && bc_counter_addr == NULL)
       
  2305           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
       
  2306         // this counter is either free or is already devoted to this BC
       
  2307         bc_counter_addr = counter_addr;
       
  2308         bc_counter = counter | bc;
       
  2309       }
       
  2310     }
       
  2311   }
       
  2312   if (bc_counter_addr == NULL) {
       
  2313     // Overflow, or no given bytecode.
       
  2314     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
       
  2315     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
       
  2316   }
       
  2317   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
       
  2318 }
       
  2319 
       
  2320 jint Deoptimization::total_deoptimization_count() {
       
  2321   return _deoptimization_hist[Reason_none][0][0];
       
  2322 }
       
  2323 
       
  2324 jint Deoptimization::deoptimization_count(DeoptReason reason) {
       
  2325   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
       
  2326   return _deoptimization_hist[reason][0][0];
       
  2327 }
       
  2328 
       
  2329 void Deoptimization::print_statistics() {
       
  2330   juint total = total_deoptimization_count();
       
  2331   juint account = total;
       
  2332   if (total != 0) {
       
  2333     ttyLocker ttyl;
       
  2334     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
       
  2335     tty->print_cr("Deoptimization traps recorded:");
       
  2336     #define PRINT_STAT_LINE(name, r) \
       
  2337       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
       
  2338     PRINT_STAT_LINE("total", total);
       
  2339     // For each non-zero entry in the histogram, print the reason,
       
  2340     // the action, and (if specifically known) the type of bytecode.
       
  2341     for (int reason = 0; reason < Reason_LIMIT; reason++) {
       
  2342       for (int action = 0; action < Action_LIMIT; action++) {
       
  2343         juint* cases = _deoptimization_hist[reason][1+action];
       
  2344         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
       
  2345           juint counter = cases[bc_case];
       
  2346           if (counter != 0) {
       
  2347             char name[1*K];
       
  2348             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
       
  2349             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
       
  2350               bc = Bytecodes::_illegal;
       
  2351             sprintf(name, "%s/%s/%s",
       
  2352                     trap_reason_name(reason),
       
  2353                     trap_action_name(action),
       
  2354                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
       
  2355             juint r = counter >> LSB_BITS;
       
  2356             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
       
  2357             account -= r;
       
  2358           }
       
  2359         }
       
  2360       }
       
  2361     }
       
  2362     if (account != 0) {
       
  2363       PRINT_STAT_LINE("unaccounted", account);
       
  2364     }
       
  2365     #undef PRINT_STAT_LINE
       
  2366     if (xtty != NULL)  xtty->tail("statistics");
       
  2367   }
       
  2368 }
       
  2369 #else // COMPILER2 || SHARK || INCLUDE_JVMCI
       
  2370 
       
  2371 
       
  2372 // Stubs for C1 only system.
       
  2373 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
       
  2374   return false;
       
  2375 }
       
  2376 
       
  2377 const char* Deoptimization::trap_reason_name(int reason) {
       
  2378   return "unknown";
       
  2379 }
       
  2380 
       
  2381 void Deoptimization::print_statistics() {
       
  2382   // no output
       
  2383 }
       
  2384 
       
  2385 void
       
  2386 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
       
  2387   // no udpate
       
  2388 }
       
  2389 
       
  2390 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
       
  2391   return 0;
       
  2392 }
       
  2393 
       
  2394 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
       
  2395                                        Bytecodes::Code bc) {
       
  2396   // no update
       
  2397 }
       
  2398 
       
  2399 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
       
  2400                                               int trap_state) {
       
  2401   jio_snprintf(buf, buflen, "#%d", trap_state);
       
  2402   return buf;
       
  2403 }
       
  2404 
       
  2405 #endif // COMPILER2 || SHARK || INCLUDE_JVMCI