src/hotspot/share/opto/buildOopMap.cpp
changeset 47216 71c04702a3d5
parent 46625 edefffab74e2
child 49026 844bf1deff1a
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 2002, 2016, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "code/vmreg.inline.hpp"
       
    27 #include "compiler/oopMap.hpp"
       
    28 #include "memory/resourceArea.hpp"
       
    29 #include "opto/addnode.hpp"
       
    30 #include "opto/callnode.hpp"
       
    31 #include "opto/compile.hpp"
       
    32 #include "opto/machnode.hpp"
       
    33 #include "opto/matcher.hpp"
       
    34 #include "opto/phase.hpp"
       
    35 #include "opto/regalloc.hpp"
       
    36 #include "opto/rootnode.hpp"
       
    37 #include "utilities/align.hpp"
       
    38 
       
    39 // The functions in this file builds OopMaps after all scheduling is done.
       
    40 //
       
    41 // OopMaps contain a list of all registers and stack-slots containing oops (so
       
    42 // they can be updated by GC).  OopMaps also contain a list of derived-pointer
       
    43 // base-pointer pairs.  When the base is moved, the derived pointer moves to
       
    44 // follow it.  Finally, any registers holding callee-save values are also
       
    45 // recorded.  These might contain oops, but only the caller knows.
       
    46 //
       
    47 // BuildOopMaps implements a simple forward reaching-defs solution.  At each
       
    48 // GC point we'll have the reaching-def Nodes.  If the reaching Nodes are
       
    49 // typed as pointers (no offset), then they are oops.  Pointers+offsets are
       
    50 // derived pointers, and bases can be found from them.  Finally, we'll also
       
    51 // track reaching callee-save values.  Note that a copy of a callee-save value
       
    52 // "kills" it's source, so that only 1 copy of a callee-save value is alive at
       
    53 // a time.
       
    54 //
       
    55 // We run a simple bitvector liveness pass to help trim out dead oops.  Due to
       
    56 // irreducible loops, we can have a reaching def of an oop that only reaches
       
    57 // along one path and no way to know if it's valid or not on the other path.
       
    58 // The bitvectors are quite dense and the liveness pass is fast.
       
    59 //
       
    60 // At GC points, we consult this information to build OopMaps.  All reaching
       
    61 // defs typed as oops are added to the OopMap.  Only 1 instance of a
       
    62 // callee-save register can be recorded.  For derived pointers, we'll have to
       
    63 // find and record the register holding the base.
       
    64 //
       
    65 // The reaching def's is a simple 1-pass worklist approach.  I tried a clever
       
    66 // breadth-first approach but it was worse (showed O(n^2) in the
       
    67 // pick-next-block code).
       
    68 //
       
    69 // The relevant data is kept in a struct of arrays (it could just as well be
       
    70 // an array of structs, but the struct-of-arrays is generally a little more
       
    71 // efficient).  The arrays are indexed by register number (including
       
    72 // stack-slots as registers) and so is bounded by 200 to 300 elements in
       
    73 // practice.  One array will map to a reaching def Node (or NULL for
       
    74 // conflict/dead).  The other array will map to a callee-saved register or
       
    75 // OptoReg::Bad for not-callee-saved.
       
    76 
       
    77 
       
    78 // Structure to pass around
       
    79 struct OopFlow : public ResourceObj {
       
    80   short *_callees;              // Array mapping register to callee-saved
       
    81   Node **_defs;                 // array mapping register to reaching def
       
    82                                 // or NULL if dead/conflict
       
    83   // OopFlow structs, when not being actively modified, describe the _end_ of
       
    84   // this block.
       
    85   Block *_b;                    // Block for this struct
       
    86   OopFlow *_next;               // Next free OopFlow
       
    87                                 // or NULL if dead/conflict
       
    88   Compile* C;
       
    89 
       
    90   OopFlow( short *callees, Node **defs, Compile* c ) : _callees(callees), _defs(defs),
       
    91     _b(NULL), _next(NULL), C(c) { }
       
    92 
       
    93   // Given reaching-defs for this block start, compute it for this block end
       
    94   void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash );
       
    95 
       
    96   // Merge these two OopFlows into the 'this' pointer.
       
