src/hotspot/share/opto/convertnode.cpp
changeset 47216 71c04702a3d5
parent 44331 61e01c0389ba
child 48089 22c9856fc2c2
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "opto/addnode.hpp"
       
    27 #include "opto/castnode.hpp"
       
    28 #include "opto/convertnode.hpp"
       
    29 #include "opto/matcher.hpp"
       
    30 #include "opto/phaseX.hpp"
       
    31 #include "opto/subnode.hpp"
       
    32 #include "runtime/sharedRuntime.hpp"
       
    33 
       
    34 //=============================================================================
       
    35 //------------------------------Identity---------------------------------------
       
    36 Node* Conv2BNode::Identity(PhaseGVN* phase) {
       
    37   const Type *t = phase->type( in(1) );
       
    38   if( t == Type::TOP ) return in(1);
       
    39   if( t == TypeInt::ZERO ) return in(1);
       
    40   if( t == TypeInt::ONE ) return in(1);
       
    41   if( t == TypeInt::BOOL ) return in(1);
       
    42   return this;
       
    43 }
       
    44 
       
    45 //------------------------------Value------------------------------------------
       
    46 const Type* Conv2BNode::Value(PhaseGVN* phase) const {
       
    47   const Type *t = phase->type( in(1) );
       
    48   if( t == Type::TOP ) return Type::TOP;
       
    49   if( t == TypeInt::ZERO ) return TypeInt::ZERO;
       
    50   if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
       
    51   const TypePtr *tp = t->isa_ptr();
       
    52   if( tp != NULL ) {
       
    53     if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
       
    54     if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
       
    55     if (tp->ptr() == TypePtr::NotNull)  return TypeInt::ONE;
       
    56     return TypeInt::BOOL;
       
    57   }
       
    58   if (t->base() != Type::Int) return TypeInt::BOOL;
       
    59   const TypeInt *ti = t->is_int();
       
    60   if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
       
    61   return TypeInt::BOOL;
       
    62 }
       
    63 
       
    64 
       
    65 // The conversions operations are all Alpha sorted.  Please keep it that way!
       
    66 //=============================================================================
       
    67 //------------------------------Value------------------------------------------
       
    68 const Type* ConvD2FNode::Value(PhaseGVN* phase) const {
       
    69   const Type *t = phase->type( in(1) );
       
    70   if( t == Type::TOP ) return Type::TOP;
       
    71   if( t == Type::DOUBLE ) return Type::FLOAT;
       
    72   const TypeD *td = t->is_double_constant();
       
    73   return TypeF::make( (float)td->getd() );
       
    74 }
       
    75 
       
    76 //------------------------------Identity---------------------------------------
       
    77 // Float's can be converted to doubles with no loss of bits.  Hence
       
    78 // converting a float to a double and back to a float is a NOP.
       
    79 Node* ConvD2FNode::Identity(PhaseGVN* phase) {
       
    80   return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
       
    81 }
       
    82 
       
    83 //=============================================================================
       
    84 //------------------------------Value------------------------------------------
       
    85 const Type* ConvD2INode::Value(PhaseGVN* phase) const {
       
    86   const Type *t = phase->type( in(1) );
       
    87   if( t == Type::TOP ) return Type::TOP;
       
    88   if( t == Type::DOUBLE ) return TypeInt::INT;
       
    89   const TypeD *td = t->is_double_constant();
       
    90   return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
       
    91 }
       
    92 
       
    93 //------------------------------Ideal------------------------------------------
       
    94 // If converting to an int type, skip any rounding nodes
       
    95 Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
       
    96   if( in(1)->Opcode() == Op_RoundDouble )
       
    97   set_req(1,in(1)->in(1));
       
    98   return NULL;
       
    99 }
       
   100 
       
   101 //------------------------------Identity---------------------------------------
       
   102 // Int's can be converted to doubles with no loss of bits.  Hence
       
   103 // converting an integer to a double and back to an integer is a NOP.
       
   104 Node* ConvD2INode::Identity(PhaseGVN* phase) {
       
   105   return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
       
   106 }
       
   107 
       
   108 //=============================================================================
       
   109 //------------------------------Value------------------------------------------
       
   110 const Type* ConvD2LNode::Value(PhaseGVN* phase) const {
       
   111   const Type *t = phase->type( in(1) );
       
   112   if( t == Type::TOP ) return Type::TOP;
       
   113   if( t == Type::DOUBLE ) return TypeLong::LONG;
       
   114   const TypeD *td = t->is_double_constant();
       
   115   return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
       
   116 }
       
   117 
       
   118 //------------------------------Identity---------------------------------------
       
   119 Node* ConvD2LNode::Identity(PhaseGVN* phase) {
       
   120   // Remove ConvD2L->ConvL2D->ConvD2L sequences.
       
   121   if( in(1)       ->Opcode() == Op_ConvL2D &&
       
   122      in(1)->in(1)->Opcode() == Op_ConvD2L )
       
   123   return in(1)->in(1);
       
   124   return this;
       
   125 }
       
   126 
       
   127 //------------------------------Ideal------------------------------------------
       
   128 // If converting to an int type, skip any rounding nodes
       
   129 Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
       
   130   if( in(1)->Opcode() == Op_RoundDouble )
       
   131   set_req(1,in(1)->in(1));
       
   132   return NULL;
       
   133 }
       
   134 
       
   135 //=============================================================================
       
   136 //------------------------------Value------------------------------------------
       
   137 const Type* ConvF2DNode::Value(PhaseGVN* phase) const {
       
   138   const Type *t = phase->type( in(1) );
       
   139   if( t == Type::TOP ) return Type::TOP;
       
   140   if( t == Type::FLOAT ) return Type::DOUBLE;
       
   141   const TypeF *tf = t->is_float_constant();
       
   142   return TypeD::make( (double)tf->getf() );
       
   143 }
       
   144 
       
   145 //=============================================================================
       
   146 //------------------------------Value------------------------------------------
       
   147 const Type* ConvF2INode::Value(PhaseGVN* phase) const {
       
   148   const Type *t = phase->type( in(1) );
       
   149   if( t == Type::TOP )       return Type::TOP;
       
   150   if( t == Type::FLOAT ) return TypeInt::INT;
       
   151   const TypeF *tf = t->is_float_constant();
       
   152   return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
       
   153 }
       
   154 
       
   155 //------------------------------Identity---------------------------------------
       
   156 Node* ConvF2INode::Identity(PhaseGVN* phase) {
       
   157   // Remove ConvF2I->ConvI2F->ConvF2I sequences.
       
   158   if( in(1)       ->Opcode() == Op_ConvI2F &&
       
   159      in(1)->in(1)->Opcode() == Op_ConvF2I )
       
   160   return in(1)->in(1);
       
   161   return this;
       
   162 }
       
   163 
       
   164 //------------------------------Ideal------------------------------------------
       
   165 // If converting to an int type, skip any rounding nodes
       
   166 Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
       
   167   if( in(1)->Opcode() == Op_RoundFloat )
       
   168   set_req(1,in(1)->in(1));
       
   169   return NULL;
       
   170 }
       
   171 
       
   172 //=============================================================================
       
   173 //------------------------------Value------------------------------------------
       
   174 const Type* ConvF2LNode::Value(PhaseGVN* phase) const {
       
   175   const Type *t = phase->type( in(1) );
       
   176   if( t == Type::TOP )       return Type::TOP;
       
   177   if( t == Type::FLOAT ) return TypeLong::LONG;
       
   178   const TypeF *tf = t->is_float_constant();
       
   179   return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
       
   180 }
       
   181 
       
   182 //------------------------------Identity---------------------------------------
       
   183 Node* ConvF2LNode::Identity(PhaseGVN* phase) {
       
   184   // Remove ConvF2L->ConvL2F->ConvF2L sequences.
       
   185   if( in(1)       ->Opcode() == Op_ConvL2F &&
       
   186      in(1)->in(1)->Opcode() == Op_ConvF2L )
       
   187   return in(1)->in(1);
       
   188   return this;
       
   189 }
       
   190 
       
   191 //------------------------------Ideal------------------------------------------
       
   192 // If converting to an int type, skip any rounding nodes
       
   193 Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
       
   194   if( in(1)->Opcode() == Op_RoundFloat )
       
   195   set_req(1,in(1)->in(1));
       
   196   return NULL;
       
   197 }
       
   198 
       
   199 //=============================================================================
       
   200 //------------------------------Value------------------------------------------
       
   201 const Type* ConvI2DNode::Value(PhaseGVN* phase) const {
       
   202   const Type *t = phase->type( in(1) );
       
   203   if( t == Type::TOP ) return Type::TOP;
       
   204   const TypeInt *ti = t->is_int();
       
   205   if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
       
   206   return bottom_type();
       
   207 }
       
   208 
       
   209 //=============================================================================
       
   210 //------------------------------Value------------------------------------------
       
   211 const Type* ConvI2FNode::Value(PhaseGVN* phase) const {
       
   212   const Type *t = phase->type( in(1) );
       
   213   if( t == Type::TOP ) return Type::TOP;
       
   214   const TypeInt *ti = t->is_int();
       
   215   if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
       
   216   return bottom_type();
       
   217 }
       
   218 
       
   219 //------------------------------Identity---------------------------------------
       
   220 Node* ConvI2FNode::Identity(PhaseGVN* phase) {
       
   221   // Remove ConvI2F->ConvF2I->ConvI2F sequences.
       
   222   if( in(1)       ->Opcode() == Op_ConvF2I &&
       
   223      in(1)->in(1)->Opcode() == Op_ConvI2F )
       
   224   return in(1)->in(1);
       
   225   return this;
       
   226 }
       
   227 
       
   228 //=============================================================================
       
   229 //------------------------------Value------------------------------------------
       
   230 const Type* ConvI2LNode::Value(PhaseGVN* phase) const {
       
   231   const Type *t = phase->type( in(1) );
       
   232   if( t == Type::TOP ) return Type::TOP;
       
   233   const TypeInt *ti = t->is_int();
       
   234   const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
       
   235   // Join my declared type against my incoming type.
       
   236   tl = tl->filter(_type);
       
   237   return tl;
       
   238 }
       
   239 
       
   240 #ifdef _LP64
       
   241 static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
       
   242                                        jlong lo2, jlong hi2) {
       
   243   // Two ranges overlap iff one range's low point falls in the other range.
       
   244   return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
       
   245 }
       
   246 #endif
       
   247 
       
   248 //------------------------------Ideal------------------------------------------
       
   249 Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
       
   250   const TypeLong* this_type = this->type()->is_long();
       
   251   Node* this_changed = NULL;
       
   252 
       
   253   // If _major_progress, then more loop optimizations follow.  Do NOT
       
   254   // remove this node's type assertion until no more loop ops can happen.
       
   255   // The progress bit is set in the major loop optimizations THEN comes the
       
   256   // call to IterGVN and any chance of hitting this code.  Cf. Opaque1Node.
       
   257   if (can_reshape && !phase->C->major_progress()) {
       
   258     const TypeInt* in_type = phase->type(in(1))->isa_int();
       
   259     if (in_type != NULL && this_type != NULL &&
       
   260         (in_type->_lo != this_type->_lo ||
       
   261          in_type->_hi != this_type->_hi)) {
       
   262           // Although this WORSENS the type, it increases GVN opportunities,
       
   263           // because I2L nodes with the same input will common up, regardless
       
   264           // of slightly differing type assertions.  Such slight differences
       
   265           // arise routinely as a result of loop unrolling, so this is a
       
   266           // post-unrolling graph cleanup.  Choose a type which depends only
       
   267           // on my input.  (Exception:  Keep a range assertion of >=0 or <0.)
       
   268           jlong lo1 = this_type->_lo;
       
   269           jlong hi1 = this_type->_hi;
       
   270           int   w1  = this_type->_widen;
       
   271           if (lo1 != (jint)lo1 ||
       
   272               hi1 != (jint)hi1 ||
       
   273               lo1 > hi1) {
       
   274             // Overflow leads to wraparound, wraparound leads to range saturation.
       
   275             lo1 = min_jint; hi1 = max_jint;
       
   276           } else if (lo1 >= 0) {
       
   277             // Keep a range assertion of >=0.
       
   278             lo1 = 0;        hi1 = max_jint;
       
   279           } else if (hi1 < 0) {
       
   280             // Keep a range assertion of <0.
       
   281             lo1 = min_jint; hi1 = -1;
       
   282           } else {
       
   283             lo1 = min_jint; hi1 = max_jint;
       
   284           }
       
   285           const TypeLong* wtype = TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
       
   286                                                  MIN2((jlong)in_type->_hi, hi1),
       
   287                                                  MAX2((int)in_type->_widen, w1));
       
   288           if (wtype != type()) {
       
   289             set_type(wtype);
       
   290             // Note: this_type still has old type value, for the logic below.
       
   291             this_changed = this;
       
   292           }
       
   293         }
       
   294   }
       
   295 
       
   296 #ifdef _LP64
       
   297   // Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y))
       
   298   // but only if x and y have subranges that cannot cause 32-bit overflow,
       
   299   // under the assumption that x+y is in my own subrange this->type().
       
   300 
       
   301   // This assumption is based on a constraint (i.e., type assertion)
       
   302   // established in Parse::array_addressing or perhaps elsewhere.
       
   303   // This constraint has been adjoined to the "natural" type of
       
   304   // the incoming argument in(0).  We know (because of runtime
       
   305   // checks) - that the result value I2L(x+y) is in the joined range.
       
   306   // Hence we can restrict the incoming terms (x, y) to values such
       
   307   // that their sum also lands in that range.
       
   308 
       
   309   // This optimization is useful only on 64-bit systems, where we hope
       
   310   // the addition will end up subsumed in an addressing mode.
       
   311   // It is necessary to do this when optimizing an unrolled array
       
   312   // copy loop such as x[i++] = y[i++].
       
   313 
       
   314   // On 32-bit systems, it's better to perform as much 32-bit math as
       
   315   // possible before the I2L conversion, because 32-bit math is cheaper.
       
   316   // There's no common reason to "leak" a constant offset through the I2L.
       
   317   // Addressing arithmetic will not absorb it as part of a 64-bit AddL.
       
   318 
       
   319   Node* z = in(1);
       
   320   int op = z->Opcode();
       
   321   if (op == Op_AddI || op == Op_SubI) {
       
   322     Node* x = z->in(1);
       
   323     Node* y = z->in(2);
       
   324     assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
       
   325     if (phase->type(x) == Type::TOP)  return this_changed;
       
   326     if (phase->type(y) == Type::TOP)  return this_changed;
       
   327     const TypeInt*  tx = phase->type(x)->is_int();
       
   328     const TypeInt*  ty = phase->type(y)->is_int();
       
   329     const TypeLong* tz = this_type;
       
   330     jlong xlo = tx->_lo;
       
   331     jlong xhi = tx->_hi;
       
   332     jlong ylo = ty->_lo;
       
   333     jlong yhi = ty->_hi;
       
   334     jlong zlo = tz->_lo;
       
   335     jlong zhi = tz->_hi;
       
   336     jlong vbit = CONST64(1) << BitsPerInt;
       
   337     int widen =  MAX2(tx->_widen, ty->_widen);
       
   338     if (op == Op_SubI) {
       
   339       jlong ylo0 = ylo;
       
   340       ylo = -yhi;
       
   341       yhi = -ylo0;
       
   342     }
       
   343     // See if x+y can cause positive overflow into z+2**32
       
   344     if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo+vbit, zhi+vbit)) {
       
   345       return this_changed;
       
   346     }
       
   347     // See if x+y can cause negative overflow into z-2**32
       
   348     if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo-vbit, zhi-vbit)) {
       
   349       return this_changed;
       
   350     }
       
   351     // Now it's always safe to assume x+y does not overflow.
       
   352     // This is true even if some pairs x,y might cause overflow, as long
       
   353     // as that overflow value cannot fall into [zlo,zhi].
       
   354 
       
   355     // Confident that the arithmetic is "as if infinite precision",
       
   356     // we can now use z's range to put constraints on those of x and y.
       
   357     // The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
       
   358     // more "restricted" range by intersecting [xlo,xhi] with the
       
   359     // range obtained by subtracting y's range from the asserted range
       
   360     // of the I2L conversion.  Here's the interval arithmetic algebra:
       
   361     //    x == z-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
       
   362     //    => x in [zlo-yhi, zhi-ylo]
       
   363     //    => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
       
   364     //    => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
       
   365     jlong rxlo = MAX2(xlo, zlo - yhi);
       
   366     jlong rxhi = MIN2(xhi, zhi - ylo);
       
   367     // And similarly, x changing place with y:
       
   368     jlong rylo = MAX2(ylo, zlo - xhi);
       
   369     jlong ryhi = MIN2(yhi, zhi - xlo);
       
   370     if (rxlo > rxhi || rylo > ryhi) {
       
   371       return this_changed;  // x or y is dying; don't mess w/ it
       
   372     }
       
   373     if (op == Op_SubI) {
       
   374       jlong rylo0 = rylo;
       
   375       rylo = -ryhi;
       
   376       ryhi = -rylo0;
       
   377     }
       
   378     assert(rxlo == (int)rxlo && rxhi == (int)rxhi, "x should not overflow");
       
   379     assert(rylo == (int)rylo && ryhi == (int)ryhi, "y should not overflow");
       
   380     Node* cx = phase->C->constrained_convI2L(phase, x, TypeInt::make(rxlo, rxhi, widen), NULL);
       
   381     Node* cy = phase->C->constrained_convI2L(phase, y, TypeInt::make(rylo, ryhi, widen), NULL);
       
   382     switch (op) {
       
   383       case Op_AddI:  return new AddLNode(cx, cy);
       
   384       case Op_SubI:  return new SubLNode(cx, cy);
       
   385       default:       ShouldNotReachHere();
       
   386     }
       
   387   }
       
   388 #endif //_LP64
       
   389 
       
   390   return this_changed;
       
   391 }
       
   392 
       
   393 //=============================================================================
       
   394 //------------------------------Value------------------------------------------
       
   395 const Type* ConvL2DNode::Value(PhaseGVN* phase) const {
       
   396   const Type *t = phase->type( in(1) );
       
   397   if( t == Type::TOP ) return Type::TOP;
       
   398   const TypeLong *tl = t->is_long();
       
   399   if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
       
   400   return bottom_type();
       
   401 }
       
   402 
       
   403 //=============================================================================
       
   404 //------------------------------Value------------------------------------------
       
   405 const Type* ConvL2FNode::Value(PhaseGVN* phase) const {
       
   406   const Type *t = phase->type( in(1) );
       
   407   if( t == Type::TOP ) return Type::TOP;
       
   408   const TypeLong *tl = t->is_long();
       
   409   if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
       
   410   return bottom_type();
       
   411 }
       
   412 
       
   413 //=============================================================================
       
   414 //----------------------------Identity-----------------------------------------
       
   415 Node* ConvL2INode::Identity(PhaseGVN* phase) {
       
   416   // Convert L2I(I2L(x)) => x
       
   417   if (in(1)->Opcode() == Op_ConvI2L)  return in(1)->in(1);
       
   418   return this;
       
   419 }
       
   420 
       
   421 //------------------------------Value------------------------------------------
       
   422 const Type* ConvL2INode::Value(PhaseGVN* phase) const {
       
   423   const Type *t = phase->type( in(1) );
       
   424   if( t == Type::TOP ) return Type::TOP;
       
   425   const TypeLong *tl = t->is_long();
       
   426   if (tl->is_con())
       
   427   // Easy case.
       
   428   return TypeInt::make((jint)tl->get_con());
       
   429   return bottom_type();
       
   430 }
       
   431 
       
   432 //------------------------------Ideal------------------------------------------
       
   433 // Return a node which is more "ideal" than the current node.
       
   434 // Blow off prior masking to int
       
   435 Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
       
   436   Node *andl = in(1);
       
   437   uint andl_op = andl->Opcode();
       
   438   if( andl_op == Op_AndL ) {
       
   439     // Blow off prior masking to int
       
   440     if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
       
   441       set_req(1,andl->in(1));
       
   442       return this;
       
   443     }
       
   444   }
       
   445 
       
   446   // Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
       
   447   // This replaces an 'AddL' with an 'AddI'.
       
   448   if( andl_op == Op_AddL ) {
       
   449     // Don't do this for nodes which have more than one user since
       
   450     // we'll end up computing the long add anyway.
       
   451     if (andl->outcnt() > 1) return NULL;
       
   452 
       
   453     Node* x = andl->in(1);
       
   454     Node* y = andl->in(2);
       
   455     assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
       
   456     if (phase->type(x) == Type::TOP)  return NULL;
       
   457     if (phase->type(y) == Type::TOP)  return NULL;
       
   458     Node *add1 = phase->transform(new ConvL2INode(x));
       
   459     Node *add2 = phase->transform(new ConvL2INode(y));
       
   460     return new AddINode(add1,add2);
       
   461   }
       
   462 
       
   463   // Disable optimization: LoadL->ConvL2I ==> LoadI.
       
   464   // It causes problems (sizes of Load and Store nodes do not match)
       
   465   // in objects initialization code and Escape Analysis.
       
   466   return NULL;
       
   467 }
       
   468 
       
   469 
       
   470 
       
   471 //=============================================================================
       
   472 //------------------------------Identity---------------------------------------
       
   473 // Remove redundant roundings
       
   474 Node* RoundFloatNode::Identity(PhaseGVN* phase) {
       
   475   assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
       
   476   // Do not round constants
       
   477   if (phase->type(in(1))->base() == Type::FloatCon)  return in(1);
       
   478   int op = in(1)->Opcode();
       
   479   // Redundant rounding
       
   480   if( op == Op_RoundFloat ) return in(1);
       
   481   // Already rounded
       
   482   if( op == Op_Parm ) return in(1);
       
   483   if( op == Op_LoadF ) return in(1);
       
   484   return this;
       
   485 }
       
   486 
       
   487 //------------------------------Value------------------------------------------
       
   488 const Type* RoundFloatNode::Value(PhaseGVN* phase) const {
       
   489   return phase->type( in(1) );
       
   490 }
       
   491 
       
   492 //=============================================================================
       
   493 //------------------------------Identity---------------------------------------
       
   494 // Remove redundant roundings.  Incoming arguments are already rounded.
       
   495 Node* RoundDoubleNode::Identity(PhaseGVN* phase) {
       
   496   assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
       
   497   // Do not round constants
       
   498   if (phase->type(in(1))->base() == Type::DoubleCon)  return in(1);
       
   499   int op = in(1)->Opcode();
       
   500   // Redundant rounding
       
   501   if( op == Op_RoundDouble ) return in(1);
       
   502   // Already rounded
       
   503   if( op == Op_Parm ) return in(1);
       
   504   if( op == Op_LoadD ) return in(1);
       
   505   if( op == Op_ConvF2D ) return in(1);
       
   506   if( op == Op_ConvI2D ) return in(1);
       
   507   return this;
       
   508 }
       
   509 
       
   510 //------------------------------Value------------------------------------------
       
   511 const Type* RoundDoubleNode::Value(PhaseGVN* phase) const {
       
   512   return phase->type( in(1) );
       
   513 }
       
   514 
       
   515