src/hotspot/share/gc/shared/taskqueue.inline.hpp
changeset 47216 71c04702a3d5
parent 46704 211b3f6b75ef
child 47634 6a0c42c40cd1
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #ifndef SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP
       
    26 #define SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP
       
    27 
       
    28 #include "gc/shared/taskqueue.hpp"
       
    29 #include "memory/allocation.inline.hpp"
       
    30 #include "oops/oop.inline.hpp"
       
    31 #include "runtime/atomic.hpp"
       
    32 #include "runtime/orderAccess.inline.hpp"
       
    33 #include "utilities/debug.hpp"
       
    34 #include "utilities/stack.inline.hpp"
       
    35 
       
    36 template <class T, MEMFLAGS F>
       
    37 inline GenericTaskQueueSet<T, F>::GenericTaskQueueSet(int n) : _n(n) {
       
    38   typedef T* GenericTaskQueuePtr;
       
    39   _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
       
    40   for (int i = 0; i < n; i++) {
       
    41     _queues[i] = NULL;
       
    42   }
       
    43 }
       
    44 
       
    45 template<class E, MEMFLAGS F, unsigned int N>
       
    46 inline void GenericTaskQueue<E, F, N>::initialize() {
       
    47   _elems = ArrayAllocator<E>::allocate(N, F);
       
    48 }
       
    49 
       
    50 template<class E, MEMFLAGS F, unsigned int N>
       
    51 inline GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
       
    52   assert(false, "This code is currently never called");
       
    53   ArrayAllocator<E>::free(const_cast<E*>(_elems), N);
       
    54 }
       
    55 
       
    56 template<class E, MEMFLAGS F, unsigned int N>
       
    57 bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
       
    58   if (dirty_n_elems == N - 1) {
       
    59     // Actually means 0, so do the push.
       
    60     uint localBot = _bottom;
       
    61     // g++ complains if the volatile result of the assignment is
       
    62     // unused, so we cast the volatile away.  We cannot cast directly
       
    63     // to void, because gcc treats that as not using the result of the
       
    64     // assignment.  However, casting to E& means that we trigger an
       
    65     // unused-value warning.  So, we cast the E& to void.
       
    66     (void)const_cast<E&>(_elems[localBot] = t);
       
    67     OrderAccess::release_store(&_bottom, increment_index(localBot));
       
    68     TASKQUEUE_STATS_ONLY(stats.record_push());
       
    69     return true;
       
    70   }
       
    71   return false;
       
    72 }
       
    73 
       
    74 template<class E, MEMFLAGS F, unsigned int N> inline bool
       
    75 GenericTaskQueue<E, F, N>::push(E t) {
       
    76   uint localBot = _bottom;
       
    77   assert(localBot < N, "_bottom out of range.");
       
    78   idx_t top = _age.top();
       
    79   uint dirty_n_elems = dirty_size(localBot, top);
       
    80   assert(dirty_n_elems < N, "n_elems out of range.");
       
    81   if (dirty_n_elems < max_elems()) {
       
    82     // g++ complains if the volatile result of the assignment is
       
    83     // unused, so we cast the volatile away.  We cannot cast directly
       
    84     // to void, because gcc treats that as not using the result of the
       
    85     // assignment.  However, casting to E& means that we trigger an
       
    86     // unused-value warning.  So, we cast the E& to void.
       
    87     (void) const_cast<E&>(_elems[localBot] = t);
       
    88     OrderAccess::release_store(&_bottom, increment_index(localBot));
       
    89     TASKQUEUE_STATS_ONLY(stats.record_push());
       
    90     return true;
       
    91   } else {
       
    92     return push_slow(t, dirty_n_elems);
       
    93   }
       
    94 }
       
    95 
       
    96 template <class E, MEMFLAGS F, unsigned int N>
       
    97 inline bool OverflowTaskQueue<E, F, N>::push(E t)
       
    98 {
       
    99   if (!taskqueue_t::push(t)) {
       
   100     overflow_stack()->push(t);
       
   101     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
       
   102   }
       
   103   return true;
       