    97   void merge( OopFlow *flow, int max_reg );
       
    98 
       
    99   // Copy a 'flow' over an existing flow
       
   100   void clone( OopFlow *flow, int max_size);
       
   101 
       
   102   // Make a new OopFlow from scratch
       
   103   static OopFlow *make( Arena *A, int max_size, Compile* C );
       
   104 
       
   105   // Build an oopmap from the current flow info
       
   106   OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
       
   107 };
       
   108 
       
   109 // Given reaching-defs for this block start, compute it for this block end
       
   110 void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
       
   111 
       
   112   for( uint i=0; i<_b->number_of_nodes(); i++ ) {
       
   113     Node *n = _b->get_node(i);
       
   114 
       
   115     if( n->jvms() ) {           // Build an OopMap here?
       
   116       JVMState *jvms = n->jvms();
       
   117       // no map needed for leaf calls
       
   118       if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) {
       
   119         int *live = (int*) (*safehash)[n];
       
   120         assert( live, "must find live" );
       
   121         n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) );
       
   122       }
       
   123     }
       
   124 
       
   125     // Assign new reaching def's.
       
   126     // Note that I padded the _defs and _callees arrays so it's legal
       
   127     // to index at _defs[OptoReg::Bad].
       
   128     OptoReg::Name first = regalloc->get_reg_first(n);
       
   129     OptoReg::Name second = regalloc->get_reg_second(n);
       
   130     _defs[first] = n;
       
   131     _defs[second] = n;
       
   132 
       
   133     // Pass callee-save info around copies
       
   134     int idx = n->is_Copy();
       
   135     if( idx ) {                 // Copies move callee-save info
       
   136       OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx));
       
   137       OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx));
       
   138       int tmp_first = _callees[old_first];
       
   139       int tmp_second = _callees[old_second];
       
   140       _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location
       
   141       _callees[old_second] = OptoReg::Bad;
       
   142       _callees[first] = tmp_first;
       
   143       _callees[second] = tmp_second;
       
   144     } else if( n->is_Phi() ) {  // Phis do not mod callee-saves
       
   145       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" );
       
   146       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" );
       
   147       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" );
       
   148       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" );
       
   149     } else {
       
   150       _callees[first] = OptoReg::Bad; // No longer holding a callee-save value
       
   151       _callees[second] = OptoReg::Bad;
       
   152 
       
   153       // Find base case for callee saves
       
   154       if( n->is_Proj() && n->in(0)->is_Start() ) {
       
   155         if( OptoReg::is_reg(first) &&
       
   156             regalloc->_matcher.is_save_on_entry(first) )
       
   157           _callees[first] = first;
       
   158         if( OptoReg::is_reg(second) &&
       
   159             regalloc->_matcher.is_save_on_entry(second) )
       
   160           _callees[second] = second;
       
   161       }
       
   162     }
       
   163   }
       
   164 }
       
   165 
       
   166 // Merge the given flow into the 'this' flow
       
   167 void OopFlow::merge( OopFlow *flow, int max_reg ) {
       
   168   assert( _b == NULL, "merging into a happy flow" );
       
   169   assert( flow->_b, "this flow is still alive" );
       
   170   assert( flow != this, "no self flow" );
       
   171 
       
   172   // Do the merge.  If there are any differences, drop to 'bottom' which
       
   173   // is OptoReg::Bad or NULL depending.
       
   174   for( int i=0; i<max_reg; i++ ) {
       
   175     // Merge the callee-save's
       
   176     if( _callees[i] != flow->_callees[i] )
       
   177       _callees[i] = OptoReg::Bad;
       
   178     // Merge the reaching defs
       
   179     if( _defs[i] != flow->_defs[i] )
       
   180       _defs[i] = NULL;
       
   181   }
       
   182 
       
   183 }
       
   184 
       
   185 void OopFlow::clone( OopFlow *flow, int max_size ) {
       
   186   _b = flow->_b;
       
   187   memcpy( _callees, flow->_callees, sizeof(short)*max_size);
       
   188   memcpy( _defs   , flow->_defs   , sizeof(Node*)*max_size);
       
   189 }
       
   190 
       
   191 OopFlow *OopFlow::make( Arena *A, int max_size, Compile* C ) {
       
   192   short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
       
   193   Node **defs    = NEW_ARENA_ARRAY(A,Node*,max_size+1);
       
   194   debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) );
       
   195   OopFlow *flow = new (A) OopFlow(callees+1, defs+1, C);
       
   196   assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" );
       
   197   assert( &flow->_defs   [OptoReg::Bad] == defs   , "Ok to index at OptoReg::Bad" );
       
   198   return flow;
       
   199 }
       
   200 
       
   201 static int get_live_bit( int *live, int reg ) {
       
   202   return live[reg>>LogBitsPerInt] &   (1<<(reg&(BitsPerInt-1))); }
       
   203 static void set_live_bit( int *live, int reg ) {
       
   204          live[reg>>LogBitsPerInt] |=  (1<<(reg&(BitsPerInt-1))); }
       
   205 static void clr_live_bit( int *live, int reg ) {
       
   206          live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }
       
   207 
       
   208 // Build an oopmap from the current flow info
       
   209 OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
       
   210   int framesize = regalloc->_framesize;
       
   211   int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP);
       
   212   debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0());
       
   213               memset(dup_check,0,OptoReg::stack0()) );
       
   214 
       
   215   OopMap *omap = new OopMap( framesize,  max_inarg_slot );
       
   216   MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : NULL;
       
   217   JVMState* jvms = n->jvms();
       
   218 
       
   219   // For all registers do...
       
   220   for( int reg=0; reg<max_reg; reg++ ) {
       
   221     if( get_live_bit(live,reg) == 0 )
       
   222       continue;                 // Ignore if not live
       
   223 
       
   224     // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit
       
   225     // register in that case we'll get an non-concrete register for the second
       
   226     // half. We only need to tell the map the register once!
       
   227     //
       
   228     // However for the moment we disable this change and leave things as they
       
   229     // were.
       
   230 
       
   231     VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot);
       
   232 
       
   233     if (false && r->is_reg() && !r->is_concrete()) {
       
   234       continue;
       
   235     }
       
   236 
       
   237     // See if dead (no reaching def).
       
   238     Node *def = _defs[reg];     // Get reaching def
       
   239     assert( def, "since live better have reaching def" );
       
   240 
       
   241     // Classify the reaching def as oop, derived, callee-save, dead, or other
       
   242     const Type *t = def->bottom_type();
       
   243     if( t->isa_oop_ptr() ) {    // Oop or derived?
       
   244       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
       
   245 #ifdef _LP64
       
   246       // 64-bit pointers record oop-ishness on 2 aligned adjacent registers.
       
   247       // Make sure both are record from the same reaching def, but do not
       
   248       // put both into the oopmap.
       
   249       if( (reg&1) == 1 ) {      // High half of oop-pair?
       
   250         assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" );
       
   251         continue;               // Do not record high parts in oopmap
       
   252       }
       
   253 #endif
       
   254 
       
   255       // Check for a legal reg name in the oopMap and bailout if it is not.
       
   256       if (!omap->legal_vm_reg_name(r)) {
       
   257         regalloc->C->record_method_not_compilable("illegal oopMap register name");
       
   258         continue;
       
   259       }
       
   260       if( t->is_ptr()->_offset == 0 ) { // Not derived?
       
   261         if( mcall ) {
       
   262           // Outgoing argument GC mask responsibility belongs to the callee,
       
   263           // not the caller.  Inspect the inputs to the call, to see if
       
   264           // this live-range is one of them.
       
