src/hotspot/share/opto/callnode.cpp
changeset 47216 71c04702a3d5
parent 44314 30ae899b9eca
child 48595 5d699d81c10c
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "compiler/compileLog.hpp"
       
    27 #include "ci/bcEscapeAnalyzer.hpp"
       
    28 #include "compiler/oopMap.hpp"
       
    29 #include "opto/callGenerator.hpp"
       
    30 #include "opto/callnode.hpp"
       
    31 #include "opto/castnode.hpp"
       
    32 #include "opto/convertnode.hpp"
       
    33 #include "opto/escape.hpp"
       
    34 #include "opto/locknode.hpp"
       
    35 #include "opto/machnode.hpp"
       
    36 #include "opto/matcher.hpp"
       
    37 #include "opto/parse.hpp"
       
    38 #include "opto/regalloc.hpp"
       
    39 #include "opto/regmask.hpp"
       
    40 #include "opto/rootnode.hpp"
       
    41 #include "opto/runtime.hpp"
       
    42 
       
    43 // Portions of code courtesy of Clifford Click
       
    44 
       
    45 // Optimization - Graph Style
       
    46 
       
    47 //=============================================================================
       
    48 uint StartNode::size_of() const { return sizeof(*this); }
       
    49 uint StartNode::cmp( const Node &n ) const
       
    50 { return _domain == ((StartNode&)n)._domain; }
       
    51 const Type *StartNode::bottom_type() const { return _domain; }
       
    52 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
       
    53 #ifndef PRODUCT
       
    54 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
       
    55 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
       
    56 #endif
       
    57 
       
    58 //------------------------------Ideal------------------------------------------
       
    59 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
       
    60   return remove_dead_region(phase, can_reshape) ? this : NULL;
       
    61 }
       
    62 
       
    63 //------------------------------calling_convention-----------------------------
       
    64 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
       
    65   Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
       
    66 }
       
    67 
       
    68 //------------------------------Registers--------------------------------------
       
    69 const RegMask &StartNode::in_RegMask(uint) const {
       
    70   return RegMask::Empty;
       
    71 }
       
    72 
       
    73 //------------------------------match------------------------------------------
       
    74 // Construct projections for incoming parameters, and their RegMask info
       
    75 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
       
    76   switch (proj->_con) {
       
    77   case TypeFunc::Control:
       
    78   case TypeFunc::I_O:
       
    79   case TypeFunc::Memory:
       
    80     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
       
    81   case TypeFunc::FramePtr:
       
    82     return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
       
    83   case TypeFunc::ReturnAdr:
       
    84     return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
       
    85   case TypeFunc::Parms:
       
    86   default: {
       
    87       uint parm_num = proj->_con - TypeFunc::Parms;
       
    88       const Type *t = _domain->field_at(proj->_con);
       
    89       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
       
    90         return new ConNode(Type::TOP);
       
    91       uint ideal_reg = t->ideal_reg();
       
    92       RegMask &rm = match->_calling_convention_mask[parm_num];
       
    93       return new MachProjNode(this,proj->_con,rm,ideal_reg);
       
    94     }
       
    95   }
       
    96   return NULL;
       
    97 }
       
    98 
       
    99 //------------------------------StartOSRNode----------------------------------
       
   100 // The method start node for an on stack replacement adapter
       
   101 
       
   102 //------------------------------osr_domain-----------------------------
       
   103 const TypeTuple *StartOSRNode::osr_domain() {
       
   104   const Type **fields = TypeTuple::fields(2);
       
   105   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
       
   106 
       
   107   return TypeTuple::make(TypeFunc::Parms+1, fields);
       
   108 }
       
   109 
       
   110 //=============================================================================
       
   111 const char * const ParmNode::names[TypeFunc::Parms+1] = {
       
   112   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
       
   113 };
       
   114 
       
   115 #ifndef PRODUCT
       
   116 void ParmNode::dump_spec(outputStream *st) const {
       
   117   if( _con < TypeFunc::Parms ) {
       
   118     st->print("%s", names[_con]);
       
   119   } else {
       
   120     st->print("Parm%d: ",_con-TypeFunc::Parms);
       
   121     // Verbose and WizardMode dump bottom_type for all nodes
       
   122     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
       
   123   }
       
   124 }
       
   125 
       
   126 void ParmNode::dump_compact_spec(outputStream *st) const {
       
   127   if (_con < TypeFunc::Parms) {
       
   128     st->print("%s", names[_con]);
       
   129   } else {
       
   130     st->print("%d:", _con-TypeFunc::Parms);
       
   131     // unconditionally dump bottom_type
       
   132     bottom_type()->dump_on(st);
       
   133   }
       
   134 }
       
   135 
       
   136 // For a ParmNode, all immediate inputs and outputs are considered relevant
       
   137 // both in compact and standard representation.
       
   138 void ParmNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
       
   139   this->collect_nodes(in_rel, 1, false, false);
       
   140   this->collect_nodes(out_rel, -1, false, false);
       
   141 }
       
   142 #endif
       
   143 
       
   144 uint ParmNode::ideal_reg() const {
       
   145   switch( _con ) {
       
   146   case TypeFunc::Control  : // fall through
       
   147   case TypeFunc::I_O      : // fall through
       
   148   case TypeFunc::Memory   : return 0;
       
   149   case TypeFunc::FramePtr : // fall through
       
   150   case TypeFunc::ReturnAdr: return Op_RegP;
       
   151   default                 : assert( _con > TypeFunc::Parms, "" );
       
   152     // fall through
       
   153   case TypeFunc::Parms    : {
       
   154     // Type of argument being passed
       
   155     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
       
   156     return t->ideal_reg();
       
   157   }
       
   158   }
       
   159   ShouldNotReachHere();
       
   160   return 0;
       
   161 }
       
   162 
       
   163 //=============================================================================
       
   164 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
       
   165   init_req(TypeFunc::Control,cntrl);
       
   166   init_req(TypeFunc::I_O,i_o);
       
   167   init_req(TypeFunc::Memory,memory);
       
   168   init_req(TypeFunc::FramePtr,frameptr);
       
   169   init_req(TypeFunc::ReturnAdr,retadr);
       
   170 }
       
   171 
       
   172 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
       
   173   return remove_dead_region(phase, can_reshape) ? this : NULL;
       
   174 }
       
   175 
       
   176 const Type* ReturnNode::Value(PhaseGVN* phase) const {
       
   177   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
       
   178     ? Type::TOP
       
   179     : Type::BOTTOM;
       
   180 }
       
   181 
       
   182 // Do we Match on this edge index or not?  No edges on return nodes
       
   183 uint ReturnNode::match_edge(uint idx) const {
       
   184   return 0;
       
   185 }
       
   186 
       
   187 
       
   188 #ifndef PRODUCT
       
   189 void ReturnNode::dump_req(outputStream *st) const {
       
   190   // Dump the required inputs, enclosed in '(' and ')'
       
   191   uint i;                       // Exit value of loop
       
   192   for (i = 0; i < req(); i++) {    // For all required inputs
       
   193     if (i == TypeFunc::Parms) st->print("returns");
       
   194     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
       
   195     else st->print("_ ");
       
   196   }
       
   197 }
       
   198 #endif
       
   199 
       
   200 //=============================================================================
       
   201 RethrowNode::RethrowNode(
       
   202   Node* cntrl,
       
   203   Node* i_o,
       
   204   Node* memory,
       
   205   Node* frameptr,
       
   206   Node* ret_adr,
       
   207   Node* exception
       
   208 ) : Node(TypeFunc::Parms + 1) {
       
   209   init_req(TypeFunc::Control  , cntrl    );
       
   210   init_req(TypeFunc::I_O      , i_o      );
       
   211   init_req(TypeFunc::Memory   , memory   );
       
   212   init_req(TypeFunc::FramePtr , frameptr );
       
   213   init_req(TypeFunc::ReturnAdr, ret_adr);
       
   214   init_req(TypeFunc::Parms    , exception);
       
   215 }
       
   216 
       
   217 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
       
   218   return remove_dead_region(phase, can_reshape) ? this : NULL;
       
   219 }
       
   220 
       
   221 const Type* RethrowNode::Value(PhaseGVN* phase) const {
       
   222   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
       
   223     ? Type::TOP
       
   224     : Type::BOTTOM;
       
   225 }
       
   226 
       
   227 uint RethrowNode::match_edge(uint idx) const {
       
   228   return 0;
       
   229 }
       
   230 
       
   231 #ifndef PRODUCT
       
   232 void RethrowNode::dump_req(outputStream *st) const {
       
   233   // Dump the required inputs, enclosed in '(' and ')'
       
   234   uint i;                       // Exit value of loop
       
   235   for (i = 0; i < req(); i++) {    // For all required inputs
       
   236     if (i == TypeFunc::Parms) st->print("exception");
       
   237     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
       
   238     else st->print("_ ");
       
   239   }
       
   240 }
       
   241 #endif
       
   242 
       
   243 //=============================================================================
       
   244 // Do we Match on this edge index or not?  Match only target address & method
       
   245 uint TailCallNode::match_edge(uint idx) const {
       
   246   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
       
   247 }
       
   248 
       
   249 //=============================================================================
       
   250 // Do we Match on this edge index or not?  Match only target address & oop
       
   251 uint TailJumpNode::match_edge(uint idx) const {
       
   252   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
       
   253 }
       
   254 
       
   255 //=============================================================================
       
   256 JVMState::JVMState(ciMethod* method, JVMState* caller) :
       
   257   _method(method) {
       
   258   assert(method != NULL, "must be valid call site");
       
   259   _bci = InvocationEntryBci;
       
   260   _reexecute = Reexecute_Undefined;
       
   261   debug_only(_bci = -99);  // random garbage value
       
   262   debug_only(_map = (SafePointNode*)-1);
       
   263   _caller = caller;
       
   264   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
       
   265   _locoff = TypeFunc::Parms;
       
   266   _stkoff = _locoff + _method->max_locals();
       
   267   _monoff = _stkoff + _method->max_stack();
       
   268   _scloff = _monoff;
       
   269   _endoff = _monoff;
       
   270   _sp = 0;
       
   271 }
       
   272 JVMState::JVMState(int stack_size) :
       
   273   _method(NULL) {
       
   274   _bci = InvocationEntryBci;
       