   104 }
       
   105 
       
   106 template <class E, MEMFLAGS F, unsigned int N>
       
   107 inline bool OverflowTaskQueue<E, F, N>::try_push_to_taskqueue(E t) {
       
   108   return taskqueue_t::push(t);
       
   109 }
       
   110 
       
   111 // pop_local_slow() is done by the owning thread and is trying to
       
   112 // get the last task in the queue.  It will compete with pop_global()
       
   113 // that will be used by other threads.  The tag age is incremented
       
   114 // whenever the queue goes empty which it will do here if this thread
       
   115 // gets the last task or in pop_global() if the queue wraps (top == 0
       
   116 // and pop_global() succeeds, see pop_global()).
       
   117 template<class E, MEMFLAGS F, unsigned int N>
       
   118 bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
       
   119   // This queue was observed to contain exactly one element; either this
       
   120   // thread will claim it, or a competing "pop_global".  In either case,
       
   121   // the queue will be logically empty afterwards.  Create a new Age value
       
   122   // that represents the empty queue for the given value of "_bottom".  (We
       
   123   // must also increment "tag" because of the case where "bottom == 1",
       
   124   // "top == 0".  A pop_global could read the queue element in that case,
       
   125   // then have the owner thread do a pop followed by another push.  Without
       
   126   // the incrementing of "tag", the pop_global's CAS could succeed,
       
   127   // allowing it to believe it has claimed the stale element.)
       
   128   Age newAge((idx_t)localBot, oldAge.tag() + 1);
       
   129   // Perhaps a competing pop_global has already incremented "top", in which
       
   130   // case it wins the element.
       
   131   if (localBot == oldAge.top()) {
       
   132     // No competing pop_global has yet incremented "top"; we'll try to
       
   133     // install new_age, thus claiming the element.
       
   134     Age tempAge = _age.cmpxchg(newAge, oldAge);
       
   135     if (tempAge == oldAge) {
       
   136       // We win.
       
   137       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
       
   138       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
       
   139       return true;
       
   140     }
       
   141   }
       
   142   // We lose; a completing pop_global gets the element.  But the queue is empty
       
   143   // and top is greater than bottom.  Fix this representation of the empty queue
       
   144   // to become the canonical one.
       
   145   _age.set(newAge);
       
   146   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
       
   147   return false;
       
   148 }
       
   149 
       
   150 template<class E, MEMFLAGS F, unsigned int N> inline bool
       
   151 GenericTaskQueue<E, F, N>::pop_local(volatile E& t) {
       
   152   uint localBot = _bottom;
       
   153   // This value cannot be N-1.  That can only occur as a result of
       
   154   // the assignment to bottom in this method.  If it does, this method
       
   155   // resets the size to 0 before the next call (which is sequential,
       
   156   // since this is pop_local.)
       
   157   uint dirty_n_elems = dirty_size(localBot, _age.top());
       
   158   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
       
   159   if (dirty_n_elems == 0) return false;
       
   160   localBot = decrement_index(localBot);
       
   161   _bottom = localBot;
       
   162   // This is necessary to prevent any read below from being reordered
       
   163   // before the store just above.
       
   164   OrderAccess::fence();
       
   165   // g++ complains if the volatile result of the assignment is
       
   166   // unused, so we cast the volatile away.  We cannot cast directly
       
   167   // to void, because gcc treats that as not using the result of the
       
   168   // assignment.  However, casting to E& means that we trigger an
       
   169   // unused-value warning.  So, we cast the E& to void.
       
   170   (void) const_cast<E&>(t = _elems[localBot]);
       
   171   // This is a second read of "age"; the "size()" above is the first.
       
   172   // If there's still at least one element in the queue, based on the
       
   173   // "_bottom" and "age" we've read, then there can be no interference with
       
   174   // a "pop_global" operation, and we're done.
       
   175   idx_t tp = _age.top();    // XXX
       
   176   if (size(localBot, tp) > 0) {
       
   177     assert(dirty_size(localBot, tp) != N - 1, "sanity");
       
   178     TASKQUEUE_STATS_ONLY(stats.record_pop());
       
   179     return true;
       
   180   } else {
       
   181     // Otherwise, the queue contained exactly one element; we take the slow
       
   182     // path.
       