   265           uint cnt = mcall->tf()->domain()->cnt();
       
   266           uint j;
       
   267           for( j = TypeFunc::Parms; j < cnt; j++)
       
   268             if( mcall->in(j) == def )
       
   269               break;            // reaching def is an argument oop
       
   270           if( j < cnt )         // arg oops dont go in GC map
       
   271             continue;           // Continue on to the next register
       
   272         }
       
   273         omap->set_oop(r);
       
   274       } else {                  // Else it's derived.
       
   275         // Find the base of the derived value.
       
   276         uint i;
       
   277         // Fast, common case, scan
       
   278         for( i = jvms->oopoff(); i < n->req(); i+=2 )
       
   279           if( n->in(i) == def ) break; // Common case
       
   280         if( i == n->req() ) {   // Missed, try a more generous scan
       
   281           // Scan again, but this time peek through copies
       
   282           for( i = jvms->oopoff(); i < n->req(); i+=2 ) {
       
   283             Node *m = n->in(i); // Get initial derived value
       
   284             while( 1 ) {
       
   285               Node *d = def;    // Get initial reaching def
       
   286               while( 1 ) {      // Follow copies of reaching def to end
       
   287                 if( m == d ) goto found; // breaks 3 loops
       
   288                 int idx = d->is_Copy();
       
   289                 if( !idx ) break;
       
   290                 d = d->in(idx);     // Link through copy
       
   291               }
       
   292               int idx = m->is_Copy();
       
   293               if( !idx ) break;
       
   294               m = m->in(idx);
       
   295             }
       
   296           }
       
   297           guarantee( 0, "must find derived/base pair" );
       
   298         }
       
   299       found: ;
       
   300         Node *base = n->in(i+1); // Base is other half of pair
       
   301         int breg = regalloc->get_reg_first(base);
       
   302         VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot);
       
   303 
       
   304         // I record liveness at safepoints BEFORE I make the inputs
       
   305         // live.  This is because argument oops are NOT live at a
       
   306         // safepoint (or at least they cannot appear in the oopmap).
       
   307         // Thus bases of base/derived pairs might not be in the
       
   308         // liveness data but they need to appear in the oopmap.
       
   309         if( get_live_bit(live,breg) == 0 ) {// Not live?
       
   310           // Flag it, so next derived pointer won't re-insert into oopmap
       
   311           set_live_bit(live,breg);
       
   312           // Already missed our turn?
       
   313           if( breg < reg ) {
       
   314             if (b->is_stack() || b->is_concrete() || true ) {
       
   315               omap->set_oop( b);
       
   316             }
       
   317           }
       
   318         }
       
   319         if (b->is_stack() || b->is_concrete() || true ) {
       
   320           omap->set_derived_oop( r, b);
       
   321         }
       
   322       }
       
   323 
       
   324     } else if( t->isa_narrowoop() ) {
       
   325       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
       
   326       // Check for a legal reg name in the oopMap and bailout if it is not.
       
   327       if (!omap->legal_vm_reg_name(r)) {
       
   328         regalloc->C->record_method_not_compilable("illegal oopMap register name");
       
   329         continue;
       
   330       }
       
   331       if( mcall ) {
       
   332           // Outgoing argument GC mask responsibility belongs to the callee,
       
   333           // not the caller.  Inspect the inputs to the call, to see if
       
   334           // this live-range is one of them.
       
   335         uint cnt = mcall->tf()->domain()->cnt();
       
   336         uint j;
       
   337         for( j = TypeFunc::Parms; j < cnt; j++)
       
   338           if( mcall->in(j) == def )
       
   339             break;            // reaching def is an argument oop
       
   340         if( j < cnt )         // arg oops dont go in GC map
       
   341           continue;           // Continue on to the next register
       
   342       }
       
   343       omap->set_narrowoop(r);
       
   344     } else if( OptoReg::is_valid(_callees[reg])) { // callee-save?
       
   345       // It's a callee-save value
       
   346       assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" );
       
   347       debug_only( dup_check[_callees[reg]]=1; )
       
   348       VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg]));
       
   349       if ( callee->is_concrete() || true ) {
       
   350         omap->set_callee_saved( r, callee);
       
   351       }
       
   352 
       
   353     } else {
       
   354       // Other - some reaching non-oop value
       
   355       omap->set_value( r);
       
   356 #ifdef ASSERT
       
   357       if( t->isa_rawptr() && C->cfg()->_raw_oops.member(def) ) {
       
   358         def->dump();
       
   359         n->dump();
       
   360         assert(false, "there should be a oop in OopMap instead of a live raw oop at safepoint");
       
   361       }
       
   362 #endif
       
   363     }
       
   364 
       
   365   }
       
   366 
       
   367 #ifdef ASSERT
       
   368   /* Nice, Intel-only assert
       
   369   int cnt_callee_saves=0;
       
   370   int reg2 = 0;
       
   371   while (OptoReg::is_reg(reg2)) {
       
   372     if( dup_check[reg2] != 0) cnt_callee_saves++;
       
   373     assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" );
       
   374     reg2++;
       
   375   }
       
   376   */
       
   377 #endif
       
   378 
       
   379 #ifdef ASSERT
       
   380   for( OopMapStream oms1(omap, OopMapValue::derived_oop_value); !oms1.is_done(); oms1.next()) {
       
   381     OopMapValue omv1 = oms1.current();
       
   382     bool found = false;
       
   383     for( OopMapStream oms2(omap,OopMapValue::oop_value); !oms2.is_done(); oms2.next()) {
       
   384       if( omv1.content_reg() == oms2.current().reg() ) {
       
   385         found = true;
       
   386         break;
       
   387       }
       
   388     }
       
   389     assert( found, "derived with no base in oopmap" );
       
   390   }
       
   391 #endif
       
   392 
       
   393   return omap;
       
   394 }
       
   395 
       
   396 // Compute backwards liveness on registers
       
   397 static void do_liveness(PhaseRegAlloc* regalloc, PhaseCFG* cfg, Block_List* worklist, int max_reg_ints, Arena* A, Dict* safehash) {
       
   398   int* live = NEW_ARENA_ARRAY(A, int, (cfg->number_of_blocks() + 1) * max_reg_ints);
       
   399   int* tmp_live = &live[cfg->number_of_blocks() * max_reg_ints];
       
   400   Node* root = cfg->get_root_node();
       
   401   // On CISC platforms, get the node representing the stack pointer  that regalloc
       
   402   // used for spills
       
   403   Node *fp = NodeSentinel;
       
   404   if (UseCISCSpill && root->req() > 1) {
       
   405     fp = root->in(1)->in(TypeFunc::FramePtr);
       
   406   }
       
   407   memset(live, 0, cfg->number_of_blocks() * (max_reg_ints << LogBytesPerInt));
       
   408   // Push preds onto worklist
       
   409   for (uint i = 1; i < root->req(); i++) {
       
   410     Block* block = cfg->get_block_for_node(root->in(i));
       
   411     worklist->push(block);
       
   412   }
       
   413 
       
   414   // ZKM.jar includes tiny infinite loops which are unreached from below.
       
   415   // If we missed any blocks, we'll retry here after pushing all missed
       
   416   // blocks on the worklist.  Normally this outer loop never trips more
       
   417   // than once.
       
   418   while (1) {
       
   419 
       
   420     while( worklist->size() ) { // Standard worklist algorithm
       
   421       Block *b = worklist->rpop();
       
   422 
       
   423       // Copy first successor into my tmp_live space
       
   424       int s0num = b->_succs[0]->_pre_order;
       
   425       int *t = &live[s0num*max_reg_ints];
       
   426       for( int i=0; i<max_reg_ints; i++ )
       
   427         tmp_live[i] = t[i];
       
   428 
       
   429       // OR in the remaining live registers
       
   430       for( uint j=1; j<b->_num_succs; j++ ) {
       
   431         uint sjnum = b->_succs[j]->_pre_order;
       
   432         int *t = &live[sjnum*max_reg_ints];
       
   433         for( int i=0; i<max_reg_ints; i++ )
       
   434           tmp_live[i] |= t[i];
       
   435       }
       
   436 
       
   437       // Now walk tmp_live up the block backwards, computing live
       
   438       for( int k=b->number_of_nodes()-1; k>=0; k-- ) {
       
   439         Node *n = b->get_node(k);
       
   440         // KILL def'd bits
       
   441         int first = regalloc->get_reg_first(n);
       
   442         int second = regalloc->get_reg_second(n);
       
   443         if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first);
       
   444         if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second);
       
   445 
       
   446         MachNode *m = n->is_Mach() ? n->as_Mach() : NULL;
       
   447 
       
   448         // Check if m is potentially a CISC alternate instruction (i.e, possibly
       
   449         // synthesized by RegAlloc from a conventional instruction and a
       
   450         // spilled input)
       
   451         bool is_cisc_alternate = false;
       
   452         if (UseCISCSpill && m) {
       
   453           is_cisc_alternate = m->is_cisc_alternate();
       
   454         }
       
   455 
       
   456         // GEN use'd bits
       
   457         for( uint l=1; l<n->req(); l++ ) {
       
   458           Node *def = n->in(l);
       
   459           assert(def != 0, "input edge required");
       
   460           int first = regalloc->get_reg_first(def);
       
   461           int second = regalloc->get_reg_second(def);
       
   462           if( OptoReg::is_valid(first) ) set_live_bit(tmp_live,first);
       
   463           if( OptoReg::is_valid(second) ) set_live_bit(tmp_live,second);
       
   464           // If we use the stack pointer in a cisc-alternative instruction,
       
   465           // check for use as a memory operand.  Then reconstruct the RegName
       
   466           // for this stack location, and set the appropriate bit in the
       
   467           // live vector 4987749.
       
   468           if (is_cisc_alternate && def == fp) {
       
   469             const TypePtr *adr_type = NULL;
       
   470             intptr_t offset;
       
   471             const Node* base = m->get_base_and_disp(offset, adr_type);
       
   472             if (base == NodeSentinel) {
       
   473               // Machnode has multiple memory inputs. We are unable to reason
       
   474               // with these, but are presuming (with trepidation) that not any of
       
   475               // them are oops. This can be fixed by making get_base_and_disp()
       
   476               // look at a specific input instead of all inputs.
       
   477               assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input");
       
   478             } else if (base != fp || offset == Type::OffsetBot) {
       
   479               // Do nothing: the fp operand is either not from a memory use
       
   480               // (base == NULL) OR the fp is used in a non-memory context
       
   481               // (base is some other register) OR the offset is not constant,
       
   482               // so it is not a stack slot.
       
   483             } else {
       
   484               assert(offset >= 0, "unexpected negative offset");
       
   485               offset -= (offset % jintSize);  // count the whole word
       
   486               int stack_reg = regalloc->offset2reg(offset);
       
   487               if (OptoReg::is_stack(stack_reg)) {
       
   488                 set_live_bit(tmp_live, stack_reg);
       
   489               } else {
       
   490                 assert(false, "stack_reg not on stack?");
       
   491               }
       
   492             }
       
   493           }
       
   494         }
       
   495 
       
   496         if( n->jvms() ) {       // Record liveness at safepoint
       
   497 
       
   498           // This placement of this stanza means inputs to calls are
       
   499           // considered live at the callsite's OopMap.  Argument oops are
       
   500           // hence live, but NOT included in the oopmap.  See cutout in
       
   501           // build_oop_map.  Debug oops are live (and in OopMap).
       
   502           int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints);
       
   503           for( int l=0; l<max_reg_ints; l++ )
       
   504             n_live[l] = tmp_live[l];
       
   505           safehash->Insert(n,n_live);
       
   506         }
       
   507 
       
   508       }
       
   509 
       
   510       // Now at block top, see if we have any changes.  If so, propagate
       
   511       // to prior blocks.
       
   512       int *old_live = &live[b->_pre_order*max_reg_ints];
       
   513       int l;
       
   514       for( l=0; l<max_reg_ints; l++ )
       
   515         if( tmp_live[l] != old_live[l] )
       
   516           break;
       
   517       if( l<max_reg_ints ) {     // Change!
       
   518         // Copy in new value
       
   519         for( l=0; l<max_reg_ints; l++ )
       
   520           old_live[l] = tmp_live[l];
       
   521         // Push preds onto worklist
       
   522         for (l = 1; l < (int)b->num_preds(); l++) {
       
   523           Block* block = cfg->get_block_for_node(b->pred(l));
       
   524           worklist->push(block);
       
   525         }
       
   526       }
       
   527     }
       
   528 
       
   529     // Scan for any missing safepoints.  Happens to infinite loops
       
   530     // ala ZKM.jar
       
   531     uint i;
       
   532     for (i = 1; i < cfg->number_of_blocks(); i++) {
       
   533       Block* block = cfg->get_block(i);
       
   534       uint j;
       
   535       for (j = 1; j < block->number_of_nodes(); j++) {
       
   536         if (block->get_node(j)->jvms() && (*safehash)[block->get_node(j)] == NULL) {
       
   537            break;
       
   538         }
       
   539       }
       
   540       if (j < block->number_of_nodes()) {
       
   541         break;
       
   542       }
       
   543     }
       
   544     if (i == cfg->number_of_blocks()) {
       
   545       break;                    // Got 'em all
       
   546     }
       
   547 
       
   548     if (PrintOpto && Verbose) {
       
   549       tty->print_cr("retripping live calc");
       
   550     }
       
   551 
       
   552     // Force the issue (expensively): recheck everybody
       
   553     for (i = 1; i < cfg->number_of_blocks(); i++) {
       
   554       worklist->push(cfg->get_block(i));
       
   555     }
       
   556   }
       
   557 }
       
   558 
       
   559 // Collect GC mask info - where are all the OOPs?
       
   560 void Compile::BuildOopMaps() {
       
   561   TracePhase tp("bldOopMaps", &timers[_t_buildOopMaps]);
       
   562   // Can't resource-mark because I need to leave all those OopMaps around,
       
   563   // or else I need to resource-mark some arena other than the default.
       
   564   // ResourceMark rm;              // Reclaim all OopFlows when done
       
   565   int max_reg = _regalloc->_max_reg; // Current array extent
       
   566 
       
   567   Arena *A = Thread::current()->resource_area();
       
   568   Block_List worklist;          // Worklist of pending blocks
       
   569 
       
   570   int max_reg_ints = align_up(max_reg, BitsPerInt)>>LogBitsPerInt;
       
   571   Dict *safehash = NULL;        // Used for assert only
       
   572   // Compute a backwards liveness per register.  Needs a bitarray of
       
   573   // #blocks x (#registers, rounded up to ints)
       
   574   safehash = new Dict(cmpkey,hashkey,A);
       
   575   do_liveness( _regalloc, _cfg, &worklist, max_reg_ints, A, safehash );
       
   576   OopFlow *free_list = NULL;    // Free, unused
       
   577 
       
   578   // Array mapping blocks to completed oopflows
       
   579   OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, _cfg->number_of_blocks());
       
   580   memset( flows, 0, _cfg->number_of_blocks() * sizeof(OopFlow*) );
       
   581 
       
   582 
       
   583   // Do the first block 'by hand' to prime the worklist
       
   584   Block *entry = _cfg->get_block(1);
       
   585   OopFlow *rootflow = OopFlow::make(A,max_reg,this);
       
   586   // Initialize to 'bottom' (not 'top')
       
   587   memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
       
   588   memset( rootflow->_defs   ,            0, max_reg*sizeof(Node*) );
       
   589   flows[entry->_pre_order] = rootflow;
       
   590 
       
   591   // Do the first block 'by hand' to prime the worklist
       
   592   rootflow->_b = entry;
       
   593   rootflow->compute_reach( _regalloc, max_reg, safehash );
       
   594   for( uint i=0; i<entry->_num_succs; i++ )
       
   595     worklist.push(entry->_succs[i]);
       
   596 
       
   597   // Now worklist contains blocks which have some, but perhaps not all,
       
   598   // predecessors visited.
       
   599   while( worklist.size() ) {
       
   600     // Scan for a block with all predecessors visited, or any randoms slob
       
   601     // otherwise.  All-preds-visited order allows me to recycle OopFlow
       
   602     // structures rapidly and cut down on the memory footprint.
       
   603     // Note: not all predecessors might be visited yet (must happen for
       
   604     // irreducible loops).  This is OK, since every live value must have the
       
   605     // SAME reaching def for the block, so any reaching def is OK.
       
   606     uint i;
       
   607 
       
   608     Block *b = worklist.pop();
       
   609     // Ignore root block
       
   610     if (b == _cfg->get_root_block()) {
       
   611       continue;
       
   612     }
       
   613     // Block is already done?  Happens if block has several predecessors,
       
   614     // he can get on the worklist more than once.
       
   615     if( flows[b->_pre_order] ) continue;
       
   616 
       
   617     // If this block has a visited predecessor AND that predecessor has this
       
   618     // last block as his only undone child, we can move the OopFlow from the
       
   619     // pred to this block.  Otherwise we have to grab a new OopFlow.
       
   620     OopFlow *flow = NULL;       // Flag for finding optimized flow
       
   621     Block *pred = (Block*)0xdeadbeef;
       
   622     // Scan this block's preds to find a done predecessor
       
   623     for (uint j = 1; j < b->num_preds(); j++) {
       
   624       Block* p = _cfg->get_block_for_node(b->pred(j));
       
   625       OopFlow *p_flow = flows[p->_pre_order];
       
   626       if( p_flow ) {            // Predecessor is done
       
   627         assert( p_flow->_b == p, "cross check" );
       
   628         pred = p;               // Record some predecessor
       
   629         // If all successors of p are done except for 'b', then we can carry
       
   630         // p_flow forward to 'b' without copying, otherwise we have to draw
       
   631         // from the free_list and clone data.
       
   632         uint k;
       
   633         for( k=0; k<p->_num_succs; k++ )
       
   634           if( !flows[p->_succs[k]->_pre_order] &&
       
   635               p->_succs[k] != b )
       
   636             break;
       
   637 
       
   638         // Either carry-forward the now-unused OopFlow for b's use
       
   639         // or draw a new one from the free list
       
   640         if( k==p->_num_succs ) {
       
   641           flow = p_flow;
       
   642           break;                // Found an ideal pred, use him
       
   643         }
       
   644       }
       
   645     }
       
   646 
       
   647     if( flow ) {
       
   648       // We have an OopFlow that's the last-use of a predecessor.
       
   649       // Carry it forward.
       
   650     } else {                    // Draw a new OopFlow from the freelist
       
   651       if( !free_list )
       
   652         free_list = OopFlow::make(A,max_reg,C);
       
   653       flow = free_list;
       
   654       assert( flow->_b == NULL, "oopFlow is not free" );
       
   655       free_list = flow->_next;
       
   656       flow->_next = NULL;
       
   657 
       
   658       // Copy/clone over the data
       
   659       flow->clone(flows[pred->_pre_order], max_reg);
       
   660     }
       
   661 
       
   662     // Mark flow for block.  Blocks can only be flowed over once,
       
   663     // because after the first time they are guarded from entering
       
   664     // this code again.
       
   665     assert( flow->_b == pred, "have some prior flow" );
       
   666     flow->_b = NULL;
       
   667 
       
   668     // Now push flow forward
       
   669     flows[b->_pre_order] = flow;// Mark flow for this block
       
   670     flow->_b = b;
       
   671     flow->compute_reach( _regalloc, max_reg, safehash );
       
   672 
       
   673     // Now push children onto worklist
       
   674     for( i=0; i<b->_num_succs; i++ )
       
   675       worklist.push(b->_succs[i]);
       
   676 
       
   677   }
       
   678 }