   275   _reexecute = Reexecute_Undefined;
       
   276   debug_only(_map = (SafePointNode*)-1);
       
   277   _caller = NULL;
       
   278   _depth  = 1;
       
   279   _locoff = TypeFunc::Parms;
       
   280   _stkoff = _locoff;
       
   281   _monoff = _stkoff + stack_size;
       
   282   _scloff = _monoff;
       
   283   _endoff = _monoff;
       
   284   _sp = 0;
       
   285 }
       
   286 
       
   287 //--------------------------------of_depth-------------------------------------
       
   288 JVMState* JVMState::of_depth(int d) const {
       
   289   const JVMState* jvmp = this;
       
   290   assert(0 < d && (uint)d <= depth(), "oob");
       
   291   for (int skip = depth() - d; skip > 0; skip--) {
       
   292     jvmp = jvmp->caller();
       
   293   }
       
   294   assert(jvmp->depth() == (uint)d, "found the right one");
       
   295   return (JVMState*)jvmp;
       
   296 }
       
   297 
       
   298 //-----------------------------same_calls_as-----------------------------------
       
   299 bool JVMState::same_calls_as(const JVMState* that) const {
       
   300   if (this == that)                    return true;
       
   301   if (this->depth() != that->depth())  return false;
       
   302   const JVMState* p = this;
       
   303   const JVMState* q = that;
       
   304   for (;;) {
       
   305     if (p->_method != q->_method)    return false;
       
   306     if (p->_method == NULL)          return true;   // bci is irrelevant
       
   307     if (p->_bci    != q->_bci)       return false;
       
   308     if (p->_reexecute != q->_reexecute)  return false;
       
   309     p = p->caller();
       
   310     q = q->caller();
       
   311     if (p == q)                      return true;
       
   312     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
       
   313   }
       
   314 }
       
   315 
       
   316 //------------------------------debug_start------------------------------------
       
   317 uint JVMState::debug_start()  const {
       
   318   debug_only(JVMState* jvmroot = of_depth(1));
       
   319   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
       
   320   return of_depth(1)->locoff();
       
   321 }
       
   322 
       
   323 //-------------------------------debug_end-------------------------------------
       
   324 uint JVMState::debug_end() const {
       
   325   debug_only(JVMState* jvmroot = of_depth(1));
       
   326   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
       
   327   return endoff();
       
   328 }
       
   329 
       
   330 //------------------------------debug_depth------------------------------------
       
   331 uint JVMState::debug_depth() const {
       
   332   uint total = 0;
       
   333   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
       
   334     total += jvmp->debug_size();
       
   335   }
       
   336   return total;
       
   337 }
       
   338 
       
   339 #ifndef PRODUCT
       
   340 
       
   341 //------------------------------format_helper----------------------------------
       
   342 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
       
   343 // any defined value or not.  If it does, print out the register or constant.
       
   344 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
       
   345   if (n == NULL) { st->print(" NULL"); return; }
       
   346   if (n->is_SafePointScalarObject()) {
       
   347     // Scalar replacement.
       
   348     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
       
   349     scobjs->append_if_missing(spobj);
       
   350     int sco_n = scobjs->find(spobj);
       
   351     assert(sco_n >= 0, "");
       
   352     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
       
   353     return;
       
   354   }
       
   355   if (regalloc->node_regs_max_index() > 0 &&
       
   356       OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
       
   357     char buf[50];
       
   358     regalloc->dump_register(n,buf);
       
   359     st->print(" %s%d]=%s",msg,i,buf);
       
   360   } else {                      // No register, but might be constant
       
   361     const Type *t = n->bottom_type();
       
   362     switch (t->base()) {
       
   363     case Type::Int:
       
   364       st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con());
       
   365       break;
       
   366     case Type::AnyPtr:
       
   367       assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
       
   368       st->print(" %s%d]=#NULL",msg,i);
       
   369       break;
       
   370     case Type::AryPtr:
       
   371     case Type::InstPtr:
       
   372       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
       
   373       break;
       
   374     case Type::KlassPtr:
       
   375       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->klass()));
       
   376       break;
       
   377     case Type::MetadataPtr:
       
   378       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
       
   379       break;
       
   380     case Type::NarrowOop:
       
   381       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
       
   382       break;
       
   383     case Type::RawPtr:
       
   384       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
       
   385       break;
       
   386     case Type::DoubleCon:
       
   387       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
       
   388       break;
       
   389     case Type::FloatCon:
       
   390       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
       
   391       break;
       
   392     case Type::Long:
       
   393       st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
       
   394       break;
       
   395     case Type::Half:
       
   396     case Type::Top:
       
   397       st->print(" %s%d]=_",msg,i);
       
   398       break;
       
   399     default: ShouldNotReachHere();
       
   400     }
       
   401   }
       
   402 }
       
   403 
       
   404 //------------------------------format-----------------------------------------
       
   405 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
       
   406   st->print("        #");
       
   407   if (_method) {
       
   408     _method->print_short_name(st);
       
   409     st->print(" @ bci:%d ",_bci);
       
   410   } else {
       
   411     st->print_cr(" runtime stub ");
       
   412     return;
       
   413   }
       
   414   if (n->is_MachSafePoint()) {
       
   415     GrowableArray<SafePointScalarObjectNode*> scobjs;
       
   416     MachSafePointNode *mcall = n->as_MachSafePoint();
       
   417     uint i;
       
   418     // Print locals
       
   419     for (i = 0; i < (uint)loc_size(); i++)
       
   420       format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
       
   421     // Print stack
       
   422     for (i = 0; i < (uint)stk_size(); i++) {
       
   423       if ((uint)(_stkoff + i) >= mcall->len())
       
   424         st->print(" oob ");
       
   425       else
       
   426        format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
       
   427     }
       
   428     for (i = 0; (int)i < nof_monitors(); i++) {
       
   429       Node *box = mcall->monitor_box(this, i);
       
   430       Node *obj = mcall->monitor_obj(this, i);
       
   431       if (regalloc->node_regs_max_index() > 0 &&
       
   432           OptoReg::is_valid(regalloc->get_reg_first(box))) {
       
   433         box = BoxLockNode::box_node(box);
       
   434         format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
       
   435       } else {
       
   436         OptoReg::Name box_reg = BoxLockNode::reg(box);
       
   437         st->print(" MON-BOX%d=%s+%d",
       
   438                    i,
       
   439                    OptoReg::regname(OptoReg::c_frame_pointer),
       
   440                    regalloc->reg2offset(box_reg));
       
   441       }
       
   442       const char* obj_msg = "MON-OBJ[";
       
   443       if (EliminateLocks) {
       
   444         if (BoxLockNode::box_node(box)->is_eliminated())
       
   445           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
       
   446       }
       
   447       format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
       
   448     }
       
   449 
       
   450     for (i = 0; i < (uint)scobjs.length(); i++) {
       
   451       // Scalar replaced objects.
       
   452       st->cr();
       
   453       st->print("        # ScObj" INT32_FORMAT " ", i);
       
   454       SafePointScalarObjectNode* spobj = scobjs.at(i);
       
   455       ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
       
   456       assert(cik->is_instance_klass() ||
       
   457              cik->is_array_klass(), "Not supported allocation.");
       
   458       ciInstanceKlass *iklass = NULL;
       
   459       if (cik->is_instance_klass()) {
       
   460         cik->print_name_on(st);
       
   461         iklass = cik->as_instance_klass();
       
   462       } else if (cik->is_type_array_klass()) {
       
   463         cik->as_array_klass()->base_element_type()->print_name_on(st);
       
   464         st->print("[%d]", spobj->n_fields());
       
   465       } else if (cik->is_obj_array_klass()) {
       
   466         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
       
   467         if (cie->is_instance_klass()) {
       
   468           cie->print_name_on(st);
       
   469         } else if (cie->is_type_array_klass()) {
       
   470           cie->as_array_klass()->base_element_type()->print_name_on(st);
       
   471         } else {
       
   472           ShouldNotReachHere();
       
   473         }
       
   474         st->print("[%d]", spobj->n_fields());
       
   475         int ndim = cik->as_array_klass()->dimension() - 1;
       
   476         while (ndim-- > 0) {
       
   477           st->print("[]");
       
   478         }
       
   479       }
       
   480       st->print("={");
       
   481       uint nf = spobj->n_fields();
       
   482       if (nf > 0) {
       
   483         uint first_ind = spobj->first_index(mcall->jvms());
       
   484         Node* fld_node = mcall->in(first_ind);
       
   485         ciField* cifield;
       
   486         if (iklass != NULL) {
       
   487           st->print(" [");
       
   488           cifield = iklass->nonstatic_field_at(0);
       
   489           cifield->print_name_on(st);
       
   490           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
       
   491         } else {
       
   492           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
       
   493         }
       
   494         for (uint j = 1; j < nf; j++) {
       
   495           fld_node = mcall->in(first_ind+j);
       
   496           if (iklass != NULL) {
       
   497             st->print(", [");
       
   498             cifield = iklass->nonstatic_field_at(j);
       
   499             cifield->print_name_on(st);
       
   500             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
       
   501           } else {
       
   502             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
       
   503           }
       
   504         }
       
   505       }
       
   506       st->print(" }");
       
   507     }
       
   508   }
       
   509   st->cr();
       
   510   if (caller() != NULL) caller()->format(regalloc, n, st);
       
   511 }
       
   512 
       
   513 
       
   514 void JVMState::dump_spec(outputStream *st) const {
       
   515   if (_method != NULL) {
       
   516     bool printed = false;
       
   517     if (!Verbose) {
       
   518       // The JVMS dumps make really, really long lines.
       
   519       // Take out the most boring parts, which are the package prefixes.
       