   183     return pop_local_slow(localBot, _age.get());
       
   184   }
       
   185 }
       
   186 
       
   187 template <class E, MEMFLAGS F, unsigned int N>
       
   188 bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
       
   189 {
       
   190   if (overflow_empty()) return false;
       
   191   t = overflow_stack()->pop();
       
   192   return true;
       
   193 }
       
   194 
       
   195 template<class E, MEMFLAGS F, unsigned int N>
       
   196 bool GenericTaskQueue<E, F, N>::pop_global(volatile E& t) {
       
   197   Age oldAge = _age.get();
       
   198   // Architectures with weak memory model require a barrier here
       
   199   // to guarantee that bottom is not older than age,
       
   200   // which is crucial for the correctness of the algorithm.
       
   201 #if !(defined SPARC || defined IA32 || defined AMD64)
       
   202   OrderAccess::fence();
       
   203 #endif
       
   204   uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom);
       
   205   uint n_elems = size(localBot, oldAge.top());
       
   206   if (n_elems == 0) {
       
   207     return false;
       
   208   }
       
   209 
       
   210   // g++ complains if the volatile result of the assignment is
       
   211   // unused, so we cast the volatile away.  We cannot cast directly
       
   212   // to void, because gcc treats that as not using the result of the
       
   213   // assignment.  However, casting to E& means that we trigger an
       
   214   // unused-value warning.  So, we cast the E& to void.
       
   215   (void) const_cast<E&>(t = _elems[oldAge.top()]);
       
   216   Age newAge(oldAge);
       
   217   newAge.increment();
       
   218   Age resAge = _age.cmpxchg(newAge, oldAge);
       
   219 
       
   220   // Note that using "_bottom" here might fail, since a pop_local might
       
   221   // have decremented it.
       
   222   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
       
   223   return resAge == oldAge;
       
   224 }
       
   225 
       
   226 template<class T, MEMFLAGS F> bool
       
   227 GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
       
   228   if (_n > 2) {
       
   229     uint k1 = queue_num;
       
   230     while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
       
   231     uint k2 = queue_num;
       
   232     while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
       
   233     // Sample both and try the larger.
       
   234     uint sz1 = _queues[k1]->size();
       
   235     uint sz2 = _queues[k2]->size();
       
   236     if (sz2 > sz1) return _queues[k2]->pop_global(t);
       
   237     else return _queues[k1]->pop_global(t);
       
   238   } else if (_n == 2) {
       
   239     // Just try the other one.
       
   240     uint k = (queue_num + 1) % 2;
       
   241     return _queues[k]->pop_global(t);
       
   242   } else {
       
   243     assert(_n == 1, "can't be zero.");
       
   244     return false;
       
   245   }
       
   246 }
       
   247 
       
   248 template<class T, MEMFLAGS F> bool
       
   249 GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
       
   250   for (uint i = 0; i < 2 * _n; i++) {
       
   251     if (steal_best_of_2(queue_num, seed, t)) {
       
   252       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
       
   253       return true;
       
   254     }
       
   255   }
       
   256   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
       
   257   return false;
       
   258 }
       
   259 
       
   260 template <unsigned int N, MEMFLAGS F>
       
   261 inline typename TaskQueueSuper<N, F>::Age TaskQueueSuper<N, F>::Age::cmpxchg(const Age new_age, const Age old_age) volatile {
       
   262   return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
       
   263                                       (volatile intptr_t *)&_data,
       
   264                                       (intptr_t)old_age._data);
       
   265 }
       
   266 
       
   267 template<class E, MEMFLAGS F, unsigned int N>
       
   268 template<class Fn>
       
   269 inline void GenericTaskQueue<E, F, N>::iterate(Fn fn) {
       
   270   uint iters = size();
       
   271   uint index = _bottom;
       
   272   for (uint i = 0; i < iters; ++i) {
       
   273     index = decrement_index(index);
       
   274     fn(const_cast<E&>(_elems[index])); // cast away volatility
       
   275   }
       
   276 }
       
   277 
       
   278 
       
   279 #endif // SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP