|
1 /* |
|
2 * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. |
|
8 * |
|
9 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 * version 2 for more details (a copy is included in the LICENSE file that |
|
13 * accompanied this code). |
|
14 * |
|
15 * You should have received a copy of the GNU General Public License version |
|
16 * 2 along with this work; if not, write to the Free Software Foundation, |
|
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 * |
|
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
20 * or visit www.oracle.com if you need additional information or have any |
|
21 * questions. |
|
22 */ |
|
23 |
|
24 #ifndef SHARE_VM_OPTO_SUPERWORD_HPP |
|
25 #define SHARE_VM_OPTO_SUPERWORD_HPP |
|
26 |
|
27 #include "opto/loopnode.hpp" |
|
28 #include "opto/node.hpp" |
|
29 #include "opto/phaseX.hpp" |
|
30 #include "opto/vectornode.hpp" |
|
31 #include "utilities/growableArray.hpp" |
|
32 #include "libadt/dict.hpp" |
|
33 |
|
34 // |
|
35 // S U P E R W O R D T R A N S F O R M |
|
36 // |
|
37 // SuperWords are short, fixed length vectors. |
|
38 // |
|
39 // Algorithm from: |
|
40 // |
|
41 // Exploiting SuperWord Level Parallelism with |
|
42 // Multimedia Instruction Sets |
|
43 // by |
|
44 // Samuel Larsen and Saman Amarasinghe |
|
45 // MIT Laboratory for Computer Science |
|
46 // date |
|
47 // May 2000 |
|
48 // published in |
|
49 // ACM SIGPLAN Notices |
|
50 // Proceedings of ACM PLDI '00, Volume 35 Issue 5 |
|
51 // |
|
52 // Definition 3.1 A Pack is an n-tuple, <s1, ...,sn>, where |
|
53 // s1,...,sn are independent isomorphic statements in a basic |
|
54 // block. |
|
55 // |
|
56 // Definition 3.2 A PackSet is a set of Packs. |
|
57 // |
|
58 // Definition 3.3 A Pair is a Pack of size two, where the |
|
59 // first statement is considered the left element, and the |
|
60 // second statement is considered the right element. |
|
61 |
|
62 class SWPointer; |
|
63 class OrderedPair; |
|
64 |
|
65 // ========================= Dependence Graph ===================== |
|
66 |
|
67 class DepMem; |
|
68 |
|
69 //------------------------------DepEdge--------------------------- |
|
70 // An edge in the dependence graph. The edges incident to a dependence |
|
71 // node are threaded through _next_in for incoming edges and _next_out |
|
72 // for outgoing edges. |
|
73 class DepEdge : public ResourceObj { |
|
74 protected: |
|
75 DepMem* _pred; |
|
76 DepMem* _succ; |
|
77 DepEdge* _next_in; // list of in edges, null terminated |
|
78 DepEdge* _next_out; // list of out edges, null terminated |
|
79 |
|
80 public: |
|
81 DepEdge(DepMem* pred, DepMem* succ, DepEdge* next_in, DepEdge* next_out) : |
|
82 _pred(pred), _succ(succ), _next_in(next_in), _next_out(next_out) {} |
|
83 |
|
84 DepEdge* next_in() { return _next_in; } |
|
85 DepEdge* next_out() { return _next_out; } |
|
86 DepMem* pred() { return _pred; } |
|
87 DepMem* succ() { return _succ; } |
|
88 |
|
89 void print(); |
|
90 }; |
|
91 |
|
92 //------------------------------DepMem--------------------------- |
|
93 // A node in the dependence graph. _in_head starts the threaded list of |
|
94 // incoming edges, and _out_head starts the list of outgoing edges. |
|
95 class DepMem : public ResourceObj { |
|
96 protected: |
|
97 Node* _node; // Corresponding ideal node |
|
98 DepEdge* _in_head; // Head of list of in edges, null terminated |
|
99 DepEdge* _out_head; // Head of list of out edges, null terminated |
|
100 |
|
101 public: |
|
102 DepMem(Node* node) : _node(node), _in_head(NULL), _out_head(NULL) {} |
|
103 |
|
104 Node* node() { return _node; } |
|
105 DepEdge* in_head() { return _in_head; } |
|
106 DepEdge* out_head() { return _out_head; } |
|
107 void set_in_head(DepEdge* hd) { _in_head = hd; } |
|
108 void set_out_head(DepEdge* hd) { _out_head = hd; } |
|
109 |
|
110 int in_cnt(); // Incoming edge count |
|
111 int out_cnt(); // Outgoing edge count |
|
112 |
|
113 void print(); |
|
114 }; |
|
115 |
|
116 //------------------------------DepGraph--------------------------- |
|
117 class DepGraph VALUE_OBJ_CLASS_SPEC { |
|
118 protected: |
|
119 Arena* _arena; |
|
120 GrowableArray<DepMem*> _map; |
|
121 DepMem* _root; |
|
122 DepMem* _tail; |
|
123 |
|
124 public: |
|
125 DepGraph(Arena* a) : _arena(a), _map(a, 8, 0, NULL) { |
|
126 _root = new (_arena) DepMem(NULL); |
|
127 _tail = new (_arena) DepMem(NULL); |
|
128 } |
|
129 |
|
130 DepMem* root() { return _root; } |
|
131 DepMem* tail() { return _tail; } |
|
132 |
|
133 // Return dependence node corresponding to an ideal node |
|
134 DepMem* dep(Node* node) { return _map.at(node->_idx); } |
|
135 |
|
136 // Make a new dependence graph node for an ideal node. |
|
137 DepMem* make_node(Node* node); |
|
138 |
|
139 // Make a new dependence graph edge dprec->dsucc |
|
140 DepEdge* make_edge(DepMem* dpred, DepMem* dsucc); |
|
141 |
|
142 DepEdge* make_edge(Node* pred, Node* succ) { return make_edge(dep(pred), dep(succ)); } |
|
143 DepEdge* make_edge(DepMem* pred, Node* succ) { return make_edge(pred, dep(succ)); } |
|
144 DepEdge* make_edge(Node* pred, DepMem* succ) { return make_edge(dep(pred), succ); } |
|
145 |
|
146 void init() { _map.clear(); } // initialize |
|
147 |
|
148 void print(Node* n) { dep(n)->print(); } |
|
149 void print(DepMem* d) { d->print(); } |
|
150 }; |
|
151 |
|
152 //------------------------------DepPreds--------------------------- |
|
153 // Iterator over predecessors in the dependence graph and |
|
154 // non-memory-graph inputs of ideal nodes. |
|
155 class DepPreds : public StackObj { |
|
156 private: |
|
157 Node* _n; |
|
158 int _next_idx, _end_idx; |
|
159 DepEdge* _dep_next; |
|
160 Node* _current; |
|
161 bool _done; |
|
162 |
|
163 public: |
|
164 DepPreds(Node* n, DepGraph& dg); |
|
165 Node* current() { return _current; } |
|
166 bool done() { return _done; } |
|
167 void next(); |
|
168 }; |
|
169 |
|
170 //------------------------------DepSuccs--------------------------- |
|
171 // Iterator over successors in the dependence graph and |
|
172 // non-memory-graph outputs of ideal nodes. |
|
173 class DepSuccs : public StackObj { |
|
174 private: |
|
175 Node* _n; |
|
176 int _next_idx, _end_idx; |
|
177 DepEdge* _dep_next; |
|
178 Node* _current; |
|
179 bool _done; |
|
180 |
|
181 public: |
|
182 DepSuccs(Node* n, DepGraph& dg); |
|
183 Node* current() { return _current; } |
|
184 bool done() { return _done; } |
|
185 void next(); |
|
186 }; |
|
187 |
|
188 |
|
189 // ========================= SuperWord ===================== |
|
190 |
|
191 // -----------------------------SWNodeInfo--------------------------------- |
|
192 // Per node info needed by SuperWord |
|
193 class SWNodeInfo VALUE_OBJ_CLASS_SPEC { |
|
194 public: |
|
195 int _alignment; // memory alignment for a node |
|
196 int _depth; // Max expression (DAG) depth from block start |
|
197 const Type* _velt_type; // vector element type |
|
198 Node_List* _my_pack; // pack containing this node |
|
199 |
|
200 SWNodeInfo() : _alignment(-1), _depth(0), _velt_type(NULL), _my_pack(NULL) {} |
|
201 static const SWNodeInfo initial; |
|
202 }; |
|
203 |
|
204 class SuperWord; |
|
205 class CMoveKit { |
|
206 friend class SuperWord; |
|
207 private: |
|
208 SuperWord* _sw; |
|
209 Dict* _dict; |
|
210 CMoveKit(Arena* a, SuperWord* sw) : _sw(sw) {_dict = new Dict(cmpkey, hashkey, a);} |
|
211 void* _2p(Node* key) const { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy |
|
212 Dict* dict() const { return _dict; } |
|
213 void map(Node* key, Node_List* val) { assert(_dict->operator[](_2p(key)) == NULL, "key existed"); _dict->Insert(_2p(key), (void*)val); } |
|
214 void unmap(Node* key) { _dict->Delete(_2p(key)); } |
|
215 Node_List* pack(Node* key) const { return (Node_List*)_dict->operator[](_2p(key)); } |
|
216 Node* is_Bool_candidate(Node* nd) const; // if it is the right candidate return corresponding CMove* , |
|
217 Node* is_CmpD_candidate(Node* nd) const; // otherwise return NULL |
|
218 Node_List* make_cmovevd_pack(Node_List* cmovd_pk); |
|
219 bool test_cmpd_pack(Node_List* cmpd_pk, Node_List* cmovd_pk); |
|
220 };//class CMoveKit |
|
221 |
|
222 // JVMCI: OrderedPair is moved up to deal with compilation issues on Windows |
|
223 //------------------------------OrderedPair--------------------------- |
|
224 // Ordered pair of Node*. |
|
225 class OrderedPair VALUE_OBJ_CLASS_SPEC { |
|
226 protected: |
|
227 Node* _p1; |
|
228 Node* _p2; |
|
229 public: |
|
230 OrderedPair() : _p1(NULL), _p2(NULL) {} |
|
231 OrderedPair(Node* p1, Node* p2) { |
|
232 if (p1->_idx < p2->_idx) { |
|
233 _p1 = p1; _p2 = p2; |
|
234 } else { |
|
235 _p1 = p2; _p2 = p1; |
|
236 } |
|
237 } |
|
238 |
|
239 bool operator==(const OrderedPair &rhs) { |
|
240 return _p1 == rhs._p1 && _p2 == rhs._p2; |
|
241 } |
|
242 void print() { tty->print(" (%d, %d)", _p1->_idx, _p2->_idx); } |
|
243 |
|
244 static const OrderedPair initial; |
|
245 }; |
|
246 |
|
247 // -----------------------------SuperWord--------------------------------- |
|
248 // Transforms scalar operations into packed (superword) operations. |
|
249 class SuperWord : public ResourceObj { |
|
250 friend class SWPointer; |
|
251 friend class CMoveKit; |
|
252 private: |
|
253 PhaseIdealLoop* _phase; |
|
254 Arena* _arena; |
|
255 PhaseIterGVN &_igvn; |
|
256 |
|
257 enum consts { top_align = -1, bottom_align = -666 }; |
|
258 |
|
259 GrowableArray<Node_List*> _packset; // Packs for the current block |
|
260 |
|
261 GrowableArray<int> _bb_idx; // Map from Node _idx to index within block |
|
262 |
|
263 GrowableArray<Node*> _block; // Nodes in current block |
|
264 GrowableArray<Node*> _post_block; // Nodes in post loop block |
|
265 GrowableArray<Node*> _data_entry; // Nodes with all inputs from outside |
|
266 GrowableArray<Node*> _mem_slice_head; // Memory slice head nodes |
|
267 GrowableArray<Node*> _mem_slice_tail; // Memory slice tail nodes |
|
268 GrowableArray<Node*> _iteration_first; // nodes in the generation that has deps from phi |
|
269 GrowableArray<Node*> _iteration_last; // nodes in the generation that has deps to phi |
|
270 GrowableArray<SWNodeInfo> _node_info; // Info needed per node |
|
271 CloneMap& _clone_map; // map of nodes created in cloning |
|
272 CMoveKit _cmovev_kit; // support for vectorization of CMov |
|
273 MemNode* _align_to_ref; // Memory reference that pre-loop will align to |
|
274 |
|
275 GrowableArray<OrderedPair> _disjoint_ptrs; // runtime disambiguated pointer pairs |
|
276 |
|
277 DepGraph _dg; // Dependence graph |
|
278 |
|
279 // Scratch pads |
|
280 VectorSet _visited; // Visited set |
|
281 VectorSet _post_visited; // Post-visited set |
|
282 Node_Stack _n_idx_list; // List of (node,index) pairs |
|
283 GrowableArray<Node*> _nlist; // List of nodes |
|
284 GrowableArray<Node*> _stk; // Stack of nodes |
|
285 |
|
286 public: |
|
287 SuperWord(PhaseIdealLoop* phase); |
|
288 |
|
289 void transform_loop(IdealLoopTree* lpt, bool do_optimization); |
|
290 |
|
291 void unrolling_analysis(int &local_loop_unroll_factor); |
|
292 |
|
293 // Accessors for SWPointer |
|
294 PhaseIdealLoop* phase() { return _phase; } |
|
295 IdealLoopTree* lpt() { return _lpt; } |
|
296 PhiNode* iv() { return _iv; } |
|
297 |
|
298 bool early_return() { return _early_return; } |
|
299 |
|
300 #ifndef PRODUCT |
|
301 bool is_debug() { return _vector_loop_debug > 0; } |
|
302 bool is_trace_alignment() { return (_vector_loop_debug & 2) > 0; } |
|
303 bool is_trace_mem_slice() { return (_vector_loop_debug & 4) > 0; } |
|
304 bool is_trace_loop() { return (_vector_loop_debug & 8) > 0; } |
|
305 bool is_trace_adjacent() { return (_vector_loop_debug & 16) > 0; } |
|
306 bool is_trace_cmov() { return (_vector_loop_debug & 32) > 0; } |
|
307 bool is_trace_loop_reverse() { return (_vector_loop_debug & 64) > 0; } |
|
308 #endif |
|
309 bool do_vector_loop() { return _do_vector_loop; } |
|
310 bool do_reserve_copy() { return _do_reserve_copy; } |
|
311 private: |
|
312 IdealLoopTree* _lpt; // Current loop tree node |
|
313 LoopNode* _lp; // Current LoopNode |
|
314 Node* _bb; // Current basic block |
|
315 PhiNode* _iv; // Induction var |
|
316 bool _race_possible; // In cases where SDMU is true |
|
317 bool _early_return; // True if we do not initialize |
|
318 bool _do_vector_loop; // whether to do vectorization/simd style |
|
319 bool _do_reserve_copy; // do reserve copy of the graph(loop) before final modification in output |
|
320 int _num_work_vecs; // Number of non memory vector operations |
|
321 int _num_reductions; // Number of reduction expressions applied |
|
322 int _ii_first; // generation with direct deps from mem phi |
|
323 int _ii_last; // generation with direct deps to mem phi |
|
324 GrowableArray<int> _ii_order; |
|
325 #ifndef PRODUCT |
|
326 uintx _vector_loop_debug; // provide more printing in debug mode |
|
327 #endif |
|
328 |
|
329 // Accessors |
|
330 Arena* arena() { return _arena; } |
|
331 |
|
332 Node* bb() { return _bb; } |
|
333 void set_bb(Node* bb) { _bb = bb; } |
|
334 |
|
335 void set_lpt(IdealLoopTree* lpt) { _lpt = lpt; } |
|
336 |
|
337 LoopNode* lp() { return _lp; } |
|
338 void set_lp(LoopNode* lp) { _lp = lp; |
|
339 _iv = lp->as_CountedLoop()->phi()->as_Phi(); } |
|
340 int iv_stride() { return lp()->as_CountedLoop()->stride_con(); } |
|
341 |
|
342 int vector_width(Node* n) { |
|
343 BasicType bt = velt_basic_type(n); |
|
344 return MIN2(ABS(iv_stride()), Matcher::max_vector_size(bt)); |
|
345 } |
|
346 int vector_width_in_bytes(Node* n) { |
|
347 BasicType bt = velt_basic_type(n); |
|
348 return vector_width(n)*type2aelembytes(bt); |
|
349 } |
|
350 MemNode* align_to_ref() { return _align_to_ref; } |
|
351 void set_align_to_ref(MemNode* m) { _align_to_ref = m; } |
|
352 |
|
353 Node* ctrl(Node* n) const { return _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n; } |
|
354 |
|
355 // block accessors |
|
356 bool in_bb(Node* n) { return n != NULL && n->outcnt() > 0 && ctrl(n) == _bb; } |
|
357 int bb_idx(Node* n) { assert(in_bb(n), "must be"); return _bb_idx.at(n->_idx); } |
|
358 void set_bb_idx(Node* n, int i) { _bb_idx.at_put_grow(n->_idx, i); } |
|
359 |
|
360 // visited set accessors |
|
361 void visited_clear() { _visited.Clear(); } |
|
362 void visited_set(Node* n) { return _visited.set(bb_idx(n)); } |
|
363 int visited_test(Node* n) { return _visited.test(bb_idx(n)); } |
|
364 int visited_test_set(Node* n) { return _visited.test_set(bb_idx(n)); } |
|
365 void post_visited_clear() { _post_visited.Clear(); } |
|
366 void post_visited_set(Node* n) { return _post_visited.set(bb_idx(n)); } |
|
367 int post_visited_test(Node* n) { return _post_visited.test(bb_idx(n)); } |
|
368 |
|
369 // Ensure node_info contains element "i" |
|
370 void grow_node_info(int i) { if (i >= _node_info.length()) _node_info.at_put_grow(i, SWNodeInfo::initial); } |
|
371 |
|
372 // memory alignment for a node |
|
373 int alignment(Node* n) { return _node_info.adr_at(bb_idx(n))->_alignment; } |
|
374 void set_alignment(Node* n, int a) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_alignment = a; } |
|
375 |
|
376 // Max expression (DAG) depth from beginning of the block for each node |
|
377 int depth(Node* n) { return _node_info.adr_at(bb_idx(n))->_depth; } |
|
378 void set_depth(Node* n, int d) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_depth = d; } |
|
379 |
|
380 // vector element type |
|
381 const Type* velt_type(Node* n) { return _node_info.adr_at(bb_idx(n))->_velt_type; } |
|
382 BasicType velt_basic_type(Node* n) { return velt_type(n)->array_element_basic_type(); } |
|
383 void set_velt_type(Node* n, const Type* t) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_velt_type = t; } |
|
384 bool same_velt_type(Node* n1, Node* n2); |
|
385 |
|
386 // my_pack |
|
387 Node_List* my_pack(Node* n) { return !in_bb(n) ? NULL : _node_info.adr_at(bb_idx(n))->_my_pack; } |
|
388 void set_my_pack(Node* n, Node_List* p) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_my_pack = p; } |
|
389 // is pack good for converting into one vector node replacing 12 nodes of Cmp, Bool, CMov |
|
390 bool is_cmov_pack(Node_List* p); |
|
391 bool is_cmov_pack_internal_node(Node_List* p, Node* nd) { return is_cmov_pack(p) && !nd->is_CMove(); } |
|
392 // For pack p, are all idx operands the same? |
|
393 bool same_inputs(Node_List* p, int idx); |
|
394 // CloneMap utilities |
|
395 bool same_origin_idx(Node* a, Node* b) const; |
|
396 bool same_generation(Node* a, Node* b) const; |
|
397 |
|
398 // methods |
|
399 |
|
400 // Extract the superword level parallelism |
|
401 void SLP_extract(); |
|
402 // Find the adjacent memory references and create pack pairs for them. |
|
403 void find_adjacent_refs(); |
|
404 // Tracing support |
|
405 #ifndef PRODUCT |
|
406 void find_adjacent_refs_trace_1(Node* best_align_to_mem_ref, int best_iv_adjustment); |
|
407 void print_loop(bool whole); |
|
408 #endif |
|
409 // Find a memory reference to align the loop induction variable to. |
|
410 MemNode* find_align_to_ref(Node_List &memops); |
|
411 // Calculate loop's iv adjustment for this memory ops. |
|
412 int get_iv_adjustment(MemNode* mem); |
|
413 // Can the preloop align the reference to position zero in the vector? |
|
414 bool ref_is_alignable(SWPointer& p); |
|
415 // rebuild the graph so all loads in different iterations of cloned loop become dependant on phi node (in _do_vector_loop only) |
|
416 bool hoist_loads_in_graph(); |
|
417 // Test whether MemNode::Memory dependency to the same load but in the first iteration of this loop is coming from memory phi |
|
418 // Return false if failed |
|
419 Node* find_phi_for_mem_dep(LoadNode* ld); |
|
420 // Return same node but from the first generation. Return 0, if not found |
|
421 Node* first_node(Node* nd); |
|
422 // Return same node as this but from the last generation. Return 0, if not found |
|
423 Node* last_node(Node* n); |
|
424 // Mark nodes belonging to first and last generation |
|
425 // returns first generation index or -1 if vectorization/simd is impossible |
|
426 int mark_generations(); |
|
427 // swapping inputs of commutative instruction (Add or Mul) |
|
428 bool fix_commutative_inputs(Node* gold, Node* fix); |
|
429 // make packs forcefully (in _do_vector_loop only) |
|
430 bool pack_parallel(); |
|
431 // Construct dependency graph. |
|
432 void dependence_graph(); |
|
433 // Return a memory slice (node list) in predecessor order starting at "start" |
|
434 void mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds); |
|
435 // Can s1 and s2 be in a pack with s1 immediately preceding s2 and s1 aligned at "align" |
|
436 bool stmts_can_pack(Node* s1, Node* s2, int align); |
|
437 // Does s exist in a pack at position pos? |
|
438 bool exists_at(Node* s, uint pos); |
|
439 // Is s1 immediately before s2 in memory? |
|
440 bool are_adjacent_refs(Node* s1, Node* s2); |
|
441 // Are s1 and s2 similar? |
|
442 bool isomorphic(Node* s1, Node* s2); |
|
443 // Is there no data path from s1 to s2 or s2 to s1? |
|
444 bool independent(Node* s1, Node* s2); |
|
445 // Is there a data path between s1 and s2 and both are reductions? |
|
446 bool reduction(Node* s1, Node* s2); |
|
447 // Helper for independent |
|
448 bool independent_path(Node* shallow, Node* deep, uint dp=0); |
|
449 void set_alignment(Node* s1, Node* s2, int align); |
|
450 int data_size(Node* s); |
|
451 // Extend packset by following use->def and def->use links from pack members. |
|
452 void extend_packlist(); |
|
453 // Extend the packset by visiting operand definitions of nodes in pack p |
|
454 bool follow_use_defs(Node_List* p); |
|
455 // Extend the packset by visiting uses of nodes in pack p |
|
456 bool follow_def_uses(Node_List* p); |
|
457 // For extended packsets, ordinally arrange uses packset by major component |
|
458 void order_def_uses(Node_List* p); |
|
459 // Estimate the savings from executing s1 and s2 as a pack |
|
460 int est_savings(Node* s1, Node* s2); |
|
461 int adjacent_profit(Node* s1, Node* s2); |
|
462 int pack_cost(int ct); |
|
463 int unpack_cost(int ct); |
|
464 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last |
|
465 void combine_packs(); |
|
466 // Construct the map from nodes to packs. |
|
467 void construct_my_pack_map(); |
|
468 // Remove packs that are not implemented or not profitable. |
|
469 void filter_packs(); |
|
470 // Merge CMoveD into new vector-nodes |
|
471 void merge_packs_to_cmovd(); |
|
472 // Adjust the memory graph for the packed operations |
|
473 void schedule(); |
|
474 // Remove "current" from its current position in the memory graph and insert |
|
475 // it after the appropriate insert points (lip or uip); |
|
476 void remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip, Node *uip, Unique_Node_List &schd_before); |
|
477 // Within a store pack, schedule stores together by moving out the sandwiched memory ops according |
|
478 // to dependence info; and within a load pack, move loads down to the last executed load. |
|
479 void co_locate_pack(Node_List* p); |
|
480 // Convert packs into vector node operations |
|
481 void output(); |
|
482 // Create a vector operand for the nodes in pack p for operand: in(opd_idx) |
|
483 Node* vector_opd(Node_List* p, int opd_idx); |
|
484 // Can code be generated for pack p? |
|
485 bool implemented(Node_List* p); |
|
486 // For pack p, are all operands and all uses (with in the block) vector? |
|
487 bool profitable(Node_List* p); |
|
488 // If a use of pack p is not a vector use, then replace the use with an extract operation. |
|
489 void insert_extracts(Node_List* p); |
|
490 // Is use->in(u_idx) a vector use? |
|
491 bool is_vector_use(Node* use, int u_idx); |
|
492 // Construct reverse postorder list of block members |
|
493 bool construct_bb(); |
|
494 // Initialize per node info |
|
495 void initialize_bb(); |
|
496 // Insert n into block after pos |
|
497 void bb_insert_after(Node* n, int pos); |
|
498 // Compute max depth for expressions from beginning of block |
|
499 void compute_max_depth(); |
|
500 // Compute necessary vector element type for expressions |
|
501 void compute_vector_element_type(); |
|
502 // Are s1 and s2 in a pack pair and ordered as s1,s2? |
|
503 bool in_packset(Node* s1, Node* s2); |
|
504 // Is s in pack p? |
|
505 Node_List* in_pack(Node* s, Node_List* p); |
|
506 // Remove the pack at position pos in the packset |
|
507 void remove_pack_at(int pos); |
|
508 // Return the node executed first in pack p. |
|
509 Node* executed_first(Node_List* p); |
|
510 // Return the node executed last in pack p. |
|
511 Node* executed_last(Node_List* p); |
|
512 static LoadNode::ControlDependency control_dependency(Node_List* p); |
|
513 // Alignment within a vector memory reference |
|
514 int memory_alignment(MemNode* s, int iv_adjust); |
|
515 // (Start, end] half-open range defining which operands are vector |
|
516 void vector_opd_range(Node* n, uint* start, uint* end); |
|
517 // Smallest type containing range of values |
|
518 const Type* container_type(Node* n); |
|
519 // Adjust pre-loop limit so that in main loop, a load/store reference |
|
520 // to align_to_ref will be a position zero in the vector. |
|
521 void align_initial_loop_index(MemNode* align_to_ref); |
|
522 // Find pre loop end from main loop. Returns null if none. |
|
523 CountedLoopEndNode* get_pre_loop_end(CountedLoopNode *cl); |
|
524 // Is the use of d1 in u1 at the same operand position as d2 in u2? |
|
525 bool opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2); |
|
526 void init(); |
|
527 // clean up some basic structures - used if the ideal graph was rebuilt |
|
528 void restart(); |
|
529 |
|
530 // print methods |
|
531 void print_packset(); |
|
532 void print_pack(Node_List* p); |
|
533 void print_bb(); |
|
534 void print_stmt(Node* s); |
|
535 char* blank(uint depth); |
|
536 |
|
537 void packset_sort(int n); |
|
538 }; |
|
539 |
|
540 |
|
541 |
|
542 //------------------------------SWPointer--------------------------- |
|
543 // Information about an address for dependence checking and vector alignment |
|
544 class SWPointer VALUE_OBJ_CLASS_SPEC { |
|
545 protected: |
|
546 MemNode* _mem; // My memory reference node |
|
547 SuperWord* _slp; // SuperWord class |
|
548 |
|
549 Node* _base; // NULL if unsafe nonheap reference |
|
550 Node* _adr; // address pointer |
|
551 jint _scale; // multiplier for iv (in bytes), 0 if no loop iv |
|
552 jint _offset; // constant offset (in bytes) |
|
553 Node* _invar; // invariant offset (in bytes), NULL if none |
|
554 bool _negate_invar; // if true then use: (0 - _invar) |
|
555 Node_Stack* _nstack; // stack used to record a swpointer trace of variants |
|
556 bool _analyze_only; // Used in loop unrolling only for swpointer trace |
|
557 uint _stack_idx; // Used in loop unrolling only for swpointer trace |
|
558 |
|
559 PhaseIdealLoop* phase() { return _slp->phase(); } |
|
560 IdealLoopTree* lpt() { return _slp->lpt(); } |
|
561 PhiNode* iv() { return _slp->iv(); } // Induction var |
|
562 |
|
563 bool invariant(Node* n); |
|
564 |
|
565 // Match: k*iv + offset |
|
566 bool scaled_iv_plus_offset(Node* n); |
|
567 // Match: k*iv where k is a constant that's not zero |
|
568 bool scaled_iv(Node* n); |
|
569 // Match: offset is (k [+/- invariant]) |
|
570 bool offset_plus_k(Node* n, bool negate = false); |
|
571 |
|
572 public: |
|
573 enum CMP { |
|
574 Less = 1, |
|
575 Greater = 2, |
|
576 Equal = 4, |
|
577 NotEqual = (Less | Greater), |
|
578 NotComparable = (Less | Greater | Equal) |
|
579 }; |
|
580 |
|
581 SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only); |
|
582 // Following is used to create a temporary object during |
|
583 // the pattern match of an address expression. |
|
584 SWPointer(SWPointer* p); |
|
585 |
|
586 bool valid() { return _adr != NULL; } |
|
587 bool has_iv() { return _scale != 0; } |
|
588 |
|
589 Node* base() { return _base; } |
|
590 Node* adr() { return _adr; } |
|
591 MemNode* mem() { return _mem; } |
|
592 int scale_in_bytes() { return _scale; } |
|
593 Node* invar() { return _invar; } |
|
594 bool negate_invar() { return _negate_invar; } |
|
595 int offset_in_bytes() { return _offset; } |
|
596 int memory_size() { return _mem->memory_size(); } |
|
597 Node_Stack* node_stack() { return _nstack; } |
|
598 |
|
599 // Comparable? |
|
600 int cmp(SWPointer& q) { |
|
601 if (valid() && q.valid() && |
|
602 (_adr == q._adr || (_base == _adr && q._base == q._adr)) && |
|
603 _scale == q._scale && |
|
604 _invar == q._invar && |
|
605 _negate_invar == q._negate_invar) { |
|
606 bool overlap = q._offset < _offset + memory_size() && |
|
607 _offset < q._offset + q.memory_size(); |
|
608 return overlap ? Equal : (_offset < q._offset ? Less : Greater); |
|
609 } else { |
|
610 return NotComparable; |
|
611 } |
|
612 } |
|
613 |
|
614 bool not_equal(SWPointer& q) { return not_equal(cmp(q)); } |
|
615 bool equal(SWPointer& q) { return equal(cmp(q)); } |
|
616 bool comparable(SWPointer& q) { return comparable(cmp(q)); } |
|
617 static bool not_equal(int cmp) { return cmp <= NotEqual; } |
|
618 static bool equal(int cmp) { return cmp == Equal; } |
|
619 static bool comparable(int cmp) { return cmp < NotComparable; } |
|
620 |
|
621 void print(); |
|
622 |
|
623 #ifndef PRODUCT |
|
624 class Tracer { |
|
625 friend class SuperWord; |
|
626 friend class SWPointer; |
|
627 SuperWord* _slp; |
|
628 static int _depth; |
|
629 int _depth_save; |
|
630 void print_depth(); |
|
631 int depth() const { return _depth; } |
|
632 void set_depth(int d) { _depth = d; } |
|
633 void inc_depth() { _depth++;} |
|
634 void dec_depth() { if (_depth > 0) _depth--;} |
|
635 void store_depth() {_depth_save = _depth;} |
|
636 void restore_depth() {_depth = _depth_save;} |
|
637 |
|
638 class Depth { |
|
639 friend class Tracer; |
|
640 friend class SWPointer; |
|
641 friend class SuperWord; |
|
642 Depth() { ++_depth; } |
|
643 Depth(int x) { _depth = 0; } |
|
644 ~Depth() { if (_depth > 0) --_depth;} |
|
645 }; |
|
646 Tracer (SuperWord* slp) : _slp(slp) {} |
|
647 |
|
648 // tracing functions |
|
649 void ctor_1(Node* mem); |
|
650 void ctor_2(Node* adr); |
|
651 void ctor_3(Node* adr, int i); |
|
652 void ctor_4(Node* adr, int i); |
|
653 void ctor_5(Node* adr, Node* base, int i); |
|
654 void ctor_6(Node* mem); |
|
655 |
|
656 void invariant_1(Node *n, Node *n_c); |
|
657 |
|
658 void scaled_iv_plus_offset_1(Node* n); |
|
659 void scaled_iv_plus_offset_2(Node* n); |
|
660 void scaled_iv_plus_offset_3(Node* n); |
|
661 void scaled_iv_plus_offset_4(Node* n); |
|
662 void scaled_iv_plus_offset_5(Node* n); |
|
663 void scaled_iv_plus_offset_6(Node* n); |
|
664 void scaled_iv_plus_offset_7(Node* n); |
|
665 void scaled_iv_plus_offset_8(Node* n); |
|
666 |
|
667 void scaled_iv_1(Node* n); |
|
668 void scaled_iv_2(Node* n, int scale); |
|
669 void scaled_iv_3(Node* n, int scale); |
|
670 void scaled_iv_4(Node* n, int scale); |
|
671 void scaled_iv_5(Node* n, int scale); |
|
672 void scaled_iv_6(Node* n, int scale); |
|
673 void scaled_iv_7(Node* n); |
|
674 void scaled_iv_8(Node* n, SWPointer* tmp); |
|
675 void scaled_iv_9(Node* n, int _scale, int _offset, int mult); |
|
676 void scaled_iv_10(Node* n); |
|
677 |
|
678 void offset_plus_k_1(Node* n); |
|
679 void offset_plus_k_2(Node* n, int _offset); |
|
680 void offset_plus_k_3(Node* n, int _offset); |
|
681 void offset_plus_k_4(Node* n); |
|
682 void offset_plus_k_5(Node* n, Node* _invar); |
|
683 void offset_plus_k_6(Node* n, Node* _invar, bool _negate_invar, int _offset); |
|
684 void offset_plus_k_7(Node* n, Node* _invar, bool _negate_invar, int _offset); |
|
685 void offset_plus_k_8(Node* n, Node* _invar, bool _negate_invar, int _offset); |
|
686 void offset_plus_k_9(Node* n, Node* _invar, bool _negate_invar, int _offset); |
|
687 void offset_plus_k_10(Node* n, Node* _invar, bool _negate_invar, int _offset); |
|
688 void offset_plus_k_11(Node* n); |
|
689 |
|
690 } _tracer;//TRacer; |
|
691 #endif |
|
692 }; |
|
693 |
|
694 #endif // SHARE_VM_OPTO_SUPERWORD_HPP |