   520       char buf[500];
       
   521       stringStream namest(buf, sizeof(buf));
       
   522       _method->print_short_name(&namest);
       
   523       if (namest.count() < sizeof(buf)) {
       
   524         const char* name = namest.base();
       
   525         if (name[0] == ' ')  ++name;
       
   526         const char* endcn = strchr(name, ':');  // end of class name
       
   527         if (endcn == NULL)  endcn = strchr(name, '(');
       
   528         if (endcn == NULL)  endcn = name + strlen(name);
       
   529         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
       
   530           --endcn;
       
   531         st->print(" %s", endcn);
       
   532         printed = true;
       
   533       }
       
   534     }
       
   535     if (!printed)
       
   536       _method->print_short_name(st);
       
   537     st->print(" @ bci:%d",_bci);
       
   538     if(_reexecute == Reexecute_True)
       
   539       st->print(" reexecute");
       
   540   } else {
       
   541     st->print(" runtime stub");
       
   542   }
       
   543   if (caller() != NULL)  caller()->dump_spec(st);
       
   544 }
       
   545 
       
   546 
       
   547 void JVMState::dump_on(outputStream* st) const {
       
   548   bool print_map = _map && !((uintptr_t)_map & 1) &&
       
   549                   ((caller() == NULL) || (caller()->map() != _map));
       
   550   if (print_map) {
       
   551     if (_map->len() > _map->req()) {  // _map->has_exceptions()
       
   552       Node* ex = _map->in(_map->req());  // _map->next_exception()
       
   553       // skip the first one; it's already being printed
       
   554       while (ex != NULL && ex->len() > ex->req()) {
       
   555         ex = ex->in(ex->req());  // ex->next_exception()
       
   556         ex->dump(1);
       
   557       }
       
   558     }
       
   559     _map->dump(Verbose ? 2 : 1);
       
   560   }
       
   561   if (caller() != NULL) {
       
   562     caller()->dump_on(st);
       
   563   }
       
   564   st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
       
   565              depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
       
   566   if (_method == NULL) {
       
   567     st->print_cr("(none)");
       
   568   } else {
       
   569     _method->print_name(st);
       
   570     st->cr();
       
   571     if (bci() >= 0 && bci() < _method->code_size()) {
       
   572       st->print("    bc: ");
       
   573       _method->print_codes_on(bci(), bci()+1, st);
       
   574     }
       
   575   }
       
   576 }
       
   577 
       
   578 // Extra way to dump a jvms from the debugger,
       
   579 // to avoid a bug with C++ member function calls.
       
   580 void dump_jvms(JVMState* jvms) {
       
   581   jvms->dump();
       
   582 }
       
   583 #endif
       
   584 
       
   585 //--------------------------clone_shallow--------------------------------------
       
   586 JVMState* JVMState::clone_shallow(Compile* C) const {
       
   587   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
       
   588   n->set_bci(_bci);
       
   589   n->_reexecute = _reexecute;
       
   590   n->set_locoff(_locoff);
       
   591   n->set_stkoff(_stkoff);
       
   592   n->set_monoff(_monoff);
       
   593   n->set_scloff(_scloff);
       
   594   n->set_endoff(_endoff);
       
   595   n->set_sp(_sp);
       
   596   n->set_map(_map);
       
   597   return n;
       
   598 }
       
   599 
       
   600 //---------------------------clone_deep----------------------------------------
       
   601 JVMState* JVMState::clone_deep(Compile* C) const {
       
   602   JVMState* n = clone_shallow(C);
       
   603   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
       
   604     p->_caller = p->_caller->clone_shallow(C);
       
   605   }
       
   606   assert(n->depth() == depth(), "sanity");
       
   607   assert(n->debug_depth() == debug_depth(), "sanity");
       
   608   return n;
       
   609 }
       
   610 
       
   611 /**
       
   612  * Reset map for all callers
       
   613  */
       
   614 void JVMState::set_map_deep(SafePointNode* map) {
       
   615   for (JVMState* p = this; p->_caller != NULL; p = p->_caller) {
       
   616     p->set_map(map);
       
   617   }
       
   618 }
       
   619 
       
   620 // Adapt offsets in in-array after adding or removing an edge.
       
   621 // Prerequisite is that the JVMState is used by only one node.
       
   622 void JVMState::adapt_position(int delta) {
       
   623   for (JVMState* jvms = this; jvms != NULL; jvms = jvms->caller()) {
       
   624     jvms->set_locoff(jvms->locoff() + delta);
       
   625     jvms->set_stkoff(jvms->stkoff() + delta);
       
   626     jvms->set_monoff(jvms->monoff() + delta);
       
   627     jvms->set_scloff(jvms->scloff() + delta);
       
   628     jvms->set_endoff(jvms->endoff() + delta);
       
   629   }
       
   630 }
       
   631 
       
   632 // Mirror the stack size calculation in the deopt code
       
   633 // How much stack space would we need at this point in the program in
       
   634 // case of deoptimization?
       
   635 int JVMState::interpreter_frame_size() const {
       
   636   const JVMState* jvms = this;
       
   637   int size = 0;
       
   638   int callee_parameters = 0;
       
   639   int callee_locals = 0;
       
   640   int extra_args = method()->max_stack() - stk_size();
       
   641 
       
   642   while (jvms != NULL) {
       
   643     int locks = jvms->nof_monitors();
       
   644     int temps = jvms->stk_size();
       
   645     bool is_top_frame = (jvms == this);
       
   646     ciMethod* method = jvms->method();
       
   647 
       
   648     int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
       
   649                                                                  temps + callee_parameters,
       
   650                                                                  extra_args,
       
   651                                                                  locks,
       
   652                                                                  callee_parameters,
       
   653                                                                  callee_locals,
       
   654                                                                  is_top_frame);
       
   655     size += frame_size;
       
   656 
       
   657     callee_parameters = method->size_of_parameters();
       
   658     callee_locals = method->max_locals();
       
   659     extra_args = 0;
       
   660     jvms = jvms->caller();
       
   661   }
       
   662   return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
       
   663 }
       
   664 
       
   665 //=============================================================================
       
   666 uint CallNode::cmp( const Node &n ) const
       
   667 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
       
   668 #ifndef PRODUCT
       
   669 void CallNode::dump_req(outputStream *st) const {
       
   670   // Dump the required inputs, enclosed in '(' and ')'
       
   671   uint i;                       // Exit value of loop
       
   672   for (i = 0; i < req(); i++) {    // For all required inputs
       
   673     if (i == TypeFunc::Parms) st->print("(");
       
   674     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
       
   675     else st->print("_ ");
       
   676   }
       
   677   st->print(")");
       
   678 }
       
   679 
       
   680 void CallNode::dump_spec(outputStream *st) const {
       
   681   st->print(" ");
       
   682   if (tf() != NULL)  tf()->dump_on(st);
       
   683   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
       
   684   if (jvms() != NULL)  jvms()->dump_spec(st);
       
   685 }
       
   686 #endif
       
   687 
       
   688 const Type *CallNode::bottom_type() const { return tf()->range(); }
       
   689 const Type* CallNode::Value(PhaseGVN* phase) const {
       
   690   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
       
   691   return tf()->range();
       
   692 }
       
   693 
       
   694 //------------------------------calling_convention-----------------------------
       
   695 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
       
   696   // Use the standard compiler calling convention
       
   697   Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
       
   698 }
       
   699 
       
   700 
       
   701 //------------------------------match------------------------------------------
       
   702 // Construct projections for control, I/O, memory-fields, ..., and
       
   703 // return result(s) along with their RegMask info
       
   704 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
       
   705   switch (proj->_con) {
       
   706   case TypeFunc::Control:
       
   707   case TypeFunc::I_O:
       
   708   case TypeFunc::Memory:
       
   709     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
       
   710 
       
   711   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
       
   712     assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, "");
       
   713     // 2nd half of doubles and longs
       
   714     return new MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
       
   715 
       
   716   case TypeFunc::Parms: {       // Normal returns
       
   717     uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
       
   718     OptoRegPair regs = is_CallRuntime()
       
   719       ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
       
   720       : match->  return_value(ideal_reg,true); // Calls into compiled Java code
       
   721     RegMask rm = RegMask(regs.first());
       
   722     if( OptoReg::is_valid(regs.second()) )
       
   723       rm.Insert( regs.second() );
       
   724     return new MachProjNode(this,proj->_con,rm,ideal_reg);
       
   725   }
       
   726 
       
   727   case TypeFunc::ReturnAdr:
       
   728   case TypeFunc::FramePtr:
       
   729   default:
       
   730     ShouldNotReachHere();
       
   731   }
       
   732   return NULL;
       
   733 }
       
   734 
       
   735 // Do we Match on this edge index or not?  Match no edges
       
   736 uint CallNode::match_edge(uint idx) const {
       
   737   return 0;
       
   738 }
       
   739 
       
   740 //
       
   741 // Determine whether the call could modify the field of the specified
       
   742 // instance at the specified offset.
       
   743 //
       
   744 bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
       
   745   assert((t_oop != NULL), "sanity");
       
   746   if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
       
   747     const TypeTuple* args = _tf->domain();
       
   748     Node* dest = NULL;
       
   749     // Stubs that can be called once an ArrayCopyNode is expanded have
       
   750     // different signatures. Look for the second pointer argument,
       
   751     // that is the destination of the copy.
       
   752     for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
       
   753       if (args->field_at(i)->isa_ptr()) {
       
   754         j++;
       
   755         if (j == 2) {
       
   756           dest = in(i);
       
   757           break;
       
   758         }
       
   759       }
       
   760     }
       
   761     if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
       
   762       return true;
       
   763     }
       
   764     return false;
       
   765   }
       
   766   if (t_oop->is_known_instance()) {
       
   767     // The instance_id is set only for scalar-replaceable allocations which
       
   768     // are not passed as arguments according to Escape Analysis.
       
   769     return false;
       
   770   }
       
   771   if (t_oop->is_ptr_to_boxed_value()) {
       
   772     ciKlass* boxing_klass = t_oop->klass();
       
   773     if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
       
   774       // Skip unrelated boxing methods.
       
   775       Node* proj = proj_out(TypeFunc::Parms);
       
   776       if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) {
       
   777         return false;
       
   778       }
       
   779     }
       
   780     if (is_CallJava() && as_CallJava()->method() != NULL) {
       
   781       ciMethod* meth = as_CallJava()->method();
       
   782       if (meth->is_getter()) {
       
   783         return false;
       
   784       }
       
   785       // May modify (by reflection) if an boxing object is passed
       
   786       // as argument or returned.
       
   787       Node* proj = returns_pointer() ? proj_out(TypeFunc::Parms) : NULL;
       
   788       if (proj != NULL) {
       
   789         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
       
   790         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
       
   791                                  (inst_t->klass() == boxing_klass))) {
       
   792           return true;
       
   793         }
       
   794       }
       
   795       const TypeTuple* d = tf()->domain();
       
   796       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
       
   797         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
       
   798         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
       
   799                                  (inst_t->klass() == boxing_klass))) {
       
   800           return true;
       
   801         }
       
   802       }
       
   803       return false;
       
   804     }
       
   805   }
       
   806   return true;
       
   807 }
       
   808 
       
   809 // Does this call have a direct reference to n other than debug information?
       
   810 bool CallNode::has_non_debug_use(Node *n) {
       
   811   const TypeTuple * d = tf()->domain();
       
   812   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
       
   813     Node *arg = in(i);
       
   814     if (arg == n) {
       
   815       return true;
       
   816     }
       
   817   }
       
   818   return false;
       
   819 }
       
   820 
       
   821 // Returns the unique CheckCastPP of a call
       
   822 // or 'this' if there are several CheckCastPP or unexpected uses
       
   823 // or returns NULL if there is no one.
       
   824 Node *CallNode::result_cast() {
       
   825   Node *cast = NULL;
       
   826 
       
   827   Node *p = proj_out(TypeFunc::Parms);
       
   828   if (p == NULL)
       
   829     return NULL;
       
   830 
       
   831   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
       
   832     Node *use = p->fast_out(i);
       
   833     if (use->is_CheckCastPP()) {
       
   834       if (cast != NULL) {
       
   835         return this;  // more than 1 CheckCastPP
       
   836       }
       
   837       cast = use;
       
   838     } else if (!use->is_Initialize() &&
       
   839                !use->is_AddP() &&
       
   840                use->Opcode() != Op_MemBarStoreStore) {
       
   841       // Expected uses are restricted to a CheckCastPP, an Initialize
       
   842       // node, a MemBarStoreStore (clone) and AddP nodes. If we
       
   843       // encounter any other use (a Phi node can be seen in rare
       
   844       // cases) return this to prevent incorrect optimizations.
       
   845       return this;
       
   846     }
       
   847   }
       
   848   return cast;
       
   849 }
       
   850 
       
   851 
       
   852 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts) {
       
   853   projs->fallthrough_proj      = NULL;
       
   854   projs->fallthrough_catchproj = NULL;
       
   855   projs->fallthrough_ioproj    = NULL;
       
   856   projs->catchall_ioproj       = NULL;
       
   857   projs->catchall_catchproj    = NULL;
       
   858   projs->fallthrough_memproj   = NULL;
       
   859   projs->catchall_memproj      = NULL;
       
   860   projs->resproj               = NULL;
       
   861   projs->exobj                 = NULL;
       
   862 
       
   863   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
       
   864     ProjNode *pn = fast_out(i)->as_Proj();
       
   865     if (pn->outcnt() == 0) continue;
       
   866     switch (pn->_con) {
       
   867     case TypeFunc::Control:
       
   868       {
       
   869         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
       
   870         projs->fallthrough_proj = pn;
       
   871         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
       
   872         const Node *cn = pn->fast_out(j);
       
   873         if (cn->is_Catch()) {
       
   874           ProjNode *cpn = NULL;
       
   875           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
       
   876             cpn = cn->fast_out(k)->as_Proj();
       
   877             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
       
   878             if (cpn->_con == CatchProjNode::fall_through_index)
       
   879               projs->fallthrough_catchproj = cpn;
       
   880             else {
       
   881               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
       
   882               projs->catchall_catchproj = cpn;
       
   883             }
       
   884           }
       
   885         }
       
   886         break;
       
   887       }
       
   888     case TypeFunc::I_O:
       
   889       if (pn->_is_io_use)
       
   890         projs->catchall_ioproj = pn;
       
   891       else
       
   892         projs->fallthrough_ioproj = pn;
       
   893       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
       
   894         Node* e = pn->out(j);
       
   895         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
       
   896           assert(projs->exobj == NULL, "only one");
       
   897           projs->exobj = e;
       
   898         }
       
   899       }
       
   900       break;
       
   901     case TypeFunc::Memory:
       
   902       if (pn->_is_io_use)
       
   903         projs->catchall_memproj = pn;
       
   904       else
       
   905         projs->fallthrough_memproj = pn;
       
   906       break;
       
   907     case TypeFunc::Parms:
       
   908       projs->resproj = pn;
       
   909       break;
       
   910     default:
       
   911       assert(false, "unexpected projection from allocation node.");
       
   912     }
       
   913   }
       
   914 
       
   915   // The resproj may not exist because the result could be ignored
       
   916   // and the exception object may not exist if an exception handler
       
   917   // swallows the exception but all the other must exist and be found.
       
   918   assert(projs->fallthrough_proj      != NULL, "must be found");
       
   919   do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
       
   920   assert(!do_asserts || projs->fallthrough_catchproj != NULL, "must be found");
       
   921   assert(!do_asserts || projs->fallthrough_memproj   != NULL, "must be found");
       
   922   assert(!do_asserts || projs->fallthrough_ioproj    != NULL, "must be found");
       
   923   assert(!do_asserts || projs->catchall_catchproj    != NULL, "must be found");
       
   924   if (separate_io_proj) {
       
   925     assert(!do_asserts || projs->catchall_memproj    != NULL, "must be found");
       
   926     assert(!do_asserts || projs->catchall_ioproj     != NULL, "must be found");
       
   927   }
       
   928 }
       
   929 
       
   930 Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) {
       
   931   CallGenerator* cg = generator();
       
   932   if (can_reshape && cg != NULL && cg->is_mh_late_inline() && !cg->already_attempted()) {
       
   933     // Check whether this MH handle call becomes a candidate for inlining
       
   934     ciMethod* callee = cg->method();
       
   935     vmIntrinsics::ID iid = callee->intrinsic_id();
       
   936     if (iid == vmIntrinsics::_invokeBasic) {
       
   937       if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
       
   938         phase->C->prepend_late_inline(cg);
       
   939         set_generator(NULL);
       
   940       }
       
   941     } else {
       
   942       assert(callee->has_member_arg(), "wrong type of call?");
       
   943       if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
       
   944         phase->C->prepend_late_inline(cg);
       
   945         set_generator(NULL);
       
   946       }
       
   947     }
       
   948   }
       
   949   return SafePointNode::Ideal(phase, can_reshape);
       
   950 }
       
   951 
       
   952 bool CallNode::is_call_to_arraycopystub() const {
       
   953   if (_name != NULL && strstr(_name, "arraycopy") != 0) {
       
   954     return true;
       
   955   }
       
   956   return false;
       
   957 }
       
   958 
       
   959 //=============================================================================
       
   960 uint CallJavaNode::size_of() const { return sizeof(*this); }
       
   961 uint CallJavaNode::cmp( const Node &n ) const {
       
   962   CallJavaNode &call = (CallJavaNode&)n;
       
   963   return CallNode::cmp(call) && _method == call._method &&
       
   964          _override_symbolic_info == call._override_symbolic_info;
       
   965 }
       
   966 #ifndef PRODUCT
       
   967 void CallJavaNode::dump_spec(outputStream *st) const {
       
   968   if( _method ) _method->print_short_name(st);
       
   969   CallNode::dump_spec(st);
       
   970 }
       
   971 
       
   972 void CallJavaNode::dump_compact_spec(outputStream* st) const {
       
   973   if (_method) {
       
   974     _method->print_short_name(st);
       
   975   } else {
       
   976     st->print("<?>");
       
   977   }
       
   978 }
       
   979 #endif
       
   980 
       
   981 //=============================================================================
       
   982 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
       
   983 uint CallStaticJavaNode::cmp( const Node &n ) const {
       
   984   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
       
   985   return CallJavaNode::cmp(call);
       
   986 }
       
   987 
       
   988 //----------------------------uncommon_trap_request----------------------------
       
   989 // If this is an uncommon trap, return the request code, else zero.
       
   990 int CallStaticJavaNode::uncommon_trap_request() const {
       
   991   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
       
   992     return extract_uncommon_trap_request(this);
       
   993   }
       
   994   return 0;
       
   995 }
       
   996 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
       
   997 #ifndef PRODUCT
       
   998   if (!(call->req() > TypeFunc::Parms &&
       
   999         call->in(TypeFunc::Parms) != NULL &&
       
  1000         call->in(TypeFunc::Parms)->is_Con() &&
       
  1001         call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
       
  1002     assert(in_dump() != 0, "OK if dumping");
       
  1003     tty->print("[bad uncommon trap]");
       
  1004     return 0;
       
  1005   }
       
  1006 #endif
       
  1007   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
       
  1008 }
       
  1009 
       
  1010 #ifndef PRODUCT
       
  1011 void CallStaticJavaNode::dump_spec(outputStream *st) const {
       
  1012   st->print("# Static ");
       
  1013   if (_name != NULL) {
       
  1014     st->print("%s", _name);
       
  1015     int trap_req = uncommon_trap_request();
       
  1016     if (trap_req != 0) {
       
  1017       char buf[100];
       
  1018       st->print("(%s)",
       
  1019                  Deoptimization::format_trap_request(buf, sizeof(buf),
       
  1020                                                      trap_req));
       
  1021     }
       
  1022     st->print(" ");
       
  1023   }
       
  1024   CallJavaNode::dump_spec(st);
       
  1025 }
       
  1026 
       
  1027 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
       
  1028   if (_method) {
       
  1029     _method->print_short_name(st);
       
  1030   } else if (_name) {
       
  1031     st->print("%s", _name);
       
  1032   } else {
       
  1033     st->print("<?>");
       
  1034   }
       
  1035 }
       
  1036 #endif
       
  1037 
       
  1038 //=============================================================================
       
  1039 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
       
  1040 uint CallDynamicJavaNode::cmp( const Node &n ) const {
       
  1041   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
       
  1042   return CallJavaNode::cmp(call);
       
  1043 }
       
  1044 #ifndef PRODUCT
       
  1045 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
       
  1046   st->print("# Dynamic ");
       
  1047   CallJavaNode::dump_spec(st);
       
  1048 }
       
  1049 #endif
       
  1050 
       
  1051 //=============================================================================
       
  1052 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
       
  1053 uint CallRuntimeNode::cmp( const Node &n ) const {
       
  1054   CallRuntimeNode &call = (CallRuntimeNode&)n;
       
  1055   return CallNode::cmp(call) && !strcmp(_name,call._name);
       
  1056 }
       
  1057 #ifndef PRODUCT
       
  1058 void CallRuntimeNode::dump_spec(outputStream *st) const {
       
  1059   st->print("# ");
       
  1060   st->print("%s", _name);
       
  1061   CallNode::dump_spec(st);
       
  1062 }
       
  1063 #endif
       
  1064 
       
  1065 //------------------------------calling_convention-----------------------------
       
  1066 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
       
  1067   Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
       
  1068 }
       
  1069 
       
  1070 //=============================================================================
       
  1071 //------------------------------calling_convention-----------------------------
       
  1072 
       
  1073 
       
  1074 //=============================================================================
       
  1075 #ifndef PRODUCT
       
  1076 void CallLeafNode::dump_spec(outputStream *st) const {
       
  1077   st->print("# ");
       
  1078   st->print("%s", _name);
       
  1079   CallNode::dump_spec(st);
       
  1080 }
       
  1081 #endif
       
  1082 
       
  1083 //=============================================================================
       
  1084 
       
  1085 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
       
  1086   assert(verify_jvms(jvms), "jvms must match");
       
  1087   int loc = jvms->locoff() + idx;
       
  1088   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
       
  1089     // If current local idx is top then local idx - 1 could
       
  1090     // be a long/double that needs to be killed since top could
       
  1091     // represent the 2nd half ofthe long/double.
       
  1092     uint ideal = in(loc -1)->ideal_reg();
       
  1093     if (ideal == Op_RegD || ideal == Op_RegL) {
       
  1094       // set other (low index) half to top
       
  1095       set_req(loc - 1, in(loc));
       
  1096     }
       
  1097   }
       
  1098   set_req(loc, c);
       
  1099 }
       
  1100 
       
  1101 uint SafePointNode::size_of() const { return sizeof(*this); }
       
  1102 uint SafePointNode::cmp( const Node &n ) const {
       
  1103   return (&n == this);          // Always fail except on self
       
  1104 }
       
  1105 
       
  1106 //-------------------------set_next_exception----------------------------------
       
  1107 void SafePointNode::set_next_exception(SafePointNode* n) {
       
  1108   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
       
  1109   if (len() == req()) {
       
  1110     if (n != NULL)  add_prec(n);
       
  1111   } else {
       
  1112     set_prec(req(), n);
       
  1113   }
       
  1114 }
       
  1115 
       
  1116 
       
  1117 //----------------------------next_exception-----------------------------------
       
  1118 SafePointNode* SafePointNode::next_exception() const {
       
  1119   if (len() == req()) {
       
  1120     return NULL;
       
  1121   } else {
       
  1122     Node* n = in(req());
       
  1123     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
       
  1124     return (SafePointNode*) n;
       
  1125   }
       
  1126 }
       
  1127 
       
  1128 
       
  1129 //------------------------------Ideal------------------------------------------
       
  1130 // Skip over any collapsed Regions
       
  1131 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
       
  1132   return remove_dead_region(phase, can_reshape) ? this : NULL;
       
  1133 }
       
  1134 
       
  1135 //------------------------------Identity---------------------------------------
       
  1136 // Remove obviously duplicate safepoints
       
  1137 Node* SafePointNode::Identity(PhaseGVN* phase) {
       
  1138 
       
  1139   // If you have back to back safepoints, remove one
       
  1140   if( in(TypeFunc::Control)->is_SafePoint() )
       
  1141     return in(TypeFunc::Control);
       
  1142 
       
  1143   if( in(0)->is_Proj() ) {
       
  1144     Node *n0 = in(0)->in(0);
       
  1145     // Check if he is a call projection (except Leaf Call)
       
  1146     if( n0->is_Catch() ) {
       
  1147       n0 = n0->in(0)->in(0);
       
  1148       assert( n0->is_Call(), "expect a call here" );
       
  1149     }
       
  1150     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
       
  1151       // Useless Safepoint, so remove it
       
  1152       return in(TypeFunc::Control);
       
  1153     }
       
  1154   }
       
  1155 
       
  1156   return this;
       
  1157 }
       
  1158 
       
  1159 //------------------------------Value------------------------------------------
       
  1160 const Type* SafePointNode::Value(PhaseGVN* phase) const {
       
  1161   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
       
  1162   if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
       
  1163   return Type::CONTROL;
       
  1164 }
       
  1165 
       
  1166 #ifndef PRODUCT
       
  1167 void SafePointNode::dump_spec(outputStream *st) const {
       
  1168   st->print(" SafePoint ");
       
  1169   _replaced_nodes.dump(st);
       
  1170 }
       
  1171 
       
  1172 // The related nodes of a SafepointNode are all data inputs, excluding the
       
  1173 // control boundary, as well as all outputs till level 2 (to include projection
       
  1174 // nodes and targets). In compact mode, just include inputs till level 1 and
       
  1175 // outputs as before.
       
  1176 void SafePointNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
       
  1177   if (compact) {
       
  1178     this->collect_nodes(in_rel, 1, false, false);
       
  1179   } else {
       
  1180     this->collect_nodes_in_all_data(in_rel, false);
       
  1181   }
       
  1182   this->collect_nodes(out_rel, -2, false, false);
       
  1183 }
       
  1184 #endif
       
  1185 
       
  1186 const RegMask &SafePointNode::in_RegMask(uint idx) const {
       
  1187   if( idx < TypeFunc::Parms ) return RegMask::Empty;
       
  1188   // Values outside the domain represent debug info
       
  1189   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
       
  1190 }
       
  1191 const RegMask &SafePointNode::out_RegMask() const {
       
  1192   return RegMask::Empty;
       
  1193 }
       
  1194 
       
  1195 
       
  1196 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
       
  1197   assert((int)grow_by > 0, "sanity");
       
  1198   int monoff = jvms->monoff();
       
  1199   int scloff = jvms->scloff();
       
  1200   int endoff = jvms->endoff();
       
  1201   assert(endoff == (int)req(), "no other states or debug info after me");
       
  1202   Node* top = Compile::current()->top();
       
  1203   for (uint i = 0; i < grow_by; i++) {
       
  1204     ins_req(monoff, top);
       
  1205   }
       
  1206   jvms->set_monoff(monoff + grow_by);
       
  1207   jvms->set_scloff(scloff + grow_by);
       
  1208   jvms->set_endoff(endoff + grow_by);
       
  1209 }
       
  1210 
       
  1211 void SafePointNode::push_monitor(const FastLockNode *lock) {
       
  1212   // Add a LockNode, which points to both the original BoxLockNode (the
       
  1213   // stack space for the monitor) and the Object being locked.
       
  1214   const int MonitorEdges = 2;
       
  1215   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
       
  1216   assert(req() == jvms()->endoff(), "correct sizing");
       
  1217   int nextmon = jvms()->scloff();
       
  1218   if (GenerateSynchronizationCode) {
       
  1219     ins_req(nextmon,   lock->box_node());
       
  1220     ins_req(nextmon+1, lock->obj_node());
       
  1221   } else {
       
  1222     Node* top = Compile::current()->top();
       
  1223     ins_req(nextmon, top);
       
  1224     ins_req(nextmon, top);
       
  1225   }
       
  1226   jvms()->set_scloff(nextmon + MonitorEdges);
       
  1227   jvms()->set_endoff(req());
       
  1228 }
       
  1229 
       
  1230 void SafePointNode::pop_monitor() {
       
  1231   // Delete last monitor from debug info
       
  1232   debug_only(int num_before_pop = jvms()->nof_monitors());
       
  1233   const int MonitorEdges = 2;
       
  1234   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
       
  1235   int scloff = jvms()->scloff();
       
  1236   int endoff = jvms()->endoff();
       
  1237   int new_scloff = scloff - MonitorEdges;
       
  1238   int new_endoff = endoff - MonitorEdges;
       
  1239   jvms()->set_scloff(new_scloff);
       
  1240   jvms()->set_endoff(new_endoff);
       
  1241   while (scloff > new_scloff)  del_req_ordered(--scloff);
       
  1242   assert(jvms()->nof_monitors() == num_before_pop-1, "");
       
  1243 }
       
  1244 
       
  1245 Node *SafePointNode::peek_monitor_box() const {
       
  1246   int mon = jvms()->nof_monitors() - 1;
       
  1247   assert(mon >= 0, "must have a monitor");
       
  1248   return monitor_box(jvms(), mon);
       
  1249 }
       
  1250 
       
  1251 Node *SafePointNode::peek_monitor_obj() const {
       
  1252   int mon = jvms()->nof_monitors() - 1;
       
  1253   assert(mon >= 0, "must have a monitor");
       
  1254   return monitor_obj(jvms(), mon);
       
  1255 }
       
  1256 
       
  1257 // Do we Match on this edge index or not?  Match no edges
       
  1258 uint SafePointNode::match_edge(uint idx) const {
       
  1259   if( !needs_polling_address_input() )
       
  1260     return 0;
       
  1261 
       
  1262   return (TypeFunc::Parms == idx);
       
  1263 }
       
  1264 
       
  1265 //==============  SafePointScalarObjectNode  ==============
       
  1266 
       
  1267 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
       
  1268 #ifdef ASSERT
       
  1269                                                      AllocateNode* alloc,
       
  1270 #endif
       
  1271                                                      uint first_index,
       
  1272                                                      uint n_fields) :
       
  1273   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
       
  1274 #ifdef ASSERT
       
  1275   _alloc(alloc),
       
  1276 #endif
       
  1277   _first_index(first_index),
       
  1278   _n_fields(n_fields)
       
  1279 {
       
  1280   init_class_id(Class_SafePointScalarObject);
       
  1281 }
       
  1282 
       
  1283 // Do not allow value-numbering for SafePointScalarObject node.
       
  1284 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
       
  1285 uint SafePointScalarObjectNode::cmp( const Node &n ) const {
       
  1286   return (&n == this); // Always fail except on self
       
  1287 }
       
  1288 
       
  1289 uint SafePointScalarObjectNode::ideal_reg() const {
       
  1290   return 0; // No matching to machine instruction
       
  1291 }
       
  1292 
       
  1293 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
       
  1294   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
       
  1295 }
       
  1296 
       
  1297 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
       
  1298   return RegMask::Empty;
       
  1299 }
       
  1300 
       
  1301 uint SafePointScalarObjectNode::match_edge(uint idx) const {
       
  1302   return 0;
       
  1303 }
       
  1304 
       
  1305 SafePointScalarObjectNode*
       
  1306 SafePointScalarObjectNode::clone(Dict* sosn_map) const {
       
  1307   void* cached = (*sosn_map)[(void*)this];
       
  1308   if (cached != NULL) {
       
  1309     return (SafePointScalarObjectNode*)cached;
       
  1310   }
       
  1311   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
       
  1312   sosn_map->Insert((void*)this, (void*)res);
       
  1313   return res;
       
  1314 }
       
  1315 
       
  1316 
       
  1317 #ifndef PRODUCT
       
  1318 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
       
  1319   st->print(" # fields@[%d..%d]", first_index(),
       
  1320              first_index() + n_fields() - 1);
       
  1321 }
       
  1322 
       
  1323 #endif
       
  1324 
       
  1325 //=============================================================================
       
  1326 uint AllocateNode::size_of() const { return sizeof(*this); }
       
  1327 
       
  1328 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
       
  1329                            Node *ctrl, Node *mem, Node *abio,
       
  1330                            Node *size, Node *klass_node, Node *initial_test)
       
  1331   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
       
  1332 {
       
  1333   init_class_id(Class_Allocate);
       
  1334   init_flags(Flag_is_macro);
       
  1335   _is_scalar_replaceable = false;
       
  1336   _is_non_escaping = false;
       
  1337   _is_allocation_MemBar_redundant = false;
       
  1338   Node *topnode = C->top();
       
  1339 
       
  1340   init_req( TypeFunc::Control  , ctrl );
       
  1341   init_req( TypeFunc::I_O      , abio );
       
  1342   init_req( TypeFunc::Memory   , mem );
       
  1343   init_req( TypeFunc::ReturnAdr, topnode );
       
  1344   init_req( TypeFunc::FramePtr , topnode );
       
  1345   init_req( AllocSize          , size);
       
  1346   init_req( KlassNode          , klass_node);
       
  1347   init_req( InitialTest        , initial_test);
       
  1348   init_req( ALength            , topnode);
       
  1349   C->add_macro_node(this);
       
  1350 }
       
  1351 
       
  1352 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
       
  1353 {
       
  1354   assert(initializer != NULL &&
       
  1355          initializer->is_initializer() &&
       
  1356          !initializer->is_static(),
       
  1357              "unexpected initializer method");
       
  1358   BCEscapeAnalyzer* analyzer = initializer->get_bcea();
       
  1359   if (analyzer == NULL) {
       
  1360     return;
       
  1361   }
       
  1362 
       
  1363   // Allocation node is first parameter in its initializer
       
  1364   if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
       
  1365     _is_allocation_MemBar_redundant = true;
       
  1366   }
       
  1367 }
       
  1368 
       
  1369 //=============================================================================
       
  1370 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
       
  1371   if (remove_dead_region(phase, can_reshape))  return this;
       
  1372   // Don't bother trying to transform a dead node
       
  1373   if (in(0) && in(0)->is_top())  return NULL;
       
  1374 
       
  1375   const Type* type = phase->type(Ideal_length());
       
  1376   if (type->isa_int() && type->is_int()->_hi < 0) {
       
  1377     if (can_reshape) {
       
  1378       PhaseIterGVN *igvn = phase->is_IterGVN();
       
  1379       // Unreachable fall through path (negative array length),
       
  1380       // the allocation can only throw so disconnect it.
       
  1381       Node* proj = proj_out(TypeFunc::Control);
       
  1382       Node* catchproj = NULL;
       
  1383       if (proj != NULL) {
       
  1384         for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
       
  1385           Node *cn = proj->fast_out(i);
       
  1386           if (cn->is_Catch()) {
       
  1387             catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
       
  1388             break;
       
  1389           }
       
  1390         }
       
  1391       }
       
  1392       if (catchproj != NULL && catchproj->outcnt() > 0 &&
       
  1393           (catchproj->outcnt() > 1 ||
       
  1394            catchproj->unique_out()->Opcode() != Op_Halt)) {
       
  1395         assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
       
  1396         Node* nproj = catchproj->clone();
       
  1397         igvn->register_new_node_with_optimizer(nproj);
       
  1398 
       
  1399         Node *frame = new ParmNode( phase->C->start(), TypeFunc::FramePtr );
       
  1400         frame = phase->transform(frame);
       
  1401         // Halt & Catch Fire
       
  1402         Node *halt = new HaltNode( nproj, frame );
       
  1403         phase->C->root()->add_req(halt);
       
  1404         phase->transform(halt);
       
  1405 
       
  1406         igvn->replace_node(catchproj, phase->C->top());
       
  1407         return this;
       
  1408       }
       
  1409     } else {
       
  1410       // Can't correct it during regular GVN so register for IGVN
       
  1411       phase->C->record_for_igvn(this);
       
  1412     }
       
  1413   }
       
  1414   return NULL;
       
  1415 }
       
  1416 
       
  1417 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
       
  1418 // CastII, if appropriate.  If we are not allowed to create new nodes, and
       
  1419 // a CastII is appropriate, return NULL.
       
  1420 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
       
  1421   Node *length = in(AllocateNode::ALength);
       
  1422   assert(length != NULL, "length is not null");
       
  1423 
       
  1424   const TypeInt* length_type = phase->find_int_type(length);
       
  1425   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
       
  1426 
       
  1427   if (ary_type != NULL && length_type != NULL) {
       
  1428     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
       
  1429     if (narrow_length_type != length_type) {
       
  1430       // Assert one of:
       
  1431       //   - the narrow_length is 0
       
  1432       //   - the narrow_length is not wider than length
       
  1433       assert(narrow_length_type == TypeInt::ZERO ||
       
  1434              length_type->is_con() && narrow_length_type->is_con() &&
       
  1435                 (narrow_length_type->_hi <= length_type->_lo) ||
       
  1436              (narrow_length_type->_hi <= length_type->_hi &&
       
  1437               narrow_length_type->_lo >= length_type->_lo),
       
  1438              "narrow type must be narrower than length type");
       
  1439 
       
  1440       // Return NULL if new nodes are not allowed
       
  1441       if (!allow_new_nodes) return NULL;
       
  1442       // Create a cast which is control dependent on the initialization to
       
  1443       // propagate the fact that the array length must be positive.
       
  1444       length = new CastIINode(length, narrow_length_type);
       
  1445       length->set_req(0, initialization()->proj_out(0));
       
  1446     }
       
  1447   }
       
  1448 
       
  1449   return length;
       
  1450 }
       
  1451 
       
  1452 //=============================================================================
       
  1453 uint LockNode::size_of() const { return sizeof(*this); }
       
  1454 
       
  1455 // Redundant lock elimination
       
  1456 //
       
  1457 // There are various patterns of locking where we release and
       
  1458 // immediately reacquire a lock in a piece of code where no operations
       
  1459 // occur in between that would be observable.  In those cases we can
       
  1460 // skip releasing and reacquiring the lock without violating any
       
  1461 // fairness requirements.  Doing this around a loop could cause a lock
       
  1462 // to be held for a very long time so we concentrate on non-looping
       
  1463 // control flow.  We also require that the operations are fully
       
  1464 // redundant meaning that we don't introduce new lock operations on
       
  1465 // some paths so to be able to eliminate it on others ala PRE.  This
       
  1466 // would probably require some more extensive graph manipulation to
       
  1467 // guarantee that the memory edges were all handled correctly.
       
  1468 //
       
  1469 // Assuming p is a simple predicate which can't trap in any way and s
       
  1470 // is a synchronized method consider this code:
       
  1471 //
       
  1472 //   s();
       
  1473 //   if (p)
       
  1474 //     s();
       
  1475 //   else
       
  1476 //     s();
       
  1477 //   s();
       
  1478 //
       
  1479 // 1. The unlocks of the first call to s can be eliminated if the
       
  1480 // locks inside the then and else branches are eliminated.
       
  1481 //
       
  1482 // 2. The unlocks of the then and else branches can be eliminated if
       
  1483 // the lock of the final call to s is eliminated.
       
  1484 //
       
  1485 // Either of these cases subsumes the simple case of sequential control flow
       
  1486 //
       
  1487 // Addtionally we can eliminate versions without the else case:
       
  1488 //
       
  1489 //   s();
       
  1490 //   if (p)
       
  1491 //     s();
       
  1492 //   s();
       
  1493 //
       
  1494 // 3. In this case we eliminate the unlock of the first s, the lock
       
  1495 // and unlock in the then case and the lock in the final s.
       
  1496 //
       
  1497 // Note also that in all these cases the then/else pieces don't have
       
  1498 // to be trivial as long as they begin and end with synchronization
       
  1499 // operations.
       
  1500 //
       
  1501 //   s();
       
  1502 //   if (p)
       
  1503 //     s();
       
  1504 //     f();
       
  1505 //     s();
       
  1506 //   s();
       
  1507 //
       
  1508 // The code will work properly for this case, leaving in the unlock
       
  1509 // before the call to f and the relock after it.
       
  1510 //
       
  1511 // A potentially interesting case which isn't handled here is when the
       
  1512 // locking is partially redundant.
       
  1513 //
       
  1514 //   s();
       
  1515 //   if (p)
       
  1516 //     s();
       
  1517 //
       
  1518 // This could be eliminated putting unlocking on the else case and
       
  1519 // eliminating the first unlock and the lock in the then side.
       
  1520 // Alternatively the unlock could be moved out of the then side so it
       
  1521 // was after the merge and the first unlock and second lock
       
  1522 // eliminated.  This might require less manipulation of the memory
       
  1523 // state to get correct.
       
  1524 //
       
  1525 // Additionally we might allow work between a unlock and lock before
       
  1526 // giving up eliminating the locks.  The current code disallows any
       
  1527 // conditional control flow between these operations.  A formulation
       
  1528 // similar to partial redundancy elimination computing the
       
  1529 // availability of unlocking and the anticipatability of locking at a
       
  1530 // program point would allow detection of fully redundant locking with
       
  1531 // some amount of work in between.  I'm not sure how often I really
       
  1532 // think that would occur though.  Most of the cases I've seen
       
  1533 // indicate it's likely non-trivial work would occur in between.
       
  1534 // There may be other more complicated constructs where we could
       
  1535 // eliminate locking but I haven't seen any others appear as hot or
       
  1536 // interesting.
       
  1537 //
       
  1538 // Locking and unlocking have a canonical form in ideal that looks
       
  1539 // roughly like this:
       
  1540 //
       
  1541 //              <obj>
       
  1542 //                | \\------+
       
  1543 //                |  \       \
       
  1544 //                | BoxLock   \
       
  1545 //                |  |   |     \
       
  1546 //                |  |    \     \
       
  1547 //                |  |   FastLock
       
  1548 //                |  |   /
       
  1549 //                |  |  /
       
  1550 //                |  |  |
       
  1551 //
       
  1552 //               Lock
       
  1553 //                |
       
  1554 //            Proj #0
       
  1555 //                |
       
  1556 //            MembarAcquire
       
  1557 //                |
       
  1558 //            Proj #0
       
  1559 //
       
  1560 //            MembarRelease
       
  1561 //                |
       
  1562 //            Proj #0
       
  1563 //                |
       
  1564 //              Unlock
       
  1565 //                |
       
  1566 //            Proj #0
       
  1567 //
       
  1568 //
       
  1569 // This code proceeds by processing Lock nodes during PhaseIterGVN
       
  1570 // and searching back through its control for the proper code
       
  1571 // patterns.  Once it finds a set of lock and unlock operations to
       
  1572 // eliminate they are marked as eliminatable which causes the
       
  1573 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
       
  1574 //
       
  1575 //=============================================================================
       
  1576 
       
  1577 //
       
  1578 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
       
  1579 //   - copy regions.  (These may not have been optimized away yet.)
       
  1580 //   - eliminated locking nodes
       
  1581 //
       
  1582 static Node *next_control(Node *ctrl) {
       
  1583   if (ctrl == NULL)
       
  1584     return NULL;
       
  1585   while (1) {
       
  1586     if (ctrl->is_Region()) {
       
  1587       RegionNode *r = ctrl->as_Region();
       
  1588       Node *n = r->is_copy();
       
  1589       if (n == NULL)
       
  1590         break;  // hit a region, return it
       
  1591       else
       
  1592         ctrl = n;
       
  1593     } else if (ctrl->is_Proj()) {
       
  1594       Node *in0 = ctrl->in(0);
       
  1595       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
       
  1596         ctrl = in0->in(0);
       
  1597       } else {
       
  1598         break;
       
  1599       }
       
  1600     } else {
       
  1601       break; // found an interesting control
       
  1602     }
       
  1603   }
       
  1604   return ctrl;
       
  1605 }
       
  1606 //
       
  1607 // Given a control, see if it's the control projection of an Unlock which
       
  1608 // operating on the same object as lock.
       
  1609 //
       
  1610 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
       
  1611                                             GrowableArray<AbstractLockNode*> &lock_ops) {
       
  1612   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
       
  1613   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
       
  1614     Node *n = ctrl_proj->in(0);
       
  1615     if (n != NULL && n->is_Unlock()) {
       
  1616       UnlockNode *unlock = n->as_Unlock();
       
  1617       if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
       
  1618           BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
       
  1619           !unlock->is_eliminated()) {
       
  1620         lock_ops.append(unlock);
       
  1621         return true;
       
  1622       }
       
  1623     }
       
  1624   }
       
  1625   return false;
       
  1626 }
       
  1627 
       
  1628 //
       
  1629 // Find the lock matching an unlock.  Returns null if a safepoint
       
  1630 // or complicated control is encountered first.
       
  1631 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
       
  1632   LockNode *lock_result = NULL;
       
  1633   // find the matching lock, or an intervening safepoint
       
  1634   Node *ctrl = next_control(unlock->in(0));
       
  1635   while (1) {
       
  1636     assert(ctrl != NULL, "invalid control graph");
       
  1637     assert(!ctrl->is_Start(), "missing lock for unlock");
       
  1638     if (ctrl->is_top()) break;  // dead control path
       
  1639     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
       
  1640     if (ctrl->is_SafePoint()) {
       
  1641         break;  // found a safepoint (may be the lock we are searching for)
       
  1642     } else if (ctrl->is_Region()) {
       
  1643       // Check for a simple diamond pattern.  Punt on anything more complicated
       
  1644       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
       
  1645         Node *in1 = next_control(ctrl->in(1));
       
  1646         Node *in2 = next_control(ctrl->in(2));
       
  1647         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
       
  1648              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
       
  1649           ctrl = next_control(in1->in(0)->in(0));
       
  1650         } else {
       
  1651           break;
       
  1652         }
       
  1653       } else {
       
  1654         break;
       
  1655       }
       
  1656     } else {
       
  1657       ctrl = next_control(ctrl->in(0));  // keep searching
       
  1658     }
       
  1659   }
       
  1660   if (ctrl->is_Lock()) {
       
  1661     LockNode *lock = ctrl->as_Lock();
       
  1662     if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
       
  1663         BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
       
  1664       lock_result = lock;
       
  1665     }
       
  1666   }
       
  1667   return lock_result;
       
  1668 }
       
  1669 
       
  1670 // This code corresponds to case 3 above.
       
  1671 
       
  1672 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
       
  1673                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
       
  1674   Node* if_node = node->in(0);
       
  1675   bool  if_true = node->is_IfTrue();
       
  1676 
       
  1677   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
       
  1678     Node *lock_ctrl = next_control(if_node->in(0));
       
  1679     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
       
  1680       Node* lock1_node = NULL;
       
  1681       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
       
  1682       if (if_true) {
       
  1683         if (proj->is_IfFalse() && proj->outcnt() == 1) {
       
  1684           lock1_node = proj->unique_out();
       
  1685         }
       
  1686       } else {
       
  1687         if (proj->is_IfTrue() && proj->outcnt() == 1) {
       
  1688           lock1_node = proj->unique_out();
       
  1689         }
       
  1690       }
       
  1691       if (lock1_node != NULL && lock1_node->is_Lock()) {
       
  1692         LockNode *lock1 = lock1_node->as_Lock();
       
  1693         if (lock->obj_node()->eqv_uncast(lock1->obj_node()) &&
       
  1694             BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
       
  1695             !lock1->is_eliminated()) {
       
  1696           lock_ops.append(lock1);
       
  1697           return true;
       
  1698         }
       
  1699       }
       
  1700     }
       
  1701   }
       
  1702 
       
  1703   lock_ops.trunc_to(0);
       
  1704   return false;
       
  1705 }
       
  1706 
       
  1707 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
       
  1708                                GrowableArray<AbstractLockNode*> &lock_ops) {
       
  1709   // check each control merging at this point for a matching unlock.
       
  1710   // in(0) should be self edge so skip it.
       
  1711   for (int i = 1; i < (int)region->req(); i++) {
       
  1712     Node *in_node = next_control(region->in(i));
       
  1713     if (in_node != NULL) {
       
  1714       if (find_matching_unlock(in_node, lock, lock_ops)) {
       
  1715         // found a match so keep on checking.
       
  1716         continue;
       
  1717       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
       
  1718         continue;
       
  1719       }
       
  1720 
       
  1721       // If we fall through to here then it was some kind of node we
       
  1722       // don't understand or there wasn't a matching unlock, so give
       
  1723       // up trying to merge locks.
       
  1724       lock_ops.trunc_to(0);
       
  1725       return false;
       
  1726     }
       
  1727   }
       
  1728   return true;
       
  1729 
       
  1730 }
       
  1731 
       
  1732 #ifndef PRODUCT
       
  1733 //
       
  1734 // Create a counter which counts the number of times this lock is acquired
       
  1735 //
       
  1736 void AbstractLockNode::create_lock_counter(JVMState* state) {
       
  1737   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
       
  1738 }
       
  1739 
       
  1740 void AbstractLockNode::set_eliminated_lock_counter() {
       
  1741   if (_counter) {
       
  1742     // Update the counter to indicate that this lock was eliminated.
       
  1743     // The counter update code will stay around even though the
       
  1744     // optimizer will eliminate the lock operation itself.
       
  1745     _counter->set_tag(NamedCounter::EliminatedLockCounter);
       
  1746   }
       
  1747 }
       
  1748 
       
  1749 const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"};
       
  1750 
       
  1751 void AbstractLockNode::dump_spec(outputStream* st) const {
       
  1752   st->print("%s ", _kind_names[_kind]);
       
  1753   CallNode::dump_spec(st);
       
  1754 }
       
  1755 
       
  1756 void AbstractLockNode::dump_compact_spec(outputStream* st) const {
       
  1757   st->print("%s", _kind_names[_kind]);
       
  1758 }
       
  1759 
       
  1760 // The related set of lock nodes includes the control boundary.
       
  1761 void AbstractLockNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
       
  1762   if (compact) {
       
  1763       this->collect_nodes(in_rel, 1, false, false);
       
  1764     } else {
       
  1765       this->collect_nodes_in_all_data(in_rel, true);
       
  1766     }
       
  1767     this->collect_nodes(out_rel, -2, false, false);
       
  1768 }
       
  1769 #endif
       
  1770 
       
  1771 //=============================================================================
       
  1772 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
       
  1773 
       
  1774   // perform any generic optimizations first (returns 'this' or NULL)
       
  1775   Node *result = SafePointNode::Ideal(phase, can_reshape);
       
  1776   if (result != NULL)  return result;
       
  1777   // Don't bother trying to transform a dead node
       
  1778   if (in(0) && in(0)->is_top())  return NULL;
       
  1779 
       
  1780   // Now see if we can optimize away this lock.  We don't actually
       
  1781   // remove the locking here, we simply set the _eliminate flag which
       
  1782   // prevents macro expansion from expanding the lock.  Since we don't
       
  1783   // modify the graph, the value returned from this function is the
       
  1784   // one computed above.
       
  1785   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
       
  1786     //
       
  1787     // If we are locking an unescaped object, the lock/unlock is unnecessary
       
  1788     //
       
  1789     ConnectionGraph *cgr = phase->C->congraph();
       
  1790     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
       
  1791       assert(!is_eliminated() || is_coarsened(), "sanity");
       
  1792       // The lock could be marked eliminated by lock coarsening
       
  1793       // code during first IGVN before EA. Replace coarsened flag
       
  1794       // to eliminate all associated locks/unlocks.
       
  1795 #ifdef ASSERT
       
  1796       this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
       
  1797 #endif
       
  1798       this->set_non_esc_obj();
       
  1799       return result;
       
  1800     }
       
  1801 
       
  1802     //
       
  1803     // Try lock coarsening
       
  1804     //
       
  1805     PhaseIterGVN* iter = phase->is_IterGVN();
       
  1806     if (iter != NULL && !is_eliminated()) {
       
  1807 
       
  1808       GrowableArray<AbstractLockNode*>   lock_ops;
       
  1809 
       
  1810       Node *ctrl = next_control(in(0));
       
  1811 
       
  1812       // now search back for a matching Unlock
       
  1813       if (find_matching_unlock(ctrl, this, lock_ops)) {
       
  1814         // found an unlock directly preceding this lock.  This is the
       
  1815         // case of single unlock directly control dependent on a
       
  1816         // single lock which is the trivial version of case 1 or 2.
       
  1817       } else if (ctrl->is_Region() ) {
       
  1818         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
       
  1819         // found lock preceded by multiple unlocks along all paths
       
  1820         // joining at this point which is case 3 in description above.
       
  1821         }
       
  1822       } else {
       
  1823         // see if this lock comes from either half of an if and the
       
  1824         // predecessors merges unlocks and the other half of the if
       
  1825         // performs a lock.
       
  1826         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
       
  1827           // found unlock splitting to an if with locks on both branches.
       
  1828         }
       
  1829       }
       
  1830 
       
  1831       if (lock_ops.length() > 0) {
       
  1832         // add ourselves to the list of locks to be eliminated.
       
  1833         lock_ops.append(this);
       
  1834 
       
  1835   #ifndef PRODUCT
       
  1836         if (PrintEliminateLocks) {
       
  1837           int locks = 0;
       
  1838           int unlocks = 0;
       
  1839           for (int i = 0; i < lock_ops.length(); i++) {
       
  1840             AbstractLockNode* lock = lock_ops.at(i);
       
  1841             if (lock->Opcode() == Op_Lock)
       
  1842               locks++;
       
  1843             else
       
  1844               unlocks++;
       
  1845             if (Verbose) {
       
  1846               lock->dump(1);
       
  1847             }
       
  1848           }
       
  1849           tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
       
  1850         }
       
  1851   #endif
       
  1852 
       
  1853         // for each of the identified locks, mark them
       
  1854         // as eliminatable
       
  1855         for (int i = 0; i < lock_ops.length(); i++) {
       
  1856           AbstractLockNode* lock = lock_ops.at(i);
       
  1857 
       
  1858           // Mark it eliminated by coarsening and update any counters
       
  1859 #ifdef ASSERT
       
  1860           lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
       
  1861 #endif
       
  1862           lock->set_coarsened();
       
  1863         }
       
  1864       } else if (ctrl->is_Region() &&
       
  1865                  iter->_worklist.member(ctrl)) {
       
  1866         // We weren't able to find any opportunities but the region this
       
  1867         // lock is control dependent on hasn't been processed yet so put
       
  1868         // this lock back on the worklist so we can check again once any
       
  1869         // region simplification has occurred.
       
  1870         iter->_worklist.push(this);
       
  1871       }
       
  1872     }
       
  1873   }
       
  1874 
       
  1875   return result;
       
  1876 }
       
  1877 
       
  1878 //=============================================================================
       
  1879 bool LockNode::is_nested_lock_region() {
       
  1880   return is_nested_lock_region(NULL);
       
  1881 }
       
  1882 
       
  1883 // p is used for access to compilation log; no logging if NULL
       
  1884 bool LockNode::is_nested_lock_region(Compile * c) {
       
  1885   BoxLockNode* box = box_node()->as_BoxLock();
       
  1886   int stk_slot = box->stack_slot();
       
  1887   if (stk_slot <= 0) {
       
  1888 #ifdef ASSERT
       
  1889     this->log_lock_optimization(c, "eliminate_lock_INLR_1");
       
  1890 #endif
       
  1891     return false; // External lock or it is not Box (Phi node).
       
  1892   }
       
  1893 
       
  1894   // Ignore complex cases: merged locks or multiple locks.
       
  1895   Node* obj = obj_node();
       
  1896   LockNode* unique_lock = NULL;
       
  1897   if (!box->is_simple_lock_region(&unique_lock, obj)) {
       
  1898 #ifdef ASSERT
       
  1899     this->log_lock_optimization(c, "eliminate_lock_INLR_2a");
       
  1900 #endif
       
  1901     return false;
       
  1902   }
       
  1903   if (unique_lock != this) {
       
  1904 #ifdef ASSERT
       
  1905     this->log_lock_optimization(c, "eliminate_lock_INLR_2b");
       
  1906 #endif
       
  1907     return false;
       
  1908   }
       
  1909 
       
  1910   // Look for external lock for the same object.
       
  1911   SafePointNode* sfn = this->as_SafePoint();
       
  1912   JVMState* youngest_jvms = sfn->jvms();
       
  1913   int max_depth = youngest_jvms->depth();
       
  1914   for (int depth = 1; depth <= max_depth; depth++) {
       
  1915     JVMState* jvms = youngest_jvms->of_depth(depth);
       
  1916     int num_mon  = jvms->nof_monitors();
       
  1917     // Loop over monitors
       
  1918     for (int idx = 0; idx < num_mon; idx++) {
       
  1919       Node* obj_node = sfn->monitor_obj(jvms, idx);
       
  1920       BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
       
  1921       if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
       
  1922         return true;
       
  1923       }
       
  1924     }
       
  1925   }
       
  1926 #ifdef ASSERT
       
  1927   this->log_lock_optimization(c, "eliminate_lock_INLR_3");
       
  1928 #endif
       
  1929   return false;
       
  1930 }
       
  1931 
       
  1932 //=============================================================================
       
  1933 uint UnlockNode::size_of() const { return sizeof(*this); }
       
  1934 
       
  1935 //=============================================================================
       
  1936 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
       
  1937 
       
  1938   // perform any generic optimizations first (returns 'this' or NULL)
       
  1939   Node *result = SafePointNode::Ideal(phase, can_reshape);
       
  1940   if (result != NULL)  return result;
       
  1941   // Don't bother trying to transform a dead node
       
  1942   if (in(0) && in(0)->is_top())  return NULL;
       
  1943 
       
  1944   // Now see if we can optimize away this unlock.  We don't actually
       
  1945   // remove the unlocking here, we simply set the _eliminate flag which
       
  1946   // prevents macro expansion from expanding the unlock.  Since we don't
       
  1947   // modify the graph, the value returned from this function is the
       
  1948   // one computed above.
       
  1949   // Escape state is defined after Parse phase.
       
  1950   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
       
  1951     //
       
  1952     // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
       
  1953     //
       
  1954     ConnectionGraph *cgr = phase->C->congraph();
       
  1955     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
       
  1956       assert(!is_eliminated() || is_coarsened(), "sanity");
       
  1957       // The lock could be marked eliminated by lock coarsening
       
  1958       // code during first IGVN before EA. Replace coarsened flag
       
  1959       // to eliminate all associated locks/unlocks.
       
  1960 #ifdef ASSERT
       
  1961       this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
       
  1962 #endif
       
  1963       this->set_non_esc_obj();
       
  1964     }
       
  1965   }
       
  1966   return result;
       
  1967 }
       
  1968 
       
  1969 const char * AbstractLockNode::kind_as_string() const {
       
  1970   return is_coarsened()   ? "coarsened" :
       
  1971          is_nested()      ? "nested" :
       
  1972          is_non_esc_obj() ? "non_escaping" :
       
  1973          "?";
       
  1974 }
       
  1975 
       
  1976 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag)  const {
       
  1977   if (C == NULL) {
       
  1978     return;
       
  1979   }
       
  1980   CompileLog* log = C->log();
       
  1981   if (log != NULL) {
       
  1982     log->begin_head("%s lock='%d' compile_id='%d' class_id='%s' kind='%s'",
       
  1983           tag, is_Lock(), C->compile_id(),
       
  1984           is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
       
  1985           kind_as_string());
       
  1986     log->stamp();
       
  1987     log->end_head();
       
  1988     JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
       
  1989     while (p != NULL) {
       
  1990       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
       
  1991       p = p->caller();
       
  1992     }
       
  1993     log->tail(tag);
       
  1994   }
       
  1995 }
       
  1996 
       
  1997 bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr *t_oop, PhaseTransform *phase) {
       
  1998   if (dest_t->is_known_instance() && t_oop->is_known_instance()) {
       
  1999     return dest_t->instance_id() == t_oop->instance_id();
       
  2000   }
       
  2001 
       
  2002   if (dest_t->isa_instptr() && !dest_t->klass()->equals(phase->C->env()->Object_klass())) {
       
  2003     // clone
       
  2004     if (t_oop->isa_aryptr()) {
       
  2005       return false;
       
  2006     }
       
  2007     if (!t_oop->isa_instptr()) {
       
  2008       return true;
       
  2009     }
       
  2010     if (dest_t->klass()->is_subtype_of(t_oop->klass()) || t_oop->klass()->is_subtype_of(dest_t->klass())) {
       
  2011       return true;
       
  2012     }
       
  2013     // unrelated
       
  2014     return false;
       
  2015   }
       
  2016 
       
  2017   if (dest_t->isa_aryptr()) {
       
  2018     // arraycopy or array clone
       
  2019     if (t_oop->isa_instptr()) {
       
  2020       return false;
       
  2021     }
       
  2022     if (!t_oop->isa_aryptr()) {
       
  2023       return true;
       
  2024     }
       
  2025 
       
  2026     const Type* elem = dest_t->is_aryptr()->elem();
       
  2027     if (elem == Type::BOTTOM) {
       
  2028       // An array but we don't know what elements are
       
  2029       return true;
       
  2030     }
       
  2031 
       
  2032     dest_t = dest_t->add_offset(Type::OffsetBot)->is_oopptr();
       
  2033     uint dest_alias = phase->C->get_alias_index(dest_t);
       
  2034     uint t_oop_alias = phase->C->get_alias_index(t_oop);
       
  2035 
       
  2036     return dest_alias == t_oop_alias;
       
  2037   }
       
  2038 
       
  2039   return true;
       
  2040 }
       
  2041